
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Computer Science Publications School of Computer Science 

2013 

Bias Correction in Small Sample from Big Data Bias Correction in Small Sample from Big Data 

Jianguo Lu 
University of Windsor 

Dingding Li 

Follow this and additional works at: https://scholar.uwindsor.ca/computersciencepub 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Lu, Jianguo and Li, Dingding. (2013). Bias Correction in Small Sample from Big Data. IEEE Transactions on 
Knowledge and Data Engineering, In Press. 
https://scholar.uwindsor.ca/computersciencepub/1 

This Article is brought to you for free and open access by the School of Computer Science at Scholarship at 
UWindsor. It has been accepted for inclusion in Computer Science Publications by an authorized administrator of 
Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/computersciencepub
https://scholar.uwindsor.ca/compsci
https://scholar.uwindsor.ca/computersciencepub?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/computersciencepub/1?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


1

Bias Correction in Small Sample from Big Data
Jianguo Lu 1, Dingding Li 2

1 School of Computer Science, University of Windsor
2 Department of Economics, University of Windsor

Email: {jlu,dli}@uwindsor.ca
401 Sunset Avenue, Windsor, Ontario N9B 3P4. Canada

Abstract—This paper discusses the bias problem when
estimating the population size of big data such as online
social networks (OSN) using simple random walk. Unlike the
traditional estimation problem where the sample size is not
very small relative to the data size, in big data a small sample
relative to the data size is already very large and costly to
obtain. When small samples are used, there is a bias that is
no longer negligible. This paper shows analitically that the
relative bias can be approximated by the reciprocal of the
number of collisions, thereby a bias correction estimator is
introduced. The result is further supported by both simulation
studies and the real Twitter network that contains 41.7 million
nodes.

Index Terms—Big data, online social networks, small sam-
ple, bias, size estimation

I. INTRODUCTION

In the era of big data, the size of data is often in the
magnitude of billions. Examples of such big data include
Online Social Networks (OSN) such as Facebook, pages on
the web, the deep web, and the semantic web. Most of the
time the direct access to the entire data is neither possible
nor computationally feasible, forcing people to probe the
properties of the data by looking at a sample [15]. Because
of the huge size of the data, quite often even a sufficient
sample is too big to obtain. For practical consideration, we
are often limited to the smallest possible sample.

This paper studies the size estimation using simple
random walk when sample size is limited due to the high
cost of sampling. We choose simple random walk sampling
because it is supported by most OSN interfaces [12] [10]
[23], and it is more efficient compared with uniform random
samples achieved by rejection samplings or Metropolis-
Hasting sampling [19].

The basic idea of population size estimation is based on
the collisions during a random walk or repeated samplings.
It is rooted in classical birthday paradox problem, in
capture-recapture method developed in ecology [1], and in
Erdos random graph [8]. In terms of random walk sampling
on a network, a node can be visited multiple times during
a random walk. When each node has an equal probability
of being visited, a collision occurs when the sample size
is in the order of O(

√
2N) (see equation 14), where N is

the total population size. We call a sample is small if the
number of collisions is barely above one.

For instance, giving a network comprised of one million
nodes, we need to visit around 4500 nodes before on

average 10 collisions can occur. The number of the col-
lisions lies mostly between 3 and 17 according to its 95%
confidence interval. Considering each node visit requires
multiple remote calls to the server over the network, the cost
of obtaining this sample is rather high. Yet the collisions
can be close to zero. Relative to the size of the total
population, this is a small sample.

When only a small sample is affordable, we need to
utilize what we have to give a best estimation. One thing
often overlooked is that there is a bias in the estimators used
in literature, and the bias is rather large when the sample
size is small. Continuing our previous example, the small
sample can induce a bias as large as 10%.

This paper is based on the following estimator N̂ that
can be derived from [3] [12]:

N̂ = (γ2 + 1)

(
n

2

)
1

C
, (1)

where n is the sample size, γ is the coefficient of variation
of the degrees of the network, and C is the number of
collisions. We show that N̂ is biased upwards and its
relative bias, the bias normalized by the population size,
can be approximated by the reciprocal of the expectation
of C. Based on this we derived the bias correction estimator
N̂∗ as

N̂∗ =(γ2 + 1)

(
n

2

)
1

C + 1
(2)

This result is demonstrated by simulation studies and
supported by real Twitter data.

II. RELATED WORK

Population size estimation has been widely studied in
ecology [3] and social studies [21], and more recently in
computer science for estimating the size of the web [14],
databases [11], web data sources [7] [25] [2], and online
social networks [12] [10] [23].

The starting point of population estimation is the well-
known Lincoln-Petersen estimator [1] that can be applied
when there are two sampling occasions and every node has
equal probability of being sampled:

N̂LP =
n1n2
d

(3)

where n1 is the number of nodes sampled in the first capture
occasion, n2 is the number of nodes sampled in the second
occasion, d is the duplicates among those two samples.
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For Lincoln-Petersen estimator the bias correction has been
addressed by Chapman [4] [22] by suggesting the following
Chapman estimator:

N̂Chap =
(n1 + 1)(n2 + 1)

d+ 1
− 1 (4)

The derivation is based on the hypergeometric distribution
of the repeated elements since Lincoln-Peterson estimator
assumes the sampling without replacement, which is dif-
ferent from the sampling with replacement assumed by N̂
estimator.

The assumptions of Lincoln-Petersen estimator can be
hardly met in reality. It is extended in two dimensions:
one is allowing multiple sampling occasions, the other is
supporting heterogeneity in capture probability.

When there are more than two sampling occasions and
each time only one sample is taken, Darroch [6] derived that
the approximate Maximum Likelihood Estimator (MLE),
N̂D, is the solution of the following equation:

n− d = N
(
1− e− n

N

)
. (5)

where n is the total sample size, and d is the duplications.
This equation has also been used to predict the isolated
nodes in random graph when edges are randomly added
[20]. Since it does not have a simple closed form solution
[20] [6], its bias correction is not discussed in literature. In
OSN studies, [23] used numeric method to find the solution
to this estimator.

When the data is heterogeneous and the capture occa-
sions are more than two, the estimation is notoriously dif-
ficult, mainly due to the lack of knowledge of γ. Therefore
Equation 1 as an estimator for N was not seen in ecology,
let alone the correction of bias. Instead, the same equation
was used by Chao et al. [3] in reverse way to estimate γ
as below:

γ̂2 = N0C

(
n

2

)−1
− 1 (6)

where N0 is a bootstrapped estimation for N by another
estimator.

In the estimation of digitalized networks such as OSN,
the sampling probability for each node can be (partially) de-
cided by the degrees. Unlike traditional sampling schemes
where sampling probability of animals are different but
the exact variance is impossible to quantify accurately, in
OSN simple random walk sampling we know not only the
exact degree of the node being visited, but also that the
sampling probability is proportional to its degree. With this
knowledge, we can obtain the value of γ, thereby estimator
N̂ can be applied. Not surprisingly Katzir et al. [12] used
a similar equation to estimate the size of OSNs:

N̂K =
1

2C

n∑
i=1

dxi

n∑
i=1

1/dxi (7)

which can be transformed to N̂ as we will show in Section
V-A (eq 29). [12] showed that it is a consistent estimator,
but does not mention the bias problem.

Note that N̂ can be approximated by equation 5 when
γ = 0, sample size is small, and collisions C can be ap-
proximated by duplicates d, by applying Taylor expansion
on the right hand side of equation 5.

In contrast to the traditional sampling in ecology and
social studies, the diversity of the access interfaces to web
data collections opens up opportunities for designing sam-
pling schemes that take advantages of interface specifics.
The resulting estimators can be unbiased. For instance, [10]
samples valid Facebook IDs from an ID space of 9 digits,
utilizing the Facebook implementation details that make the
number of invalid IDs not much bigger than valid ones; [25]
takes advantage of the prefix encoding of Youtube links; [7]
depends on the negation of queries to break down the search
results. Compared to this group of estimation methods, our
approach is rather generic, in that it works on any access
interfaces as long as the interface supports simple random
walk.

The bias correction in this paper reminds us the legendary
Good-Turing smoothing [9] in word frequency estimation
and Enigma code breaking. In particular amongst a string
of adjusted estimators there is an add-one smoothing [24]
that looks related to our method. But these two methods
are different in that we are adjusting the bias, while their
methods try to save the probability space to account for
unseen word types.

III. PRELIMINARIES

Given a graph of N nodes labeled as (1, 2, . . . , N). A
sample of the nodes (x1, x2, . . . , xn), xi ∈ {1, . . . , N},
is taken by a simple random walk on the graph, where
node xi+1 is selected randomly from the neighbours of
the proceeding node xi. In addition to the node ids, we
assume that their corresponding degrees (dx1 , dx2 , . . . , dxn)
are also obtained. Our task is to estimate N based on the
sample.

Depending on the sampling scheme, the probability of a
node being included in a sample may not be equal. In sim-
ple random walk sampling, a node with larger degree will
have higher probability of being sampled. The sampling
probability pi of node i is asymptotically proportional to
its degree di [16], i.e.,

pi =
di
τ

(8)

where τ =
∑N
i=1 di = N〈d〉.

The heterogeneity of the sampling probability or the node
degrees can be measured by Coefficient of Variation (CV,
denoted as γ hereafter), which is defined as the normalized
standard deviation of the degrees:

γ2 =
var(d)

〈d〉2
=
〈d2〉
〈d〉2

− 1 (9)

When selecting two nodes, the probability that the same
node i is visited twice is p2i . Among all the nodes, the prob-
ability of having a collision is p =

∑N
i=1 p

2
i . Since there

are
(
n
2

)
pairs in a sample of size n, the number of collisions
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follows the binomial distribution B(n(n − 1)/2, p) whose
mean is

E(C) =

(
n

2

)
p (10)

and its variance is

var(C) =

(
n

2

)
p(1− p) = E(C)(1− p) (11)

The collision probability p can be translated into the
heterogeneity of the data measured by γ using equations
8 and 9 :

p =

N∑
i=1

p2i =
1

τ2

N∑
i=1

d2i =
〈d2〉
N〈d〉2

=
γ2 + 1

N
. (12)

Combining equations 12 and 10 we obtain the expected
mean of collisions as below:

E(C) =

(
n

2

)
γ2 + 1

N
(13)

When every node in the network has the same probability
of being visited, γ = 0 and p = pi = 1/N , the above
formulation is reduced to the well known birthday-paradox
problem where

E(C) =

(
n

2

)
1

N
≈ n2

2N
(14)

In another word, on average
√
2N number of samples are

needed to produce a collision.
In the case of big data, the variance can be simplified

further. Given a network with a fixed γ, p tends to zero
when N tends to infinity according to equation 12. It
follows from equation 11 that:

lim
N→∞

var(C) = E(C). (15)

IV. THE ESTIMATORS

A. The biased estimator

From Equation 13 the population size can be described
by

N = (γ2 + 1)

(
n

2

)
1

E(C)
(16)

Since E(C) is unknown, it can be estimated by the
observed collisions C. This gives us the estimator

N̂ = (γ2 + 1)

(
n

2

)
1

C
(17)

Where C is calculated as follows: let fi denote the
number of individuals that are visited exactly i times,
C =

∑+∞
i=1

(
i
2

)
fi. Note that C can be larger than the

number of duplicate visits d =
∑+∞
i=1 (i − 1)fi, especially

when sample size is large.
Estimator N̂ is biased. The expected value of the esti-

mator is

E(N̂) = E

[
(γ2 + 1)

(
n

2

)
1

C

]
= (γ2 + 1)

(
n

2

)
E

(
1

C

)
(18)

Comparing equations 16 and 18 the only difference is
between 1/E(C) and E(1/C). It is well known [5] that
the expectation of the reciprocal of a random variable is
greater than the reciprocal of its expectation, if the random
variable is non-degenerate and positive. i.e.,

E

(
1

C

)
>

1

E(C)
(19)

In other words, N̂ has a positive bias. What we need to
know is exactly how large is the bias, or what is the relative
bias (RB) of N̂ that is defined as follows:

RB =
E(N̂)−N

N
=
E( 1

C )−
1
µ

1
µ

(20)

where we use µ to denote E(C) so that the deduction in
the following is more succinct.

B. Bias correction

The expected value of 1/C can be derived using Taylor
expansion of 1/C around µ as below:

1

C
=

1

µ
− C − µ

µ2
+

2

µ3

(C − µ)2

2!
− 6

µ4

(C − µ)3

3!
. . .

Applying linearity of expectation, the expected value of
1/C is

E

(
1

C

)
=

1

µ
− E(C)− µ

µ2
+
E(C − µ)2

µ3
− E(C − µ)3

µ4
. . .

Note that the second-central moment is the variance, the
third-central moment E(C − µ)3 is(

n

2

)
p(1− p)(1− 2p) ≈

(
n

2

)
p ≈ var(C). (21)

Thus by Equation 15

E

(
1

C

)
≈ 1

µ
+
var(C)

µ3
− var(C)

µ4
+ . . .

=
1

µ

(
1 +

1

µ
− 1

µ2

)
(22)

Substituting Equation 22 for E(1/C) in Equation 20, we
derive the following theorem:

Theorem 1: The relative bias of N̂ can be approximated
by the reciprocal of E(C), i.e.,

RB =
1

E(C)
+O

(
1

E(C)2

)
≈ 1

E(C)
(23)

Figure 1 depicts the relative bias against sample size,
when N = 106, γ = 0, n takes the ranges between 5000
and 104. For each sample size the experiment is repeated
104 times. RB and E(C) are approximated from the 104

experiments. It shows that N̂ has a positive bias, which
tapers off as the sample size grows. Its relative bias agrees
with the reciprocal of E(C), especially when E(C) is large.
When E(C) is small, we can see that RB is greater than
1/E(C) as indicated in equation 23.
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Fig. 1. RB and 1/E(C) against sample sizes in simulation study. It shows
that N̂ is biased upwards, and the relative bias can be approximated by
the reciprocal of E(C).

From the relative bias, we can derive the adjusted esti-
mator if we replace µ by C:

N̂∗ =
N̂

1 +RB
(by Eq 20)

=(γ2 + 1)

(
n

2

)
1

C

1

1 + 1
µ

(by Eq 23)

=(γ2 + 1)

(
n

2

)
1

C + 1
(24)

C. Illustrative Example

We use a fictitious example to gain intuitive under-
standing of the bias of N̂ and the adjusted estimator
N̂∗ . Suppose that the expected value for collisions is
E(C) = 10. Let A = (γ2 + 1)

(
n
2

)
, and the true size

of population is N = A/E(C) = 0.1A. The expected
standard deviation of C is

√
10 ≈ 3.3. Suppose that we

carried out three experiments, observed three values for
collisions which are 6, 10, 14. Notice that their mean is
exactly 10, indicating that the sampling is unbiased. The
mean of N̂ is

〈N̂〉 = A

3

3∑
i=1

1

Ci
=
A

3

(
1

6
+

1

10
+

1

14

)
= 0.1127A.

Notice that there is a positive bias even though the observed
collisions are unbiased. On the other hand, the mean of the
adjusted estimates N̂∗ is

〈N̂∗〉 = A

3

3∑
i=1

1

Ci + 1
=
A

3

(
1

7
+

1

11
+

1

15

)
≈ 0.1001A,

which is much closer to the real value. The relative biases
of these two estimators are 11.27% for N̂ and 0.14% for
N̂∗ .

D. Simulation studies

Before evaluating the estimators N̂ and N̂∗ in real
random walk, we first conduct simulation studies where
elements are selected randomly with uniform distribution,
i.e., every element has the same probability being selected.
Thus γ = 0 in Equations 1 and 24.

TABLE I
BIAS IN SIMULATION STUDIES. N = 106 . SAMPLE SIZE n IS BETWEEN

5000 AND 104 . REPEATED 104 TIMES.

n E(C) 1/E(C) RB (%)
(×103) (%) N̂ N̂∗

5.0 12.4599 8.0257 10.0625 0.2753
5.5 15.0968 6.6239 7.9858 0.2244
6.0 18.0315 5.5459 5.9218 -0.3300
6.5 21.2193 4.7127 4.8240 -0.4025
7.0 24.4469 4.0905 4.6238 0.1457
7.5 28.0729 3.5622 4.0035 0.1524
8.0 31.8902 3.1358 3.6039 0.2486
8.5 36.1460 2.7666 2.8205 -0.1075
9.0 40.6068 2.4626 2.3789 -0.2132
9.5 45.0772 2.2184 2.4341 0.1072

10.0 50.0428 1.9983 1.9841 -0.0968

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
x 10

6

sample size n

m
e
a
n
 e

s
t 
N

hat N
hat N*

Fig. 2. N̂ and N̂∗ over 104 runs for various sample size in simulation
study. Red dotted line is the true value.

In our experiment the total population is N = 106.
Sample sizes tested are between 5000 and 104. The minimal
sample size is set as 5000 to guarantee the existence of at
least one collision for every test. For each sample size 104

tests are run, and relative biases (RB) for two estimators
are calculated from these 104 tests.

Table I gives an overview of the experiments. It shows
that indeed N̂ is biased upwards, especially when the
sample size is small. When n = 5000, the collision mean
is around 12, resulting in high bias (RB=0.10).

Figure 2 depicts the trends of the N̂ and N̂∗ with the
growth of sample size. It shows that N̂∗ fluctuates around
the true value, while N̂ has a large bias when sample size
is small. When the sample size is 5000, on average among
104 runs there are about 12 collisions, and the relative bias
is around 10%.

Figure 3 shows the distributions of the estimations when
the sample sizes are 5000, 5500, 6000, and 6500 in sub
figures A, B, C, and D respectively. In all the four sub
figures, we can see that N̂∗ has more concentration around
the true value. In particular it has smaller number of very
large estimations. For instance in figure A there are more
than 200 estimations of N̂ are higher than 2 millions, while
N̂∗ has much smaller number of large estimations. With the
growth of the sample size, the difference between N̂ and
N̂∗ diminishes.



5

0 0.5 1 1.5 2

x 10
6

0

500

1000

1500

2000

2500

3000

3500
fr

e
q

u
e

n
c
y

 Est N

A

0 0.5 1 1.5 2

x 10
6

0

1000

2000

3000

4000

fr
e

q
u

e
n

c
y

 Est N

B

0 0.5 1 1.5 2

x 10
6

0

1000

2000

3000

4000

fr
e

q
u

e
n

c
y

 Est N

C

0 0.5 1 1.5 2

x 10
6

0

500

1000

1500

2000

2500

3000

3500

fr
e

q
u

e
n

c
y

 Est N

D

hat N
hat N*

Fig. 3. Distribution of the estimations by N̂ and N̂∗ in simulation
study, when n=5000 , 5500, 6000 and 6500 in sub-figures A, B, C, and
D respectively.

V. RANDOM WALK ON TWITTER DATA

We tested estimators N̂ and N̂∗ on the Twitter network
data that are provided by Kwak et al. [13], characterizing
the complete Twitter network as of July 2009. The data
contain about 1.47 billion edges and 41.7 million nodes
or users, occupying around 20 gigabytes hard drive space.
Since they are too large to fit into the memory of commod-
ity computers, we index them using Lucene, a popular index
engine. Then the random walk sampling is performed on
the index that are stored in hard drive. Since our method
is better to be used in undirected graph, we remove the
direction in Twitter data. The matlab program and data are
available at http://cs.uwindsor.ca/∼jlu/bias.

A. Estimate γ

Unlike the simulation studies presented in the last section
where γ = 0, in real network the node degree varies and
we need to estimate γ. In the area of capture-recapture
research [3] [17], it has been a perplexing problem for the
population estimation of heterogeneous data whose capture
probabilities are unequal, mainly due to the difficulty of
estimating the heterogeneity.

Let dxi be the degree of the node xi being sampled,
where i = 1, 2 . . . , n. The asymptotic mean of the degrees
obtained by a random walk is

〈dx〉 =
N∑
i=1

pidi =
〈d2〉
〈d〉

(25)

which can be estimated by its sample mean:

〈̂dx〉 =
1

n

n∑
i=1

dxi
(26)

The population mean of the degrees can be estimated by
the harmonic mean of the sample degrees [21][18]

〈̂d〉 = n∑n
i=1 1/dxi

(27)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
1/E(C)
RB

Fig. 4. Relative bias of N̂ in Twitter data for various sample sizes, and
its comparison with 1/E(C).

TABLE II
BIAS IN TWITTER DATA. N = 4.17× 107 .

n E(C) 1/E(C) RB (%)
(×100) (%) N̂ N̂∗

4 9.8186 10.1847 14.0388 0.9343
12 40.2164 2.4865 4.2570 1.4510
20 89.6493 1.1155 2.0186 0.8328
28 159.2846 0.6278 1.5061 0.8479
36 249.3307 0.4011 0.5709 0.1576

According to equation 9 we have:

γ2 + 1 =
〈d2〉
〈d〉2

=
〈dx〉
〈d〉

(28)

Hence the estimator for γ2 is

γ̂2 + 1 =
1

n2

n∑
i=1

dxi

n∑
i=1

1/dxi
(29)

B. Results

In our experiments the sample size ranges between 400
and 3600. The smallest sample size is set as 400 so that it
can induce at least one multiple visits to a node. Although
the true population is rather large (4.17× 107), we do not
need 5000 samples as in the case of random simulation
because of the heterogeneity of the degrees.

For each sample size we run 500 random walks. Since
both estimators N̂ and N̂∗ rely on collisions very much,
extra caution should be taken to avoid spurious collisions
caused by random walk. For instance if a node A is only
connected to node B, a visit to A will cause node B visited
twice. To avoid such loops, we take samples spaced every
a few steps apart.

Overall the results conform well to our simulation stud-
ies. Figure 4 shows that the relative bias of N̂ is close to the
reciprocal of E(C) for various sample sizes. Consequently,
N̂∗ corrects the bias quite well as shown in Figure 5. It
is clear that the bias diminishes as the sample size grows.
Figure 6 depicts the distribution of the estimations for the
four smallest sample sizes. Table II summarizes the details
of the results.
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Fig. 5. N̂ and N̂∗ in Twitter for various sample sizes. The red dotted
line is the true value.
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Fig. 6. Distributions of 500 estimations for Twitter data when sample
sizes are 400, 800, 1200, and 1600 in sub-figures A, B, C, and D
respectively.

VI. CONCLUSIONS

This paper shows that the the bias of N̂ can be too big
to neglect when sample size is small relative to the big data
being studied. We derive the bias of the estimator N̂ , and
empirically demonstrate the result using simulations and
real Twitter data. The derivation is based on the unique
formulation of N̂ presented in this paper. Although N̂
in other forms were already given in [3] and [12], we
are the first to explicitly describe the estimator in terms
of collisions C and coefficient of variance γ. It is this
formulation that leads to the derivation of the bias.

Traditionally N̂ is not widely used because it needs
the estimation of γ, which is also a treacherous problem.
However, in the unique setting of online data, the degrees
of the sampled nodes are often available whereas in social
studies the friends of a drug-addict are hardly collectable.
Taking this advantage in OSN sampling, we can estimate
correctly the average degree, thereby the coefficient of
variation γ.
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