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ESTIMATION OF EXCESS RETURNS
FROM DERIVATIVE PRICES
AND TESTING FOR RISK

NEUTRAL PRICING

GUUURRRUUUPPPDDDEEESSSHHH S. PAAANNNDDDHHHEEERRR
DePaul University

This paper develops an econometric framework for~i! estimating excess returns
of the security process from high frequency derivative prices, ~ii ! testing for risk
neutral pricing, and ~iii ! measuring premiums outside the no-arbitrage pricing
model+ The estimator is constructed by applying quasi-likelihood and Feynman–
Kac theory to the risk neutral contingent claims pricing model to generate the
optimal orthogonality restriction+ The strong consistency and asymptotic normal-
ity of the estimator are established in the context of a nonstationary underlying
state process+ These results further imply that the estimator is robust to distribu-
tional assumptions on the underlying asset process+ The proposed approach is ap-
plicable to any arbitrary derivative security, does not require estimation of the
risk neutral probability measure, and has application to spot rate bond pricing
models+ A controlled diagnostic study based on generating the S&P500 index and
calls verifies the ability of the estimators to correctly estimate security excess
returns and test for risk neutral pricing+ The estimator is invariant to call strikes,
and larger samples constructed by cycling over shorter maturity options can be
used to reduce its variance+

1. INTRODUCTION

The risk neutral valuation model for pricing derivative securities is based on
the principle of finding a unique equivalent risk neutral probability measure
that renders the underlying discounted asset process~e+g+, stock, bond, index! a
martingale and valuing contingent claims as expectations+ This paper uses quasi-
likelihood estimation and risk neutral martingale theory to develop an econo-
metric framework for~i! estimating excess returns of the underlying security
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from high frequency derivative prices, ~ii ! testing for risk neutral pricing, and
~iii ! measuring premiums outside the no-arbitrage pricing model+ The strong
consistency and asymptotic normality of the estimator are established in the
context of a nonstationary underlying state process+ The asymptotic properties
further imply that the proposed estimator is robust and estimation holds when
distributional assumptions on the underlying asset process assumed in the risk
neutral model~e+g+, Brownian motion! are relaxed+ A diagnostic study is under-
taken to resolve sample design issues such as impact of the strike level, strike
replication, and shorter maturity cycles on estimation of excess returns+

The estimation framework exploits the relationship between an arbitrary
claim’s partial differential equation and probabilistic representations~Feynman–
Kac theory! and uses continuous risk neutral pricing and quasi-likelihood theory
to identify the optimal orthogonality condition for estimating excess returns
from derivative prices sampled at discrete intervals+ This estimate can be com-
pared with excess returns estimated directly from the underlying asset price
process+ Significant departures from equivalence imply the existence of addi-
tional premiums in derivative prices outside the no-arbitrage pricing model+

Beyond the risk neutral application of the paper, the proposed estimation
framework also has interesting empirical derivative pricing applications that
are being explored+ Market prices of risk can be readily constructed from de-
rivative excess returns and volatility+ Contingent claims can then be empiri-
cally priced with the risk neutral density derived from Girsanov’s change of
measure formula+ Pandher~2000! extends the framework to estimate the vola-
tility of the security process from high frequency derivatives prices+

Quasi-likelihood estimators for excess returns~and their variance! are obtained
for both the derivative price process and the underlying asset price process~e+g+,
stock, bond, or index!+ The results on strong consistency and asymptotic nor-
mality of the estimator are distribution free and derived under a milder condi-
tional second moment assumption+ This is satisfied by a large class of stochastic
processes with finite conditional second moments~or finite variation!+ There-
fore, the proposed estimator is robust to the distributional assumptions of risk
neutral martingale theory where the stochastics are driven by Brownian mo-
tion+ However, when the underlying state process is close to being a Brownian
motion, the quasi-likelihood estimator offers optimal and efficient estimation+
Moreover, the final feasible estimator developed is a discretized version of the
estimator implied by the continuous risk neutral pricing framework+ The con-
vergence results show that in addition to possessing the robustness property, the
feasible estimator offers consistent estimation and is asymptotically normal+

There are a number of further implications of this econometric framework
for derivatives+ First, the methodology is very general and applicable to any
arbitrary traded derivative including calls, futures, and swaps+ Second, the es-
timation procedure inherits the optimality properties of the quasi-likelihood or
estimation function~EF! framework ~Godambe, 1960; Godambe and Heyde,
1987; Thavaneswaran and Thompson, 1986!, ensuring that the statistical equa-
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tions used to estimate the implied market rate of return are~i! unbiased and~ii !
of minimum variance in the class of all linear estimating equations+

Third, much of the finance related stochastic processes literature has focused
on estimation of parameters~e+g+, drift, volatility! from the state processX ~e+g+,
index, stock, bond! using maximum likelihood, moment conditions, and non-
parametric methods~Broze, 1997; Dohal, 1987; Hansen and Scheinkman, 1995;
Florens-Zmirou, 1993; and others!+ This paper considers the quasi-likelihood
estimation of the excess return parameter from the derivative processV~X! over-
lying the state process~and also fromX !+ Furthermore, much of the quasi-
likelihood literature deals with estimation in a purely discrete or continuous
context+ Here, the setting is mixed where the estimating equations follow from
the continuous risk neutral pricing model for contingent claims but where sam-
pling of market derivative prices~and underlying asset prices! occurs at dis-
crete, perhaps random, times+

Econometric issues connected to the use of discrete data for continuous-
time derivative pricing models in other estimation frameworks~e+g+, maxi-
mum likelihood estimation@MLE# ! have been considered more recently by
Chernov and Ghysels~1998!, Duffie and Glynn~1998!, Pedersen~1995!, and
others+ This paper differs from the direction taken in this work both in focus
of estimation and the estimation methodology+ The existing literature has not
dealt with estimation of excess returns from derivative pricesV~X !+ To con-
struct this estimator, the proposed methodology first identifies a conditional
martingale difference equation~CMDE! by constructing an Itô expansion of
the discounted derivative process between two given sampling intervals under
the risk neutral measure, then applies the Feynman–Kac result to reduce terms,
and last introduces the parameter of interest~excess returns! by switching to
the empirical measure+ Once the CMDE is constructed, the optimal orthogo-
nality restriction on the CMDE is obtained from quasi-likelihood theory+ A
discrete “feasible” estimator is next developed from this procedure in which
all quantities are measurable with respect to information available at the be-
ginning of each sampling period+

Fourth, the proposed method for testing the risk neutral hypothesis does not
require estimation of the risk neutral probability measure from observed prices
~Banz and Miller, 1978; Breedan and Litzenberger, 1978!+ The estimation re-
gimes of Longstaff~1991! and Ait-Sahalia and Lo~1998! for call options es-
timate a nonparametric risk neutral probability density~histogram! from a
sequence of calls with the same maturity but different strikes+ Maximum like-
lihood estimation and testing are considered by Lo~1988!+ The approach of
inverting market prices of options to estimate parameters of the risk neutral
measure under parametric density models is pursued by Sherrick, Irwin, and
Forster~1990!+ Bekaert, Hodrick, and Marshall~1997! discuss biases in tests
of the expectations hypothesis of the term structure of interest rates+

Fifth, the arbitrage bond pricing models of Vasicek~1977!, Brennan and
Schwartz~1979!, and Artzner and Delbaen~1987! require an “inversion of the
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term structure” to remove the market price of risk when valuing contingent
claims as the initial step~the models of Ho and Lee@1986# and Health, Jarrow,
and Morton@1992# take the bond price process and forward rate process, re-
spectively, as exogenous and avoid the inversion!+ There are computational dif-
ficulties in this inversion because bond pricing formulae are highly nonlinear
and the spot rate and bond price processes are not independent of the market
price of risk+ The econometric approach of this paper offers linear estimation
of excess returns, averting the nonlinearity problem, and may offer an advan-
tage in these models over calibration-based estimation+

The estimation methodology and its empirical properties are tested and ver-
ified using an extensive Monte-Carlo diagnostic study+ The empirical study also
enables resolution of important sample design issues+ The S&P500 index and
call options defined on it are simulated using historical trend and volatility+
Excess returns and market prices of risk are estimated separately from both the
index and call option prices under various scenarios to investigate the impact
of the strike level, length of maturity cycle, and strike replication+ Differences
in the estimated excess returns from calls and the index quantify extra premi-
ums not explained by the risk neutral pricing model+

The results of the diagnostic study verify the ability of the econometric model
and estimators to estimate the excess returns correctly and test the hypothesis
of risk neutral pricing+ The call data generated in the empirical study are based
on the risk neutral pricing model~Black–Scholes formula for calls!, and esti-
mates of the market price of risk from both the index and its derivative calls
are very close for any given sample size+ Therefore, the empirical study reveals
that no premia are found when none should exist+ Estimation is unaffected by
the strike level of the call+ It is also found that the addition of replicates based
on different strikes does not improve the standard errors of the estimator due to
dependence among strike replicates+

In the market setting, the vast majority of traded calls are of maturities less
than 1 year+ Therefore, it is not feasible to increase the sample size by extend-
ing the time to maturity+ An alternative sampling design that cycles over calls
of smaller ~nonoverlapping! maturities is considered as a way to reduce the
variance of estimators+ It is found that sampling from cycles of shorter maturi-
ties with the same effective sample size~number of cycles times maturity length!
yields similar and stable estimation as a single maturity sample of larger but
equivalent duration+ This result gives confidence in the applicability of the es-
timation methodology to market derivative prices where larger samples derived
from sampling over multiple~overlapping! maturities can be used to reduce
variance+

The remainder of the paper is organized as follows+ Section 2 sets out the
probability model and stochastic processes for the arbitrary derivative process
and introduces the main features of the quasi-likelihood~EF! estimation frame-
work+ The estimator of excess returns from an arbitrary derivative price pro-
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cess and its variance are derived in Section 3+ Section 4 establishes the strong
consistency and asymptotic normality of the feasible EF estimator+ The estima-
tion of excess returns from the underlying asset process is considered in Sec-
tion 5+ Section 6 presents the results from the Monte-Carlo study in which an
index and calls are simulated using the historical volatility and trend of the
S&P500 index to verify the estimation and evaluate the impact of sample size,
strike level, strike replication, and maturity length on the estimation+ Conclu-
sions follow in Section 7+

2. PRELIMINARIES: STOCHASTIC PROCESSES FOR DERIVATIVES
AND QUASI-LIKELIHOOD ESTIMATION

This section defines the probability model and stochastics for an arbitrary de-
rivative process and introduces the Feynman–Kac result required to develop
the estimator of excess returns+ The essential features of quasi-likelihood esti-
mation~or estimating function theory! are also presented+

2.1. The Probability Model and Stochastic Process
for Derivative Claims

Fix the probability space~V,FT , ~Ft !0#t#T ,P! where ~Ft !0#t#T 5 $Ft ; 0 #
t # T % is the filtration defined on the event spaceV satisfying the usual con-
ditions ~i+e+, filtration is right continuous andF0 contains all null sets ofFT!+
The probability space is assumed large enough to support anRd-valued stochas-
tic processesX 5 $Xt ,FT; 0 # t # T % that is right continuous with left limits
~RCLL! whose elements generate thes-fields Ft 5 s$Xs; 0 # s # t % + The
processX will represent the state variable of the pricing model~e+g+, stock,
bond, or index!+ We view X as a diffusion process following the general sto-
chastic differential equationP-a+s+:

dXt 5 b~t,Xt !dt 1 s~t,Xt !dWt , (2.1)

whereb~t,Xt !: @0,T # 3 Rd r Rd is the drift vector, s~t,Xt !: @0,T # 3 Rd r

RdXRd is the dispersion matrix~of rank d!, and Wt is a d-dimensionalFt -
measurable standard Brownian motion with respect to the probability measure
P+ Moreover, b~t,Xt ! ands~t,Xt ! are taken to satisfy the global Lipschitz and
linear growth conditions~see Karatzas and Shreve, 1991, p+ 289!+ This ensures
that there exists a strong-form solution to~2+1! relative toW 5 $Wt ,Ft ; 0 #
t # T % and the processX is square integrable over@0,T # + Last, definea~t,Xt ! 5
s~t,Xt !sT~t,Xt ! to be the diffusion matrix+

The preceding quantities are defined with respect to the empirical measure
P+ Let Q be the unique equivalent risk neutral measure under which expecta-
tions of theX process discounted at the risk-free spot interest rate processr 5
$rt ; 0 # t # T % areQ-martingales wherer is the growth process of the money
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market discount factorB~t,T ! 5 exp~2*s5t
T rsds!+ Risk neutral valuation theory

~Harrison and Kreps, 1979; Harrison and Pliska, 1981! asserts that an attain-
able contingent claim can then be valued as a discounted expectation under the
measureQ+

The process of making the discounted asset a martingale requires the
transformation

dWt 5 d GWt 2 gt ~t,Xt !dt, (2.2)

where the market price of riskg~t,Xt !: @0,T # 3 Rd r Rd and GWt is a Brown-
ian motion with respect to the risk neutral measureQ+ The relationship be-
tween the equivalent measuresP and Q is readily obtained from Girsanov’s
change of measure formula+ Note that the existence ofgt follows from the non-
singularity ofs~t,Xt ! ~see Harrison and Pliska, 1981!+ Substituting~2+2! into
~2+1! leads to the differential equation

dXt 5 rt Xt dt 1 s~t,Xt !d GWt + (2.3)

Let f ~t,Xt !:@0,T # 3 Rd r Rd be a function in the classC2~ @0,T # 3 Rd!
defined on the state variable processX with second order differential operator

lim
sr0

EQ~ f ~t 1 s,Xt1s! 2 f ~t,Xt !6Ft !

s
5 ~A t f !~x!,

where~A t f !~x! [ 1
2
_(j51

d (k51
d aj, k~t, x!@]f ~x!0]xj ]xk# 1 (j51

d rt Xt @]f ~x!0]xj #+
We are now ready to define the value process for an arbitrary derivative se-

curity+ Let V~X ! 5 $V~t,Xt !,Ft ; 0 # t # T % be the generic value process of the
derivative claim based on the state variable processX whereV~t,Xt !: @0,T # 3
Rd r R is in the classC2~ @0,T # 3 Rd!+ It is known from the Feynman–Kac
theorem that whenX is a diffusion, V~X ! has a heat equation representation
and a corresponding probabilistic representation as a discountedQ-martingale+
This result is stated here for reference+

Feynman–Kac Result~Karatzas and Shreve, 1991, p+ 366!+ Let V~t,Xt ! [
C2~ @0,T # 3 Rd! andB~t,T ! be as defined earlier and consider the continuous
functionsg~t,Xt !: @0,T # 3 Rd r R and r ~t,Xt !: @0,T # 3 Rd r R satisfying
certain bounded conditions+ If V~t,Xt ! satisfies the heat equation

]V

]t
1 At V 2 rV 5 2g in @0,T # 3 Rd

V~T, x! 5 f ~x!, x [ Rd, (2.4)
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thenV~t,Xt ! admits the unique stochastic representation

V~t, x! 5 Ex
QFf ~XT !expH2E

s50

t

r ~s,Xs!dsJ
1E

s5t

T

g~s,Xs!expH2E
t

s

r ~u,Xu!duJ ds6FtG (2.5)

on @0,T # 3 Rd+

An analytical expression for the quasi-likelihood estimator of excess returns
l 5 b 2 r is possible for any arbitrary diffusion price process when the vola-
tility s~t,Xt ! and drift b~t,Xt ! are “time-state separable”: b~t,Xt ! 5 bt b~Xt !
ands~t,Xt ! 5 st f~Xt !+We will retain this assumption for the econometrics of
this paper+

2.2. The Quasi-Likelihood Estimation Framework

Estimating function theory~a+k+a+ quasi-likelihood! provides a general frame-
work for parameter estimation that includes maximum likelihood estimation
~MLE ! as a special case when an exact distribution is specified for the data
generating process and incorporates least squares~LS! estimation for linear
models with no distributional assumptions+ It borrows the strengths of both
approaches while eliminating their weaknesses+ For example, LS estimation
becomes biased when the variance of the dependent process depends on pa-
rameters appearing in the mean~see Godambe and Kale, 1991!+ For a further
overview of EF theory, see Heyde~1989! and Godambe and Heyde~1987!+

Assuming a discrete setting, the general approach to identifying the optimal
estimating equation for the parameteru [ Rd is to first form estimating func-
tions H 5 ~hj ,Fj ! of the dataY and the parameteru from a particular class of
functions ~e+g+, linear! such thatE~hj 6Fj ! 5 0, j 5 1, + + + , n, with Fj21 , Fj +
The optimality criterion of Godambe~1960! ~or its sufficient versions! can
then be applied to determine the optimal estimating equationsH * 5 ~hj

*,Fj !+
In relation to generalized method of moments~GMM ! estimation~Hansen,
1982!, H * may be viewed as the optimal orthogonality system+ The EF frame-
work, therefore, gives a systematic framework for identifying the optimal es-
timating function starting with a primitive “error” or martingale difference
restrictionE~hj 6Fj ! 5 0, j 5 1, + + + , n+

The stress on the estimating equation, as opposed to the parameter estimator,
of this framework is justified by the following observations: ~i! Fischer’s infor-
mation and the Cramer–Rao inequality are both an estimating equation prop-
erty rather than that of the MLE; ~ii ! asymptotic properties of an estimator are
almost invariably obtained, as in the case of the MLE, via asymptotics of the
estimating equation; ~iii ! estimating equations have the property of invariance

ESTIMATION AND TESTING FOR RISK NEUTRAL PRICING 791



under one-to-one transformation of the estimator; and ~iv! separate estimating
functions can be combined more easily than the estimators implicitly defined
by them+

We will be interested in finding the optimal estimating equation in the class
of linearFj [ Ftj21

measurable estimating equations such as

H 5 HH: H 5 (
j51

n

aj ~u!hj ~u!J , (2.6)

whereaj ~u! is a predictableFtj21
-measurable process andE~hj ~u!6Ftj21

! 5 0,
j 5 1, + + + , n+

The optimal choice ofaj ~u! is given by

aj
* 5 SE

]hj

]u *Ftj21D'~Ehj hj
' 6Ftj21

!21, j 5 1, + + + , n+ (2.7)

which was shown by Godambe~1960! to minimize the~conditional! variance
of the “standardized estimating equation”

H s 5 SE
]H

]u
D21

H (2.8)

with

Var~H s! 5 SE
]H

]u
D21

E~HH ' !SE
]H

]u
D21

+ (2.9)

The criterion of minimizing Var~H s! is justified by the dual objective of
~i! minimizing E~HH '! and ~ii ! maximizing the sensitivity of the estimating
function to departures from the true parameter value~]H0]u!+

3. ESTIMATION OF EXCESS RETURNS FROM DERIVATIVE PRICES

We begin by discussing the structure of the derivative market data to be used in
the EF estimation of excess risk returns from derivative prices+ Let the ob-
served prices for the derivative security be sampled at the points in the se-
quence$t0, t1, + + + , tn% [ @0,T # with t0 5 0 indexing the start of the sampling
period andtn 5 T representing the time to maturity+ Then, Dj 5 tj 2 tj21, j 5
1, + + + , n is the length of the period between points in the term structure+ At each
sampling pointtj , a cross section of replicate prices may exist indexed byk 5
1, + + + ,m ~e+g+, calls of different strikesKk!+ Further, prices for nonoverlapping
cycles of maturity times are available given by the sequence$T1, + + + ,Tg, + + + ,Tp% +
The price data consist of a sequence of market prices on the derivative claim
given by $Vk~tj ,Tg! [ V~tj ,Xtj ; Kk,Tg!, g 5 1, + + + , p, j 5 1, + + + , n, k 5 1, + + + ,m% +
The exact structure of the price sequenceVk~tj ,Tg! will depend on the sample
design ~single0multiple maturities, strike replicates, and length of maturity
cycles!+
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In the context of obtaining the estimating function for the excess return pa-
rameterl from derivative prices, we will consider the class of linear estimating
functions given by

H 5 HH: H 5 (
g51

p

(
j51

n

(
k51

m

ajkg~l!hjkg~l!J + (3.1)

We described the main features of the estimating function theory in Section 2+2+
The key remaining issues are the specification of the martingale difference func-
tions hjkg~l! and the weighting factorsajkg~l!, g 5 1, + + + , p, j 5 1, + + + , n, k 5
1, + + + ,m in ~3+1!+ The optimal estimating function and implied quasi-likelihood
estimator forl can then be identified by choosingajkh

* ~l! optimally and will
depend on the sample design used+ Three cases are considered: ~i! single strike
and maturity~T !, ~ii ! multiple strike replicates on a single maturity, and ~iii !
replicates on multiple nonoverlapping maturity cycles+ The key results relating
to the EF estimator ofl and its variance are derived in Propositions 1–8+ The
strong asymptotic consistency and normality of the estimator are established in
Section 4+Without loss of generality, we start by obtaining the estimating func-
tion for l under the first case~ p 5 1, m 5 1!+

PROPOSITION 1~The Estimating Functionhj ~l! for Excess Returnsl
@Single Strike and Maturity#+ Let g~t,Xt !: @0,T # 3 Rd r R and r~t,Xt !:
@0,T # 3 Rd r R be a continuous function where the value process V~t,Xt ! [
C2~ @0,T # 3 Rd! satisfies the partial differential equation

]V

]t
1 At V 2 rV 5 2g in @0,T # 3 Rd

V~T,XT ! 5 f ~XT !, XT [ Rd+ (3.2)

Then, given the market derivative prices$V~tj ,T ! [ V~tj ,Xtj ; K,T !,
j 5 1, + + + , n%, the estimating functions hj ~l!, j 5 1, + + + , n in the linear class

H 5 HH: H 5 (
j51

n

aj ~l!hj ~l!J (2.6)

are given by~d 5 1!

hj ~l! 5 Yj 2 l EZj 5 V~tj ,T !B~tj21, tj ! 2 V~tj21,T ! 1E
u5t

s

g~u,Xu!B~tj21,u!du

2 lE
tj21

tj S ]V~u,T !

]X
DXu B~tj21,u!du, (3.3)

wherel 5 b 2 r is the excess risk return.
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Proof+ See Appendix A+ The financial interpretation of~3+3! is as follows+
The first three terms ofhj ~l! represent the dependent “Y” observation in the
regression sense, whereas the last term represents the corresponding indepen-
dent “X” variable+ The first two terms give the change in the discounted value
of the contingent claim observed over the sampling interval+ The third term
adds back the discounted dividends paid out over this period+ In the case of
European call options, this term is zero+ The fourth integral term involving the
“delta” of the derivative claim represents the cumulative discounted value of
the underlying asset held to replicate the change in the claim’s value over the
interval ~plus dividends!+ Therefore, net change in the value of the claim minus
its hedge replication should be approximately zero+

Some of the basic properties ofhj ~l! required in determining the estimator
are summarized in Proposition 2+

PROPOSITION 2~Properties of the Estimating Functionhj ~l!!+ The first
and second moments of hj ~l!, j 5 1, + + + , n determined in Proposition 1 satisfy

(i) E~hj ~l!6Ftj21
! 5 0.

(ii) E ~hj
2~l!6Ftj21

! 5 (
j51

d E
u5tj21

tj

ESS ]V~u,T !

]Xj
D2

~Xus!2*Ftj21DBu
2du+

(iii) E ~hj ~l!hk~l!6Ftj21
! 5 0, k . j.

(iv)
]hj ~l!

]l
5 E

u5tj21

tj S ]V~u,T !

]X
DXu Budu ~d 5 1 case!+

Proof+ Property~i! is immediate from the definition ofhj ~l!, which is a sto-
chastic integral w+r+t+ Brownian motion with probability measureP+ The second
property follows from the isometry property of the squared stochastic integral
~Karatzas and Shreve, 1991, p+ 137! which in this case delivers

E~hj
2~l!6Ftj21

! 5 (
j51

d E
u5tj21

tj

ESS ]V~u,T !

]Xj
D2

~Xus!2*Ftj21DBu
2d @W j #u, (3.4)

whered @W j #u 5 du is the quadratic variation of the Brownian motionWu
j+ The

third result follows from the disjointness of the stochastic integrals, and the
fourth property is immediate from~3+3!+ n

PROPOSITION 3~Optimal Estimating Equation, Estimator forl and Vari-

ance: Single Strike and Maturity!+ Let $V~u,T ! [ V~u,Xu; T !, u5 tj, j 51, + + + ,n%
define the sequence of derivative prices with maturity T. Then the following
hold:

(i) The optimal estimating function forl in the linear class of estimating equations

H 5 HH: H 5 (
j51

n

aj ~l!hj ~l!J (2.6)
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is given by

H *~l! 5 (
j51

n E EZj

E GWj

~Yj 2 l EZj !

5 (
j51

n 1 E
u5tj21

tj

ES ]V~u,T !

]X
Xu*Ftj21DB~tj21,u!du

E
u5tj21

tj

ESS ]V~u,T !

]X
D2

~Xus!2*Ftj21DB2~tj21,u!du2
3 SV~tj ,T !B~tj21, tj ! 2 V~tj21,T ! 1E

u5tj21

tj

g~u,Xu!B~tj21,u!du

2 lE
tj21

tj ]V~u,T !

]X
Xu B~tj21,u!duD, (3.5)

yielding

Zla
* 5

(
j51

n

E EZj ~E GW!j
21Yj

(
j51

n

E EZj ~E GW!j
21 EZj

and

Var~ Zla
* ! 5 EZS 1

(
j51

n

E EZj ~E GW!j
21 EZj

D,
where the conditioning is done over the “stochastic regressors”EZ 5 ~ EZ1, + + + , EZn!.
The conditional finite sample distribution ofZla6 EZ

* is given by

Zla6 EZ
* ; NSl,

1

(
j51

n

E EZj ~E GW!j
21 EZj

D+
(ii) Define Yj 5 V~tj ,T !B~tj21, tj ! 2 V~tj21,T ! 1 *u5tj21

tj g~u,Xu!B~tj21,u!du, Zj 5
*u5tj21

tj ~]V~tj21,T !0]X !Xtj21
B~tj21,u!du, and Wj 5 *u5tj21

tj ~]V~tj21,T !0]X !2 3
~Xtj21

s!2B2~tj21,u!du. Then, the feasibleEF estimator for Zla
* and its vari-

ance V~ Zla
* ! implied by the optimal estimating function are

Zla 5

(
j51

n

Zj Wj
21Yj

(
j51

n

Zj Wj
21Zj

(3.6)
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and

ZVar~ Zla! 5
1

(
j51

n

Zj Wj
21Zj

+ (3.7)

Some remarks are in order before discussing the proof of Proposition 3+

~i! The direct EF estimatorZla
* is not computable because it requires information in

the interval@tj21, tj # that is not available between sampling points+
~ii ! Also, EZj is a random variable with respect to the information setFtj21

+ The fea-
sible EF estimator is developed by replacing unknown quantitiesZla

* with
their Ftj21

-measurable surrogates defined in Proposition 3 to obtainZla ~3+6!+
~iii ! The volatility parameters is assumed constant only over the sampling period

~e+g+, day! and does not influence the feasible EF estimatorZla as it cancels out
in the numerator and denominator; however, it is required in the computation of
the variance estimator~3+7! and is embedded in the weightsWj + It can be esti-
mated consistently from the state price processX using standard methods~Camp-
bell, Lo, and McKinlay, 1997, p+ 36!:

[s2 5
1

N (
j51

n

~ ln~Xk! 2 ln~Xk21! 2 [aDj !
2,

where [a 5 10N (j51
n ~ ln~Xk! 2 ln~Xk21!! andN 5 (j51

n Dj +

The proof of Proposition 3 follows+

Proof+ For the linear class of orthogonal estimating functions defined byH
in ~2+6!, the optimal estimating equation~3+5! follows from choosingaj ~l! ac-
cording to~2+7! and making use of the terms defined in Proposition 2:

aj
* 5 SE

]hj

]l *Ftj21D'~Ehj hj
' 6Ftj21

!21

5 1 E
u5tj21

tj

ES ]V~u,T !

]Xj

Xu*Ftj21DB~tj21,u!du

E
u5tj21

tj

ESS ]V~u,T !

]Xj
D2

~Xus!2 6Ftj21DB2~tj21,u!du2 5
E EZj

E GWj

,

j 5 1, + + + , n+ (3.8)

Next note thataj
* must beFtj21

-measurable and the conditional expectations in
~3+8! is not known inside the sampling interval+ Therefore, to obtain the feasi-
ble estimator, we replace the conditional expectations inaj

* by their best avail-
ableFtj21

-measurable surrogate to obtain

[aj
* 5

Zj

Wj

, j 5 1, + + + , n+
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The estimator Zla
* follows from solvingH *~l! 5 0, and V~ Zla

* ! follows from
applying the variance operator in two steps, first conditioning on the “stochas-
tic regressors” EZ 5 ~ EZ1, + + + , EZn! ~g 5 0 w+l+g+!:

V~ Zla
* ! 5 EZ @V~ Zla

* 6 EZ!# 1 VZ @E~ Zla
* 6 EZ!#

5 EZS 1

(
j51

n

E EZj ~E GW!j
21E EZj

D1 VZ @l# +

Conditional on Z 5 ~ EZ1, + + + , EZn!, the finite sample normality of Zla6 EZ
* fol-

lows directly from the “error-side” representation ofhj given by the stochastic
integral hj 5 *u5tj21

tj V X~u,T !XusB~tj21,u!dWu, where from Proposition 2,
E~hj

26Ftj21
! 5 *u5tj21

tj E~VX
2~u,T !Xu

26Ftj21
!s2Bu

2du [ E GWj andE~hj 6Ftj21
! 5 0+

Using this in Zla6 EZ
* directly along with the fact that a stochastic integral w+r+t+

Brownian motion~with predictable integrands! is Gaussian yields the normal-
ity of the conditional EF estimatorZla6 EZ

* +
The feasible estimatorsZla and V~ Zla! are finally obtained by replacing the

integrals and expectations inZla6 EZ
* and V~ Zla6 EZ

* ! with their best available
Ftj21

-measurable surrogates yielding~3+6! and ~3+7!+ n

It will be shown in Section 4~Propositions 6–9! that the feasible EF estima-
tor is strongly consistent and asymptotically normal+ The next proposition gives
the estimators for excess returns in the case of using derivative replicates~e+g+,
calls of different strikes with the same maturity!+ The introduction of replicates
on the same underlying asset process introduces dependence among the mar-
tingale difference functionshjk~l!+ Aside from this complication the develop-
ment of the estimator follows Proposition 3, and the details are omitted for
brevity+ The final result is stated in Proposition 4+

PROPOSITION 4~Optimal Estimating Equation, Estimator forl and Vari-
ance: Strike Replicates of Single Maturity!+ Let $Vk~u,T ! [ V~u,Xu; Kk,T !,
u 5 tj , j 5 1, + + + , n, k 5 1, + + + ,m% define the sequence of derivative prices
with replicates (e.g., strikes) k5 1, + + + ,m. Also, let Vk

X~u,T ! [
]V~u, Xu;Kk,T !0]X and define Yjk 5 Vk~tj ,T !B~tj21, tj ! 2 Vk~tj21,T ! 1
*u5tj21

tj g~u,Xu!B~tj21,u!du, Zjk 5 *u5tj21

tj Vk
X~tj21,T !Xtj21

B~tj21,u!du, Wjk 5
*u5tj21

tj ~Vk
X~tj21,T !2~Xtj21

s!2B2~tj21,u!du, Cov~Yjk,Yjl ! 5 *u5tj21

tj E~Vk
X~u,T ! 3

Vl
X~u,T !~Xus!2 6Ftj21

!B2~tj21,u!du, and ZCov~Yjk ,Yjl ! 5 *u5tj21

tj Vk
X~tj21,T ! 3

Vl
X~tj21,T !~Xtj21

s!2B2~tj21,u!du. Then, the feasibleEF estimator forl and
its variance implied by the optimal estimating equation are

Zlb 5

(
j51

n

(
k51

m

ZjkWjk
21Yjk

(
j51

n

(
k51

m

ZjkWjk
21Zjk

(3.9)
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and

ZVar~ Zlb! 5

(
j51

n F(
k51

m

(
l51

m

ZjkWjk
21 ZCov~Yjk ,Yjl !Wjk

21ZjkG
S(

j51

n

(
k51

m

ZjkWjk
21ZjkD2

+ (3.10)

Proposition 5, which follows, gives the optimal estimating function, estima-
tor, and its variance for excess risk returns if replicates of derivative prices
~e+g+, calls of different strikes! are used over multiple cycles of nonoverlapping
maturities+ The proof follows easily from Propositions 3 and 4 upon noting that
the sequence of maturity cycles is nonoverlapping+ Hence, summations over
g 5 1, + + + , p are analogous to summations over nonoverlapping intervals in-
dexed byj 5 1, + + + ,n, and so the maturity cycles do not affect the correlation
structure induced by the underlying Brownian motion in the stochastic integrals+

PROPOSITION 5~Optimal Estimating Equation, Estimator forl and Vari-
ance: Strike Replicates with Multiple Nonoverlapping Maturities!+ Let
$Vk~u,Tg! [ V~u,Xu;Kk,Tg!, u 5 tj , g 5 1, + + + , p, j 5 1, + + + , n, k 5 1, + + + ,m%
define the sequence of derivative market prices with nonoverlapping sequence
of maturities $T1, + + + ,Tp% and replicates (e.g., strikes) k5 1, + + + ,m. Also,
let Vk

X~u,Tg! [ ]V~u,Xu;Kk,Tg!0]X and define Yjkg 5 Vk~tj ,Tg!B~tj21, tj ! 2
Vk~tj21,Tg! 1 *u5tj21

tj g~u,Xu!B~tj21,u!du, Zjkg 5 *u5tj21

tj Vk
X~tj21,Tg! 3

Xtj21
B~tj21,u!du, Wjkg 5 *u5tj21

tj ~Vk
X~tj21,Tg!!2~Xtj21

s!2B2~tj21,u!du, and

ZCov~Yjkg,Yjlg ! 5 *u5tj21

tj Vk
X~tj21,Tg!Vl

X~tj21,Tg!~Xtj21
s!2B2~tj21,u!du. Then,

the feasibleEF estimator forl and its variance implied by the optimal estimat-
ing function are

Zlc 5

(
g51

p

(
j51

n

(
k51

m

ZjkgWjkg
21Yjkg

(
g51

p

(
j51

n

(
k51

m

ZjkgWjkg
21Zjkg

(3.11)

and

ZVar~ Zlc! 5

(
g51

p

(
j51

n F(
k51

m

(
l51

m

ZjkgWjkg
21 ZCov~Yjkg,Yjlg !Wjlg

21ZjlgG
S(

g51

p

(
j51

n

(
k51

m

ZjkgWjk
21ZjkgD2

+ (3.12)

4. ASYMPTOTIC CONSISTENCY AND NORMALITY
OF FEASIBLE EF EXCESS RETURNS ESTIMATOR

This section establishes the strong consistency and asymptotic normality of the
feasible EF estimator of excess returns+ In the diffusion context, the random-
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ness is driven by stochastic integrals with respect to Brownian motion+ Al-
though this leads to an exact finite sample Gaussian distribution for the exact
conditional EF estimatorZla6 EZ

* , the asymptotic results are important to situa-
tions where the underlyingX process is only approximately a Brownian diffu-
sion ~e+g+, other stochastic processes such as Poisson jumps are mixed with the
underlying diffusion!+ Moreover, the feasible EF estimator of Section 3 is a
discretized approximation to the exact estimator implied by the continuous risk
neutral pricing framework+ It is important to establish its consistency and as-
ymptotic normality+

Results on strong consistency and asymptotic normality imply that the feasi-
ble EF estimators developed in Section 3 are robust and continue to hold when
the exact distribution of the underlyingX process is not completely known+
The finite sample distributional assumption of a Brownian motion driving the
diffusion process is replaced by a milder conditional second moment assumption+

Without loss of generality, the results on strong consistency and asymptotic
distribution are obtained in the case of a single strike with multiple maturity
cycles~see Propositions 1 and 3! and extend easily to the case of strike repli-
cates+ With a fixed time to maturity, the sample size can only be increased
by cycling over nonoverlapping maturity cycles+ Therefore, the effective sam-
ple size isnp, and the estimators involve a double index overj 5 1, + + + , n and
g 5 1, + + + , p+ To keep the notation simple, the asymptotics that follow will view
n as the effective sample size without any loss of generality+ We keep in mind
that the effective sample size becomes large only when the maturity cyclesp
are increased while the number of sample points in each maturity cycle re-
mains fixed+

4.1. Strong Consistency of Zln

The first result gives a bound inL2 norm ~E~6 Zln62!102! for the sequence$ Zln%
that will be useful to establish consistency+

PROPOSITION 6~A Bound1 for the Sequence$ Zln% in L2 Norm!+ The se-
quence ofEF estimators forl obtained in Proposition 3 given by

Zln 5

(
j51

n

Zj Wj
21Yj

(
j51

n

Zj Wj
21Zj

is bounded in L2 norm by ES(
j51

n E~Xtj
26Ftj21

!

n2Xtj21

2 D+ (4.1)

Proof+ See Appendix B+

The next proposition establishes a sufficient condition for the strong consis-
tency of the EF estimatorZln+ Proposition 8 shows this condition is met, thereby
establishing its strong consistency+
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PROPOSITION 7~Sufficient Condition for Strong Consistency of EF Esti-
mator ofl!+ TheEF estimator of Proposition 3 is strongly convergent:

Zln 5

(
j51

n

Zj Wj
21Yj

(
j51

n

Zj Wj
21Zj

r l, a+s+ , on the setH(
j51

n E~Xtj
26Ftj21

!

n2Xtj21

2 r 0J + (4.2)

Proof+ DefineSn 5 Zln 2 l andEn 5 $v: 6Sn6 . e%, e . 0+We also have the
following set relationships: lim supnr`En 5 flimm$supn.m@ 6Sn6 . e# % #
$supn.1@6Sn6 . e#% because$supn.m@6Sn6 . e#% is a decreasing sequence of
sets inm+ Therefore, we have

P~lim sup
nr`

6Sn6 . e! # PSsup
n.1
6Sn6 . eD

5 lim
nr`

PS max
1,j,n

6Sn6 . eD
# lim

nr`

1

e2 E~6Sn62!

5 lim
nr`

1

e2 ~lE~An
2! 1 E~Bn

2!!

#
~l2k1 1 k2!

n2e2 ES(
j51

n E~Xtj
26Ftj21

!

Xtj21

2 D
r 0 (4.3)

as n r ` by the hypothesis of Proposition 7~k1 and k2 are positive con-
stants!+ The third inequality of~4+3! follows from Kolgomorov’s inequality
~Hall and Heyde, 1980!, the fourth inequality is obtained in the proof of Prop-
osition 6 ~see Appendix B, equation~B+7!!, and the fifth inequality follows
from Proposition 7+ This establishes the resultZln r l, a+s+ , on the set
$(j51

n E~Xtj
26Ftj21

!0n2Xtj21

2 r 0% + n

It now remains to show that the sufficient condition for the strong consis-
tency of the EF estimatorZln derived in Propositions 6 and 7 holds for stochas-
tic differential equations satisfying conditions for strong solutions+ This is verified
in Proposition 8, thereby establishing the strong consistency of the EF estimator+

PROPOSITION 8~The Sufficient Consistency Condition of Proposition 7 Is
Satisfied!+ For the diffusion process X defined in (2.1) satisfying the Lipschitz
and growth conditions

(
j51

n E~Xtj
26Ftj21

!

n2Xtj21

2 r 0+ (4.4)
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Proof+ We assume the state variableX follows the stochastic differential
equation

dXt 5 b~t,Xt !dt 1 s~t,Xt !dWt , (2.1)

whereb~t,Xt !: @0,T # 3 Rd r Rd is the drift vector, s~t,Xt !: @0,T # 3 Rd r

Rd 3 Rd is the dispersion matrix~of rank d!, and dWt is a d-dimensional
Ft -measurable standard Brownian motion with respect to the probability mea-
sureP+

If b~t,Xt ! ands~t,Xt ! satisfy the global Lipschitz and linear growth condi-
tions ~see Karatzas and Shreve, 1991, p+ 289!, then anL2 bound onX given in
Duffie ~1992, p+ 292! can be written as

E~6Xtj 6
2 6Ftj21

! # CeCt~11 6Xtj21
62! 5 O~6Xtj21

62! (4.5)

for some constantP+ BecauseXtj21

2 is Ftj21
measurable, this leads to

(
j51

n E~6Xtj 6
2 6Ftj21

!

n2 6Xtj21
62

5 OS 1

n
Dr 0 asn r `+ n

4.2. Asymptotic Normality of Zln

By Proposition 3, the finite sample distribution of the conditional EF estimator
is Gaussian because the underlying state processX is driven by a Brownian
motion and the terms in the estimator involve stochastic integrals w+r+t+ this
Brownian motion+ The asymptotic distribution is relevant when this distribu-
tional assumption is relaxed and replaced by a weaker conditional second mo-
ment restriction+ The asymptotic consistency and large sample normality allow
inference for the feasible EF estimator even when the exact distribution of the
underlyingX process is not completely known+ The asymptotic normality ofZln

is established in Proposition 9, which follows+

PROPOSITION 9~Asymptotic Normality!+ If Zln r l, p, and E~6hj 62 3
6Ftj21

! @ E~6Xtj 6
2 6Ftj21

! then

S(
j51

n

Zj Wj
21ZjD102

~ Zln 2 l! n N~0,1!+ (4.6)

Proof+ Define the conditional variance In~l! [ (j51
n Zj Wj

21 3
E~hj

26Ftj21
!Wj

21Zj and let Ĥn~ Zln! [ ]Hn~ln
* !0]l 5 2(j51

n Zj Wj
21Zj + Then

the first-order Taylor expansion of the feasible optimal estimation function
Hn~ Zln! 5 (j51

n [aj
*hj 5 (j51

n Zj Wj
21hj yields

0 5 Hn~ Zln! 5 Hn~l! 1 F ]Hn~ Zln
* !

]l
G~ Zln 2 l!

5 Hn~ln! 1 Ĥn~l!~ Zln 2 l! 1 @2Ĥn~l! 1 Ĥn~ Zln
* !# ~ Zln 2 l!, (4.7)
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where Zln
* 5 g Zln 1 ~1 2 g!l+ Supposean is an increasing sequencean r `

chosen such thatan
21Ĥn~l! n N~0,1! and rewrite~4+7! as

2an
21Ĥn~l!~ Zln 2 l! 5 an

21Hn~l! 1 an
21@2Ĥn~l! 1 Ĥn~ Zln

* !# ~ Zln
* 2 l!, (4.8)

where in the case at hand2Ĥn~l! 1 Ĥn~ Zln
* ! 5 0 by the linearity of the esti-

mating function+ The left hand side converges in distribution to a standard nor-
mal variate ifan

21Hn~l! n N~0,1!+ It remains now to find this sequencean and
prove the convergence+

Consider the normalized conditional variance

Var~an
21Hn~l!! 5 an

22 In~l! 5 an
22 (

j51

n

Zj Wj
21E~hj

26Ftj21
!Wj

21Zj + (4.9)

It is easy to check that ifE~6hj 62 6Ftj21
! @ E~6Xtj 6

2 6Ftj21
!, then this conditional

variance is bounded by theFtj21
-measurable term6Xtj21

62 :

E~6hj 62 6Ftj21
! @ E~6Xtj 6

2 6Ftj21
! # CeCt~11 6Xtj21

62! 5 O~6Xtj21
62!, (4.10)

where the bound follows from~4+5! and derives from the global Lipschitz
and linear growth conditions on the drift and volatility parameters of the dif-
fusion X+

It is easy to verify that~4+10! allows the normalized conditional variance
~4+9! to be written as

Var~an
21Hn~l!! 5 an

22OS(
j51

n

Zj Wj
21ZjD, (4.11)

which implies choosingan 5 ~(j51
n Zj Wj

21Zj !
102 so that Var~an

21Hn~l!! 5
O~1!+ Because the conditional varianceIn~l! is bounded under the assumption
of Proposition 10~see 4+10!, the result

an
21Hn~l! 5 S(

j51

n

Zj Wj
21ZjD~21!02

Hn~l! n N~0,1! (4.12)

follows from application of the central limit theorem for martingales with
bounded conditional second momentsE~6hj 62 6Ftj21

! ~see Billingsley, 1986,
Theorem 35+9, p+ 498!+ This shows that the right hand side of~4+8! converges
in distribution to a normal standard variate and gives the desired result for the
left hand side:

2an
21Ĥn~l!~ Zln 2 l! 5 S(

j51

n

Zj Wj
21ZjD102

~ Zln 2 l! n N~0,1!+ (4.13)

n
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5. ESTIMATING EXCESS RETURNS FROM THE UNDERLYING
ASSET PROCESS

Estimation of excess returns from observed market derivative prices using EF
theory was developed in Section 4+ This section discusses the estimation ofl
from the underlying asset process~stock, bond, or index! on which the deriva-
tive securities are defined+ The paper’s methodology for estimating premiums
and testing for risk neutral pricing rests on comparing these two estimates for
equality+

The relevant class of linear estimating functions for the excess returns pa-
rameterl is

H 5 HH: H 5 (
j51

n

aj ~l!hj ~l!J + (5.1)

The component functionshj ~l! for the stock process, the optimal weights
aj
*~l! , and the estimators forl and its variance are derived in the proposi-

tions that follow+ Note that the issues of sample design pertaining to strike-
based replicates and maturity cycles do not arise in this situation+

PROPOSITION 10~The Estimating Function forl Based on the Stock Pro-
cessX !+ Let X be a diffusion process following the stochastic differential
equation

dXt 5 b~t,Xt !dt 1 s~t,Xt !dWt , P-a+s+ , (5.2)

where b~t,Xt !: @0,T # 3 Rd r Rd is the drift vector,s~t,Xt !: @0,T # 3 Rd r

Rd 3 Rd is the dispersion matrix (of rank d), and dWt is a d-dimensionalFt-
measurable standard Brownian motion with respect to the empirical probabil-
ity measure P. Then, under the further assumption of “time-state separability”
(see Section 2.1), the conditional martingale difference functions hj ~l!, j 5
1, + + + , n, in the linear class

H 5 HH: H 5 (
j51

n

aj ~l!hj ~l!J (5.3)

are given by~d 5 1!

hj ~l! 5 X~tj !B~tj21, tj ! 2 X~tj21! 2 lE
tj21

tj

X~u!B~tj21,u!du, (5.4)

wherel 5 b 2 r is the excess return.

Proof+ The proof is identical to the development of Proposition 1 with the
discounted price processf ~Xs,Bs! 5 XsB~t, s! forming the basis of the Itô
expansion+

The optimal estimating equation and the EF estimator for and its variance
estimator are stated in Proposition 11+ The proof parallels Proposition 3+
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PROPOSITION 11~Optimal Estimating Equation, Estimator forl and Vari-
ance from Stock Process!+ Let $X~tj !, j 5 1, + + + , n% define the sequence of mar-
ket stock (index) prices. The optimal estimating function forl is given by

H *~l! 5 (
j51

n 1 E
u5tj21

tj

E~Xu6Ftj21
!B~tj21,u!du

E
u5tj21

tj

E~~Xus!2 6Ftj21
!B2~tj21,u!du2

3 SX~tj !B~tj21, tj ! 2 X~tj21! 2 lE
tj21

tj

Xu B~tj21,u!duD+ (5.5)

Define

Yj 5 X~tj !B~tj21, tj ! 2 X~tj21!B~tj21!, Zj 5E
u5tj21

tj

Xtj21
B~tj21,u!du

and Wj 5E
u5tj21

tj

~Xtj21
s!2B2~tj21,u!du+

Then, the feasible estimator forl and its variance implied by the optimal esti-
mating function are

Zld 5

(
j51

n

Zj Wj
21Yj

(
j51

n

Zj Wj
21Zj

(5.6)

and

ZVar~ Zld ! 5
1

(
j51

n

Zj Wj
21Zj

+ (5.7)

6. DIAGNOSTIC STUDY

The empirical properties of the estimation framework developed in the previ-
ous sections are tested and evaluated using an extensive Monte-Carlo study+
The empirical study also enables resolution of important sample design issues
for derivative prices~impact of strike level and maturity length!, verifies cer-
tain theoretical implications~e+g+, strike replicates do not reduce variance—
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compare~3+7! and ~3+10!!, and gives confidence in implementation to market
derivative data+ In the study, the S&P500 index and call options defined on it
are simulated using historical trend and volatility, and excess returns are esti-
mated from both the underlying asset and call option prices under various sce-
narios with differing strike levels and strike replication and shorter maturity
lengths+ Differences in the estimated excess returns quantify extra premiums
not explained by the risk neutral pricing model+ Major conclusions of the study
are summarized first before detailing the analysis and results+

6.1. Major Findings

The results obtained from the diagnostic study verify the ability of the feasible
EF estimator to correctly estimate excess returns from derivative prices and
test the hypothesis of risk neutral pricing+ The simulations are based on assump-
tions satisfying the risk neutral null hypothesis~Black–Scholes valuation of
calls!, and estimates of excess returns~and equivalently market price of risk!
from both the index and its derivative calls are very close for any given sample
size+ Therefore, the empirical study reveals that no pricing errors and premi-
ums are found when none should exist+ Standard errors tend to be large but go
down with larger sample sizes+ Second, the estimation is found to be invariant
to the strike level~“moneyness”! of the calls+ Third, it is found that addition of
replicates based on different strikes does not improve the standard errors of the
estimator because of high dependence among replicates+

In the market setting, it is rare to find calls of large maturity+ Therefore, it is
not feasible to increase the sample size by extending the time to maturity+ An
alternative sampling design that cycles over calls of smaller~nonoverlapping!
maturities is considered as a way to improve precision+ It is found that estima-
tion remains stable when sampling from cycles of shorter maturities with the
same effective sample size~cycles times maturity length!+ This result of the
study gives confidence in the applicability of the estimation methodology to
derivative market prices where large samples based on cycling over shorter ma-
turities ~3 months best! may be used to reduce variance+

6.2. Generation of S&P500 Index and Call Options

The S&P500 index used in the diagnostic study is generated using trend and
historical volatility estimates obtained from the Bloomberg online system+ Es-
timates of the annualized historical volatility over a 260 day~1 trading year!
trading period over the last 6 months of 1998 fluctuated in the range 17–23%+
For the empirical study, the annualized volatility was set ats 5 20%+ From a
similar examination of the S&P500 index, an annualized price appreciation of
b 5 9% was chosen, and the starting value of the index was set atX0 5 1,000
~the estimation holds uniformly for data generated under other parameter val-
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ues for drift and volatility!+ The S&P index process was simulated as a discrete
geometric Brownian motion using the recursive formula

Xj [ Xtj 5 Xj21expHSb 2
s2

2
DDj 1 s!Dj ZJ , j 5 1, + + + , n, (6.1)

whereDj 5 10260 andZ ; N~0,1! is a standard normal random variate~gener-
ated by a random number generator!+ Following a suggestion of an anonymous
referee, the initial 1,000 recursions of~6+1! were discarded to remove “start-
up” problems in the series, and the simulation size was expanded to 2,000~from
100!+ This improved the performance of the excess return estimator even at the
lowest sample size of 100~see Table 1! and when call options are sampled
from shorter maturity cycles~Table 3!+ The empirical study was carried out in
the Gauss programming language+

Call options $Vk~tj ,Tg! [ V~tj ,Xtj ;Kk,Tg!, g 5 1, + + + , p, j 5 1, + + + , ng, k 5
1, + + + ,mg% on the S&P500 index were generated by using~6+1! in the Black–
Scholes formula:

Vk~tj ,Tg! [ Vk~tj ,Xtj ;Kk,Tg! 5 Xtj N~d1! 2 K exp~2r tj !N~d2!,

d1 5

lnS Xtj

K
D1Sr 1

1

2
s2Dtj

s!tj

,

d2 5 d1 2 s!tj , (6.2)

wheretj 5 (i5j21
ng Dj , j 5 1, + + + , ng is the time to maturity for each nonoverlap-

ping maturity cycle with lengths$T1, + + + ,Tg, + + + ,Tp% + A random draw of the in-
dex and calls~at the money! over 500 trading days is plotted in Figure 1+ In the
plot, the index value is added to the call prices+

6.3. Performance of EF Estimator and Effect of Sample Size

The performance of the proposed estimation framework in correctly estimating
the excess returnl 5 b 2 r 5 9%, and equivalently the market price of risk
g 5 l0s 5 +45, as a function of sample size is first examined+ It is important to
note that these are “theoretical true values” under the assumption of a continu-
ous geometric Brownian motion+ As a result of the discretization involved in
generating the index recursively with formula~6+2!, some distortion is intro-
duced, and the “actual true values” for the excess return and market price of
risk will differ from 9% and +45, respectively+ This should be kept in mind
when comparing the performance of the estimator with the “true value” at dif-
ferent sample sizes+

Sample sizes~trading days; with 260 trading days per year! varying from
100 to 10,000 with single maturity and strike~at the money! were used in the
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first experiment+ The results averaged over 2,000 simulations are reported in
Table 1+ EF estimates ofg~5+45! and l~59%! from both the call and S&P
index are very close at each sample size+ Even at a small sample size of 100,
the mean of estimates is within 1+9% of the “theoretical true value+”

Figure 1. Random draw of S&P500 index and calls+

Table 1. Estimating function estimates ofl andg by sample size

Sample Size~Trading Days!

Estimator Average 100 500 1,000 2,000 5,000 10,000

EF-call [gc,EF +4584 +4639 +4585 +4578 +4517 +4487
Var~ [gc,EF! 2+600 +5200 +2600 +1300 +0520 +0260
SE~ [gc,EF! 1+612 +7211 +5099 +3606 +2280 +1612

Zlc,EF 9+17% 9+28% 9+17% 9+16% 9+03% 8+97%

EF-index [gx,EF +4596 +4637 +4585 +4577 +4517 +4487
Var~ [gx,EF! 2+600 +5200 +2600 +1300 +0520 +02600
SE~ [gx,EF! 1+612 +7211 +5099 +3606 +2280 +1612

Zlx,EF 9+19% 9+27% 9+17% 9+15% 9+03% 8+97%
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6.4. Testing for Risk Neutral Pricing and Additional Premiums

The hypothesis that the market call prices are derived from risk neutral pricing
~and no additional premiums! can be tested by comparing the excess returns
from call prices with the same from the S&P500 index+ More formally, our null
hypothesis is

H0 : lc,EF 2 lx,EF 5 0+

From Section 4, we know that underH0, Zlc,EF 2 Zlx,EF ;
asy N~0,Var~ Zlc,EF 2

Zlx,EF!!, implying the test statistic

Zlc,EF 2 Zlx,EF

SE~ Zlc,EF 2 Zlx,EF !
+

PROPOSITION 12~Variance of Zlc,EF 2 Zlx,EF!+ Let Yc, j and Yc, j be
defined as in Propositions 3 and 11, respectively. Similarly for Zc, j , Wc, j , Zx, j ,
and Wx, j . Further, define Cov~Yc, j ,Yx, j ! 5 *u5tj21

tj ~V X~tj21,T !!~Xtj21
s!2 3

B2~tj21,u!du. Then, the variance of Zlc,EF 2 Zlx,EF is given by

Var~ Zlc,EF 2 Zlx,EF ! 5
1

(
j51

n

Zc, j Wc, j
21Zc, j

1
1

(
j51

n

Zx, j Wx, j
21Zx, j

2 2

(
j51

n

Zv, j Wc, j
21Cov~Yc, j ,Yx, j !Wx, j

21Yx, j

S(
j51

n

Zc, j Wc, j
21Zc, jDS(

j51

n

Zx, j Wx, j
21Zx, jD

+

Proof+ The expression follows directly by considering the variance and co-
variance terms ofZlc,EF

* 2 Zlx,EF
* and replacing expectations by the appropriate

Ftj21
-measurable surrogates as shown in the proof of Proposition 3+ n

The null hypothesis of risk neutral pricing was tested over different sample
sizes as given in Table 2+ Because the call prices are generated under assump-
tions satisfying the null hypothesis~Black–Scholes valuation!, the null should
not be rejected by the data+ Indeed, as Table 2 shows, differences in the excess
returns obtained from the S&P500 calls and the index, [gc,EF 2 [gx,EF, are insig-
nificant, and the standard errors will not reject the null hypothesis+ The vari-
ance of the difference is dramatically reduced by the covariance term as the
sample size increases+ These results show that EF estimation reveals no pricing
errors and premiums in call prices when none should exist+

6.5. Effect of Strike Level or “Moneyness”

The results so far were obtained using strikes “at the money+” The impact on
the estimation of changing the strike level~“moneyness”! was also investi-
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Table 2. Differences in EF estimates ofl andg from calls and index

Sample Size~Trading Days!

Estimate 100 500 1,000 2,000 5,000 10,000

[gc,EF 2 [gx,EF 2+1203 1022 +1463 1023 2+7313 1025 +3013 1026 +2663 1027 +2093 1028

Var~ [gc,EF 2 [gx,EF! 1+893 +2308 +7203 1021 +1683 1021 +9383 1023 +3193 1026

SE~ [gc,EF 2 [gx,EF! 1+323 +4510 +2478 +1164 +02705 +004945
Zlc,EF 2 Zlx,EF 2+2403 1021% +2923 1024% +1463 1024% +6013 1025% +5313 1026% +4183 1026%

8
0

9



gated+ Various values of strikes were considered ranging from 70% of the ini-
tial index value to 130%+ The sample size was set at 5,000, and the results are
consistent at other sample sizes+ The results demonstrate that the strikes have
absolutely no impact on the estimation of the market price of risk: [gc,EF 5
[gx,EF 5 +4517 for the strikesK 5 Xok, k 5+7, +8, +9, 1, 1+1, 1+2, and 1+3+ The

reason for this is that movements in call value and “delta,” Vk
X~tj21,Tg!, move

in a parallel fashion across different strikes~see Figure 2!+ This also shows
graphically the strong dependence between strike replicates evidenced in the
excess returns estimator of Proposition 4+

6.6. Effect of Smaller Maturity Sampling Cycles

In the market setting, the vast majority of traded calls are of maturities less
than 1 year+ Therefore, it is not feasible to increase the sample size by extend-
ing the time to maturity+ An alternative sampling design that cycles over calls
of smaller~nonoverlapping! maturities is considered in this section as a way to
reduce the variances of estimators+ Performance of the EF estimators at an ef-
fective sample size of 500 and 2,000 trading days is compared by varying the
size of the maturity cycles+ At an effective sample size~ pn! of 500, maturity

Figure 2. Calls of different strikes+

810 GURUPDESH S. PANDHER



cycles~ p! 1, 10, and 31 are paired with maturity lengths~n! 500, 50, and 15,
respectively+ And at the effective sample size~ pn! of 2,000, maturity cycles
~ p! 1, 40, and 125 are paired with maturity lengths~n! 2,000, 50, and 16, re-
spectively+ The maturity ofn 5 16 corresponds to a call expiring in 1 month
~20 trading days! with the last 4 observations~20%! ignored for reasons of
numerical stability in the estimation+ As time to maturity approaches, the value
and delta of the call become very sensitive to time and change very sharply—
causing rapidly changing weighting factors in the EF estimator for these obser-
vations+ For example, at a sample size of 100, estimates corresponding to
dropping the last 1%, 10%, 20%, and 30% of observations are+563, +461, +458,
and +476 for [gc,EF and +462, +451, +455, and +473 for [gx,EF, respectively+ The
differences [gc,EF 2 [gx,EF are +102, +010, +003, and +003 at these drop rates+

The 20% drop rate is chosen because we wish to consider estimation also at
the 1 month maturity+ This gives around 20 trading days with the last 4 dropped
~20%! for the reasons cited previously+ Dropping only the last 2 or 3 observa-
tions still caused numerical problems for this shorter maturity+ Therefore, to be
consistent, the drop rate was fixed at a constant 20% for all maturities+ Simi-
larly, a maturity ofn 5 50 corresponds to a call expiring in 3 months~62 trad-
ing days! with the last 12 observations~20%! left out+ The results of this analysis
are reported in Table 3+

It is found that sampling from cycles of shorter maturities with the same
effective sample size~cycles times maturity length! yields similar results for
estimates of excess returns~and market risk! and their standard errors as a sin-
gle maturity sample of large duration+ There is no observed deterioration in
moving to the smaller cycles+ This result gives confidence in the applicability
of the estimation methodology to market derivative prices where larger sam-
ples derived from sampling over multiple nonoverlapping shorter maturities can
be used for variance reduction+

7. CONCLUSIONS AND FURTHER WORK

This paper develops an econometric framework for~i! estimating the underly-
ing security’s excess returns from derivative prices, ~ii ! testing for risk neutral
pricing, and ~iii ! measuring premiums outside the no-arbitrage pricing model+
The estimator is derived by applying quasi-likelihood and Feynman–Kac theory
to the risk neutral contingent claims pricing model to generate the optimal or-
thogonality restriction for the parameter of interest~excess returns!+ A diagnos-
tic study is undertaken to resolve sample design issues such as impact of the
strike level, strike replication, and shorter maturity cycles on estimation of ex-
cess returns+

Quasi-likelihood estimators for excess returns~and their variance! are ob-
tained for both the derivative price process and the underlying asset price pro-
cess ~e+g+, stock, bond, or index!+ The strong consistency and asymptotic
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Table 3. Effect of smaller maturity cycles on estimation

Sample Size~Trading Days!

500 2,000

Estimator Average n p n p n p n p n p n p

500 1 50 10 16 31 2,000 1 50 40 16 125
EF-call Zlc,EF +4639 +4633 +4434 +4578 +4519 +4522

Var~ [gc,EF! +5200 +5200 +5242 +1300 +1300 +1300
SE~ [gc,EF! +7211 +7211 +7240 +3606 +3606 +3606

Zlc,EF 9+28% 9+27% 8+87% 9+16% 9+04% 9+04%

EF-index [gx,EF +4637 +4640 +4450 +4577 +4523 +4510
Var~ [gx,EF! +5200 +5200 +5242 +1300 +1300 +1300
SE~ [gx,EF! +7211 +7211 +7240 +3606 +3606 +3606

Zlx,EF 9+27% 9+28% 8+40% 9+15% 9+05% 9+02%

8
1

2



normality of the estimator are established in the context of a nonstationary
underlying state process+ These asymptotic properties are derived under a milder
conditional second moment assumption that is satisfied by a large class of
predictable stochastic processes with finite conditional second moments~or
finite variation!+ Therefore, the proposed estimator is robust to distributional
assumptions of risk neutral martingale theory where the stochastics are driven
by Brownian motion+ However, when the underlying state process is close to
being a Brownian motion, the quasi-likelihood estimator offers optimal and
efficient estimation+ Moreover, the final feasible estimator developed is a dis-
cretized version of the estimator implied by the continuous risk neutral pric-
ing framework+ The convergence results show that in addition to possessing
the robustness property, the feasible estimator offers consistent and efficient
estimation+

Much of the estimation literature on stochastic processes in finance has fo-
cused on estimation of parameters~e+g+, drift, volatility! from the state process
X ~e+g+, index, stock, bond!+ This paper considers the estimation of the excess
return parameter from the derivative processV~X ! overlying the state process
~and alsoX !+ The estimator is obtained by applying quasi-likelihood and
Feynman–Kac theory to the risk neutral contingent claims pricing model to gen-
erate the optimal orthogonality restriction+ Nonequivalence between excess re-
turns estimated from derivative and underlying asset prices implies departures
from the risk neutral pricing model and presence of additional premiums+

This paper also considers a mixed estimation framework where the estimat-
ing equations follow from the continuous risk neutral pricing model for contin-
gent claims but where sampling of market derivative prices~and underlying
asset prices! occurs at discrete, perhaps random, times+ This paper differs from
the direction taken in other work both in focus of estimation and the estimation
methodology used+ The existing literature has not dealt with the estimation of
excess returns from derivative pricesV~X !+ To construct an efficient estimator,
the proposed methodology first identifies a conditional martingale difference
equation~CMDE! by constructing an Itô expansion of the discounted deriva-
tive process between two given sampling intervals under the risk neutral mea-
sure, then applies the Feynman–Kac result to reduce terms, and last introduces
the parameter of interest~excess returns! by switching to the empirical mea-
sure+ Once the CMDE is constructed, the optimal orthogonality restriction on
the CMDE is obtained from quasi-likelihood theory+ A discrete “feasible” esti-
mator is next developed from this procedure in which all quantities are measur-
able with respect to information available at the beginning of each sampling
period+

The estimation also has interesting empirical derivative pricing applications
that are being explored+ Market prices of risk can be readily constructed from
estimates of volatility, and excess returns in the derivative market and contin-
gent claims can then be priced using the risk neutral density from Girsanov’s
change of measure formula+
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There are a number of further implications of this econometric framework
for derivatives+ The proposed approach is applicable to any arbitrary derivative
security, does not require estimation of the risk neutral probability measure,
inherits the optimal efficiency properties of EF theory, and has application to
spot rate bond pricing models where it offers linear estimation of parameters in
highly nonlinear bond formulae+

A diagnostic study based on generating the S&P500 index and calls verifies
the ability of the proposed method to correctly estimate excess returns from
derivative prices and test for risk neutral pricing—even at sample sizes as low
as 100 observations+ Sample design issues are also resolved: ~i! the estimator is
invariant to call strikes; ~ii ! strike replicates do not reduce variance because of
dependence; and~iii ! larger samples constructed by cycling over shorter matu-
rity options can be used to reduce its variance+ On the last point, it is found that
the 3 month maturity is best, yielding more stable estimation of excess returns
than 1 month calls+ These results give confidence in applicability to market
derivative prices+ Current ongoing work seeks to apply the proposed estimation
framework to S&P500 call options data from the Chicago Board of Options
Exchange, and results from this application will be reported in the sequel to
this paper+ The empirical pricing implications of this estimation for derivatives
are also being investigated+

NOTE

1+ An anonymous referee made the keen observation that the bound of Proposition 6 is infinity
if Xtj approaches 0+ In this case, E~Xtj

26Ftj21
! in the numerator is roughlytj 2 tj21 ~a constantC!,

and the bound depends on the expectationE @(j51
n 10Xtj21

2 # 5`+ This situation can be excluded by
considering the economic rationale implied by this event+ In a financial market context, X is typi-
cally the price of a stock or market index, andV~X ! is the value of the derivative security~e+g+,
call, put! defined on the underlying asset+ There are two arguments that ensure that this “patholog-
ical case” cannot really occur in financial markets: ~i! the share price of a firm never hits zero—
even in the case of bankruptcy; and~ii ! the derivative value is zero if the underlying asset approaches
zero: limXr0 V~X ! 5 0+
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APPENDIX A:
PROOF OF PROPOSITION 1

~ESTIMATING FUNCTION hj ~l!
@SINGLE STRIKE AND MATURITY# !

The proof is pursued in the general setting~d . 1!+ Applying a “chain-rule” version of
Itô’s formula to the functionalf ~Vs,Bs! 5 V~s,Xs!B~t,s! with t,s [ @0,T # , ands . t
yields ~Protter, 1990!

V~s,Xs!B~t,s! 2 V~t,Xt ! 5E
u5t

s ]f

]B
~Xu,Bu!dBu 1E

u5t

s ]f

]V
~Xu,Bu!dVu+ (A.1)

In the preceding expansion all second derivatives of the functionalf ~Xs,Bs! are zero,
and hence the corresponding quadratic variation terms drop out+ Next substitute the fol-
lowing expressions into the right hand side of~A+1!: dVs 5 ~]V0]s!ds 1 AsVds 1
~]V~s,T !0]X !'s~s,Xs!d GWs anddBs 5 2Bsrsds+ This leads to

V~s,Xs!B~t,s! 2 V~t,Xt !

5E
u5t

s

Vu Bu rudu

1 E
u5t

s F ]V

]u
1 AuVGBudu1E

u5t

s

BuS ]V~u,T !

]X
D's~u,Xu!d GWu

5E
u5t

s F ]V

]u
1 AuV 2 ruVGBudu1 GM~t,s!

5 2E
u5t

s

gu Budu1 GM~t,s!, (A.2)

where GM~t,s! [ *u5t
s Bu~]V~u,T !0]X !'s~u,Xu!d GWu is a Q stochastic integral+

To introduce the excess return parameter~and market price of risk!, we reverse the
transformation in Brownian motion defined in~2+3! to obtain

GM~t,s! 5E
u5t

s

BuS ]V~u,T !

]X
D' @b~u,Xu! 2 ru Xu#du

1E
u5t

s

BuS ]V~u,T !

]X
D's~u,Xu!dWu, (A.3)

whereWt is ad-dimensional Brownian motion with respect to the empirical probability
measureP+

DefiningM~t,s! [ *u5t
s Bu~]V~u,T !0]X !'s~u,Xu!dWu and combining~A+2! and~A+3!

yields

816 GURUPDESH S. PANDHER



M~t,s! 5 V~s,Xs!B~t,s! 2 V~t,Xt ! 1E
u5t

s

gu Budu

2E
u5t

s

BuS ]V~u,T !

]X
D' @b~u,Xu! 2 ru Xu#du+ (A.4)

Note thatE~M~t,s!6Ft ! 5 0; hence it is a martingale difference function+ Therefore, its
“data side” defines

hj ~l! [ M~tj21, tj ! 5 V~tj ,T !B~tj21, tj ! 2 V~tj21,T ! 1E
u5t

s

gu Budu

2 E
u5t

s

BuS ]V~u,T !

]X
D' @b~u,Xu! 2 ru Xu#du, j 5 1, + + + , n+ (A.5)

Under the assumption of geometric Brownian motion, b~u,Xu! 5 ~b1 Xu
1, + + + ,bd Xu

d!' and
s~u,Xu! 5 sXu wheres is a d 3 d diagonal matrix of volatilities+ Then, hj ~l! and
M~tj21, tj ! can be written as

hj ~l! 5 V~tj ,T !B~tj21, tj ! 2 V~tj21,T ! 1E
u5t

s

gu Budu

2 E
u5t

s

BuS ]V~u,T !

]X
D'Xu

* @bu 2 ru#du, j 5 1, + + + , n, (A.6)

with the “error side”

M~tj21, tj ! 5E
u5tj21

tj

BuS ]V~u,T !

]X
D'sXu

*dWu, j 5 1, + + + , n, (A.7)

whereXu
* is a diagonal matrix formed from the vectorXu+ Further settingd 5 1 and

using the definitionl 5 b 2 r in equation~A+6! leads to the final equation stated in
Proposition 1+ n

APPENDIX B:
PROOF OF PROPOSITION 6

~A BOUND FOR THE SEQUENCE
$ Zln% IN L2 NORM!

Note thatYj 5 hj 1 l EZj 5 hj 1 lZj 1 l~ EZj 2 Zj !+ This allows Zln to be written as

Zln 2 l 5 l

(
j51

n

Zj Wj
21~ EZj 2 Zj !

(
j51

n

Zj Wj
21Zj

1

(
j51

n

Zj Wj
21hj

(
j51

n

Zj Wj
21Zj

(B.1)

5 lAn 1 Bn+

ESTIMATION AND TESTING FOR RISK NEUTRAL PRICING 817



Here, EZj 2 Zj 5 *u5tj21

tj ~V X~u,T !Xu 2 V X~tj21,T !Xtj21
!B~tj21,u!du where foru . tj21

the following bound holds:

V X~u,T !Xu 2 V X~tj21,T !Xtj21

5 ~V X~u,T !Xu 2 V X~u,T !Xtj21
! 1 ~V X~u,T !Xtj21

2 V X~tj21,T !Xtj21
!

5 V X~u,T !~Xu 2 Xtj21
! 1 ~V X~u,T ! 2 V X~tj21,T !!Xtj21

# Xu, (B.2)

becauseV X~u,T ! # 1+ This follows directly from the fact that derivative option prices
are bounded above by the value of the underlying asset: V~u,Xu;K,T ! # Xu+ Therefore,
using the fact thatXu

2~tj21 , u # tj ! is an increasing process, we can write

E~~ EZj 2 Zj !
2 6Ftj21

! # EFSE
u5tj21

tj

Xu B~tj21,u!duD2

*Ftj21G
# EFXtj

2SE
u5tj21

tj

B~tj21,u!duD2

*Ftj21G

5 Wj

E~Xtj
26Ftj21

!

~Xtj21
sV X~tj21,T !!2

FE
u5tj21

tj

BuduG2

FE
u5tj21

tj

Bu
2duG

+ (B.3)

The conditional second moment bound~B+3! further gives

E~An
2! # E1 (

j51

n

Zj Wj
21E~~ EZj 2 Zj !

2 6Ftj21
!Wj

21Zj

S(
j51

n

Zj Wj
21ZjD2 2

# E1 (
j51

n

Zj Wj
21Zj

S(
j51

n

Zj Wj
21ZjD2

FE
u5tj21

tj

BuduG2

FE
u5tj21

tj

Bu
2duG

E~Xtj
26Ftj21

!

~Xtj21
sV X~tj21,T !!2 2

5 S r ~12 exp$22rD%!

2~12 exp$2rD%!2D FEu5tj21

tj

BuduG2

FE
u5tj21

tj

Bu
2duG

1

n2 ES(
j51

n E~Xtj
26Ftj21

!

~Xtj21
sV X~tj21,T !!2D

#
k1

n2 ES(
j51

n E~Xtj
26Ftj21

!

Xtj21

2 D (B.4)
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for some positive constantk1 where the third equality follows fromZj Wj
21Zj 5

2~1 2 exp$2rD%!20r ~1 2 exp$22rD%!+
Next consider the second term of~B+1!+ From the proof of Proposition 1, the “error

side” of hj is given by the stochastic integralhj 5 *u5tj21

tj V X~u,T !XusB~tj21,u!dWu+
Using Proposition 2, it can be bounded inL2 norm as follows:

E~hj
26Ftj21

! 5E
u5tj21

tj

E~VX
2~u,Xu!Xu

2s2 6Ftj21
!Bu

2du

# E
u5tj21

tj

E~Xtj
26Ftj21

!s2B2~tj21,u!du

5 Wj

E~Xtj
26Ftj21

!

~Xtj21
V X~tj21,T !!2 + (B.5)

Using ~B+5! and repeating the steps of~B+4! yields

E~Bn
2! # E1 (

j51

n

Zj Wj
21E~hj

26Ftj21
!Wj

21Zj

S(
j51

n

Zj Wj
21ZjD2 2

#
k2

n2 ES(
j51

n E~Xtj
26Ftj21

!

Xtj21

2 D (B.6)

for some positive constantk2+
Note thatE~hj ~ EZj 2 Zj !6Ftj21

! 5 0 as a result of the Brownian motion inhj + There-
fore, the cross-moment of~B+1! is zero+ Finally, we have the desired bound forZln in L2

norm:

E~ln
2 ! # @l2E~An

2! 1 E~Bn
2!#

#
~l2k1 1 k2!

n2 ES(
j51

n E~Xtj
26Ftj21

!

Xtj21

2 D+ (B.7)

n
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