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ESTIMATION OF EXCESS RETURNS
FROM DERIVATIVE PRICES
AND TESTING FOR RISK

NEUTRAL PRICING

GURUPDESH S. PANDHER
DePaul University

This paper develops an econometric framework(fpestimating excess returns

of the security process from high frequency derivative pri¢éstesting for risk
neutral pricing and (iii) measuring premiums outside the no-arbitrage pricing
model The estimator is constructed by applying quasi-likelihood and Feynman—
Kac theory to the risk neutral contingent claims pricing model to generate the
optimal orthogonality restrictiarThe strong consistency and asymptotic normal-
ity of the estimator are established in the context of a nonstationary underlying
state processThese results further imply that the estimator is robust to distribu-
tional assumptions on the underlying asset pracEss proposed approach is ap-
plicable to any arbitrary derivative securityoes not require estimation of the
risk neutral probability measurend has application to spot rate bond pricing
models A controlled diagnostic study based on generating the S&P500 index and
calls verifies the ability of the estimators to correctly estimate security excess
returns and test for risk neutral pricinghe estimator is invariant to call strikes
and larger samples constructed by cycling over shorter maturity options can be
used to reduce its variance

1. INTRODUCTION

The risk neutral valuation model for pricing derivative securities is based on
the principle of finding a unique equivalent risk neutral probability measure
that renders the underlying discounted asset pra@ssstock bond index a
martingale and valuing contingent claims as expectatibhis paper uses quasi-
likelihood estimation and risk neutral martingale theory to develop an econo-
metric framework for(i) estimating excess returns of the underlying security
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786 GURUPDESH S. PANDHER

from high frequency derivative pricg§i) testing for risk neutral pricingand
(i) measuring premiums outside the no-arbitrage pricing motle strong
consistency and asymptotic normality of the estimator are established in the
context of a nonstationary underlying state proc@&® asymptotic properties
further imply that the proposed estimator is robust and estimation holds when
distributional assumptions on the underlying asset process assumed in the risk
neutral modele.g., Brownian motion are relaxedA diagnostic study is under-
taken to resolve sample design issues such as impact of the strikedtiked
replication and shorter maturity cycles on estimation of excess returns
The estimation framework exploits the relationship between an arbitrary
claim’s partial differential equation and probabilistic representati&eynman—
Kac theory and uses continuous risk neutral pricing and quasi-likelihood theory
to identify the optimal orthogonality condition for estimating excess returns
from derivative prices sampled at discrete intervalsis estimate can be com-
pared with excess returns estimated directly from the underlying asset price
process Significant departures from equivalence imply the existence of addi-
tional premiums in derivative prices outside the no-arbitrage pricing model
Beyond the risk neutral application of the pap#re proposed estimation
framework also has interesting empirical derivative pricing applications that
are being exploredMarket prices of risk can be readily constructed from de-
rivative excess returns and volatilit€¢ontingent claims can then be empiri-
cally priced with the risk neutral density derived from Girsanov’s change of
measure formulaPandher 2000 extends the framework to estimate the vola-
tility of the security process from high frequency derivatives prices
Quasi-likelihood estimators for excess retugasd their varianceare obtained
for both the derivative price process and the underlying asset price pr@wpss
stock bond or index. The results on strong consistency and asymptotic nor-
mality of the estimator are distribution free and derived under a milder condi-
tional second moment assumptiditis is satisfied by a large class of stochastic
processes with finite conditional second mome(atsfinite variation. There-
fore, the proposed estimator is robust to the distributional assumptions of risk
neutral martingale theory where the stochastics are driven by Brownian mo-
tion. However when the underlying state process is close to being a Brownian
motion the quasi-likelihood estimator offers optimal and efficient estimation
Moreover the final feasible estimator developed is a discretized version of the
estimator implied by the continuous risk neutral pricing framewditke con-
vergence results show that in addition to possessing the robustness pritygerty
feasible estimator offers consistent estimation and is asymptotically normal
There are a number of further implications of this econometric framework
for derivatives First, the methodology is very general and applicable to any
arbitrary traded derivative including callitures and swapsSecondthe es-
timation procedure inherits the optimality properties of the quasi-likelihood or
estimation function(EF) framework (Godambe 1960 Godambe and Heyde
1987 Thavaneswaran and Thompsd®86), ensuring that the statistical equa-
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tions used to estimate the implied market rate of returr(ianenbiased andii)
of minimum variance in the class of all linear estimating equations

Third, much of the finance related stochastic processes literature has focused
on estimation of paramete¢s.g., drift, volatility) from the state process(e.g.,
index stock bond using maximum likelihoodmoment conditionsand non-
parametric method®roze 1997 Dohal 1987 Hansen and Scheinkmatf95
Florens-Zmiroy 1993 and others This paper considers the quasi-likelihood
estimation of the excess return parameter from the derivative pr¢gsover-
lying the state proces&@nd also fromX). Furthermore much of the quasi-
likelihood literature deals with estimation in a purely discrete or continuous
context Hereg the setting is mixed where the estimating equations follow from
the continuous risk neutral pricing model for contingent claims but where sam-
pling of market derivative price@nd underlying asset pricesccurs at dis-
crete perhaps randontimes

Econometric issues connected to the use of discrete data for continuous-
time derivative pricing models in other estimation frameworksg., maxi-
mum likelihood estimatiofMLE]) have been considered more recently by
Chernov and Ghyselgl 998, Duffie and Glynn(1998, Pederser{1995, and
others This paper differs from the direction taken in this work both in focus
of estimation and the estimation methodolo@he existing literature has not
dealt with estimation of excess returns from derivative pri¢€X). To con-
struct this estimatorthe proposed methodology first identifies a conditional
martingale difference equatiociCMDE) by constructing an Itd expansion of
the discounted derivative process between two given sampling intervals under
the risk neutral measuréhen applies the Feynman—Kac result to reduce terms
and last introduces the parameter of inter@stcess returnsby switching to
the empirical measuréOnce the CMDE is constructethe optimal orthogo-
nality restriction on the CMDE is obtained from quasi-likelihood thedxy
discrete “feasible” estimator is next developed from this procedure in which
all quantities are measurable with respect to information available at the be-
ginning of each sampling period

Fourth the proposed method for testing the risk neutral hypothesis does not
require estimation of the risk neutral probability measure from observed prices
(Banz and Miller 1978 Breedan and Litzenberget978. The estimation re-
gimes of Longstaff1991) and Ait-Sahalia and L§1998 for call options es-
timate a nonparametric risk neutral probability dendihystogram from a
sequence of calls with the same maturity but different strikésximum like-
lihood estimation and testing are considered by (l888. The approach of
inverting market prices of options to estimate parameters of the risk neutral
measure under parametric density models is pursued by Shemidk, and
Forster(1990. Bekaert Hodrick, and Marshall(1997) discuss biases in tests
of the expectations hypothesis of the term structure of interest. rates

Fifth, the arbitrage bond pricing models of Vasic€l977), Brennan and
Schwartz(1979, and Artzner and Delbaefi987) require an “inversion of the
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term structure” to remove the market price of risk when valuing contingent
claims as the initial stefthe models of Ho and Le1986] and Health Jarrow
and Morton[1992] take the bond price process and forward rate proaess
spectively as exogenous and avoid the invergicrhere are computational dif-
ficulties in this inversion because bond pricing formulae are highly nonlinear
and the spot rate and bond price processes are not independent of the market
price of risk The econometric approach of this paper offers linear estimation
of excess returnsaverting the nonlinearity problenand may offer an advan-
tage in these models over calibration-based estimation

The estimation methodology and its empirical properties are tested and ver-
ified using an extensive Monte-Carlo diagnostic studye empirical study also
enables resolution of important sample design isslibe S&P500 index and
call options defined on it are simulated using historical trend and volatility
Excess returns and market prices of risk are estimated separately from both the
index and call option prices under various scenarios to investigate the impact
of the strike levellength of maturity cycleand strike replicationDifferences
in the estimated excess returns from calls and the index quantify extra premi-
ums not explained by the risk neutral pricing madel

The results of the diagnostic study verify the ability of the econometric model
and estimators to estimate the excess returns correctly and test the hypothesis
of risk neutral pricing The call data generated in the empirical study are based
on the risk neutral pricing modéBlack—Scholes formula for callsand esti-
mates of the market price of risk from both the index and its derivative calls
are very close for any given sample siZéerefore the empirical study reveals
that no premia are found when none should exstimation is unaffected by
the strike level of the calllt is also found that the addition of replicates based
on different strikes does not improve the standard errors of the estimator due to
dependence among strike replicates

In the market settingthe vast majority of traded calls are of maturities less
than 1 yearTherefore it is not feasible to increase the sample size by extend-
ing the time to maturityAn alternative sampling design that cycles over calls
of smaller (nonoverlapping maturities is considered as a way to reduce the
variance of estimatordt is found that sampling from cycles of shorter maturi-
ties with the same effective sample sipember of cycles times maturity length
yields similar and stable estimation as a single maturity sample of larger but
equivalent durationThis result gives confidence in the applicability of the es-
timation methodology to market derivative prices where larger samples derived
from sampling over multipl€overlapping maturities can be used to reduce
variance

The remainder of the paper is organized as follofsction 2 sets out the
probability model and stochastic processes for the arbitrary derivative process
and introduces the main features of the quasi-likelihde#) estimation frame-
work. The estimator of excess returns from an arbitrary derivative price pro-
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cess and its variance are derived in Sectio®&ction 4 establishes the strong
consistency and asymptotic normality of the feasible EF estimahar estima-

tion of excess returns from the underlying asset process is considered in Sec-
tion 5. Section 6 presents the results from the Monte-Carlo study in which an
index and calls are simulated using the historical volatility and trend of the
S&P500 index to verify the estimation and evaluate the impact of samplg size
strike leve] strike replication and maturity length on the estimatio@onclu-

sions follow in Section 7

2. PRELIMINARIES: STOCHASTIC PROCESSES FOR DERIVATIVES
AND QUASI-LIKELIHOOD ESTIMATION

This section defines the probability model and stochastics for an arbitrary de-
rivative process and introduces the Feynman—Kac result required to develop
the estimator of excess returiéhe essential features of quasi-likelihood esti-
mation (or estimating function theojyare also presented

2.1. The Probability Model and Stochastic Process
for Derivative Claims

Fix the probability spacéQ, 7, (F )o=i=T,P) Where (%)==t = {F; 0 =

t = T} is the filtration defined on the event spa@esatisfying the usual con-
ditions (i.e,, filtration is right continuous andr, contains all null sets of).
The probability space is assumed large enough to suppd@f-amlued stochas-
tic processeX = {X;, Fr; 0 =t = T} that is right continuous with left limits
(RCLL) whose elements generate thefields = o{Xs; 0 = s = t}. The
processX will represent the state variable of the pricing modeb., stock
bond or index. We view X as a diffusion process following the general sto-
chastic differential equatioR-a.s.:

dX, = b(t, X)) dt + o (t, X,) dW, (2.1)

whereb(t, X;): [0,T] X RY — RY is the drift vectoy o (t, X;): [0,T] X RY —
RIXRY is the dispersion matrixof rank d), and W, is a d-dimensional%;-
measurable standard Brownian motion with respect to the probability measure
P. Moreover b(t, X;) ando (t, X;) are taken to satisfy the global Lipschitz and
linear growth conditiongsee Karatzas and Shrevi®91 p. 289). This ensures
that there exists a strong-form solution (@1) relative toW = {W, %; 0 =
t = T} and the procesX is square integrable ovg0, T |. Last definea(t, X;) =
o (t, X))o T(t, X;) to be the diffusion matrix

The preceding quantities are defined with respect to the empirical measure
P. Let Q be the unique equivalent risk neutral measure under which expecta-
tions of theX process discounted at the risk-free spot interest rate process
{r;; 0 =t =T} areQ-martingales where is the growth process of the money
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market discount factdB(t, T) = exp(—fST:t r.ds). Risk neutral valuation theory
(Harrison and Kreps1979 Harrison and Pliskal981) asserts that an attain-
able contingent claim can then be valued as a discounted expectation under the
measureQ.

The process of making the discounted asset a martingale requires the
transformation

dW = dW, — 7,(t, X)) dt, (2.2)

where the market price of risk(t, X;): [0,T] X RY - RY andW, is a Brown-
ian motion with respect to the risk neutral meas@eThe relationship be-
tween the equivalent measurBsand Q is readily obtained from Girsanov’s
change of measure formuldote that the existence 6f follows from the non-
singularity of o (t, X;) (see Harrison and Pliskd981). Substituting(2.2) into
(2.1) leads to the differential equation

dX, = r X, dt + o (t, X,) dW. (2.3)

Let f(t,X,):[0,T] X RY — RY be a function in the clas€?([0,T] X RY)
defined on the state variable proceésvith second order differential operator

Q _
lim ER(F(t+s X — LX) A) _ (A ) (X).
s—0 S
where(Af)(x) = 333 S (6 00 (x)/0% %] + Sy X [9f (x)/0%].

We are now ready to define the value process for an arbitrary derivative se-
curity. Let V(X) = {V(t, X,), /; 0=t =T} be the generic value process of the
derivative claim based on the state variable pro¢essereV(t, X;): [0,T] X
RY — R is in the clasC?([0,T] X RY). It is known from the Feynman—Kac
theorem that wheiX is a diffusion V(X) has a heat equation representation
and a corresponding probabilistic representation as a disco@atedrtingale
This result is stated here for reference

Feynman—Kac ResultKaratzas and Shreyd 991 p. 366). Let V(t, X;) €
C2([0,T] X RY) andB(t, T) be as defined earlier and consider the continuous
functionsg(t, X,): [0, T] X RY — R andr(t,X): [0,T] X RY — R satisfying
certain bounded conditionH V(t, X;) satisfies the heat equation

vV .
- +AV-—1V=—-g in[0,T] X RY

V(T, x) = f(x), x € RY (2.4)



ESTIMATION AND TESTING FOR RISK NEUTRAL PRICING 791

thenV(t, X;) admits the unique stochastic representation

V(t, X) = E)?{f(XT)exp{— Jt r(s, Xs)ds}
s=0

T S
+Ltg(s Xs)exp{—ft r(u,Xu)du}dsm} (2.5)

on[0,T] X RY.

An analytical expression for the quasi-likelihood estimator of excess returns
A = Db —ris possible for any arbitrary diffusion price process when the vola-
tility o (t, X;) and drift b(t, X;) are “time-state separabteb(t, X;) = b8(X;)
ando (1, X;) = or(X;). We will retain this assumption for the econometrics of
this paper

2.2. The Quasi-Likelihood Estimation Framework

Estimating function theoryak.a. quasi-likelihood provides a general frame-
work for parameter estimation that includes maximum likelihood estimation
(MLE) as a special case when an exact distribution is specified for the data
generating process and incorporates least squ&®s estimation for linear
models with no distributional assumptions$ borrows the strengths of both
approaches while eliminating their weaknesdesr example LS estimation
becomes biased when the variance of the dependent process depends on pa-
rameters appearing in the me@ee Godambe and Kal&991). For a further
overview of EF theorysee Heydd1989 and Godambe and Heyd&987).

Assuming a discrete settinthe general approach to identifying the optimal
estimating equation for the parametee RY is to first form estimating func-
tionsH = (h;, 7) of the dataY and the parametet from a particular class of
functions (e.g., linean such thatE(hj| %) = 0, ] = 1,...,n, with /_; C F.

The optimality criterion of Godambél960 (or its sufficient versionscan
then be applied to determine the optimal estimating equatibhs- (h/", 7).

In relation to generalized method of momeri@MM) estimation(Hansen
1982, H* may be viewed as the optimal orthogonality systdime EF frame-
work, therefore gives a systematic framework for identifying the optimal es-
timating function starting with a primitive “error” or martingale difference
restrictionE(hj|F) =0,j =1,...,n.

The stress on the estimating equatias opposed to the parameter estimator
of this framework is justified by the following observatiorig Fischer’s infor-
mation and the Cramer—Rao inequality are both an estimating equation prop-
erty rather than that of the MLEii) asymptotic properties of an estimator are
almost invariably obtainedas in the case of the MLEvia asymptotics of the
estimating equatian(iii ) estimating equations have the property of invariance
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under one-to-one transformation of the estimatord (iv) separate estimating
functions can be combined more easily than the estimators implicitly defined
by them

We will be interested in finding the optimal estimating equation in the class
of linear 7 = Fy s measurable estimating equations such as

H= {H: H= _Elaj(e)hj(a)}, (2.6)
iz

wheree;(6) is a predictable;  -measurable process aEdhj(e)U-}jfl) =0
j=1...,n
The optimal choice ofy;(6) is given by

( oh;
E—|£E
00

which was shown by Godamb&960 to minimize the(conditiona) variance
of the “standardized estimating equation”

. l>(Ehh| FOL i=Ll..n 2.7)

e — (E@>‘1H (2.8)
a0
with
Var(H®) = (E E>lE(HH')<E ﬁ>l. (2.9)
a0 a0

The criterion of minimizing VatH?®) is justified by the dual objective of
(i) minimizing E(HH') and (ii) maximizing the sensitivity of the estimating
function to departures from the true parameter vahit/06).

3. ESTIMATION OF EXCESS RETURNS FROM DERIVATIVE PRICES

We begin by discussing the structure of the derivative market data to be used in
the EF estimation of excess risk returns from derivative prites the ob-
served prices for the derivative security be sampled at the points in the se-
quencefty, ty, ..., t,} € [0,T] with ty = 0 indexing the start of the sampling
period andt, = T representing the time to maturitfhen A; =t — t_,,j =
1,...,nis the length of the period between points in the term strucAireach
sampling pointt;, a cross section of replicate prices may exist indexed by
1,...,m(eg., calls of different strike). Further prices for nonoverlapping
cycles of maturity times are available given by the sequémge.., Ty,..., Tp}.

The price data consist of a sequence of market prices on the derivative claim
given by {V(t, Ty) = V(tJ,Xt, Kio Tg), 9=1,...,p, ] ,nk=1...,m}

The exact structure of the price sequeingé&;, Ty) WI|| depend on the sample
design (single/multiple maturities strike replicatesand length of maturity

cycles.
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In the context of obtaining the estimating function for the excess return pa-
rameterA from derivative priceswe will consider the class of linear estimating
functions given by

p n m
H= {H; H=> _2 kE ajkg(A)hjkg(A)}. (3.1)
g=1j=1k=1

We described the main features of the estimating function theory in Seclon 2
The key remaining issues are the specification of the martingale difference func-
tions hy4(A) and the weighting factorayq(A), g =1,...,p, j = 1...,n, k =
1,...,min (3.1). The optimal estimating function and implied quasi-likelihood
estimator forA can then be identified by choosingy,(A) optimally and will
depend on the sample design usElree cases are consideréd single strike

and maturity(T), (i) multiple strike replicates on a single matuyignd (iii )
replicates on multiple nonoverlapping maturity cycl€ae key results relating

to the EF estimator of and its variance are derived in Propositions .1H8e
strong asymptotic consistency and normality of the estimator are established in
Section 4 Without loss of generalitywe start by obtaining the estimating func-
tion for A under the first casép =1, m=1).

PROPOSITION 1(The Estimating Functiorh;(A) for Excess Returns.
[Single Strike and Maturify Let g(t, X,): [0,T] X RY — R and r(t, X,):
[0,T] X RY — R be a continuous function where the value processX{) €
C?([0,T] X RY) satisfies the partial differential equation

VvV .
- +AV-—1V=—-g in[0,T] X RY

V(T,Xp) = f(Xg), X ERY (3.2)

Then, given the market derivative pricep/(,T) = V(t,-,XtJ; K,T),
j =1,...,n}, the estimating functionsi), j = 1,...,n in the linear class

H= {H: H= i a,-(/\)hj(/\)} (2.6)
i=1
are given by(d = 1)

S
hy(A) =Y, — )\Zj =V, T)B(t_1, ) — V(4_4,T) +f g(u, X,)B(t;_4,u)du
u=t

Y /oV(u,T)
— A.[J_l(T)XUB(tj_l’ u)du, (3.3)

whereA = b — r is the excess risk return.
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Proof See Appendix A The financial interpretation of3.3) is as follows
The first three terms oh;(A) represent the dependenit™ observation in the
regression sens&hereas the last term represents the corresponding indepen-
dent “X” variable The first two terms give the change in the discounted value
of the contingent claim observed over the sampling intervak third term
adds back the discounted dividends paid out over this petiothe case of
European call optionghis term is zeroThe fourth integral term involving the
“delta” of the derivative claim represents the cumulative discounted value of
the underlying asset held to replicate the change in the claim’s value over the
interval (plus dividends Therefore net change in the value of the claim minus
its hedge replication should be approximately zero

Some of the basic properties bf(A) required in determining the estimator
are summarized in Proposition 2

PROPOSITION 2(Properties of the Estimating Functidn(A)). The first
and second moments of(h), j = 1,...,n determined in Proposition 1 satisfy

() E((WIF ) =0.

d (b aV(u,T)\2

(i) E(O)IF )= E(( = ))<xua>2
j=1Ju=t_y i

(i) E (hy (DN 5, ) =0, k> |

() s aV(u,T)
(W) A\ _fut”( aX

]—}]1) B2du.

) X,B,du(d =1 case.

Proof Property(i) is immediate from the definition df;(A), which is a sto-
chastic integral w.t. Brownian motion with probability measufe The second
property follows from the isometry property of the squared stochastic integral
(Karatzas and Shrey&991, p. 137) which in this case delivers

d " V(u,T)\2
EMWIF )= E(( a(; )><xua)z
j=1Ju=t_ j

:5,.1> BZd[Wil, (3.4)

whered[W1], = duis the quadratic variation of the Brownian motigy. The
third result follows from the disjointness of the stochastic integraisl the
fourth property is immediate fron3.3). u

PROPOSITION 3Optimal Estimating EquatigrEstimator forA and Vari-
ance Single Strike and Maturity Let{V(u,T)=V(u,X,; T),u=t,j=1...,n}
define the sequence of derivative prices with maturity T. Then the following
hold:

(i) The optimal estimating function for in the linear class of estimating equations

H= {H: H=2> aj(A)hj(A)} (2.6)
j=1
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is given by
H*(A S Z- \Z
()= ; vT/J AZ;)
i aV(u,T)
. u:tj—lE X Xu F 1 B(ti*l’u)du
=2

=] ft, E<<av(u,T)>2(Xu0)z
umye 0X

l]
X (V(tj,T)B(tjb t) —V(t_y, T) +f g(u, Xy)B(tj_4,u)du

=t_q

]-‘tH> B2(t,_,,u)du

Y oV(u,T)

Y S Xy B(tj_4,u)du), (3.5)
yielding

> EZ(EW); 1Y,

P

> EZ(EW); *Z,

j=1
and

1

Var(A%) = E, -\

_El EZ;(EW),*Z,
=

where the conditioning is done over the “stochastic regress@rs? (Zs, ..., Z,).
The conditional finite sample distribution af,  is given by

N 1
alz N /\a n

> EZ(EW); *Z
j=1
(i) Define Y =V(;,T)B(ti_1, ) — V(t- 1,T)+f - g(uX )B(t_p,u)du, Z; =
T, (aV(t, 1 T)/0X)X, , B(t_4,u)du, and vy— I oL OV(t- 1, T)/9X)? X
(Xt 10) B2 (t;_q,u)du. Then the feasibleEF estimator for/\* and its vari-
ance M(A%) |mpI|ed by the optimal estimating function are

L (3.6)
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and

Var(i,) = — (3.7)
> zwt
j=1

Some remarks are in order before discussing the proof of Proposition 3

(i) The direct EF estimatak is not computable because it requires information in
the interval[tJ 1, fj] that is not available between sampling points

(ii) Also, Z is a random variable with respect to the mformatlonﬁet The fea-
sible EF estimator is developed by replacing unknown quantmr“gwlth
their 7, -measurable surrogates defined in Proposition 3 to obiai8.6).

(i) The volatility parameterr is assumed constant only over the sampling period
(e.g., day) and does not influence the feasible EF estimatpas it cancels out
in the numerator and denominattiowever it is required in the computation of
the variance estimatdaB.7) and is embedded in the weightg. It can be esti-
mated consistently from the state price procéssing standard method€amp-
bell, Lo, and McKinlay 1997, p. 36):

1 n
=3 E (In(X) = In(X—1) — &Aj)z,
N =

wherea = 1/N 3L (In(X,) — In(Xi—1)) andN = JL, A;.
The proof of Proposition 3 follows

Proof For the linear class of orthogonal estimating functions definediby
in (2.6), the optimal estimating equatidB.5) follows from choosingy;(A) ac-
cording to(2.7) and making use of the terms defined in Proposition 2

7 1><Eh h|A )™
t oV(u, T
fj E<¥ X,
u=t_, aX

ah;
oA
]

ftj aV(u,T) EW’
B E((T) (X,0)? |'7:t, 1) BZ('[] L, u)du

]
ji=1...,n. (3.8

Next note thaty” must be; -measurable and the conditional expectations in
(3.8) is not known inside the sampling intervdlherefore to obtain the feasi-
ble estimatarwe replace the conditional expectationsaihby their best avail-
able}}jfl—measurable surrogate to obtain

‘EJ:L) B(tj—l’ U)du

Ak

z j=1
f=—_ j=1...,n
LW
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The estimator?ﬁ,;1 follows from solvingH*(A) = 0, and V(f\”;) follows from
applying the variance operator in two stefisst conditioning on the “stochas-
tic regressors’Z = (Z,,...,Z,) (g =0 w.l.g.):

V(A1) = Ez[V(A4l2)] + VL [E(A3] 2)]

1
=E ([ + V;[A].

_El EZ;(EW); *EZ,
=

Conditional onZ = (Z4,...,Z,), the finite sample normality of\* 3z fol-
lows directly from the “error side” representation lgfgiven by the stochastic
integral h; fu - VX(u,T)X, oB(t_1,u)dW,, where from Proposition 2
E(hz\ftﬂ) = jji:tj E(V2(u, T)XZ\J-‘t Jo?BZdu= EW andE(h, |7 ) =
Using this in A%z d|rectly along with the fact that a stochasnc mtegrattw
Brownian motion(with predictable integrandss Gaussian yields the normal-
ity of the conditional EF estlmatofkmZ

The feasible estimators, and V(A,) are flnaIIy obtained by replacing the
integrals and expectations in az and V(A iz) Wwith their best available
F;_,-measurable surrogates yieldifg6) and(3.7). [ |

It will be shown in Section 4Propositions 6—Pthat the feasible EF estima-
tor is strongly consistent and asymptotically nornTdle next proposition gives
the estimators for excess returns in the case of using derivative replieaes
calls of different strikes with the same matujitfhe introduction of replicates
on the same underlying asset process introduces dependence among the mar-
tingale difference functionby (). Aside from this complication the develop-
ment of the estimator follows Proposition 8nd the details are omitted for
brevity. The final result is stated in Proposition 4

PROPOSITION 4(Optimal Estimating EquatigrEstimator forA and Vari-

ance Strike Replicates of Single Maturity Let {V,(u,T) = V(u, X.; K, T),
u=t,j=1...,n k=1...,m define the sequence of derivative prices
with replicates (e.g., strikes) k= 1,...,m. Also, let W(u,T)
aV(u Xu; Ky, T)/0X and define X = Vk(tJ,T)B(t, L) — V(- T)
u 1 1g(u X )B(tj l,U)dU Z]k - fuj i1 (tj 1’T)Xt 1B(tj 1,U)du, Wk
fu 4 1(Vk (tj 1»T) (Xt . )ZBZ(tI 1,U)dU COV(ij’ j|) fu f E(Vk (u,T) X
V,x(u T)(X,0)?] J71)Bz(tj L, udu, and Cov( Y)) = f.j:tj,lvkx(tj—l’-r) X
V,X(ti_l,T)(thila')zBZ(tj_l, u)du. Then, the feasibIEF estimator forA and
its variance implied by the optimal estimating equation are

o+

n m

> > ijV\ﬁil\Gk

=1

[y
ey

(3.9)

>
o

T Th m
Z Z Z]k\N]lz Z]k

=1

[y
=
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and
. jEl[kEl IZEl Z Wit Cov(Yy, Yy )\Njk_lzjk:|
Var(ip) = ) (3.10)

(2Emwa)

Proposition 5which follows gives the optimal estimating functipastima-
tor, and its variance for excess risk returns if replicates of derivative prices
(e.g., calls of different strikesare used over multiple cycles of nonoverlapping
maturities The proof follows easily from Propositions 3 and 4 upon noting that
the sequence of maturity cycles is nonoverlappiHdgnce summations over
g = 1,...,p are analogous to summations over nonoverlapping intervals in-
dexed byj = 1,...,n, and so the maturity cycles do not affect the correlation
structure induced by the underlying Brownian motion in the stochastic integrals

PROPOSITION 5Optimal Estimating EquatigrEstimator forA and Vari-
ance Strike Replicates with Multiple Nonoverlapping Maturitjed et
ViU, Tg) = V(U XK, T), u=t, g=1L...,p,j=1...,n, k=1....m}
define the sequence of derivative market prices with nonoverlapping sequence
of maturities{T,,..., Ty} and replicates (e.g., strikes) k 1,...,m. Also,
let V(u,Ty) = aV(u, Xy; Ky, Tg)/0X and define ¥y = Vi(t, Tg)B(tj_1, 1) —
Vit-1,Tg)  + f&':tjflg(U,X )B(t_,u)dy,  Zyg = th,J:tjflvkx(tj—l’Tg) X

X, B, wdy, Wy = Jo 4 LG l,Tg))2(>(tj_7l(r)282(tj,1,u)du, and
COV(ijg,Yng) = ft‘ lvkx(tj—l,Tg)\/Ix(tj—bTg)(xtj,la-)sz(tj—lyu)du- Then

u=tj_
the feasibleEF estimator forA and its variance implied by the optimal estimat-

ing function are

p n m
2 2 > ZigWig Yikg
~ g=1j=1k=1
A= m (3.11)
> 2 2 ZjgWig Zikg
g=1j=1k=1
and
p n m m
El_El[kzlzzjkg 1 Cov(Y, kg Yiig) Wig™ Ziig }
— g=1j=1[ k=1I=
Var(\,) = A " . (3.12)
<921j21k22]kgwk Zlkg>

4. ASYMPTOTIC CONSISTENCY AND NORMALITY
OF FEASIBLE EF EXCESS RETURNS ESTIMATOR

This section establishes the strong consistency and asymptotic normality of the
feasible EF estimator of excess returhsthe diffusion contextthe random-
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ness is driven by stochastic integrals with respect to Brownian mo#ién
though this leads to an exact finite sample Gaussian distribution for the exact
conditional EF estlmatoha‘z, the asymptotic results are important to situa-
tions where the underlyini process is only approximately a Brownian diffu-
sion (e.g., other stochastic processes such as Poisson jumps are mixed with the
underlying diffusion. Moreover the feasible EF estimator of Section 3 is a
discretized approximation to the exact estimator implied by the continuous risk
neutral pricing frameworklt is important to establish its consistency and as-
ymptotic normality

Results on strong consistency and asymptotic normality imply that the feasi-
ble EF estimators developed in Section 3 are robust and continue to hold when
the exact distribution of the underlying process is not completely known
The finite sample distributional assumption of a Brownian motion driving the
diffusion process is replaced by a milder conditional second moment assumption

Without loss of generalitythe results on strong consistency and asymptotic
distribution are obtained in the case of a single strike with multiple maturity
cycles(see Propositions 1 and and extend easily to the case of strike repli-
cates With a fixed time to maturitythe sample size can only be increased
by cycling over nonoverlapping maturity cyclégherefore the effective sam-
ple size isnp, and the estimators involve a double index oyer 1,...,n and
g=1,...,p. To keep the notation simpléhe asymptotics that follow will view
n as the effective sample size without any loss of generaNy keep in mind
that the effective sample size becomes large only when the maturity qycles
are increased while the number of sample points in each maturity cycle re-
mains fixed

4.1. Strong Consistency of X,,

The first result gives a bound i, norm (E(] A,|2)Y/?) for the sequencéi,}
that will be useful to establish consistency

PROPOSITION 6(A Bound* for the SequencéA,} in L, Norm). The se-
quence ofEF estimators forA obtained in Proposition 3 given by

n
ZWLY,
AW | " (X%,
Ay = ————isboundedinLnormby H > ———5— eV (4.1)
_ j=1 t;
ZZJVV] lZJ j—1

Proof See Appendix B

The next proposition establishes a sufficient condition for the strong consis-
tency of the EF estimator,. Proposition 8 shows this condition is m#tereby
establishing its strong consistency
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PROPOSITION 7(Sufficient Condition for Strong Consistency of EF Esti-
mator ofA). The EF estimator of Proposition 3 is strongly convergent:

1

Ay =

n E(XZ|F ) }
— 50 (4.2)

—>A, a.s., on the sety >, 503
ZW 'z = X

2,7 W
n—
P

Proof DefineS, = A, — A andE, = {w: |S,| > €}, e > 0. We also have the
following set relationshipslim sup,_.. E, = imuisup=ml|S)| > €]} C
{sup=1[|S:| > €]} becausgsup-m[|S, > €]} is a decreasing sequence of
sets inm. Therefore we have

P(lim sup|S,| > €) = P(sup|Sn| > e)

n—oo

lim P( max|S,| > e)

n—co 1<j<n

I

1 5
lim = E(S,[?)
n—oo €

Ilm - (AE(AZ) + E(B?))

n—oo

_ (At ko) E(i E(XZ|F, . )
] 1.

I’l2€2 i=1 inl
50 (4.3)

asn — oo by the hypothesis of Proposition (k; and k, are positive con-
stantg. The third inequality of(4.3) follows from Kolgomorov’'s inequality
(Hall and Heyde 1980, the fourth inequality is obtained in the proof of Prop-
osition 6 (see Appendix Bequation(B.7)), and the fifth inequality follows
from Proposition 7 This establishes the result, — A, a.s., on the set
{2 1E(Xt2|~7:t )/nzxtjz,l—> 0}. u

It now remains to show that the sufficient condition for the strong consis-
tency of the EF estimatox,, derived in Propositions 6 and 7 holds for stochas-
tic differential equations satisfying conditions for strong solutiditss is verified
in Proposition 8thereby establishing the strong consistency of the EF estimator

PROPOSITION g The Sufficient Consistency Condition of Proposition 7 Is
Satisfied. For the diffusion process X defined in (2.1) satisfying the Lipschitz
and growth conditions

n E(X2|F )

0. (4.4)
j=1 nzxtjz—l
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Proof We assume the state variab¥efollows the stochastic differential
equation

dX, = b(t, X,)dt + o (t, X, )dW, (2.1)

whereb(t, X;): [0,T] X RY — RY is the drift vectoy o (t, X;): [0,T] X RY —
RY X RY is the dispersion matrixof rank d), and dW is a d-dimensional
JF-measurable standard Brownian motion with respect to the probability mea-
sureP.

If b(t, X;) ando(t, X;) satisfy the global Lipschitz and linear growth condi-
tions (see Karatzas and Shrevi991, p. 289, then anL, bound onX given in
Duffie (1992 p. 292 can be written as

E(| X |2|~7:t,_1) = Ce“(1+ |th_1|2) = O(‘th_l|2) (4.5)

for some constar®. Becaus@(ti1 is 7;,_, measurablethis leads to

n E(|th|2“ﬁj,1) l
j=1 N |th,l| n

4.2. Asymptotic Normality of X,,

By Proposition 3the finite sample distribution of the conditional EF estimator

is Gaussian because the underlying state pro¥eissdriven by a Brownian
motion and the terms in the estimator involve stochastic integrals whis
Brownian motion The asymptotic distribution is relevant when this distribu-
tional assumption is relaxed and replaced by a weaker conditional second mo-
ment restrictionThe asymptotic consistency and large sample normality allow
inference for the feasible EF estimator even when the exact distribution of the
underlyingX process is not completely knowhhe asymptotic normality o,

is established in Proposition @hich follows

PROPOSITION 9(Asymptotic Normality. If A, — A, p, and E(|h[? ¥
| A, oc E(IX, 12| A,_,) then

n 1/2
<2 z,-vwlzj> (A, — A) = N(0,1). (4.6)

=1

Proof Define the conditional variancel,(A) = J-“:lzjvv;l X
E(hz\}‘t JWtZ, and let Hy(An) = oH, (X%)/0A = -21Z;WZ. Then
the first-order Taylor expansion of the feasible optimal estimation function
Ho(An) = 3,7y = S, Z;Wthy yields

0=Hn<ﬁn>=Hn<A>+[ Ma(As )]u N

=H,(A,) + Hy(D) (A, — A) + [—Ha(A) + HL(A)T(A, — 4.7)
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where X = yA, + (1.— v)A. Supposer, is an increasing sequeneg — oo
chosen such that, *H,(A) = N(0,1) and rewrite(4.7) as

_a;lHn(/\)(}‘n - )‘) = arTIHn()\) + arTl[_Hn(/\) + Hn(}‘?)](}‘*n - A)’ (48)

where in the case at handH,(A) + H,(A%) = 0 by the linearity of the esti-
mating function The left hand side converges in distribution to a standard nor-
mal variate ifa,*H,(A) = N(0,1). It remains now to find this sequeneg and
prove the convergence

Consider the normalized conditional variance

n
Var(a,tH,(A)) = a,21,(\) = a;z.Elzjvle(hf\ftjfl)vvj-lzj. (4.9)
<

Itis easy to check that i (|h;|?| 7 _,) o< E(|X,|?| F_,), then this conditional
variance is bounded by th# _ -measurable termxtjil|2:

E(N 215 ) o E(X 2% ) = Ce®(1+ X, [H=0(%, 5,  (4.10)

where the bound follows froni4.5) and derives from the global Lipschitz
and linear growth conditions on the drift and volatility parameters of the dif-
fusion X.

It is easy to verify that4.10) allows the normalized conditional variance
(4.9) to be written as

n
Var(a, *H,(1)) = an20<2 ZjV\/]12j>, (4.11)
i=1

which implies choosinga, = (3{_,Z;W 1Z)¥? so that Vata,*H,(1)) =
O(1). Because the conditional variantg ) is bounded under the assumption
of Proposition 1Q0see 410), the result

n (=1/2
aytH,(A) = <Z Z]-V\/]121-> H,(A) = N(0,1) (4.12)
i=1

follows from application of the central limit theorem for martingales with
bounded conditional second momerﬁﬁlhjlzl}}jfl) (see Billingsley 1986
Theorem 33, p. 498). This shows that the right hand side @£8) converges

in distribution to a normal standard variate and gives the desired result for the
left hand side

n 1/2
—a; H, (D) (A, — A) = <2 zjvvjlzj> (A, — A) = N(0,1). (4.13)
j=1
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5. ESTIMATING EXCESS RETURNS FROM THE UNDERLYING
ASSET PROCESS

Estimation of excess returns from observed market derivative prices using EF
theory was developed in Section Bhis section discusses the estimationiof
from the underlying asset proce&ock bond or indeX on which the deriva-
tive securities are defined’he paper’s methodology for estimating premiums
and testing for risk neutral pricing rests on comparing these two estimates for
equality

The relevant class of linear estimating functions for the excess returns pa-
rametera is

n
H= {H: H=> a,-(/\)hj(/\)}. (5.1)
i=1

The component functions;(A) for the stock processthe optimal weights
a;'(A), and the estimators fok and its variance are derived in the proposi-
tions that follow Note that the issues of sample design pertaining to strike-
based replicates and maturity cycles do not arise in this situation

PROPOSITION 10The Estimating Function fok Based on the Stock Pro-
cessX). Let X be a diffusion process following the stochastic differential
equation

dX, = b(t, X)dt + o (t, X,)dW, P-as., (5.2)

where Kt, X,): [0,T] X RY — RY is the drift vector,o(t, X,): [0,T] X RY —

RY X RY is the dispersion matrix (of rank d), and ¢W a d-dimensionalF;-
measurable standard Brownian motion with respect to the empirical probabil-
ity measure P. Then, under the further assumption of “time-state separability”
(see Section 2.1), the conditional martingale difference functigus)hj =
1,...,n, in the linear class

H = {H: H=3 aj(A)h,-u)} (5:3)

j=1

are given by(d = 1)

h(A) = X(4)B(_1, ) — X(4_y) — /\th X(WB(t_5,u)dy (5.4)

j—1
whereA = b — r is the excess return.

Proof The proof is identical to the development of Proposition 1 with the
discounted price procedg X, Bs) = XsB(t,s) forming the basis of the It6
expansion

The optimal estimating equation and the EF estimator for and its variance
estimator are stated in Proposition. The proof parallels Proposition 3



804 GURUPDESH S. PANDHER

PROPOSITION 1XOptimal Estimating EquatigrEstimator forA and Vari-
ance from Stock ProcessLet {X(t;), ] = 1,...,n} define the sequence of mar-
ket stock (index) prices. The optimal estimating functionXfas given by

{
f E(XulF,_,)B(t-1,u)du
u

=ty

H*(\) =

n
= I}
a J E((Xy0)?|F _,)B?(t_1,u)du
u

=t_1
§
o1
Define

§
Y = X(4)B(t_1, ) — X(t_1)B(t_y), Z; :f th,lB(tjfly u)du
u

=t_;

t
and W= |  (X_,0)?B4 ,udu

u=t_;

Then, the feasible estimator farand its variance implied by the optimal esti-
mating function are

J_;lzjwﬂ\(,
A= 7 (5.6)

> ZW 'z,
j=1

and

— 1

Var(lg) = ———. (5.7)
> ZW 'z

6. DIAGNOSTIC STUDY

The empirical properties of the estimation framework developed in the previ-
ous sections are tested and evaluated using an extensive Monte-Carlo study
The empirical study also enables resolution of important sample design issues
for derivative pricegimpact of strike level and maturity lengthverifies cer-

tain theoretical implicationge.g., strike replicates do not reduce variance—
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compare(3.7) and(3.10)), and gives confidence in implementation to market
derivative dataln the studythe S&P500 index and call options defined on it
are simulated using historical trend and volatjli;md excess returns are esti-
mated from both the underlying asset and call option prices under various sce-
narios with differing strike levels and strike replication and shorter maturity
lengths Differences in the estimated excess returns quantify extra premiums
not explained by the risk neutral pricing modilajor conclusions of the study

are summarized first before detailing the analysis and results

6.1. Major Findings

The results obtained from the diagnostic study verify the ability of the feasible
EF estimator to correctly estimate excess returns from derivative prices and
test the hypothesis of risk neutral pricinghe simulations are based on assump-
tions satisfying the risk neutral null hypothegiBlack—Scholes valuation of
calls), and estimates of excess retuti@nd equivalently market price of risk
from both the index and its derivative calls are very close for any given sample
size Therefore the empirical study reveals that no pricing errors and premi-
ums are found when none should exStandard errors tend to be large but go
down with larger sample sizeSecondthe estimation is found to be invariant
to the strike level“moneynessJ of the calls Third, it is found that addition of
replicates based on different strikes does not improve the standard errors of the
estimator because of high dependence among replicates

In the market settingt is rare to find calls of large maturityrhereforeit is
not feasible to increase the sample size by extending the time to maAmity
alternative sampling design that cycles over calls of smafenoverlapping
maturities is considered as a way to improve precisibis found that estima-
tion remains stable when sampling from cycles of shorter maturities with the
same effective sample siZeycles times maturity lengihThis result of the
study gives confidence in the applicability of the estimation methodology to
derivative market prices where large samples based on cycling over shorter ma-
turities (3 months begtmay be used to reduce variance

6.2. Generation of S&P500 Index and Call Options

The S&P500 index used in the diagnostic study is generated using trend and
historical volatility estimates obtained from the Bloomberg online systesn
timates of the annualized historical volatility over a 260 daytrading year
trading period over the last 6 months of 1998 fluctuated in the range 17-23%
For the empirical studythe annualized volatility was set at= 20% From a
similar examination of the S&P500 indean annualized price appreciation of

b = 9% was choserand the starting value of the index was seXat= 1,000

(the estimation holds uniformly for data generated under other parameter val-
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ues for drift and volatility. The S&P index process was simulated as a discrete
geometric Brownian motion using the recursive formula

2

X=X, = leexp{<b— %)AJ + m/AJ- Z}, i=1...,n, (6.1)

whereA; = 1/260 andZ ~ N(0,1) is a standard normal random varigtener-
ated by a random number generatéiollowing a suggestion of an anonymous
referee the initial 1,000 recursions of6.1) were discarded to remove “start-
up” problems in the serieand the simulation size was expanded j@0® (from
100. This improved the performance of the excess return estimator even at the
lowest sample size of 10&ee Table Land when call options are sampled
from shorter maturity cyclesTable 3. The empirical study was carried out in
the Gauss programming language

Call options{V(t,Ty) = V(tj,th;Kk,Tg),g =1...,p,] =1L...,ng, k =
1,...,mg} on the S&P500 index were generated by usifgd) in the Black—
Scholes formula

Vk(tj,Tg) = Vk(tj7XtJ;Kk’Tg) = th N(dl) - Kexp(_rlrj)N(dZ)y
th 1 ,
In ? +\r+ EO’ T
d =
1 0_\/?] )

d2 = dl — 0 Tj, (62)

wherer; = E{‘gj,lAj,j =1,...,n4is the time to maturity for each nonoverlap-
ping maturity cycle with length$T;,...,Ty,..., Ty}. A random draw of the in-
dex and callgat the moneyover 500 trading days is plotted in Figurelt the
plot, the index value is added to the call prices

6.3. Performance of EF Estimator and Effect of Sample Size

The performance of the proposed estimation framework in correctly estimating
the excess return = b — r = 9%, and equivalently the market price of risk
v = Ao = .45, as a function of sample size is first examinéids important to
note that these are “theoretical true values” under the assumption of a continu-
ous geometric Brownian motioMs a result of the discretization involved in
generating the index recursively with formulé.2), some distortion is intro-
duced and the “actual true values” for the excess return and market price of
risk will differ from 9% and .45, respectively This should be kept in mind
when comparing the performance of the estimator with the “true value” at dif-
ferent sample sizes

Sample sizegtrading days with 260 trading days per yeawvarying from
100 to 10000 with single maturity and strikeat the moneywere used in the
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S&P500 Index and Call(+X0) Prices

2800 2800 3000 3200

2400

2200

S&P500 Index
Cells,K=X(0)(1.0)

1 ek 1 i L Ao il 1

100 150 200 250 300 350 400 450

2000

500
Trading Day

Ficure 1. Random draw of S&P500 index and calls

first experiment The results averaged ovefOR0 simulations are reported in
Table 1 EF estimates ofy(=.45) and A(=9%) from both the call and S&P
index are very close at each sample siEeen at a small sample size of 100
the mean of estimates is within9®so of the “theoretical true value

TABLE 1. Estimating function estimates afandy by sample size

Sample SizéTrading Day$

Estimator Average 100 500 ,doo 2000 5000 1Q000

EF-call Ve.EF 4584 4639 4585 4578 4517 4487
Var(yeer) 2600 5200 .2600 .1300 .0520 .0260
SE(§cer) 1612 7211 5099 .3606 .2280 .1612
Acer 9.17% 928% 917% 916% 903%  897%

EF-index 7y er 4596 4637 4585 4577 4517 4487
Var(y,er) 2600 5200 .2600 .1300 .0520 .02600
SE(§xer) 1612 7211 5099  .3606  .2280 .1612
Ax EF 9.19% 927% 917% 915% 903%  897%
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6.4. Testing for Risk Neutral Pricing and Additional Premiums

The hypothesis that the market call prices are derived from risk neutral pricing
(and no additional premiumsan be tested by comparing the excess returns
from call prices with the same from the S&P500 indistore formally, our null
hypothesis is

Ho:Acer — Axer = 0.

From Section 4we know that undeHo, Acgr — XX,EF asy N(O,Var()A\C,EF —
Ay er)), implying the test statistic

;\c,EF - )A‘X,EF
SE()\C,EF - /\X,EF).

PROPOSITION 12(Variance of Acgr — A, er). Let Y,; and ¥ be
defined as in Propositions 3 and 11, respectively. Similarly for, 2\ j, Zy j,
and W ;. Further, define Cov(Ye;,Y,)) = S, (VX 1, T)(X ,0)? X

Bz(tj,l, u)du. Thenthe variance of A gr — Ay er IS given by
1 1
+

n n
-1 -1
D ZeWei'Ze 2 Z W Z,
i=1 i=1

Var(;\c,EF - Xx,EF) =

n
2 Zv,j WcjleOV(Yc,j ’ Yx,j )ijjl Yx,j
j=1

n n )
<§Zc, W it Zc,J) < Elzx,iwxfil Zx,i)
1= 1=

Proof The expression follows directly by considering the variance and co-
variance terms ol e — A5 gr and replacing expectations by the appropriate
Jy_,-measurable surrogates as shown in the proof of Proposition 3~ ®

The null hypothesis of risk neutral pricing was tested over different sample
sizes as given in Table. Because the call prices are generated under assump-
tions satisfying the null hypothesi8lack—Scholes valuationthe null should
not be rejected by the datindeed as Table 2 showdlifferences in the excess
returns obtained from the S&P500 calls and the indexr — Y« er, are insig-
nificant, and the standard errors will not reject the null hypothesie vari-
ance of the difference is dramatically reduced by the covariance term as the
sample size increaseBhese results show that EF estimation reveals no pricing
errors and premiums in call prices when none should exist

6.5. Effect of Strike Level or “Moneyness”

The results so far were obtained using strikes “at the mdriée impact on
the estimation of changing the strike levémoneyness) was also investi-



608

TABLE 2. Differences in EF estimates afandy from calls and index

Sample SizéTrading Day$

Estimate 100 500 ,000 2000 5000 1Q000
Ve, EF — Vx EF —.120x 1072 .146x 1073 —.731x10°° .301x 1076 .266x 1077 .209%x 1078
Var(¥e er — Yx.EF) 1.893 .2308 .720x 107t .168x 1071 .938x 1073 .319x 1076
SE(Yc.eF — Yx.EF) 1.323 4510 2478 .1164 .02705 .004945

Aeer — Axer —.240% 10 1%

292X 10 %%

146X 10 %%

601X 1075%

531X 1075%

418X 10%%
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Call, K=X(0)*(0.8)
Call, K=X(0)(1.0}
Call, K=X(0}(1.2)

L 1 - J i L 1 1 ! 4

Q 30 100 150 200 250 300 350 400 450 sS0C

100 200 300 400 500 600 700 800 900 1000

Trading Day

FIGURE 2. Calls of different strikes

gated Various values of strikes were considered ranging from 70% of the ini-
tial index value to 130%The sample size was set 080 and the results are
consistent at other sample sizd$e results demonstrate that the strikes have
absolutely no impact on the estimation of the market price of: rigker =

Yx.er = 4517 for the strikeK = Xk, k =.7,.8,.9, 1, 1.1, 1.2, and 13. The
reason for this is that movements in call value and “d’eW(tj,l,Tg), move

in a parallel fashion across different strikesee Figure 2 This also shows
graphically the strong dependence between strike replicates evidenced in the
excess returns estimator of Propositian 4

6.6. Effect of Smaller Maturity Sampling Cycles

In the market settingthe vast majority of traded calls are of maturities less
than 1 yearThereforeit is not feasible to increase the sample size by extend-
ing the time to maturityAn alternative sampling design that cycles over calls
of smaller(nonoverlappingmaturities is considered in this section as a way to
reduce the variances of estimatoPerformance of the EF estimators at an ef-

fective sample size of 500 and0®O0 trading days is compared by varying the

size of the maturity cycledAt an effective sample sizépn) of 500 maturity
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cycles(p) 1, 10, and 31 are paired with maturity lengtfis) 500 50, and 15
respectivelyAnd at the effective sample siZgn) of 2,000, maturity cycles
(p) 1, 40, and 125 are paired with maturity lengths) 2,000, 50, and 16 re-
spectively The maturity ofn = 16 corresponds to a call expiring in 1 month
(20 trading daypwith the last 4 observation20%) ignored for reasons of
numerical stability in the estimatioAs time to maturity approachgthe value
and delta of the call become very sensitive to time and change very sharply—
causing rapidly changing weighting factors in the EF estimator for these obser-
vations For example at a sample size of 10@&stimates corresponding to
dropping the last 1%10% 20% and 30% of observations are63 .461, .458
and.476 for y, gr and.462 .451 .455 and.473 for y, gr, respectively The
differencesy. gr — ¥« er are.102 .010, .003 and.003 at these drop rates

The 20% drop rate is chosen because we wish to consider estimation also at
the 1 month maturityThis gives around 20 trading days with the last 4 dropped
(20%) for the reasons cited previousBropping only the last 2 or 3 observa-
tions still caused numerical problems for this shorter matufiherefore to be
consistentthe drop rate was fixed at a constant 20% for all maturit&mi-
larly, a maturity ofn = 50 corresponds to a call expiring in 3 mon{{6& trad-
ing days with the last 12 observatiorf20%) left out The results of this analysis
are reported in Table.3

It is found that sampling from cycles of shorter maturities with the same
effective sample sizécycles times maturity lengihyields similar results for
estimates of excess returt@end market riskand their standard errors as a sin-
gle maturity sample of large duratioifhere is no observed deterioration in
moving to the smaller cycle§ his result gives confidence in the applicability
of the estimation methodology to market derivative prices where larger sam-
ples derived from sampling over multiple nonoverlapping shorter maturities can
be used for variance reduction

7. CONCLUSIONS AND FURTHER WORK

This paper develops an econometric framework(fpestimating the underly-
ing security’s excess returns from derivative pric@s testing for risk neutral
pricing, and (iii ) measuring premiums outside the no-arbitrage pricing model
The estimator is derived by applying quasi-likelihood and Feynman—Kac theory
to the risk neutral contingent claims pricing model to generate the optimal or-
thogonality restriction for the parameter of interéstcess returnsA diagnos-
tic study is undertaken to resolve sample design issues such as impact of the
strike leve] strike replicationand shorter maturity cycles on estimation of ex-
cess returns

Quasi-likelihood estimators for excess retufasd their varianceare ob-
tained for both the derivative price process and the underlying asset price pro-
cess(e.g., stock bond or index. The strong consistency and asymptotic



clL8

TaBLE 3. Effect of smaller maturity cycles on estimation

Sample SizéTrading Day$

500 2000
Estimator Average n p n p n p n p n p n p
500 1 50 10 16 31 200 1 50 40 16 125

EF-call Acer 4639 4633 4434 4578 4519 4522
var(Je er) .5200 .5200 5242 .1300 .1300 .1300
SE(¥c,er) 7211 7211 .7240 .3606 .3606 .3606
Acer 9.28% 927% 887% 916% 204% Q04%

EF-index P, EF 4637 4640 4450 4577 4523 4510
Var(9y er) 5200 .5200 5242 .1300 .1300 .1300
SE(9x.er) 7211 7211 7240 .3606 .3606 .3606

Ax EF 9.27% 928% 840% 915% 905% 902%
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normality of the estimator are established in the context of a nonstationary
underlying state procesghese asymptotic properties are derived under a milder
conditional second moment assumption that is satisfied by a large class of
predictable stochastic processes with finite conditional second moni@nts
finite variation. Therefore the proposed estimator is robust to distributional
assumptions of risk neutral martingale theory where the stochastics are driven
by Brownian motion However when the underlying state process is close to
being a Brownian motiagnthe quasi-likelihood estimator offers optimal and
efficient estimation Moreovey the final feasible estimator developed is a dis-
cretized version of the estimator implied by the continuous risk neutral pric-
ing framework The convergence results show that in addition to possessing
the robustness propertithe feasible estimator offers consistent and efficient
estimation

Much of the estimation literature on stochastic processes in finance has fo-
cused on estimation of parametéesy., drift, volatility) from the state process
X (e.g., index stock bond). This paper considers the estimation of the excess
return parameter from the derivative proc&§s) overlying the state process
(and alsoX). The estimator is obtained by applying quasi-likelihood and
Feynman—Kac theory to the risk neutral contingent claims pricing model to gen-
erate the optimal orthogonality restrictiodonequivalence between excess re-
turns estimated from derivative and underlying asset prices implies departures
from the risk neutral pricing model and presence of additional premiums

This paper also considers a mixed estimation framework where the estimat-
ing equations follow from the continuous risk neutral pricing model for contin-
gent claims but where sampling of market derivative pritasd underlying
asset pricasoccurs at discretgoerhaps randonptimes This paper differs from
the direction taken in other work both in focus of estimation and the estimation
methodology usedlhe existing literature has not dealt with the estimation of
excess returns from derivative pricé$X). To construct an efficient estimator
the proposed methodology first identifies a conditional martingale difference
equation(CMDE) by constructing an I1td expansion of the discounted deriva-
tive process between two given sampling intervals under the risk neutral mea-
sure then applies the Feynman—Kac result to reduce teamd last introduces
the parameter of interegéxcess returnsby switching to the empirical mea-
sure Once the CMDE is constructgthe optimal orthogonality restriction on
the CMDE is obtained from quasi-likelihood theotydiscrete “feasible” esti-
mator is next developed from this procedure in which all quantities are measur-
able with respect to information available at the beginning of each sampling
period

The estimation also has interesting empirical derivative pricing applications
that are being exploredarket prices of risk can be readily constructed from
estimates of volatilityand excess returns in the derivative market and contin-
gent claims can then be priced using the risk neutral density from Girsanov’s
change of measure formula
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There are a number of further implications of this econometric framework
for derivatives The proposed approach is applicable to any arbitrary derivative
security does not require estimation of the risk neutral probability measure
inherits the optimal efficiency properties of EF theoapd has application to
spot rate bond pricing models where it offers linear estimation of parameters in
highly nonlinear bond formulae

A diagnostic study based on generating the S&P500 index and calls verifies
the ability of the proposed method to correctly estimate excess returns from
derivative prices and test for risk neutral pricing—even at sample sizes as low
as 100 observationSample design issues are also resalyedhe estimator is
invariant to call strikes(ii) strike replicates do not reduce variance because of
dependenceand iii) larger samples constructed by cycling over shorter matu-
rity options can be used to reduce its variar@a the last pointit is found that
the 3 month maturity is besyielding more stable estimation of excess returns
than 1 month callsThese results give confidence in applicability to market
derivative pricesCurrent ongoing work seeks to apply the proposed estimation
framework to S&P500 call options data from the Chicago Board of Options
Exchange and results from this application will be reported in the sequel to
this paperThe empirical pricing implications of this estimation for derivatives
are also being investigated

NOTE

1. An anonymous referee made the keen observation that the bound of Proposition 6 is infinity
if X, approaches.an this caseE(Xﬂfti?l) in the numerator is roughlty — t,_1 (a constanC),
and the bound depends on the expectaﬁcﬁﬁ_‘,f‘zll/xtlzfl] = co. This situation can be excluded by
considering the economic rationale implied by this evémta financial market contexX is typi-
cally the price of a stock or market indeand V(X) is the value of the derivative securitg.g.,
call, put) defined on the underlying assé@tere are two arguments that ensure that this “patholog-
ical case” cannot really occur in financial markefy the share price of a firm never hits zero—
even in the case of bankrupt@nd(ii) the derivative value is zero if the underlying asset approaches
zera limy_,oV(X) = 0.
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APPENDIX A:
PROOF OF PROPOSITION 1
(ESTIMATING FUNCTION h;(A)
[SINGLE STRIKE AND MATURITY])

The proof is pursued in the general settig> 1). Applying a “chain-rule” version of
Ité’s formula to the functionaf (Vs, Bs) = V(s, Xg)B(t,s) with t,s € [0,T], ands >t
yields (Protter 1990

S

s of of
V(S, XS)B(t$ S) - V(ty Xt) = f:t a_B (Xu’ Bu)daJ +f a_V (xuy Bu)dvu (Al)

=t

In the preceding expansion all second derivatives of the functibié& Bs) are zerg
and hence the corresponding quadratic variation terms drofNeut substitute the fol-
lowing expressions into the right hand side @f.1): dVs = (0V/ds)ds + AgVds +
(0V(s,T)/0X) o (s, Xs)dW; anddBs = —Bgrsds This leads to

V(s X5)B(t,s) = V(t, X)

S
= f V,B,r,du
u=t

+fs [8V+AV]Bd +JS B<6V(U’T))I (U, X,)dW
- u — u
wetl au u u et u ax o\u, Ay u

S| aVv _
= — + AV -—r,V|B,du+ M(t,s)
u=t| ou

=—| g.B,du+ M(ts), (A.2)
=t

u

whereM(t,s) = [, B,(0V(u,T)/X)'a (u, X,)dW, is aQ stochastic integral
To introduce the excess return paramedserd market price of rigk we reverse the
transformation in Brownian motion defined {&.3) to obtain

Mi(t,s) = j BU<SV(U’T)>/[b(u, X,) — r,X,Jdu

oX

S aV(u,T)Y
+Ju:tBu< X )a’(u,Xu)dV\{,, (A.3)

whereW, is ad-dimensional Brownian motion with respect to the empirical probability
measureP.

DefiningM(t,s) = [5_,B,(0V(u, T)/9X) o (u, X,)dW, and combiningA.2) and(A.3)
yields
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M(L S) = V(Sy Xs)B(t’ S) - V(L xt) +f gu Budu
u=t

_JSB<6V(U’T)>,b X,) —r X, ]d A4
BT [b(u, X)) — ryX,]du. (A.4)

Note thatE(M(t,s)| /) = O; hence it is a martingale difference functiorherefore its
“data side” defines

hj(A) = M-, t) =V, T)B(G -1, t) — V(-4 T) +f g,Budu
u=t

° NV, T)Y .
- B, [b(u, X,) = ryX,1duy, i=1...,n (A.5)
u=t X
Under the assumption of geometric Brownian mofiofu, X,) = (b; X2,...,by X$)’ and
o(u,Xy) = oX, whereo is ad X d diagonal matrix of volatilitiesThen h;(A) and
M(tj_1,t) can be written as
S

hy (V) = V(t, T)B(t_1, ) — V(4 T) + g,Budu
t

u=

S aVu, T\ .
- B, Xi[b, — r,]du, i=1,...,n, (A.6)
u=t X
with the “error side”
K NLT)Y | .
M(tj,l, tj) = B, X o XFdW,, 1=1...,n, (A.7)
u=tj_

where X is a diagonal matrix formed from the vectd,. Further settingd = 1 and
using the definitionA = b — r in equation(A.6) leads to the final equation stated in
Proposition 1 |

APPENDIX B:
PROOF OF PROPOSITION 6
(A BOUND FOR THE SEQUENCE
{An} IN L, NORM)

Note thatY; = hj + AZ; = h; + AZ; + A(Z; — Z)). This allowsA,, to be written as
n n
21 ZWMZ -2 _ZIZJVWth
1= 1=

Ap— A=A —— + (B.1)
lejvv;lzj Z,W 1z,

M:

] ]
1

i
A, + B,
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Herg Z, — Z; = [} (VXU T)X, — Vx(tj_l,T)thfl)B(tj_l, u)du where foru > tj_;
the foIIowmg bound holds
VX(U,T)XU - Vx(tj—laT)xlj,1
= (VX(U,T)XL‘ - VX(U7T)XtJ,1) + (Vx(uyT)XtJ,l - Vx(tjflyT)XtJ,l)

= VXU T)(X = Xy )+ (VU T) = VX1, THX

tj1

=X, (B.2)

because/*(u,T) = 1. This follows directly from the fact that derivative option prices
are bounded above by the value of the underlying as&et X,; K, T) = X,. Therefore
using the fact thal(j(tj_l < u=t)is an increasing procesae can write

B 4 2
E((Z — zj)Z\]:tlJ) = E[(f XuB(tj_1, u)du) J—}jl]
u=ti_y
t 2
= E[th(f B(t;_ 1,u)du) i 1]
u=tj_,
8 2
J B,du
E(th‘ t 1 u=t_1

W .
! (thf1a-v ( i*l’T))z J'tj 824
u
u=t_, !

The conditional second moment bou(®L3) further gives

(B.3)

3 ZWEZ - 2)%F )W 'Z
2
(EZ “)
DER U } E(X2|%, )
(Szw ) [ s (X, VT

_ (r(l exp{— 2rA})> {fu 41 } E<i E(XZ A ) >

2(1— exp{—rA})? 1 (X, oVX(4_1,T))?

E(A2) <E

Bzdu]

utJl

|(l n E(th |-7:q 1
=—E B.4
2 (E X (84)

j=1
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for some positive constarkt; where the third equality follows frorTZjV\/j’lzj =
2(1 — exp{—rAD?/r (1 — exp{—2rA}).

Next consider the second term @.1). From the proof of Proposition, the “error
side” of h; is given by the stochastic integrh) = fjJ:tHVx(u,T)XuaB(tj,l, u)dW,.
Using Proposition 2it can be bounded ik, norm as follows

tJ
E(hjz\ft,,l) =f E(V2(u, X, ) XZ2a 2|j’-"t ,)BZdu

:tj 1
[J
sf E(XZ| A, ,)o?B?(_y,u)du
u=t_;
E(XZ|FA,_,)
=W
PO V(1. T))?

VI

(B.5)
Using (B.5) and repeating the steps @.4) yields

n
2 Z W E R OW1Z,
=1
n 2
<_Elzivvilzi>

k n E(th‘ - 1)
_:21 X7 (B.6)

for some positive constarib.

Note thatE(h; (Z Z )\]fl 1) = 0 as a result of the Brownian motion . There-
fore, the cross-moment c(B 1) is zera Finally, we have the desired bound fm; inL,
norm

E(B2) <E

E(A3) = [A’E(AY) + E(BR)]
- (/\Zkl + kz) E( i E(Xt12|.7:tj1)>'
i

2 . 2
n ] X,

(B.7)
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