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Abstract

Many deep web data sources are ranked data sources, i.e., they rank the matched
documents and return at most the top k number of results even though there
are more than k documents matching the query. While estimating the size of
such ranked deep web data source, it is well known that there is a ranking bias–
the traditional methods tend to underestimate the size when queries overflow (
match more documents than the return limit). Numerous estimation methods
have been proposed to overcome the ranking bias, such as by avoiding overflow-
ing queries during the sampling process, or by adjusting the initial estimation
using a fixed function.

We observe that the overflow rate has a direct impact on the accuracy of the
estimation. Under certain conditions, the actual size is close to the estimation
obtained by unranked model multiplied by the overflow rate. Based on this
result, this paper proposes a method that allows overflowing queries in the
sampling process.

Keywords: Deep web, ranked data source, estimators, capture-recapture.

1. Introduction

The deep web [7, 27] is the content that is hidden behind HTML forms,
web service interfaces, or other types of programmable web APIs. Probing the
size of a deep web data source has become an important problem ever since
the web emerges. With a wide availability of web services and programmable
web interfaces, the size estimation becomes even more important and less costly.
Nowadays almost all organizations or communities have web presence, and most
of them provide a keyword based search interface. The size of these searchable
data sources can reflect the size of the organizations, or the intensity of the
activities in these organizations. For example, by estimating the size of the
data sources, we can learn the number of products being sold by an e-commerce
company, the number of books kept in a university library, the number of articles
published by a newspaper, or the number of blogs posted in a social networking
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web site. Such information is of interest to general public, sometimes vital for
attracting advertisements from which many web sites live upon.

Estimating the size of a hidden data source is also an essential sub problem
in data source sampling and selection [12, 13, 21, 36, 40], and deep web crawling
[27, 26, 29, 22, 31, 33]. In deep web crawling, we need to know whether most of
the data have been harvested. Without the knowledge of the data source size,
it is difficult to decide when to stop the crawling process, and how to evaluate
the performance of the data extractors.

There have been tremendous research on data source size estimation [4,
5, 8, 9, 11, 13, 34, 36, 40, 42], all are more or less based on the traditional
capture-recapture method [1, 14, 16] that was first developed in ecology for the
estimation of wild animals. The basic idea is to capture a collection of animals
as randomly as possible, mark the captured animals and release them. Then
capture another sample and count the duplicates with the previous captures.
With this data various approaches have been proposed to estimate the animal
population size. The method also find its applications in computer science,
including software defect estimation [32], phishing population detection [39],
web directory size evolution [3], and in particular, data collection size estimation
[34] [25] [11].

When individuals in a population, or documents in a data source, have equal
probability of being captured, there are various mature estimation methods
[17]. However, when the capture probabilities vary, it is well known that the
traditional methods tend to underestimate a data collection size [1].

Unequal capture probability can be caused by various reasons. In ecology,
animals may have varying capture probability due to their age etc. In data
source size estimation, documents can have unequal capture probabilities for
reasons such as query bias and ranking bias that are first introduced by Bharat
et al. [8].

Query bias is caused by the unequal probability of a document being matched
with a query. A large document may have a higher probability of being matched
by a query because it contains more words or queries.

Ranking bias is caused by the probability that a document can be returned.
Note that in many data sources not every matched document is returned to a
user. For example, Google API returns only the top 1000 matched documents,
while Yahoo BOSS API returns only the top 100 documents. One salient feature
of deep web data sources is that many of them are ranked data sources, i.e., the
data sources sort the documents according to a criteria, and return only at most
top k documents for each query, even though there are more than k matches.
Queries that match more than k documents are called overflowing queries.

There are at least two approaches to coping with the query bias and ranking
bias. One is to control the sampling process so that each document has an equal
probability of being matched and returned [4, 5, 6, 37]. For example, to overcome
query bias, a matched document can be rejected according to a probability
associated with document size. To overcome ranking bias, overflowing queries
are omitted so that all the matched documents are returned. When a random
sample is obtained, a simple estimator can be applied to such random sample
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data. We call this the sampling based approach.
The other approach does not strive to obtain random samples, as it may

be too costly or sometimes impossible. Instead, people use the data as they
are, and develop estimators to compensate the bias. We call this the estimator
based approach, which is widely studied in Ecology. In the area of wild animal
population estimation, people developed various (multiple) capture-recapture
estimation methods to deal with unequal catch probabilities of animals. There
are several well known methods such as Chao et al’s coverage method [14], and
Otis’ Jackknife method [1].

This paper takes the estimator based approach. Our previous paper [25]
studies the query bias and assume that the density of the overflowing queries
are not high. That assumption restricts the estimator being applied to either
relatively small data sources or large data source with no return limit. This
paper focuses on the ranking bias so that our estimator can be applied to ranked
large data sources. In this study we observe that the overflow rate, the ratio
between the number of matches and the return limit, has a direct impact on
the estimation result. Under certain conditions, the actual size is close to the
estimation obtained by unranked model multiplied by the overflow rate. Based
on this result, this paper proposes a method that allows overflowing queries in
the sampling process.

In the realm of estimator based approach for data collection size estima-
tion, several other estimation methods have also been proposed to overcome
various biases [34, 42]. However, they typically try to compensate the biases
indistinctively. None of them dissects the causes of various biases and focuses
on ranking bias only. For example, Shokouhi et al [34] correct the bias by estab-
lishing a fixed relationship between the initial estimation and the corrected one.
In their estimation method, factors such as the return limit of a data source is
not considered.

2. Capture recapture method

2.1. Basic concepts of capture recapture method
Capture-recapture method was originally developed in ecology and used to

estimate the size of an animal population [1] [30]. In the estimation process,
animals are captured, marked, and released in several trapping occasions. The
data collected during the process, including the number of capture occasions, the
recaptured animals, and the distinct animals captured, allow one to estimate the
total population. This estimation process corresponds nicely to the query based
estimation of data collection sizes, where animals correspond to documents, and
a trapping occasion corresponds to the process of sending a query and retrieving
a set of matched documents from a data source.

We summarize the statistics that are used in our estimation methods as
below:

• N : the actual number of documents in a data source;
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• t: the number of queries that are sent to a data source;

• mj : the number of matched documents for query j. 1 ≤ j ≤ t. n =∑t
j=1 mj is the sample size, i.e., the total number of matched documents

in the estimation process;

• uj : the number of new documents retrieved by query j. 1 ≤ j ≤ t.
Mi =

∑i−1
j=1 uj is the total number of marked or unique documents that are

retrieved before query i. Note that M1 = 0, and M2 = m1. Let M = Mt+1

denote the total number of distinct documents that are retrieved by all
the queries in the estimation process;

• di: the number of duplicate documents retrieved by query i. di +ui = mi;

• k: the maximal number of returns from a ranked data source, even if there
are mj > k number of matches.

• OR = n/M : the Overlapping Rate up to the t-th query, i.e., the ratio
between the sample size and the distinct documents;

• P = M/N : the percentage of the documents that has been sampled, i.e.,
the ratio between the distinct documents and the actual size.

If all the documents have an equal probability of being matched by a query,
and all the matched documents are returned, we have the simplest model for
which many estimators have been developed. The classic estimator is the famous
Petersen estimator [30] that can be applied only to two capture occasions:

N̂Petersen =
m2M2

d2
. (1)

This estimator can be derived using maximally likelihood method. The
problem of this estimator is that d2 could be zero when m2 and M2 are not
large enough. According to the birthday paradox, in general m2,M2 should be
greater than

√
N in order to have overlaps between the results of two queries.

Unfortunately, many queries do not have that many matches.
One approach to solving the problem is by obtaining two large samples, each

are produced by many queries instead of just one query [11].
Another approach is expanding the estimator to multiple capture occasions

or queries, and taking the weighted average of the estimations. i.e.,

N̂ =
∑t

i=2 wimiMi/di∑t
i=2 wi

When weight wi = di, it is the classical Schnabel estimator [30] for multiple
captures:

N̂Schnabel =
∑t

i=2 miMi∑t
i=2 di

. (2)
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When weight wi = diMi, it is the Schumacher estimator [35]:

N̂s =
∑t

i=2 miM
2
i .∑t

i=2 diMi

(3)

Unlike two capture occasions, the MLE (Maximum Likelihood Estimator)
for multiple capture model does not have a closed form solution. Hence both
Schnabel and Schumacher estimators are approximate estimators. However,
they are widely accepted as good estimators with very small bias and variance
when animals (or documents) are captured with equal probability.

In reality, individuals, be it documents or animals, seldom have equal capture
probability. For animals, young animals may be easier to be captured because
they are more active. For documents, large documents are easier to be retrieved
by a query because there are more words in those documents.

For this kind of heterogeneous population where each individual has a un-
equal catachability, the estimation is notoriously difficult [1]. MLE technique
can no longer be used to derive an estimator because there can be as many as
N+1 parameters: N and and capture probabilities p1, p2, . . . , pN . Estimating
this many parameters from the capture data is not possible. Although there
are several empirical estimators proposed for this model, including the Jack-
nife estimator [30] and Chao [14] method, both can be only applied to small
population with hundreds of individuals, and require large sample size.

2.2. Application of capture recapture methods in data source size estimation
Liu et al. [23] first applied the capture recapture method in the estimation of

data source size. The estimator they used is the traditional Petersen estimator
(Equation 1) that can be applied to two capture occasions only.

Shokouhi et al [34] are the first who proposed to use multiple capture re-
capture method, or Capture with History (hereafter CH) method, to estimate a
data source size. More recently, Thomas proposed another estimator based on
multiple capture recapture methods [38]. Shokouhi et al. introduced the tra-
ditional estimators in ecology, such as the famous Schumacher and Eschmeyer
estimator [35] as shown in Equation 3. Since Schumacher estimator works only
when each document or animal has an equal probability of being captured,
Shokouhi noticed that N̂s, the estimate obtained by Schumacher method, is
consistently smaller than the actual value N . Furthermore, they observe that
there is a fixed relationship between N̂s and N , and used regression to establish
such a relation.

Xu et al.’s work [42] is the first to apply maximum likelihood (ML) method in
data source size estimation in the context of multiple capture recapture method.
When each document may have a different capture probability, it is impossible
to estimate all those probabilities using ML method because there are more
parameters than data available. Hence it is necessary to reduce the number
of parameters by assuming that the capture probabilities follow a distribution.
Xu et al. model the capture probability using a logistic function that relies on
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Table 1: Models, assumptions, and their estimators

Assumptions

Model
name

each document has
equal probability of
being matched

all matched
documents
are returned

Estimator

M0 yes yes N̂0 = M/(1−OR−2.1)
M0r yes no N̂0r = OF ×M/(1−OR−2.1)
Mh no yes N̂h = M/(1−OR−1.1)
Mhr no no N̂hr = OF ×M/(1−OR−1.1)

factors including the length of the document, its static ranking, and the term
frequency of the query in the document.

Broder et al. [11] combined the sampling based and estimator based meth-
ods, and used Petersen estimator (Equation 1) in a very creative way in order to
overcome both the query bias and rank bias. Here the matched documents are
not obtained by one single query. Instead, the first (M2) and the second (m2)
captures are obtained by query pools that can be very large, possibly including
tens of thousands of queries. For example, a query pool can be all the eight
digit numbers, or all the medium frequency terms. Since the first and second
captures are not obtained by single queries, and those two captures are largely
independent, there is no query bias. By using medium frequency words, the pos-
sibility of having overflowing queries is low, therefore avoided the ranking bias.
Since both m2 and M2 are rather large, the method can handle very large data
source without using multiple capture recapture method. Because the query
pool is rather large, it is impractical to fire all the queries to decide the number
of documents that can be retrieved using the query pool. Hence, from the query
pool a set of sample queries are randomly selected and sent to the data source.
All the matched documents are downloaded and analyzed to obtain the weight
[11] of each query. Based on the average weight of the queries from the sample,
the number of the documents that can be obtained by the query pool can be
estimated by multiplying the average weight by the query pool size.

3. Our approach

3.1. Models
Different types of data sources require different estimators. In order to cat-

egorize various types of data sources, we classify them into four models, based
on whether two assumptions are imposed on the data source, i.e., whether ran-
dom documents can be obtained, and whether all the matched documents are
returned. The models, assumptions, and their corresponding estimators are
tabulated in Table 1.

While models M0 and Mh are common in capture-recapture studies [1],
models M0r and Mhr are unique in our study. This is because in ecology studies
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Mhr

Mh M0r

M0

Figure 1: Model hierarchy

usually all the obtained data are utilized. On the other hand, in deep web it is
common to return only top-k documents.

If all the documents have an equal probability of being matched by a query,
and all the matched documents are returned, we have the simplest model M0.
The subscript 0 denotes zero variation of the match probability. Many estima-
tors have been developed for this simple model. For example, paper [25] derived
the relationship between P and OR as

P = 1−OR−2.1. (4)

Hence the estimator for M0 is

N̂0 = M/P = M/(1−OR−2.1), (5)

Paper [25] showed that this estimator has a smaller bias and variance than the
classical Schumacher estimator (Equation 3).

Model M0r is a simplified version of the ranked model. The assumptions
are 1) the documents have an equal probability of being matched, and 2)the
matched documents are sorted according to a static ranking and only the top k
documents are returned. An estimator for this model is derived in Section 4.

Mh is the model for unranked data sources where the assumptions are 1)
the documents are heterogeneous, i.e., they have unequal probabilities of being
matched; and 2) all the matched documents are returned. [25] gives an estimator
for this kind of data sources. Its simplified version is

N̂h = M/(1−OR−1.1) (6)

Model Mhr is the heterogeneous and ranked model that will be discussed in
Section 5.

The relationships between the models can be depicted in Figure 1. Model
M0 has very strong assumptions, hence it is hard to find direct applications. To

8



use this model directly, random documents have to be obtained, which is a very
costly process [6]. Besides, in this model no overflowing queries are allowed.
Despite the limited application of this model, it is a good starting point to
understand the estimation problem.

For Models M0h and Mh, each relaxes one assumption, hence makes it harder
to estimate. On the other hand, it moves closer to real applications. Model hr

removes both of the assumptions and is the closest to many real data sources.

3.2. Method
Our proposed method is detailed in Algorithm 1. There are two stages, i.e.,

data collection and estimation. The data collection process of our proposed
estimation method is similar to most of the capture-recapture methods, except
that in each sampling process the sample documents are obtained by random
queries. The estimation method differs from other capture-recapture methods in
that we use OR to estimate. In our method documents have unequal probability
of being matched, therefore the algorithm gives the estimations for models Mh

and Mhr only.

Algorithm 1: Outline of estimation algorithm.
Input: Dictionary, t, k, DataSource
Output: N̂ , the estimation of the size of DataSource
i = n = M = T = 0 ;
while i < t do

Randomly select a single term query from Dictionary;
send the query to DataSource ;
m = number of matched documents ;
r = min(k,m); //actually returned documents ;
u = min(k, number of new documents returned);
T+ = m; // total number of matched documents;
n+ = r; // total number of returned documents;
M+ = u; // total number of unique documents;
i + + ;

end
OR = n/M ;
OF = T/n;
N̂ = OF ×M/(1−OR−1.1)

Please note that k is the return limit imposed by the data source. M denotes
the number of distinct documents, n the number of sampled documents, T the
total number of matched documents.

This algorithm applies to both models Mh and Mhr although only the es-
timator for Mhr is used in the algorithm. In the case of model Mh, the num-
ber of matched documents is equal to the number of returned documents, i.e.,
m = r, T = n, hence OF = 1 and the estimator is reduced to the estimator for
Mh.
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In this algorithm, there are several uncertainties undecided yet. One is
the input parameter Dictionary. In the experiments reported in the following
sections, we used Webster dictionary. Other dictionaries, such as a collection of
terms from newsgroups posting, are also used. We find the results obtained by
different dictionaries are similar.

The other uncertainty is the number of queries to be sent, i.e., the parameter
t. While larger t will always produce better result, our experiments show that
50 to 100 number of queries are good enough. A large data source may not nec-
essarily need a large t, because in this case each query returns more documents
than smaller data sources.

Next we will derive the estimator, starting from a simplified model M0r.

4. Ranking bias: Model M0r

4.1. Derivation
A simple model M0r of ranked data source can be described as below:
Given N number of ranked documents labeled d1, d2, . . . , dN , where di is

ranked higher than dj if i < j , where 1 ≤ i, j ≤ N . Suppose that in each time
m documents are matched by a query and only the top k documents from the
matched documents are returned, where k ≤ m.

Note that in this section we assume that there is no query bias, i.e., when
m documents are selected from a data source, each has the same probability of
being matched. That is why we call the model M0r – it is ranked, yet when
selecting the m documents each has an equal probability of being matched.
Next section we will relax this assumption to allow for heterogeneous match
probability.

Let pi, 1 ≤ i ≤ N , denote the probability that the document di is captured.
When i ≤ k, document di will be returned if it is matched since it will be among
the top k documents. Overall, there are

(
N
m

)
number of ways to select m docu-

ments from a total population of N , among them there are
(
N−1
m−1

)
combinations

that di is selected. Hence the probability that di is returned is
(
N−1
m−1

)
/(k

(
N
m

)
).

When i > k, di is among the top-k matched documents only when there are
at most k−1 documents selected from d1, . . . , di−1. Thus the combinations when
di is selected and among the top k elements are

∑k−1
j=0

(
i−1

j

)(
N−i

m−1−j

)
. Hence we

have:

pi =





(
N − 1
m− 1

)

k

(
N

m

) i ≤ k

k−1∑

j=0

(
i− 1

j

)(
N − i

m− 1− j

)

k

(
N

m

) k < i ≤ N

(7)
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Figure 2: Distribution of pi. N=1,000.

Note that
∑N

j=1 pi = 1, and Equation 7 can not be simplified further by Van-
dermonde’s convolution because j does not iterate up to N .

Figure 2 draws the probability density function (PDF) and cumulative prob-
ability function (CDF) of pi for several combinations of m and k, where N =
1000, and 1 ≤ i ≤ N . Figure 2 (A) shows that pi drops to near zero when
i > (k/m)N . In particular, if m/k has the same value, pi drops at a faster rate
when k becomes larger.

For example, in both the combinations (k = 10,m = 20) and (k = 100,m =
200), pi drops to near 0 when i = 500 = N(k/m). However, the solid line,
the combination (k = 100, m = 200), drops almost vertically to near 0. Sub
figure (B), which is the PDF of pi, shows that when i is around (k/m)N , the
cumulative probability is close to one.

Roughly speaking, Figure 2 says that a ranked data source only exposes the
top (k/m)N number of documents, especially when k is large. The remaining
(1− k/m)N documents are highly improbable of being sampled.

The solid line in Figure 2 (A) prompts us that model M0r corresponds to
a simpler model Ms where the top (k/m)N documents have the probability
m/(kN) of being captured, while the remaining (1 − k/m)N documents have
zero probability of being retrieved.

In order to quantify the relationship between Ms and M0r, we resort to the
coefficient of variation (CV) of the probabilities p which is defined as

γ =
1
p̄

√√√√
N∑

i=1

(pi − p̄)2/N (8)
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Table 2: γ2
r computed by Equation 7 for various combinations of k and m/k obtained by

simulation. N=1,000. It shows that the estimation is rather accurate when k is not very
small.

m/k
k 2 3 4 5 6 7

10 0.75 1.57 2.40 3.23 4.06 4.89
20 0.82 1.70 2.58 3.46 4.35 5.24
40 0.87 1.79 2.71 3.64 4.57 5.51
60 0.90 1.83 2.78 3.72 4.68 5.64
80 0.91 1.86 2.82 3.78 4.75 5.72

100 0.92 1.88 2.84 3.82 4.80 5.80

Note that for the simple model Ms its γ2
s is

γ2
s = N

i=N∑

i=1

p2
i − 1

= N

i=(k/m)N∑

i=1

p2
i − 1

= N
k

m
N

( m

kN

)2

− 1

=
m

k
− 1 (9)

To compare with the CV in Ms, we calculate the CV of M0r using Equation
7. The result is shown in Table 2. From the table we can see that while CV
varies with different values of N, m, k, γ2

r is asymptotically equal to m/k − 1.
Hence M0r can be reduced to Ms. In this model, any estimation method

actually works on a fraction of the data source, which contains the top (k/m)N
documents only. Thus the estimator for model M0r should be

N̂0r = (m/k)N̂0 (10)

= (m/k)
M

1−OR−2.1

Equation 10 can be also explained using binomial distribution. N docu-
mented are stratified into two layers.The top layer contains the top (k/m)N
documents, while the bottom layer contains the remaining (1 − k/m)N docu-
ments. When randomly selecting a document from the data source with equal
probability in model M0r, the probability of a document belonging to the top
layer is k/m, and the probability belonging to the bottom layer is 1 − k/m.
After selecting m times, the number of times the selections hitting the top layer
follows a binomial distribution X ∼ B(m, k/m). Its mean is m(k/m) = k and
the variance is k(1− k/m).

In another word, when selecting m documents, in average k of them are from
the top layer. Around

√
k(1− k/m) number of documents can be from outside

12



Table 3: Fraction of the documents retrieved from bottom layer for some combinations of k
and m.

k m frac in bottom
10 20 0.223
20 40 0.158
100 200 0.070
1000 2000 0.022

1
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5
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7
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0

2

4

6

8

10
1

1.05

1.1

1.15

1.2

1.25

1.3

x 10
6

m/k10 × 2k

Figure 3: N̂0r for various m and k. N = 1, 000, 000. The estimations are accurate when k is
not very small.

the top layer of the data source, i.e., a fraction
√

k(1− k/m)/k of k documents
can be from the bottom layer.

Table 3 tabulates the relative standard deviations
√

k(1− k/m)/k for some
combinations of m and k. It can be seen that when k increases, fewer documents
can be retrieved from the bottom layer. This indicates that Equation 10 is a
rather accurate estimator when k is not very small, although it is positively
biased.

When k is small, we suggest the use of the following adjusted estimator:

N̂ ′
0r = (γ2

r − 1)N̂0 (11)

4.2. Simulation
In the simulations and experiments in this paper, we use relative bias (RB)

and relatively standard deviation (RSD) to evaluate the method.
Let N denote the actual size of the collection, N̂ the estimation. Suppose

that there are i number of estimations. The expectation of N̂ , denoted as E(N̂),
represents the mean of i estimations, i.e.,

E(N̂) = (N̂1 + N̂2 + ... + N̂i)/i.
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Table 4: N̂0r by simulation of 30 combinations of k and m/k over 100 runs. RB and RSD
are over 100 trials. N=1,000,000.

m/k
2 3 4 5 6 7

k RB SD RB SD RB SD RB SD RB SD RB SD
10 0.182 2,373 0.215 3,277 0.230 4,071 0.239 4,218 0.244 4,695 0.249 5,499
20 0.130 2,586 0.151 2,775 0.160 4,290 0.166 3,780 0.170 5,161 0.172 4,815

100 0.065 2,227 0.073 2,791 0.077 3,545 0.080 3,465 0.081 4,000 0.082 4,965
1000 0.034 2,422 0.037 2,895 0.038 3,482 0.040 4,026 0.042 4,279 0.042 5,075
2000 0.030 2,370 0.034 2,819 0.036 3,320 0.038 3,861 0.041 3,878 0.042 4,492

Relative Bias is defined as

RB = (E(N̂)−N)/N.

It is to measure how close the estimations are to the actual size of the data
source. Standard Deviation (SD)is used to characterize the variations of esti-
mations, i.e., how close the estimations are to the center of the estimations. It
is defined as

SD =

√√√√1
i

i∑

j=1

(N̂j − E(N̂))2

When different data sources are involved, we use Relative Standard Deviation
RSD = SD/E(N̂) instead of SD for ease of comparison.

We carried out a simulation study that involves 30 combinations of five
different values (10, 20, 100, 1000, and 2000) for k and six different values
(2,3,4,5,6, and 7) for m/k. We report the case where N=1,000,000. Other
values for N are also tested and similar results are observed.

For each combination, we run 100 simulations and obtain the relative bias
RB and standard deviation SD. In the simulation, m number of random numbers
in the range of 1 to N are generated, then the top k numbers are retained and
recorded. The process repeats until the overlapping rate OR = 1.1. The sample
size is roughly equivalent to 0.1N(k/m).

The results in Table 4 shows that all the estimations have a positive bias as
expected, because documents di for i > (k/m)N can still be captured although
the probability is very small. The relative bias decreases when k becomes larger.
When k = 1000, which is the limit set by many search engines including Google,
the relative bias is smaller than 0.05. The variance is rather small and grows
proportional to the value of m/k. Figure 3 visually depicts the estimations in
one trial with more combinations of k and m/k. Overall, the simulation confirms
that N̂0r is a good estimator when k is not very small.

5. Model Mhr

When documents are retrieved by queries, their probabilities being matched
are actually not equal. For example, larger documents will have higher proba-
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bilities being matched by queries.
We use Figure 4 to explain the evolution of models from M0 to Mhr. Each

scatter plot records 600 captured documents, including duplicates, that are
retrieved in a particular model. There are 1,000 documents, ordered by file size
in decreasing order. The document with ID 1 is the largest file.

In model M0, we randomly select the documents directly from the collection
with uniform distribution. Hence every document has the same probability of
being matched, and all the matched documents are returned. As Figure 4 (A)
and (C) show, 600 captures are uniformly distributed.

Figure 4(B)is produced by model Mh, i.e., the probability of a document
being matched is proportional to its file size, and all the matched documents are
returned. It shows that the large documents, i.e., the documents with smaller
document IDs, are retrieved more frequently over the querying process. Small
documents, especially the documents with IDs closer to 1000, are not matched
so often, but they are still possible being captured.

Figure 4(D) is produced by model M0r, i.e., each document has the same
probability of being matched, but only the top 10 documents are returned out
of the 20 matches. As the figure shows, the first half of the documents have
almost the same probability of being retrieved. Small documents are not likely
to be obtained. As we analyzed in the previous section, when k is larger there
will be a more clear-cut boundary around document id 500–there will be very
few documents retrieved with id greater than 500.

Model Mhr is illustrated in Figure 4(E), where 20 documents are matched
with probabilities according to their file sizes, and then the top 10 documents
are returned. Unlike M0r, the documents in Mhr have an unequal probability
of being matched, even when their ID’s are small. The histogram in Figure 4(F)
clearly shows the distinction between M0r and Mhr.

5.1. Model Mh

In real data source size estimation, documents will have varying probabilities
of being captured. Based on Equation 4, we conjecture that there is also a fixed
relation between P and OR in real data sources, with a modified equation as
below:

P = 1− αORβ , (Hyp)

or
ln(1− P ) = lnα + β × lnOR

By running regression using four collections of newsgroups data described in
section 5.3, we obtained α̂ = 1.001, β̂ = −1.132. Here the R square is 0.875,
which means that the regression fits the data well. Hence we derive Equation
12

P = 1−OR−1.1 (12)

and the estimator
N̂h = M/(1−OR−1.1). (13)
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Figure 4: Comparison of models M0, Mh, M0r, and Mhr. 1000 documents are sorted according
to their file size in decreasing order. 600 documents are selected in the four models, including
the duplicates. k = 10, m = 20. Subplot M0 shows that all the documents are retrieved
uniformly. Subplot Mh shows that large documents are preferred, but most of the documents
can be eventually sampled. Subplot M0r exhibits a clear cut around the 500th document.
Beyond this line there are almost no documents retrieved. Mhr is the compound of M0r and
Mh.
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Table 5: Summary of test corpora. #words is the number of unique words that appear in
Webster dictionary.

Corpus
name

docs Size in
MB

Avg
size(KB)

mean
#words

SD of
#words

Wiki 1,475,022 1950 1.35 284 285
Gov2 1 1,077,019 5420 5.15 396 409
Gov2 2 1,075,270 5241 4.99 389 407
NG 1 1,372,911 1023 0.76 294 223
Reuters 806,791 666 0.85 125 82

5.2. Model Mhr

In model Mhr, m documents are matched with unequal probability. With
the understanding that a ranked data source will expose only the top (k/m)N
number of documents, the estimator for Mhr is (m/k)N̂h. While it would be
ideal to select queries so that their document frequencies are equal to a fixed
number m, in practice it would not be easy to collect such queries. Hence we
need to allow some variations of document frequencies of the queries. Suppose
that t number of queries are sent to the data source, each matches with mi

number of documents, where 1 ≤ i ≤ t. We define the overflow rate as

OF =
t∑

i=1

mi/(kt). (14)

Then the estimator we use is

N̂hr = OF × N̂h (15)

= OF ×M/(1−OR−1.1)

5.3. Experiment
5.3.1. Data

We run our experiments on a variety of data collected from various domains.
The corpora are Reuters, Gov2, Wikipedia, and Newsgroups, which are summa-
rized in Table 5. We also produce the log-log plot of the file size distributions
in Figure 5. These are standard test data that are used by many researchers in
information retrieval. Wikipedia is the corpus provided by wikipedia.org which
contains 1.4 millions of English documents. Gov2 is a TREC test data collected
from .gov domain during 2004, which contains 25 million documents. We used
two subsets of the data for efficiency consideration. Newsgroups corpus in-
cludes posts in various newsgroups. Reuters is a TREC data set that contains
806,790 news stories in English. The corpora are indexed using Lucene [20].
We do not carry out the experiments on real deep web data sources because
their actual size is unknown, hence the evaluation of the methods will not be
accurate.
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Figure 5: File size distributions of the four corpora.

5.3.2. Experiment
We conduct experiments on 30 combinations of five corpora and six overflow

rates. 5,000 words are randomly selected from Webster dictionary which consists
of about 60,000 terms. More precisely, let each term be represented by a unique
number ranging between 1 and 60,000. The randomness is implemented by
generating 5,000 random numbers with uniform distribution between 1 and
60,000.

Among the 5000 words we select the queries whose document frequencies
vary within the range of 3500 and 4500, i.e., m = 3500 ∼ 4500. Different
overflow rates are obtained by setting varying k, i.e., the return limit k is set as
100, 200, 400, 800, 1600, and 3200. Note that although in each trial 5000 queries
are randomly selected, the average number of queries sent to a data source is in
the range of 39 to 146 as shown in Table 6.

For each combination we run 20 trials. Different trials are obtained by
selecting randomly another set of 5000 queries from Webster. From the 20 runs
we obtain RB and RSD. Table 6 is the overview of the experiment result. The
standard deviations for all combinations are very small. The bias for various
overflow rates are rather stable, but varies from corpus to corpus. In general it
works well, and can be explained by the file size distributions depicted in Figure
5– all the corpora file sizes follow the power law with similar exponents, hence
the degree of matching heterogeneity is similar. On the other hand, Gov2 has a
heavier tail, i.e., there are more large documents than other corpora. It implies
that the Gov2 has a higher degree of matching heterogeneity, and drifts farther
away from model M0. This is why Gov2 exhibits a larger negative bias.

Table 7 tabulates the details for one trial of the estimation. Column t is the
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Table 6: N̂hr for combinations of corpora and overflow rates. m = 3500 ∼ 4500. RB and
RSD are obtained from 20 runs.

k
100 200 400 800 1600 3200

corpus RB RSD RB RSD RB RSD RB RSD RB RSD RB RSD
Wiki -0.21 0.04 -0.22 0.04 -0.23 0.03 -0.25 0.04 -0.24 0.03 -0.23 0.02

GOV2 1 -0.37 0.03 -0.38 0.05 -0.39 0.04 -0.39 0.04 -0.39 0.03 -0.47 0.03
GOV2 2 -0.35 0.05 -0.37 0.03 -0.41 0.04 -0.40 0.07 -0.42 0.04 -0.46 0.03

NG 0.29 0.11 0.30 0.07 0.21 0.06 0.11 0.08 -0.05 0.09 -0.12 0.05
Reuters 0.18 0.08 0.13 0.10 0.06 0.08 0.06 0.09 0.07 0.07 -0.03 0.09

number of queries issued for the estimation. We can see that the numbers of
queries are below 150, which indicate that the estimation process is very efficient.
The column n is the sample size, i.e., the total number of documents retrieved.
It is dependent on the value of k– a smaller k will result in a smaller sample
size. When m/k is large, sample size can be reduced dramatically. Column M
is the number of unique documents that are retrieved. With M and n, we can
calculate the overlapping rate OR, and the estimations by various estimators
N̂0, N̂h, and N̂hr. N̂sReg is the estimator developed in [34] and will be compared
in the next section.

From the table it shows that both N̂0 and N̂h become closer to real value
when k increases, while N̂0 is further away from the truth because it does not
consider the unequal catching probability of a document being matched. When
k (hence k/m since here m is a fixed value) is small, even N̂h is very far away
from the real value. For example, when k = 100, N̂h for Wiki corpus is only
31,965, while the true value is 1.4M. By using the overflow rate, N̂hr gives a
rather good estimation.

5.4. Comparison
Shokouhi et al’s N̂sReg estimator [34] is the closest to ours in that their

method is also based on multiple capture-recapture method. In addition, they
also use document ids only, hence saving the effort of document downloading and
parsing. They start with the traditional Schumacher estimator N̂s (Equation
3) [35], whose estimation result is very close to N̂0.

Then Shokouhi et al. correct the bias of N̂s method using regression. They
conjecture that there is a fixed relationship between the initial estimation, which
is obtained by N̂s, and the actual data size. Based on this hypothesis, they use
a training data set to obtain an equation between the initial estimation and the
actual size using non-linear regression.

In the last column of Table 7, we list the estimation by N̂sReg. While it
works fine when the return limit k is around 1000, it introduces very large bias
when k varies. For example, for Wiki corpus, N̂sReg ranges between 29, 415 and
6,030,502.

Both our method and N̂sReg method start with M0, albeit the estimators are
different. In fact, N̂0 and N̂CH produce very close estimations. What different
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Table 7: Details of one trial. k is the return limit, t is the number of queries issued, n is the
sample size, M is the number of unique documents retrieved. m = 3500 ∼ 4500.

k t n M OR N̂0 N̂h N̂hr N̂sReg

Wiki 100 134 13,400 9661 1.39 19,441 31,965 1,278,600 29,415
200 146 29,200 20,470 1.43 38,937 63,289 1,265,780 86,412
400 133 53,200 38,502 1.38 78,114 128,637 1,286,370 256,354
800 138 110,400 78,437 1.41 153,143 250,281 1,251,405 719,154

1,600 146 233,600 162,607 1.44 305,252 494,735 1,236,837 2,102,289
3,200 143 457,600 318,910 1.43 599,985 972,888 1,216,110 6,030,502

GOV2 1 100 91 9100 6271 1.45 11,560 18,660 746,400 12,914
200 97 19,400 13010 1.49 22,909 36,581 731,620 37,147
400 85 34,000 23691 1.44 44,556 72,244 722,440 106,658
800 107 856,00 54135 1.58 87,602 136,737 683,685 298,941

1,600 90 144,000 97,212 1.48 173,029 277,014 692,535 875,090
3,200 86 275,200 182,098 1.51 314,030 498,796 623,495 2,172,136

NG 100 128 12,800 10232 1.25 27,274 46,865 1,874,600 49,574
200 129 25,800 20483 1.26 53,330 91,361 1,827,220 143,095
400 105 42,000 33759 1.24 91,764 158,062 1,580,620 336,603
800 118 94,400 74161 1.27 186,549 318,115 1,590,575 1,003,814

1,600 129 206,400 154214 1.34 336,868 562,203 1,405,507 2,523,227
3,200 122 390,400 293768 1.33 653,325 1,093,626 1,367,032 6,951,760

Reuters 100 54 5,400 4,498 1.20 14,111 24,697 987,880 18,045
200 40 8,000 6,999 1.14 28,595 51,183 1,023,660 57,214
400 51 20,400 17,051 1.20 54,337 95,245 952,450 145,946
800 39 31,200 26,296 1.19 87,160 153,356 766,780 315,683

1,600 61 97,600 78,449 1.24 213,237 367,295 918,237 1,258,096
3,200 58 185,600 147,453 1.26 384,814 659,437 824,296 3,082,789

is the next step. N̂sReg is solely dependent on N̂CH , regardless of the return
limit k and the heterogeneity of the matching probability. In contrast, our
method adjust N̂0 to N̂h first, so that the heterogeneity of matching probability
is accounted for. Next, it is extended to N̂hr to accommodate the stratified data
layers.

Compared with the sampling based approach, our method has the following
advantages:

1. Sampling approach in general needs to send more queries and retrieve
more documents, because it rejects some queries or documents. In many
cases the rejected queries and documents can be very large. For example,
to obtain one random documents, thousands of documents may need to
be downloaded and analyzed [37].

2. Sampling approach needs downloading and lexical analysis of the docu-
ments, in order to know the size and weight [4] of the documents. In many
applications, downloading may be impossible. For example, Amazon book
store will allow you have access to the basic information of the book, not
the entire book. For this type of data sources, sampling based approach
will not able to work.

3. In order to guarantee that queries do not overflow, sampling based ap-
proach need to use rare words as queries or conjunctive queries. Rare
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queries also tend to underestimate the collection size, hence introduce an-
other bias. In addition, many rare queries do not match any documents,
thereby add more estimation cost.

6. Conclusions

This paper proposes an efficient estimation method based capture recapture
method. Data sources vary in several aspects, such as whether they are ranked,
what is the return limit, and whether they favor large documents. When the
assumptions of a data source change, estimator should also differ. Hence this
paper abstracts the types of data sources into several models, including models
M0,Mh,M0r, and Mhr. While M0 and Mh are widely studied in ecology, ranked
models M0r and Mhr proposed in this paper are unique in the area of data source
size estimation.

In order to derive the estimator for ranked data sources, we start from an over
simplified model M0 where each document has the same probability of being
retrieved. From M0, we develop model M0r, where each document has the
same probability of being matched, but only top k documents will be returned.
For model M0r, we give the estimator N̂0r which is analytically derived and
empirically verified. We also identify the condition under which it works, i.e.,
the return limit k should be greater than 100.

Based on M0r, we develop model Mhr for real data sources where the match-
ing probability varies from document to document. Although the result is em-
pirical, we have tested extensively on a variety of corpora. Also, it can be
explained by the file size distributions of the corpora.

In addition to the accuracy of the estimator, our method is very efficient–
only about 100 random queries are needed to determine the size of a data
source. In particular, our method only needs to know the document ID in order
to decide whether there are overlapping documents. In the contrast, sampling
based methods need to download and lexically analyze many documents [4][11].
Our approach is also more efficient than other estimator based methods. For
example, Shokouhi et al.’s method need to fire 5,000 queries [34].

The result of this paper can be also applied to deep web crawling [29][26].
When selecting the queries to crawl a deep web, one may be tempted to select
those with large document frequencies. However, for ranked data sources, those
popular queries will induce higher overflow rate when the return limit k is fixed,
hence will scoop only the data in the top layer. According to the results in this
paper, the queries should be selected so that overflow rate is minimized.
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