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Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles
immobilized on a substrate
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We present experimental and theoretical results for the changes in the optical-plasmon resonance of gold-
nanoparticle dimers immobilized on a surface when coated with an organic dielectric material. The plasmon
band of a nanoparticle dimer shifts to a higher wavelength when the distance between neighboring particles is
decreased, and a well-separated second peak appears. This phenomenon is called cross-talk. We find that an
organic coating lets cross-talk start at larger separation distances than for uncoated dimers by bridging the gap
between immobilized nanoparticles �creating optical clusters�. We study this optical clustering effect as a
function of the polarization of the applied light, of the inter-particle distance, of the surrounding environment,
and of the optical properties of the coating layer. Theoretical discrete-dipole approximation calculations sup-
port the experimental absorption spectroscopy results of gold nanoparticles on glass substrates and on optical
waveguides.

DOI: 10.1103/PhysRevB.77.235446 PACS number�s�: 78.67.Bf, 73.20.Mf, 42.82.�m, 41.20.�q

I. INTRODUCTION

The extensive research interest in nanoscale inorganic
particles has mainly been driven by their broad impact on the
emerging disciplines of nanoengineering,1 nanoelectronics,2

and nanobioelectronics.3 Gold nanoparticles, in particular,
have been the focus of numerous investigations in recent
years because of promises offered by their optical, electronic,
and chemical properties.4 Of particular interest are their tun-
able electronic, magnetic, and photonic properties due to
quantum confinement effects, with nanocluster-based devices
being envisioned as the next generation in electronics
miniaturization.5

Recent years have also seen a tremendous impact on sil-
ver and gold nanoparticles and nano-objects in biological
assays, detection, labeling, and sensing. The immobilization
of molecules using recognition sites and the clustering of the
nanoparticles into larger agglomerates with a pronounced
shift in the plasmon absorption band of nanoparticles in so-
lution are well studied.6,7

In order to use color change during cluster formation for
recognition reactions with only minute amounts of sample
material available, or in a screening approach with many
different recognition agents, the volume has to be minimized
and the accessibility enhanced. Therefore, we use a two-
dimensional approach of immobilizing nanoparticles on a
surface.

In this paper, we describe experimental and theoretical
studies of the dependence of the optical plasmon resonance
spectrum on optical cluster formation due to the coating of a
dimer of nanoparticles by an organic layer. This research is
challenging both for technological and theoretical reasons.

One of the technological challenges is pinning down the
precise optical response of nanoparticle mini-clusters, e.g.,
dimers, trimers, and oligomers.8 To mimic the high sensitiv-
ity of the three-dimensional �3D� solution experiments, one

must establish the particular interparticle distance at which
the plasmon band both begins to shift and reaches a maxi-
mum, as well as the dependence on parameters such as the
dielectric constant of the surrounding medium and the
substrate.9–12 Su et al.13 did experiments and theoretical cal-
culations for immobilized gold elliptical nanoparticles of
sizes varying from 84–104 nm. They found an exponential
decay of the particle resonance redshift with increasing par-
ticle distance both theoretically and experimentally. In this
paper, we investigate the optical response of hemispherical
gold nanoparticles of smaller diameter �14–35 nm�. At this
smaller scale, we can see additional “cross-talk” peaks14 in
the extinction spectrum, which are absent from the simula-
tions with larger particles as in Su et al.’s work,13 and an
increase in sensitivity to the particle shape. We go further
and add the crucial feature of dielectric organic coatings. The
presence of these coatings can extend the effective size of the
metal particles and produce cross-talk features in the spec-
trum of the nanoparticles, whose separation would otherwise
be too great to produce cross-talk.

The second challenge is the fabrication of robust and or-
ganized assemblies of these nanoscale building blocks,9,10,15

where the collective structural properties and functions can
be manipulated by the nature, size, form, position, and over-
all composition of the nanoparticles on a substrate in an easy,
quick, and inexpensive fashion.

Among the various techniques developed, self-assembly
was quite effective in creating ordered superlattices of nano-
particles by exploiting the molecular interactions such as van
der Waals forces, chemisorptive bonding, and electrostatic
interactions.4,5,16 One key structural element can be a bifunc-
tional bridge, which links the nanoparticles to the substrate
surfaces and/or allows layering of nanoparticles such as ali-
phatic dithiols.17 These processes can be achieved by simple
beaker chemistry.

In addition, self-assembled monolayers18,19 �SAMs� have
drawn special attention because their preparation is simple

PHYSICAL REVIEW B 77, 235446 �2008�

1098-0121/2008/77�23�/235446�9� ©2008 The American Physical Society235446-1

http://dx.doi.org/10.1103/PhysRevB.77.235446


and the resultant films can be densely packed, highly or-
dered, and largely free of defects. In this work, SAMs of
3-mercaptopropyltrimethoxysilane �MPTS� are used as tem-
plates for the random nucleation and growth of nano-sized
gold particles grown via organometallic chemical vapor
deposition �OMCVD�. Details on this particular method can
be found elsewhere.17,20 Thiol SAMs were used to cap the
nanoparticles with an organic material.

Several theoretical techniques for studying electrodynam-
ics of nanoparticles have been developed in recent years. The
Mie theory of scattering21 describes exactly the optical be-
havior of spherical particles of all sizes, as well as infinite
cylinders. For more interesting geometries, several approxi-
mation schemes have been developed, the most successful
being the finite-difference time-domain method22 and the dis-
crete dipole approximation �DDA�.23 In this paper, we use
the DDA to numerically analyze the spectral behavior of
dimers of immobilized gold nanoparticles. We study hemi-
spherical particles with specific surface-to-surface separa-
tions �metal-to-metal for uncoated particles or dielectric-to-
dielectric for coated particles�, where the members of each
dimer pair have flat surfaces that are coplanar. Coatings are
added to the curved surface regions so that the gold-coating
and coating-environment boundaries are concentric hemi-
spheres �see Fig. 1�.

In the following sections, we document our investigations
of the optical plasmon resonance of surface-immobilized
nanoparticles coated by an organic dielectric material. In the
“Methods” section, we briefly describe the experimental
methods used to prepare the nanoparticles arrays and cap the
nanoparticles with an organic layer, as well as the spectro-
scopic methods for detection of the optical plasmon reso-
nance. We also outline our implementation of the discrete
dipole approximation method for the solution of Maxwell’s
equations. In the “Results and Discussion” section, we de-
scribe our experimental results and the theoretical calcula-
tions that support these results, and in “Conclusions,” we
note a potential application of these results.

II. METHODS

A. Experiment

1. Self-assembled monolayer preparation

Calix�4�arene heterodimer capsules were synthesized as
described elsewhere.24 Dichloromethane �CH2Cl2 , �99.8%�
was obtained from Caledon Laboratories Ltd. Ferrocenium
hexafluorophosphate �Fc+PF6

−� was obtained from Sigma-
Aldrich. All regents and solvents were used without further
purification.

SAMs of the heterodimer capsules were fabricated by for-
mation of the heterodimer in a solution and immobilization
in 10 �M solutions of both dimer forming calix�4�arenes in
dichloromethane for no less than 16 h. SAM formation of
ferrocenium-filled capsules were performed in a solution
with 0.1 mM of the heterodimer capsules with ferrocenium
�ferrocenium hexafluorophosphate was 20% over plus� in
dichloromethane for 25 h.24

For OMCVD, gold-nanoparticle-fabrication template-
SAMs of MPTS �Fluka, 97.0%, used without further purifi-
cation� are necessary. Before the silanization process, glass
substrates �Schott BGG 11� were first cleaned by 5-min ultra
sonication in acetone, rinsing with Milli-Q-water �Milli-Q,
��18 M� cm, Millipore�, 5-min ultra sonication, and rins-
ing with water. Glass substrates were immersed in piranha
solution �70 vol % H2SO4+30 vol % H2O2� for 30 min at
90–100 °C, then rinsed thoroughly with Milli-Q-water and
dried with N2. Contact angle measurement confirmed the hy-
drophilic nature of the slides ���2°�. 1% solution of MPTS
in dry ethanol was freshly prepared under nitrogen atmo-
sphere �glove box� and used quickly. The cleaned substrates
were immersed for 2 h at room temperature in a sealed con-
tainer. They were rinsed with ethanol, dried with N2, and
subsequently placed in a vacuumed oven at 94 °C for 2 h
�60 min heating+60 min cooling down under vacuum�. The
freshly prepared mercaptosilane SAMs were used immedi-
ately as substrates for the OMCVD gold nanoparticles. This
immobilization reaction can lead to monolayer formation of
MPTS. Nevertheless, often this reaction leads to larger film
thickness due to a polymerization reaction triggered by en-
hanced water content during the immobilization reaction.
The theoretical thickness of the monolayer is 0.77 nm ac-
cording to the length of the molecule. With ellipsometry, the
monolayer thickness has been determined as 0.8 0.1 nm with
a roughness of 0.14 nm.25 Our atomic force microscopy
�AFM� measurements show a thickness of 6 nm with a
roughness of 0.16 nm.

To cap SAMs, 1-dodecanethiol �Sigma-Aldrich, product
of ATOFINA Chemicals, Inc., 98+% purity� was used with-
out further purification and dissolved in ethanol �Commercial
Alcohols Inc., Brampton, ON, puriss.� at a concentration of 1
mM. The SAM formation was carried out for 15 h. The
samples were then cleaned by rinsing extensively with etha-
nol and Milli-Q-water �Milli-Q, ��18 M� cm, Millipore�
and dried with N2.

2. Organometallic chemical vapor deposition of gold onto self-
assembled monolayers

The vapor deposition of ��CH3�3P�AuCH3
26 onto SAMs

was carried out in a home-built, vacuum-sealed, glass reactor

FIG. 1. �Color online� 3D picture of a discrete dipole array that
models two hemispherical gold nanoparticles on a plane, coated by
a dielectric material. Each point represents one dipole: the organic
coating is green �dark gray� and the gold nanoparticle is yellow
�light gray�. The coating has been peeled back for a view of the
nanoparticle beneath. The particle radius is 7 nm, the coating thick-
ness is 1.75 nm, and the surface-to-surface separation �that is var-
ied� is 1.75 nm. The electromagnetic wave propagates along the
plane of the substrate perpendicular to the interparticle axis. In the
s-polarization, the electric field points along the interparticle axis,
and in the p-polarization, the electric field points perpendicular to
the planar substrate.
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chamber, which contained the SAM sample and a small glass
vessel with 20 mg of the gold precursor. The reactor was
evacuated �pmax=2.0	10−2 hPa� and placed in an oven at
63 °C.20 The deposition time was varied from 15 to 120 min.
Subsequently, the SAMs were quickly removed, rinsed with
dry ethanol, and stored under inert conditions. Hemispherical
gold nanoparticles with a range of average nanoparticle di-
ameters �from 14 through 40 nm� were produced and char-
acterized by AFM and electron microscopy. The average dis-
tance between these statistically grown nanoparticles for the
case of 30-min growth time is in the order of 60 nm but has
a very wide distribution. We find distances as small as a few
nm �short distance tail of distribution� but also distances as
large as a few 100 s of nm �long distance tail of distribution�.
The average distances decrease with increasing growth time
and vice versa.

3. UV-visible spectroscopy

UV-visible absorption spectra were obtained using a
Lambda 850 UV-visible recording spectrophotometer �Perki-
nElmer�. Baseline correction was performed before scanning
the samples. SAM films were scanned with clean glass as its
reference. For OMCVD Au samples, SAM films were used
as its reference.

4. Evanescent waveguide absorption spectroscopy

Schott BG 11 glass samples were used to fabricate ion-
exchanged slab waveguides in a 100% AgNO3 melt at
225 °C in a tube furnace �YOKOGAWA, model
STF55346C-1� for 4 min.27 This leads to waveguides28 with
one mode in both polarization directions. The end fires were
polished. Light from a white light source with an emission
spectrum from 360 to 2000 nm �Ocean Optics, Dunedin,
Florida, USA, HL-2000-HP with 20 W output� was fed into
the waveguide via the end fire coupling with a glass fiber and
a microscope objective �Newport, 20 x�. The light propagates
in the channel waveguide as a waveguide mode in transverse
electric �TE� or transverse magnetic �TM� polarization �cho-
sen by a polarizer in front of the coupling objective�, exhib-
iting an evanescent field on its free accessible surface with
respective polarization. The transmitted light is collected via
a second microscope objective �Newport, 20 x� and fed via a
second glass fiber into a spectrometer �Ocean Optics, Dune-
din, Florida, USA, HR-2000 spectrometer�. The absorption
spectra of the gold nanoparticles recorded this way are nor-
malized by the spectrum of the silanized waveguide.

B. Theory

We solve Maxwell’s equations for the scattering of white
light �400–800 nm� from gold nanoparticle dimers covered
by a dielectric material. There are several methods available:
the modified long-wavelength approximation29 and the
single-dipole approximation14 are two approximate methods.
Another popular method is the finite-difference time-domain
�FDTD� approach.22,30 We also note several theoretical re-
sults presented in the excellent book by Bedeaux and
Vlieger.31 In this work, we use the well-known discrete di-

pole approximation �DDA� developed by Draine and
Flatau.32

The DDA relies on the simple but powerful approxima-
tion of a continuous material by a discretized target of N
point dipoles. In principle, arbitrary discretizations are al-
lowed; however, the fast Fourier transform techniques in the
program DDSCAT32 �version 6.0�2 require cubic arrays. Draine
and Flatau have noted that one of the limitations of the
method is the faithful representation of target surfaces. This
problem could be circumvented by increasing dipole density
in high-curvature surface regions, but this solution is impos-
sible for cubic arrays. Fortunately, our hemispherical par-
ticles have a low surface-to-volume ratio, and this limitation
is not a concern.

Each dipole is uniquely described by its grid location ri
and polarizability 
i. The polarizabilities are calculated from
the complex dielectric function �i of the material using the
Clausius–Mossotti relation,23

�i − 1

�i + 2
=

nd
i

3
, �1�

where nd is the number density of the array. The dielectric
function of gold in the optical range was taken from Palik.33

For calculations of targets in nonvacuum surroundings, the
dielectric function must be adjusted according to that of the
surrounding medium.32 In this article, we will repeat our
vacuum simulations in water �n=1.33�.

The polarizabilities give a relation between the polariza-
tions of the dipoles and the local electric field �vectors are
represented by boldface�,

P� i = 
iE� loc,i�r�i� . �2�

The local electric field has two contributions: the incident
field and the fields of all other dipoles,

Eloc,i�r�i� = E0 exp�ik� · r�i� − � jAij · Pj , �3�

where Aij is an interaction matrix that depends on pairwise
separations rij and the magnitude of the wave number k.
Note that the incident light is assumed to be a plane wave, a
constraint demanded by the program DDSCAT. In the experi-
ment, the nanoparticles are illuminated by the evanescent
field from the waveguide substrate, but the survival depth of
the intensity is of the order of a few hundred nanometers,
which dwarfs the scale of our particles so that the plane-
wave approximation is a good one.

From the above equations, one may construct a system of
three N complex, linear equations,

� jAij� · Pj = E0 exp�ik� · r�i� . �4�

After solving for the polarization Pj, one may use it to con-
struct the near-field and far-field optical properties of the
target. We are interested in the extinction cross section of the
particles or the sum of the absorption and scattering cross
sections. In our study, the absorption was typically found to
overwhelm scattering by an order of magnitude.

The validity criterion for the DDA is the long-wavelength
limit: �m�kd�1, where m is the complex refractive index, k
is the wave number, and d is the grid spacing. We choose the
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grid spacing to be small enough so as to satisfy this criterion.
We compared the DDA calculations for a coated gold sphere
�both in air and in an aqueous medium� with that from Mie
theory,21 and find excellent agreement.

In this work, we ignore the effects of the substrate. That
is, the substrate’s refractive index is taken to be the same as
that of the ambient medium. From investigations on substrate
effects by Schatz and co-workers,34 it is clear that substrate
effects become significant when there is direct contact be-
tween the nanoparticle and the substrate and depend on the
fraction of surface area of the nanoparticle in contact. Since
in the experiments, the nanoparticles are not in direct contact
with the waveguide surface but are immobilized via silane
chemistry, it is reasonable to ignore the substrate in these
calculations.

A practical limitation is memory space which limited us
to an array of 135	135	135 dipoles. Because of this and
the validity criterion, we calculate all of the results for 14
nm-diameter sized particles, and all reported results are for
dimers. Trimers and tetramers were also studied with coarser
discretization, and they showed very similar behaviors to the
dimers.

A picture of a typical target is seen in Fig. 1. The conver-
gence of numerical solutions indicates that this arrangement
appears to adequately approximate the continuous target.
Two fully coated and separated nanoparticles are represented
by 67 228 discrete dipoles. The grid spacing is set to 0.35
nm, giving bare particles with a physical diameter of 14 nm
a height of 7 nm and a coating of thickness 1.75 nm, values
which are typical for the smallest structures that have been
produced and used in this experiment. Incident light propa-
gates transverse to the interparticle axis and parallel to the
substrate surface. Extinction spectra are calculated for both
s-polarization �with electric field vector parallel to the inter-
particle axis� and p-polarization �perpendicular to the wave-
guide plane�. Our results show a strong dependence on the
polarization of the incident field.

III. RESULTS AND DISCUSSION

First, we study the optical plasmon resonance of bare
nanoparticles as a function of interparticle spacing. This ef-
fect was studied experimentally on immobilized OMCVD
gold nanoparticles with evanescent waveguide absorption
spectroscopy. Figure 2�a� depicts the evanescent waveguide
absorption �EWA� spectra for a 40 min-grown sample of
gold nanoparticles without any coating in air. Each curve
shows a different polarization of the electric field. An in-
creased absorbance between 700 and 800 nm is found in the
in-plane s-polarization but not in the out-of-plane
p-polarization. Theoretical work by Jensen et al.14 showed
that when two metal nanoparticles approach each other,
cross-talk causes the plasmon peak to shift to longer wave-
lengths and the appearance of an additional peak, and these
are referred to as the dipolar and quadrupolar peaks, respec-
tively. This effect can be explained by the onset of a cross-
talk behavior between neighboring particles in these random
arrays of nanoparticles, i.e., the nanoparticles are close
enough such that the evanescent fields between the two over-

lap. In Fig. 2�a�, one can identify a peak at 600 nm as the
dipolar peak of the individual nanoparticles and an emerging
shoulder between 650 and 800 nm due to an onset of cross-
talk between neighboring nanoparticles in s-polarization.

Note that since the OMCVD-grown nanoparticles are not
equally spaced, cross-talk starts between some pairs of nano-
particles that are close enough, but the other nanoparticles
still show a single particle response. Thus, the “cross-talk”
peak is dwarfed by the single particle dipolar peak. As ex-
pected, the cross-talk peak appears only in the in-plane po-
larization. We note that similar features observed in the ex-
tinction spectra of metal nanoparticle arrays have been
explained by propagating surface plasmon modes,12 increase
in size effects,35 or bound states.36 These, however, do not
explain the experimental results described below.

In Fig. 2�b�, the same nanoparticles have been coated with
a SAM of 1,8 octanedithiol �n=1.45 and a film thickness of
�7.5 Å�. We find an enhanced cross-talk behavior for the

(a)

(b)

FIG. 2. Measured EWA spectra of 40 min-grown nanoparticles
of first generation with successively changed polarization in 15°
steps: 0° and 180° represent a pure TE �s-polarized� mode whereas
90° represents a pure TM �p-polarized� mode. �a� without coating
and �b� with a 1,8 octanedithiol SAM.
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capped nanoparticles with a pronounced cross-talk peak in
s-polarization at 755 nm. The dipolar peak shift in both the
polarization directions can be attributed to the increase in the
ambient refractive index and an increase in the size of the
nanoparticle. The absence of the second peak in the out of
plane p-polarization indicates that size effects alone35 cannot
explain the spectrum. Also, since this effect is observed by
the addition of a dielectric coating, the propagating surface
plasmon mode explanation12 does not seem feasible. The en-
hancement of the dipolar cross-talk peak in only the in-plane
polarization spectra suggests that the decrease in distance
between the surfaces of the nanoparticles due to the coating
promotes the cross-talk. Clearly, cross-talk is enhanced by
the addition of the organic coating when the distance be-
tween the nanoparticle centers stays the same. We call this
effect “optical clustering” because even though the physical
particles do not overlap, the spectra show signatures of the
nanoparticle clustering.

The experiments were repeated for samples with average
nanoparticle diameters between 14 and 40 nm, and the spec-
tra showed the same behavior. Theoretical calculations per-
formed using the DDA support these experimental results.

For calculations, the nanoparticles are chosen to be 7 nm in
radius �corresponding to the sample with the smallest aver-
age size in the experiments�. Based on experimental esti-
mates, we fix the refractive index of the coating to n=1.45
and the coating thickness to 1.75 nm. The incident light
propagates along the surface perpendicular to the interpar-
ticle axis.

The most interesting results are obtained when the electric
field is s-polarized, i.e., the electric field vector is along the
interparticle axis. We start with particles that are minimally
separated, i.e., touching, and slowly separate them. Figure 3,
top left, shows results for these separations for uncoated par-
ticles in air. Beginning with the irregular spectrum for the
zero-separation case, we see a gradual relaxation back to-
ward the single-particle spectrum for widely separated par-
ticles. The cross-talk feature is clear when the nanoparticles
are close together. These results agree qualitatively with the
calculations performed by Jensen et al.,14 who have seen
resonance shifts in oblate spheroidal silver nanoparticles
with decreasing interparticle distance.

When the nanoparticles are coated with an organic layer,
two effects are evident as seen in Fig. 3, top right. Compar-

FIG. 3. Calculated extinction spectra for two hemispherical gold nanoparticles �NPs� with varying interparticle separations. Particles are
�top left� uncoated in air, �top right� coated in air, �bottom left� uncoated in water and �bottom right� coated in water. All coatings have a
refractive index of 1.45. Particle radius is 7 nm and coating thickness is 1.75 nm. Separation is measured as distance between surfaces, which
for coated particles means the coating-to-coating distance.
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ing with the single nanoparticle spectra, one can see the shift
in the spectrum due to the increase in the size of the nano-
particles upon addition of the coating, and this is fairly small.
However, even when the nanoparticles’ coatings are not
touching �i.e., the metal surfaces themselves are well sepa-
rated�, there is a shift of the single particle dipolar plasmon
resonance and a pronounced cross-talk feature. Note that the
position of this latter peak does not change with change in
the distance between the coating surfaces. Therefore, we do
not attribute this peak to the formation of bound states be-
tween the two nanoparticles.36

The bottom left and right spectra of Fig. 3 show the cal-
culated plasmon resonance shifts for bare and coated nano-
particles, respectively, as a function of interparticle separa-
tion in an aqueous medium. The single nanoparticle spectra
�both bare and coated� in a water medium are markedly dif-
ferent from those in air. Along with the redshift expected due
to an ambient medium, additional structure is seen even for
an uncoated single nanoparticle in water. Recall that our
nanoparticles are hemispherical in shape. This structure is
not seen for a single spherical nanoparticle in water �both in
DDA and Mie theory calculations�; therefore, we conclude
that the presence of an aqueous medium augments the sen-
sitivity of the spectrum to the shape of the nanoparticles.
Also, the cross-talk shifts are evident even for large interpar-
ticle separations. Thus, the presence of an aqueous medium
enhances the cross-talk. We observe that for both dry and wet
environments, the relaxation from the zero separation behav-
ior to the widely separated �or single nanoparticles� behavior
is roughly a function of the distance between outer surfaces
even if the outer surface is not that of the gold nanoparticle.

Next, we study the effect of polarization of the incident
light on the shift of the optical plasmon resonance. When the
incident light is p-polarized, the plasmon resonance shift is
not as pronounced as shown in the s-polarized case, as seen
in Fig. 4. Coating the nanoparticles increases the effective
size of the nanoparticles. The s-polarized light also acts as a
probe of the overlapping electromagnetic fields between the

nanoparticles, i.e., of the optical clustering effect. The
p-polarized light is only a probe of increased nanoparticle
size but not of the overlap of the evanescent fields and, there-
fore, does not experience as pronounced a spectral shift. This
effect is evident precisely because we have immobilized
nanoparticles; for nanoparticles in solution, this effect is not
seen because the shift is averaged over all orientations.7

Therefore, for the rest of this paper, we present results only
with s-polarized light.

In Fig. 5, we show the effect of increasing the refractive
index of coatings in an ambient medium of air. We have
chosen calix�4�arene heterodimer capsules as a material for a
thin film coating. These capsules can be filled with various
guests, and when self-assembled into a monolayer, form a
uniform organic layer of thickness �502 Å around the
nanoparticle but with an adjustable refractive index, depend-
ing on the guest molecule located in the cavity. These
calix�4�arene capsules carry a sulfur moiety to allow the
binding as a self-assembled monolayer to the gold nanopar-
ticles. The SAM of the dichloromethane-filled capsules has a
refractive index n=1.480 and the ferrocenium-ion-filled cap-
sule SAM a refractive index n=1.466.24 UV-visible transmis-
sion absorption spectra in air and water of the bare nanopar-
ticles fabricated by OMCVD �30-min deposition time� and
particles capped with a SAM made out of dichloremethane-
filled and ferrocenium-filled capsules are shown in Fig. 3.

In Fig. 5, a plasmon band around 536 nm is found for the
bare gold nanoparticles in air. The spectra for the capped
nanoparticles are redshifted by ��=17 to 553 nm in the
dichloromethane case �n=1.48� and by ��=7 to 543 nm in
the ferrocenium-ion-filled case �n=1.466� in air. This agrees
well with the theory: the larger the refractive index of the
cap, the larger is the plasmon resonance shift for a given
coating thickness. This observation is true in water as well.
The dichloromethane-filled capsules show a shift to 261 nm
and the ferrocenium-filled capsules a shift to 551 nm. Again,

FIG. 5. Measured UV-visible spectrum of OMCVD gold nano-
particles �25 min-OMCVD grown� bare and with self-assembled
monolayers of calix�4�arene heterodimers capsules filled with fer-
rocenium or dichloromethane in air and water.

FIG. 4. Calculated extinction spectra for target illuminated with
p-polarized light �the light polarization is perpendicular to the plane
on which the NPs are immobilized�. Both overlapped and separated
targets are shown. Simulations are done in air.
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here, a difference of 10 nm between the two coatings is
found.

This result agrees qualitatively with calculations. In Fig.
6, we show calculations for coatings of increasing refractive
index in air. For this calculation only, we have exaggerated
the coating thickness to equal the particle radius �7 nm� in
order to see the effect more clearly. Therefore, the gold-to-
gold separation is a full 14 nm, while there is no coating-to-
coating separation. There is a small shift of the resonance for
coatings with typical refractive indices �n=1.33,1.5�. For
coatings with higher �unphysical� indices, there is a strong
redshift of the resonance peak.

Figure 7 depicts UV-visible transmission spectra in air
and water of gold nanoparticles grown for 35 min with and
without a cap of 1-dodecanthiol �n=1.5 and film thickness
�11 Å�. The bare nanoparticles in air show a peak maxi-

mum at 580 nm with a shoulder around 600–700 nm. In
water, this broad peak is shifted slightly to 610 nm but de-
picts now a clear second feature around 675 nm. As already
mentioned, these OMCVD particles grow with unequal sizes
and unequal interparticle spacings, and here, we observe
again the onset of first interparticle interactions due to cross-
talk already for the bare particles even when the single par-
ticle contributions to the absorption spectra are still a domi-
nant feature. In the coated cases, one can observe broad
peaks without internal structure; however, the peak shifts to
635 nm in air and 665 nm, which means an increase to ��
=55 nm in comparison to the 7–17 nm shifts in the
calix�4�arene case.

To show how the shifts due to coatings are an extension of
the shape-dependence of bare particles, we performed calcu-
lations for bare hemispherical particles that overlap, essen-
tially representing a distorted single particle. In Fig. 8, left,
we see the dependence of the resonance on overlap. When
the overlap is 100%, so that the particles completely coin-
cide, we can see only a single resonance peak. As the par-
ticles separate, this peak shifts to the infrared, while a second

FIG. 6. Calculated extinction spectra for nanoparticles with vari-
ous coating refractive indices. Particle radius is 7 nm and coating
thickness is 7 nm. Surface-to-surface separation is 14 nm for bare
nanoparticles and 0 nm for coated particles. Calculations are shown
for surrounding media of air; those for water are published
elsewhere.24

FIG. 7. Measured UV-visible spectrum of OMCVD gold nano-
particles �35 min OMCVD grown� bare and with self-assembled
monolayers of 1-dodecanthiol in air and water.

FIG. 8. Calculated extinction spectra for overlapping particles.
The overlap factor is given as a percentage ratio of the center-to-
center distance to the particle diameter. Particles are aligned trans-
verse to light propagation. Particle radius is 7 nm and particles are
uncoated. Surrounding medium is �left� air and �right� water.
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peak emerges and becomes quite pronounced for 25% over-
lap. At 0% overlap �just touching�, the particles have a very
irregular spectrum. This is an example of the known effect
that nanoparticles, immobilized or not, have plasmon bands
that are sensitive to particle shape.14 In Fig. 8, right, the
simulation is repeated for particles in an aqueous environ-
ment. The behavior is similar as before although here, the
quadrupolar feature is visible even in the 100% overlap case,
and the dipole shift is even more pronounced by a good 100
nm. Clearly, shape dependence is enhanced in water. Both of
these results are obtained in the s-polarized case—results
were wholly uninteresting for the p-polarized case. This is
intuitively satisfying: A single particle is effectively being
elongated in the s-direction, while no enlargement occurs in
the p-direction.

IV. CONCLUSIONS

We have studied theoretically and experimentally the op-
tical response of coated gold nanoparticles and analyzed the
influences of the spacing between them, of the optical prop-
erties of the coatings, and of the surrounding materials. We
find that cross-talk can be induced in moderately separated
nanoparticles by coating them with an organic layer. This
cross-talk can be detected only in the in-plane s-polarization
direction of the incident light. Organic coatings with a fixed

thickness but increasing refractive index lead to a shift of the
plasmon resonance toward longer wavelengths and enhance
a broad spectral feature interpreted as the “cross-talk” con-
tribution in the calculations. The addition of an aqueous me-
dium augments these features.

The role of facilitator that the coating plays, together with
the fact that the binding of this coating is specific to a par-
ticular organic species, suggests a potential sensing applica-
tion. Because the gold nanoparticles are immobilized, spatial
separations should be controlled so that pronounced shifts
are seen for coated particles only. Since these results are
enhanced in an aqueous medium, small amounts of organic
solutes may be detectable by observing the spectral location
of the resonance peaks.
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