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XML Schema matching problem can be formulated as follows: given two XML Schemas,
find the best mapping between the elements and attributes of the schemas, and the19

overall similarity between them. XML Schema matching is an important problem in
data integration, schema evolution, and software reuse. This paper describes a matching21

system that can find accurate matches and scales to large XML Schemas with hundreds
of nodes. In our system, XML Schemas are modeled as labeled and unordered trees,23

and the schema matching problem is turned into a tree matching problem. We proposed
Approximate Common Structures in trees, and developed a tree matching algorithm25

based on this concept. Compared with the traditional tree edit-distance algorithm and
other schema matching systems, our algorithm is faster and more suitable for large XML27

Schema matching.

Keywords: Software reuse; software component search; schema matching; XML schema;29

tree matching algorithm; data integration.

1. Introduction31

XML Schema has become an indispensable component in web application develop-

ment. Schemas are used to represent all kinds of data structure in programming,33

and are often mapped to object models [28]. To some extent, we can think XML

Schemas are similar to data types or classes in traditional programming language.35

What makes XML Schema different from traditional software components is that it

is available on the web, encoded in XML, programming language independent, and37

adopted by all the major software vendors. All these features make XML Schema

1
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reuse not only imperative, but also have the potential to succeed beyond traditional1

software component reuse. We can envision that almost any data structure that you

can think of will be available on the web. Programmers need a search tool to find3

the relevant schemas instead of developing the schema from scratch.

Our goal of research on schema matching has its root in software component5

search [20] and software agent search [29], both having a long history. [20] provides

a good survey in component search, and [29] is the seminal paper on software agent7

matching, which also inspired numerous works on web service searching [22]. Since

XML Schema is an inherent and major element of web services and modern software9

components, XML Schema matching is a foundation for the search of web serices,

software agents, and software compoenents in general.11

Schema matching is also widely studied in the database area [7, 16, 18, 19], with

the aim to bridge relational and semi-structured data models, or to integrate data13

with either homogeneous or heterogeneous data models. [23] is a good survey of the

works in this area.15

There are a variety of schemas in schema matching research, ranging from XML

related schema such as DTD and XML Schema, to relational and object schemas.17

We focus on XML Schema matching, instead of a hybrid matching system such as

Cupid [18] that considers different schemas including relational database schema19

and XML Schema. The purpose of the matching is more on the overall similarity

between two XML Schemas, instead of the concrete correspondence of the elements21

in two schemas.

Since schemas are usually modeled as trees [18, 27] or a similar format as directed23

acyclic graphs [7], tree matching has inevitably become one of the main issue in

schema matching. Tree matching is an extensively studied problem. The classical25

tree edit distance matching algorithm [36] and many schema matching systems

derived from this algorithm are not adequate for two reasons. One is that it is27

not fast enough as is shown in our experiment explained in Sec. 5. Another more

important factor is that those algorithms must preserve the tree ancestor structure29

during the match, hence may miss better matches.

Take the two schemas in Fig. 1 for example. In those two schemas, there are31

two substrucrues that are very similar. One is about car information, the other

one is driver information. Intuitively we would like to match those substructures.33

However, with the traditional tree edit distance algorithms, that kind of matching

is not easy to achieve because shifting two sub-trees (e.g., exchange the position of35

driver information with car information in Schema 1) requires many edit operations.

Based on this observation, we generalized the concept of common substruc-37

tures [3] between two trees to Approximate Common Sutstructures (ACS), and

developed an efficient tree matching algorithm for extracting a disjoint set of the39

largest ACSs. This disjoint set of ACSs represents the most likely matches between

substructures in the two schemas. In addition, the algorithm provides structural41

similarity estimate for each pair of substructures including, of course, the overall

similarity between the two schemas. Using our algorithm to match the above car-43
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Fig. 1. Car-driver schemas.

driver schemas, both driver and car nodes and their compoents can be matched,1

even though car is an ancestor of driver in schema one, and it is the other way

around in schema two.3

Some important features introduced in our algorithm include a search strategy

and a recursive structural similarity computing used for comparing two substrees.5

These features are particularly adapted to schema matching. The search strategy

allows a good trade-off between accuracy of structural similarity and time complex-7

ity. It focuses on comparing “root parts” of subtrees while still taking into account

the structural similarity between other parts (those closer to leaves). This makes9

the algorithm very efficient and able to deal with large schemas.

Our system is designed with the objectives to work effectively and efficiently —11

generating good results in acceptable time, in order to be able to match real life

schemas with several hundreds of nodes.13

Figure 2 depicts the main phases of the processing performed by our matching

system. First, an XML Schema is modeled as a tree. The second phase is the15

computation of node similarity, and the third is the computation of structural

similarities between subtrees in the two Schemas. The following sections will discuss17

the three phases in order.

The system has been tested extensively using about 600 XML Schemas in total19

[17]. We evaluated both matching accuracy and computational efficiency of our

system. Comparisons were made with the traditional edit distance tree matching21

algorithm [31] and a popular XML Schema matching system COMA[7]. The results

show that our new tree matching algorithm outperforms these two methods, and23

can be used to match larger schemas that contain hundreds of elements.

Parts of the work in this paper are introduced in [17, 32].25

2. Modelling XML Schemas as Trees

We model XML Schema as a labeled unordered rooted tree. In general, an XML27

schema corresponds to a directed graph in which recursive definitions are repre-

sented by loops and reference definitions are represented by cross edges. The graph29
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Fig. 2. Matching system developed.

representation is not adopted in our work for two reasons. First, intuitively the1

directed graph representation of an XML Schema still encompasses a hierarchi-

cal structure similar to a tree, with a few “loop” exceptions. Secondly and more3

importantly, approximate graph matching [3] is too computationally costly as we

have investigated in [13]. Our recent algorithm in graph matching employed strong5

heuristics to reduce search space, but still can only deal with graphs with dozens of

node [13]. Obviously, graph matching algorithms would be difficult to match XML7

Schemas with hundreds of nodes.

Each element or attribute of the schema is translated into a node. Attributes9

and elements that reside inside an element are translated as children of the element

node. The names of elements and attributes, along with some optional information11

such as data types and cardinalities, are the labels of the nodes.

The tree structure reflects the nesting relations of elements and attributes in a13

schema. Although by XML Schema standard the order of the elements matters, it

is ignored in our tree model based on the assumption that the order does not make15

differences as big as changing the labels. The modelled tree does not include every

detail of an XML Schema. Excluded information falls into two categories. One is17

related to elements or attributes such as default value and value range. The other

is relevant to structure, such as element order indicators.19

Modelling XML Schema is a tedious task due to the complexity of XML Schema.

During the modelling, we need to take care of the following constructs in XML21

Schema, to insure that a schema is modelled as a tree correctly.

Reference Definition
23

Reference definition is a mechanism to simplify schema through the sharing of

common segments. To transform this structure into a tree, we duplicate the shared25
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segment under the node that refers to it. By doing this, we increased the number1

of nodes. In implementation of the modelling, we create an array which contains

the distinct node labels and establish connections from each node to this array. In3

subsequent processes, the node labels are handled based the array instead of the

nodes themselves.5

There are two types of references in XML Schema specification: data type

reference and name reference. Data type reference is created by the clause7

‘type=dataTypeName’ (where ‘dataTypeName’ is not a built-in data type), and

the referred segment is a <complexType> or <simpleType>; while name reference is9

created by ‘ref=elementName’, and referred segment must be a <element>. All the

referred types or elements must be top level such that they are nested in <schema>11

only. Therefore, our solution is that: build two lists called ‘referred’ and ‘referring’,

list ‘referred’ contained all the top level elements and types (both complex and sim-13

ple), and list ‘referring’ contain the elements having ‘type’ or ‘ref’ reference; then

after scanning the schema file, for every element in ‘referring’, we physically dupli-15

cate the segment which they refer. Solving those segments which are from outside

of the schema file follows the same method as importing and inclusion.17

Recursive definition

Recursive definition happens when a leaf element refers to one of its ancestors. This19

definition also breaks the tree structure, and it has to be solved differently from the

way of solving reference definition, otherwise it falls into an infinite loop.21

Matching recursively defined node is equivalent to matching the inner node

being referred. So we utilize a detecting procedure, which scans the path from a23

node up to the root of the tree to find out whether this node refers to its ancestor or

not. Once a node which has recursive definition is found, we cut the connection and25

mark the node with recursive property to distinguish it from its referred ancestor.

Namespace
27

Namespace is a way to avoid name ambiguity, such as two same data type names in

one schema file, by assigning them to different vocabularies. This is accomplished29

by adding unique URIs and giving them aliases. The aliases serve as prefixes, such

as ‘xsd:’ in the example, to associate the terms with certain vocabularies — names-31

paces. In our implementation, namespace affects reference definitions in three ways:

built-in data type, user-defined data type, and element reference. To support this33

feature, our program tracks every prefix and its corresponding URI, takes them

and the term right after the prefix as one unit, then put this unit into the reference35

solving.

Importing and including
37

Importing and including are mechanisms of reusing elements and attributes defined

in other schema files. Including limits the sharing within the same namespace,39

and importing can cross different namespaces. When being imported, the imported
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schema file’s information is provided in the <import> tag, including the file name,1

location and the imported namespace. Our program also parses and models this

schema, then together with its namespace, brings its top level elements and types3

into the ‘referred’ list. If any of them are referred by the components in the original

schema file, they will be handled by the reference solving process. For including,5

the included file’s information is kept in <include> tag, and the same method is

applied to solve including with the difference of namespace. The namespace for7

including is the same as the original schema file.

Extension
9

Extension allows new elements and attributes being added. For this situation, we

first need to solve the type reference, so we treat the base clause the same as type11

reference. After getting the base type being duplicated, we process the newly added

components, converting them to nodes and join them as siblings to the duplicated13

ones.

Grouping
15

Grouping is similar to complex type definition, providing a way of reusing predefined

components. The most often used grouping is attribute grouping, which is specified17

by <attributeGroup> tag. We use the same way as type reference to solve this

situation, i.e., add the <attributeGroup> definition and reference element to the19

‘referred’ list, then duplicate the referred group.

3. Node Similarity21

Since a label of a node consists of name, datatype, and cardinality information,

the node similarity is computed based on these entities. Among them the name23

similarity is the most complex one.

3.1. Name similarity25

Name similarity is a score that reflects the relation between the meanings of two

names, such as tag name or attribute name, which is usually comprised of multiple27

words or acronyms. The steps of computing name similarity include tokenization,

computing the semantic similarities of words by WordNet, determing the relations29

of tokens by a string matching algorithm if they can not be solved by WordNet,

and calculating the similarity between two token lists.31

Tokenization

Quite often a tag name consists of a few words. It is necessary to split up the name33

into tokens before computing the semantic similarity with another one. This oper-

ation is called tokenization. A token could be a word, or an abbreviation. Although35

there are no strict rules of combining tokens together, conventionally, we have some

clues to separate them from each other such as case switching, hyphen, under line,37
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and number. For instance: ‘clientName’ is tokenized into ‘client’ and name, and1

‘ship2Addr’ to ‘ship’, ‘2’, and ‘add’.

Computing semantic similarity using WordNet
3

Once a name is tokenized into a list of words, we use WordNet [32] to compute the

similarity between the words.5

WordNet builds connections between four types of POS (Part of Speech), i.e.,

noun, verb, adjective, and adverb. The smallest unit in WordNet is synset, which7

represents a specific meaning of a word. It includes the word, its explanation, and

the synonyms of this meaning. A specific meaning of one word under one type of9

POS is called a sense. Each sense of a word is in a different synset. For one word,

one type of POS, if there are more than one sense, WordNet organizes them in the11

order from the most frequently used to the least frequently used.

There are different kinds of relations between words, such as hypernym, hy-13

ponym, antonym, coordinate, etc., and these relations are connected on synsets.

WordNet APIs for different programming languages have been developed by sev-15

eral groups [1, 2].

Based on WordNet and its API, we use synonym and hypernym relations to17

capture the semantic similarities of tokens. Given a pair of words, once a path that

connects the two words is found, we determine their similarity according to two19

factors: the length of the path and the order of the sense involved in this path.

Searching the connection between two words in WordNet is an expensive opera-21

tion due to the huge searching space. We impose two restrictions in order to reduce

the computational cost. The first one is that only synonym and hypernym relations23

are considered, since exhausting all the relations is too costly. This restriction is

also adopted in some related works [1, 2]. Another restriction is to limit the path25

searching process to a certain number of length. If a path has not been connected

within a length limit, we stop further searching and report no path found.27

In our implementation, we use the following formula to calculate the semantic

similarity:

wordSim(s, t) = senseWeight(s)
∗
senseWeight(t)/pathLength

where s and t denote the source and target words being compared. senseWeight

denotes a weight calculated according to the order of this sense and the count of29

total senses.

We performed a comparison with seven other approaches on the set of word31

pairs in [14]. In terms of correlation, ours exceeds four approaches and falls behind

three of them. Considering that the method we use is simpler and scalable, our33

similarity measure is acceptable.

Similarity between words outside vocabulary
35

Words outside the English vocabulary are often used in schemas definition, such

as abbreviations (“qty” for quantity) and acronyms (“PO” for purchase order). In37



1st Reading
October 17, 2007 17:44 WSPC/117-ijseke 00344

8 J.-G. Lu, J. Wang & S.-R. Wang

this case WordNet is no longer applicable, and we use edit-distance string match-1

ing algorithm. By doing this, the measurement reflects the relations between the

patterns of the two strings, rather than the meaning of the words.3

Similarity between token lists

After breaking names into token lists, we determine the similarity between two5

names by computing the similarity of those two token lists, which is reduced to

the bipartite graph matching problem [15]. It can be described as follows: the node7

set of a graph G can be partitioned into two subsets of disjoint nodes X and Y

such that every edge connects a node in X with a node in Y, and each edge has9

a non-negative weight. The task is to find a subset of node-disjoint edges that has

the maximum total weight.11

When X and Y are two token lists and the edges are the similarities between

the tokens, the token list matching problem is reduced to the bipartite matching13

problem. We use the efficient Hungarian method [15] to solve the weighted bipartite

graph matching.15

The semantic similarity between token lists is also normalized to a value between

0 and 1. As a result, we shall compute the average based on the summation of17

similarity, dividing the summation by the median of token counts.

3.2. Similarity of built-in data type19

XML Schema has 44 built-in data types, including nineteen primitive ones and

twenty-five derived ones. To reduce the number of combinations, we create seven21

data type categories, i.e., binary, boolean, dataTime, float, idRef, integer, and string

that cover the 44 data types. The compatibility table is built for the seven cate-23

gories. After this, when comparing two data types, first we check which category

these types belong to, then extract the similarity measure from the category com-25

patibility table.

3.3. Similarity of cardinalities27

XML Schema allows the specification of minimum and maximum occurrences, i.e.,

cardinality, for elements. The range of cardinality is from 0 to unbounded. It is29

impossible and unnecessary to compare all the cardinalities in this range. As a

result, we apply a threshold. When cardinalities are equal to or bigger than it, we31

treat the cardinality as this threshold.

4. Approximate Tree Matching33

In schema matching, edit-distance based algorithms are not adequate solutions for

two reasons. One is that it is not fast. Another more important factor is that the35

algorithm must preserve the tree ancestor structure during the match, hence may

miss some better matches.37
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Fig. 3. A possible common substructure between the example Schemas.

Figure 3. A possible common substructure between the example Schemas 

One substructure in Schema 1

driver

firstName

lastName

first

license

driver last

license

One substructure in Schema 2 

Fig. 4. Two similar substructures that are not common substructures.

To understand this latter point, let us consider the two schemas in Fig. 1.1

The two schemas are not similar because of the structural difference. However, the

two pairs of substructures, shown in Figs. 3 and 4, are indeed similar. Figure 33

shows a common substructure of the two schemas, while Fig. 4 shows two very

similar substructures although they are not a common substructure in the classic5

sense. Their extraction allows some further interesting comparison between the

two Schemas. Using a classical tree matching algorithm to extract these common7

substructures would mean a very costly process of running the algorithm on each

possible pair of subtrees, demanding many edit operations.9

Based on this observation, we propose a concept of Approximate Common Sub-

structures (ACS) between two trees and developed an efficient tree matching algo-11

rithm for extracting a disjoint set of the largest ACSs. This disjoint set of ACSs

represents the most likely matches between substructures in the two schemas. In-13

deed, the algorithm provides structure similarity estimate for each pair of substruc-

tures including, of course, the overall similarity between the two schemas. Using15

our algorithm to match the above car-driver schemas, both driver and car nodes

and their components can be matched, even though the car is an ancestor of driver17

in schema one, and it is the other way around in schema two.

Some important features introduced in our algorithm include a search strategy19

and a recursive structure similarity computing used for comparing two subtrees.

These features are particularly adapted to schema matching. The search strategy21

allows a good trade-off between accuracy of structure similarity and time complex-

ity. It focuses on comparing “root parts” (i.e. low level parts) of subtrees while still23

taking into account the structure similarity between other parts (i.e. higher level

parts, those closer to leaves). This is the key heuristic that makes the algorithm25

efficient in time and enables it to deal with large schemas.
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In the following, we use nodeSim(u, p), computed at the second stage in our1

system, to represent the (semantic) similarity between the nodes u and p from the

two trees. nodeSim(a, p) = 1 means that u and p are the same.3

4.1. Approximate Common Substructure (ACS)

The concept of ACS generalizes the conventional concept of the common substruc-

ture [3]. Given two trees T1 and T2, the concept of ACS is related to subtree match-

ing and every pair of subtrees can be considered as being an ACS. A quality mea-

sure, defined as the structure similarity, is necessary to distinguish between a “good”

ACS and a “not very good” ACS. Formally, the structure similarity between the

two substructures subStr1 from T1 and subStr2 from T2 can be defined as follows:

structSim(subStr1, subStr2) = max
M

C(M)

where M is any mapping between the node set of subStr1, Nodes(subStr1), and5

the node set of subStr2, Nodes(subStr2) satisfying the following conditions:

(1) If (u, p) ∈ M and (v, q) ∈ M , and u = v then p = q;7

(2) If (u, p) ∈ M and (v, q) ∈ M , then u is v’s ancestor if and only if p is q’s

ancestor;9

And the similarity measure C(M) should satisfy the following conditions:

— 0 ≤ C(M) ≤ 1, if M is not an isomorphism between subStr1 and subStr2,11

if and only if subStr1 and subStr2 are a common substructure (i.e. M is an

isomorphism between subStr1 and subStr2 in which all the corresponding nodes13

are the same).

— C(M) is positively proportional to the size of M (and negatively proportional15

to the number of unmatched nodes);

The M that gives rise to structSim(subStr1, subStr2) defines the ACS be-17

tween the two substructures. Obviously, the closer structSim(subStr1, subStr2)

is to 1, the more there are similar nodes structured in the same way as in19

subStr1 and subStr2, i.e. M is larger. Unfortunately, as in the case of computing

structSim(subStr1, subStr2) edit distance, the problem of computing is also NP.21

In our matching algorithm, structSim(subStr1, subStr2) is replaced by an approx-

imate similarity function treeSim() while subStr1 are limited to rooted subtrees.23

Another important measure that we have used in our algorithm is the match-

ing percentage defined as the ratio of the number of nodes in a potential ACS25

to the average number of nodes in the two trees. It is used together with

structSim(subStr1, subStr2) (or in practice treeSim()) in order to favor large27

ACSs. An optimal ACS reaches a trade-off between structural similarity and match-

ing percentage.29

We can now state more formally the objective of our matching algorithm. The

algorithm aims to find a unified mapping Mschema composed of the set of all
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nodeSim

subTreeSim
pu

Fig. 5. Basic idea of the proposed matching algorithm.

mappings derived from disjoint ACSs

Mschema = mACS1 ∪ mACS2 ∪ · · · ∪ mACSi
∪ · · · ∪ mACSn

such that each ACSi has a combined score of the structural similarity and the1

matching percentage beyond a fixed threshold. It is important to notice that while

ancestral relations are preserved within each ACSi (or by the mapping mACSi
); they3

do not have to be preserved in the unified mapping Mschema. This is a distinctive

feature of the algorithm proposed in this paper that makes the matching of the5

above car-driver Schemas possible.

4.2. The matching algorithm7

For efficiency reason, we use the following definition of (sub-) tree similarity. Given

a node pair (u, p), where u ∈ T and p ∈ T2 respectively, the structure similarity,

treeSim(u, p), between the subtrees rooted at u and p is defined as follows:

treeSim(u, p) = α∗nodeSim(a, p) + (1 − α)∗subTreeSim(u, p)

where subTreeSim(u, p) represents the similarity computed based on the subtrees

rooted at u and p, and is the major concern of the algorithm. α is a factor whose9

value is between 0 and 1, which reflects the weight of the two parts. This definition,

easily justifiable for a large number of real applications, is deliberately in favor of11

the root parts of the two subtrees and suggests a recursive approach to matching

the two trees. Figure 5 outlines the general idea of the approach adopted for the13

new algorithm.

The subtree similarity corresponds in fact to the similarity between two forests15

under u and p. Since the size of each subtree in the forests can be very large, we

trim the size of each subtree to two levels by considering each subtree beyond the17

level 2 as a super-node as shown in the forest under (p) in Fig. 5. The choice of 2

levels has been made here based on a consideration of trade-off between complexity19

and accuracy. The procedure for computing sinTreeSim(u, p) includes matching

trees in the two forests and computing node-to-node similarities. The following21

conditions have been taken into account:



1st Reading
October 17, 2007 17:44 WSPC/117-ijseke 00344

12 J.-G. Lu, J. Wang & S.-R. Wang

(1) Preservation of ancestor relation: if u1 and u2 from the forest under u are1

matched respectively to p1 and p2 from the forest under p, then u1 is a parent

of u2 if and only if p1 is a parent of p2.3

(2) Deletion operation: if a node u1 is deleted, all the child nodes of u1 will be

moved up to become children of the parent of u1. This (edit) operation makes5

matching of nodes at different levels possible. However, in order to further

reduce the computational complexity without seriously affecting the matching7

optimality, this operation is applied only to the nodes at the root level of each

subtree in the forest, i.e. the original child nodes of u (or p).9

(3) Node-to-node similarity forestNodeSim(u1, p1): when comparing two “normal”

nodes u1 and p1, forestNodeSim(u1, p1) = nodeSim(u1, p1). If at least one of11

the two nodes is a super-node, then forestNodeSim(u1, p1) = treeSim(u1, p1).

The recursive nature of this algorithm guarantees that the structural similarity13

treeSim(u1, p1) is computed before treeSim(u, p).

To compute treeSim(u, p), we distinguish three cases: (1) both u and p are leaves;15

(2) one of them is a leaf and the other one is an inner node (the number of descen-

dants is greater than 0); and (3) both of them are inner nodes (Fig. 5 shows only17

this general case).

Case 1: Both u and p are leaves. In this case, we define

treeSim(u, p) = nodeSim(u, p)

Case 2: One of the two nodes is a leaf, another one is an inner node. Suppose that

u is a leaf, then

treeSim(u, p) = α∗nodeSim(u, p) + (1 − α)∗subTreeSim

= α∗nodeSim(u, p) + (1 − α)∗
β

√

1 + |descendants|
(1)

where |descendants| denotes the number of descendants of the non-leaf19

node.
√

1 + |descendants| is a penalty factor that reflects the difference

between the two forests under u and p. β is a user-defined parameter21

which is set to 0.3 in our experiments.

Case 3: Both u and p are inner nodes.23

treeSim(u, p) = α∗nodeSim(u, p) + (1 − α)∗subTreeSim

= α∗nodeSim(u, p) + (1 − α)

×max
M

{
∑

(i,j)∈M forestNodeSim(i, j)
√

1 + |deletedChild| · |M |
· |M |
NbLF

}

= α∗nodeSim(u, p) + (1 − α)

×max
m

{
∑

(i,j)∈M forestNodeSim(i, j)
√

1 + |deletedChild| · NbLF

}

(2)
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In this equation, M is any mapping built following the above conditions 1 and 2,1

i.e. M is an ancestor order preserving mapping between the remained forest under

u and the remained forest under p once certain immediate children of u and p are3

deleted. NbLF is the number of nodes in the larger (remained) forest. Formula

(3) can be interpreted as follows.
∑

(i,j)∈M
forestNodeSim(i,j)

|M | is the average similarity5

between the matched nodes. This average similarity is penalized by two factors.

One is related to deleted nodes (division by
√

1 + |deletedChild|) and the other7

one is related to percentage of non-matched nodes (multiplication by |M |
NbLF

). This

formula materializes the goal of the matching, which is to search the best ancestor9

order preserving correspondence between the two forests in terms of the similarity

and the number, while limiting the number of deletions.11

There is a gap between Case 1 and Case 3, since the two cases represent com-

pletely different situations. While it is relatively easy to justify the design principles13

for formulas (1) and (3), it is not as easy to justify Formula (2) for Case 2, which

represents the middle situations. Formula (2) designed for the current system is15

more consistent with Formula (3) for Case 3, if we consider that since one of the

nodes (say u) is a leaf node, we have to delete all the nodes in the forest under17

p in order to obtain two identical “remained forests”. This design provides a fine

grading of the difference between the structures of the two forests. One might want19

to adopt, for Case 2, the formula treeSim(u, p) = α∗nodeSim(u, p), which is more

consistent with formula (1).21

The most difficult task in computing treeSim(u, p) is to generate all the map-

pings M in Case 3. An enumerative approach could be used, particularly if the23

optimal solution is necessary. A more efficient approach is to consider M as a state

in a state space and to search a good, if not optimal, solution by exploring the25

space. Given an M , it can be altered by a number of actions on the forest under

each root. These actions are27

(1) Deleting an original child of each root;

(2) Add back a deleted child node;29

(3) Matching/re-matching nodes between the two forests.

We have adopted the same Iterative Improvement heuristic [25] to searching the31

state space. Since this hill climbing method can easily result in local maximum, we

have adopted the strategy of running the algorithm with a different initial state.33

The number of restarts has been fixed to be 5 or less in our experimentations.

The matching process starts with leaf nodes of the two trees and goes upwards.35

Each pair of subtrees will be matched after all their pairs of subtrees have been

matched. The output of the matching algorithm is all the similarity and the corre-37

sponding mapping for each pair of subtrees.

4.3. Identifying ACSs39

To identify the ACSs, each node pair which represents two matching subtrees is

used to represent a potential candidate. The qualified ACSs are identified from
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these candidates by applying a combination of thresholds of structural similarity

and matching percentage. Here the matching percentage for an ACS candidate,

denoted as mPer(u, p), is computed as the total number of matched nodes enclosed

in this ACS candidate divided by the average number of nodes for the two trees. If

we use ACS(u, p) to denote the ACS candidate rooted at u and p, |ACS(u, p)| to

denote the number of matched node pairs, then we have:

mPer(u, p) =
|ACS(u, p)|
|T1| + |T2|)/2

=
2|ACS(u, p)|
|T1| + |T2|

.

Both treeSim(u, p) and mPerf(u, p) should be considered in determining the quali-1

fied ACSs which reach the balance of high structural similarity and matching per-

centage. If we project these two values for every node pair into a two-dimensional3

plane, we will get a scatter chart similar to the one in Fig. 6. In this chart, the

horizontal axis represents the structural similarity, the vertical axis is the matching5

percentage, and each point denotes the result of an ACS candidate. Point A(1, 1)

represents a perfect matching — both the structural similarity and matching7

percentage reach the maximum value. Obviously, the points near A reflect the

good ACS candidates. Points near D(0, 0), in this chart, represent the poorest9

situation — low similarity and low matching percentage, and points near B(0, 1)

and C(1, 0) represent the situations that only one of the values is high. Generally,11

most points fall into the area in between.

To determine good ACSs from the scatter chart, we use the Euclidean distance13

from the node to the perfect matching point A. The idea of this approach is shown

in Fig. 6: the arc represents those points whose distance to point A is equal to the15
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threshold, therefore the points covered by the sector will be considered as admissible1

candidates to generate the ACSs.

Extracting the ensemble of disjoint ACSs is done in the following way. By or-3

dering all the admissible candidates according to their distances to Point A(1, 1), a

list of candidates is established. Candidates at the top of the list are those that are5

closer to A(1, 1) and are considered to be better candidates. The extraction con-

sists in comparing each candidate from the list with all the subsequent candidates7

from the lists and eliminating those conflicting candidates. Using ACS(u, p) and

ACS(u1, p1) to represent two such candidates, the comparison/elimination is done9

by applying the following rules:

(1) If the pair of subtrees corresponding to (u, p) and the pair of the subtrees11

corresponding to (u1, p1) are disjoint, do nothing;

(2) If one of the subtrees is included in another, i.e. either subtree(u1) is a subtree13

of subtree(u) or vice versa, or subtree(p1) is a subtree of subtree(p) or vice

versa, two situations should be dealt with. We suppose subtree(u1) is a subtree15

of subtree(u), then

(i) If subtree(p1) is a subtree of subtree(p) and there is at least one node17

involved in ACS(u1, p1) that is also involved in ACS(u, p), discard

ACS(u1, p1), i.e. eliminate ACS(u1, p1) from the above list;19

(ii) If subtree(p1) is not a subtree of subtree(p) then

1. if subtree(u1) is not involved in ACS(u, p), do nothing;21

2. if there is at least one node from subtree(u1) involved in ACS(u, p),

discard either ACS(u, p) or ACS(u1, p1) depending on their distance23

to A(1, 1).

These rules are applied to all the candidate pairs iteratively until no more candidates25

are eliminated. All the remaining candidates constitute the final ensemble of disjoint

ACSs that forms the unified mapping between the two Schemas, i.e. Mschema =27

mACSi
∪mACS2∪· · ·∪mACSi

∪· · ·∪mACSn
. The number of these ACSs is obviously

dependent on the value of threshold distance. As shown in Fig. 6, the threshold29

distance ranges from 0 to
√

2. The best value is problem specific and depends on

the number of nodes in the two trees and how close the two trees are. Usually, it is31

easy to determine this after a few tests. In our experiments, the value of threshold

ranges from 0.88 to 1.01.33

4.4. Reporting results — mappings and Schema similarity

Retrieving mappings is relatively straightforward once Mschema is identified. Each35

mapping is reported as two strings in XPath format, i.e. a string of names from

the root element (always ‘schema’) to this matched element, and the names are37

delimited by slash, e.g. schema/car/driver/first and schema/driver/firstName. Note

that the root element of an XML Schema is always ‘schema’, so we do not treat the39

root to root as a mapping. The similarity of the two Schemas is simply the structural
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similarity of the two roots of the trees, as ACS(r1, r2) has been computed indeed1

during the Schema matching process. It is to be pointed out that in general, there

is no similarity value associated to Mschema.3

5. Experiment

Our system is compared with the traditional edit distance tree matching algorithm5

for labeled unordered trees [25] that is implemented by us, and the popular schema

matching system COMA [7].7

5.1. Data

The experiments are performed on the XML Schemas which we collected from9

various sources. The first group comprises five purchase order schemas which are

used in the evaluation of COMA [7]. We choose the same test data to compare with11

COMA. The second group includes 86 large schemas from www.xml.org. These are

large schemas that are proposed by companies and organizations to describe the13

concepts and standards for particular areas. We use these large schemas to evaluate

system efficiency. The third group consists of 95 schemas that are collected from15

HITIS [12]. These schemas are designed to be the standards of interfaces between

hospitality related information systems, such as hotel searching, room reservation,17

etc. Group four consists of 419 schemas extracted from WSDL files that describe

the schemas of the parameters of web service operations. These schemas are small19

in general. Groups three and four are used to test the accuracy of our matching

system. Since most of them are relatively small, they are easy to read and judge21

manually.

5.2. Accurary23

5.2.1. Comparison with edit-diatance algorithm

Figure 7 compares the precision and recall between our algorithm (method 1) and25

edit distance algorithm (method 2). The test cases are from data group 1, which

consists of 5 purchase orders that are also used in COMA.27

The figure shows that our algorithm outperforms the edit distance tree match-

ing algorithm consistently. Both algorithms adopt node removal operation and use29

iterative improvement heuristic to search the approximate result. The major dif-

ference between these two algorithms is that we deal with two nodes (one for each31

tree) each time, recursively match two trees from leaves to roots, and the node re-

moval operation is limited to the child level of current nodes only. The edit distance33

tree matching algorithm always takes two trees, tries to remove some nodes in the

range of entire trees each time, compares and keeps the state with smallest dis-35

tance. Reviewing these five purchase order schemas supports our schema properties

observation again — similar concepts described by XML are made up of similar el-37

ements, and these elements are constructed in similar ways. Simply speaking, good
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Fig. 7. Precision and recall for our method (method 1) and edit-distance algorithm (method 2).

Table 1. COMA and our algorithm.

COMA COMA Our
(All) (All+SchemaM) algorithm

Precision 0.95 0.93 0.88

Recall 0.78 0.89 0.87

Overall 0.73 0.82 0.75

mappings between two similar schemas could be found by a few node removal op-1

erations. Our algorithm takes advantage of this condition and limits the range of

node removal. Therefore it removes less nodes, but achieves better result. On the3

other hand, for the edit distance tree matching algorithm, when the input size is

large, the wide range of node removal increases the searching space and decreases5

the chance of getting good mappings.

5.2.2. Comparison with COMA7

COMA maintains a library of different matchers (matching methods) and can flex-

ibly combine them to work out the result. It introduced a manual reuse strategy9

which can improve the results but needs human assistance. Besides precision and

recall, COMA adopts the overrall measurement that combines precision and recall.11

We focus on two matcher combinations in COMA, i.e., ‘All’ — the best no-reuse

combination, and ‘All+SchemaM’ — the best reuse involved combination. Together13

with the result of our matching system, the precision, recall and overall measure

are compared in Table 1.15

From this table, we can conclude that in terms of overall accuracy, our matching

system outperforms COMA ‘All’ combination, and falls behind ‘All+SchemaM’17
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combination on matching the given five purchase order schemas. Considering the1

‘All+Schema’ needs human assistance, our matching system works well.

5.2.3. Top-k precision3

We use Top-k precision method to assess the schema relations reported by our

algorithm and tree edit distance algorithm. Top-k precision is defined as

pTop-k = |ReportCorrectk |/k .

where ReportCorrectk is the set of correct results in the top-k return ones. The

experiment for assessing the schema relations is performed on data group three5

and four, and is designed as follows: in each group, we randomly pick a schema;

compare it with every schema in this group using both of the algorithms; then7

we sort the returned schemas. Next, we take the union of top-k schemas from

the two lists, subsequently, based on the union set, we manually determine which9

schema(s) should not be ranked in top-k, and finally compute the top-k precision

for each algorithm. In order to get better overall measurement, we compute top-311

and top-5 precisions, repeat above process, and take averages. Figures 8, 9 and 10

summarize the evaluation results which are based on 10 random schemas in group13

3 and 20 schemas in group 4.

The result shows that (1) using either algorithm to matching a schema group,15

top-3 precision is better than top-5 precision; (2) both algorithms get better preci-

sion on schema group 3; and (3) our algorithm gets better overall results than the17

edit distance algorithm.

The reason of better top-3 and top-5 precisions for group 3 is that all the19

schemas in this group are collected from one domain. Most files have similar pieces

of information, a few of them are even identical.21
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5.3. Performance1

The performance is assessed using group two that consists of 86 large schemas.

This experiment is performed on a computer with single Intel Pentium 4 3.0GHz3

CPU and 1G memory. The operating system is Red Hat Linux release 9. Every two

schemas in this group are matched, so there are 3655 matching tasks in total. Due5

to the high computation cost of method 2, we bypass this method for schemas that

exceed 150 nodes. Therefore, the count of matching tasks that the two algorithms7

participate is different.

Figure 11 shows the execution times of the three methods. We divide the input9

size, represented by the multiplication of node count of the two trees into several

intervals, then count the number of matching tasks, and calculate the average ex-11

ecution times for each interval. As we can see, for method 2, there are only six

matching tasks when input size is from 16 k to 20 k, and there is no task when13

input size is over 20 k.

It illustrates the increasing trend for all of the three execution times while the15

input size gets large. Besides, we can conclude that the preparation part is a heavy
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job, and the new tree matching algorithm is faster than the edit distance tree1

matching algorithm.

There are some tasks in preparing part, including modelling, computing node3

similarity, and preparing related data structures for later matching. Clearly, the

majority cost is spent on computing node similarity, and more specifically, on com-5

puting semantic similarities. Computing semantic similarities is a very expensive

task: given two words, the program exhausts their relations stored in WordNet, and7

tries to find the highest ranked connection. Even through we restrict the relation

to synonymy and hypernym only, the searching space is still huge. However, we9

could adopt some alternatives to reduce the dependence of WordNet, such as reuse

pre-calculated result and build user-specified similarity tables.11

Our tree matching algorithm is faster than the edit distance tree matching algo-

rithm. Due to the same reason described in the previous section, our tree matching13

algorithm limits node removal operation, therefore it reduces the searching space.

In conclusion, compared with the edit distance tree matching algorithm, our15

algorithm generates better results in shorter time for most of the matching tasks,

especially when input size is large. Therefore it is more applicable in real life schema17

matching problems.

5.4. Implementation of the matching system19

This matching system is developed using Java. SAX XML parser in Sun JAXP

package is used to parse XML schema, and WordNet API JWNL is used to ac-21

cess WordNet’s dictionaries. The experiments generate huge amount of result data,

therefore, we employ Oracle database to manage the data. In addition, after creat-23

ing proper indices, we benefit from Oracle database for quick searching and retrieval
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operations. There are two types of user interfaces, i.e., command line and web-based.1

Command line interfaces are used to debug the system and conduct experiments,

while the Web-based one is used to show the experimental results in a user-friendly3

way so that the evaluation work is easier.

6. Discussions and Conclusion5

This paper presents our XML Schema matching system to support schema reuse.

There are already hundreds of thousands of XML Schemas on the web, which need7

to be collected, classified, indexed, and searched upon. We are developing an XML

Schema repository, and provide various search mechanisms ranging from simple9

keyword search to the sophisticated tree matchings as described in this paper.

To achieve this goal, one salient feature of our system is our exhaustive approach11

to each step in the matching process, coping with the engineering details in real

application scenario, with the ultimate goal for practical applicaiton. For example,13

we considered the details of modelling an XML Schema as a tree, and the practical

issues in using WordNet to compute the name similarity. Most existing schema15

matching systems are prototypes that omitted those details.

We also implemented a classical tree matching algorithm for labelled unordered17

rooted trees. Compared with the edit distance tree matching algorithm, our new

tree matching algorithm is more applicable in schema matching problems, because19

it is designed for matching the trees modelled from schemas and it uses heuristics

to reduce the searching space.21

Compared with COMA, the performance of our matching system is also satisfy-

ing. COMA maintains various types of matching methods including a user-assistant23

reuse mechanism, and can flexibly combine them to generate the result. Based on

the same five purchase order schemas, our experimental results show that in term of25

overall measurement, our matching system exceeds the best matcher combination

without manual reuse, but falls behind the best matcher combination that includes27

manual reuse. Under the condition of no human interference, our matching system

works better than COMA in matching the five purchase order schemas.29

The experimental results also show that our new tree matching algorithm can

match large trees with hundreds of nodes effectively and efficiently. In a matching31

task, most executing time is spent on computing node similarities, especially the

connection time with wordNet. We are improving this by precalculating and storing33

the word relationships.

We are also applying schema matching system in web service searching, since the35

major components in web services are XML Schemas which defines the parameters

in the operations of a web service.37
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