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Sufficient condition for the coherent control of n-qubit systems

R. Cabrera, C. Rangan, and W. E. Baylis
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

�Received 3 January 2007; revised manuscript received 1 March 2007; published 4 September 2007�

We study quantum systems with even numbers N of levels that are completely state controlled by unitary
transformations generated by Lie algebras isomorphic to sp�N� of dimension N�N+1� /2 as discussed by
Albertini and D’Allesandro �IEEE Trans. Autom. Control 48, 1399 �2003��. These Lie algebras are smaller
than the corresponding su�N� with dimension N2−1. We show that this reduction constrains the field-free
Hamiltonian to have symmetric energy levels. An example of such a system is an n-qubit system with
state-independent interaction terms. Using Clifford’s geometric algebra to represent the quantum wave function
of a finite system, we present an explicit example of a two-qubit system that can be controlled by the elements
of the Lie algebra sp�4� �isomorphic to spin�5� and so�5�� with dimension 10 rather than su�4� with dimension
15, but only if its field-free energy levels are symmetrically distributed about an average. These results enable
one to envision more efficient algorithms for the design of fields for quantum-state engineering in certain
quantum-computing applications, and provide more insight into the fundamental structure of quantum control.

DOI: 10.1103/PhysRevA.76.033401 PACS number�s�: 32.80.Qk, 03.67.�a, 03.65.Fd

I. INTRODUCTION

The coherent control of an N-level quantum system is of
interest in fields such as chemical dynamics �1�, quantum
information processing �2�, and quantum communication �3�.
It is well known �4,5� that for an N-level system to be com-
pletely controllable, it is sufficient that the free-evolution
Hamiltonian, along with the interaction Hamiltonian �which
could involve a sequence of steps� and all possible commu-
tators among them, form a Lie algebra of dimension N2,
which in general is taken to be u�N�. Recently, it has been
shown �6� that state-to-state controllability can be achieved
with a Lie algebra isomorphic to sp�N� with dimension
N�N+1� /2. �We use the notation sp�N� for the algebra of the
group Sp�N� of N�N unitary symplectic matrices, as for
example in the text by Jones �7�. Other authors denote the
same group by Usp�N� �8� or Sp�N /2� �6�.�

In this paper, we show by calculating the Cartan subalge-
bra that this reduction places a restriction on the types of
systems that can be state-to-state controlled. Specifically, not
only do the systems have to have an even number of energy
levels �6�, their field-free energy levels must be symmetri-
cally distributed about an average. An example of such a
system is a multiqubit system with state-independent inter-
actions that has N=2n energy levels. This result in quantum
control is important both for developing optimal control
schemes in quantum computing �9,10� and for finding algo-
rithms to calculate applied fields for quantum-state engineer-
ing �11�.

The control equations can be derived from the time-
dependent Schrödinger equation

ẋ�t� = �A + �
i=1

m

ui�t�Bi�x�t� , �1�

where the state vectors x�t��Cn give the amplitudes in a
basis of free-evolution eigenstates, A and Bi are constant ma-
trices, and the real scalar functions ui�t� are the control fields.
The evolution of an N-level system can be studied by inte-

grating the corresponding matrix equation in which x�t� is
replaced by a matrix X�t�, each column of which represents
an independent state; one follows the evolution of X�t� from
the identity matrix X�0�= I. If A and Bi are anti-Hermitian,
the solutions of x�t� have constant norms �x�t�� and can thus
be viewed as lying on a sphere, and the groups that define the
complete controllability of Eq. �1� for general systems are
those summarized in �4�.

In this paper, we study and independently demonstrate a
sufficient condition suggested by Refs. �4,6,12� for establish-
ing controllability of a common class of systems that uses
sp�N� Lie algebras, which are smaller, namely, of dimension
N�N+1� /2, compared with N2−1 for su�N� or N2 for u�N�.
We show that the Cartan subalgebra of sp�N� restricts its
application to systems where the free-evolution Hamiltonian
has a symmetric distribution of energy levels about an aver-
age. These systems are a subset of the general ones discussed
in Refs. �4,5�. As an example, we illustrate explicitly that a
system with four levels �a two-qubit system� is controllable
with sp�4�, �which is isomorphic to the spin�5� and so�5�
algebras, and which has 10 dimensions and is thus smaller
than su�4� with its 15 dimensions� only if the field-free en-
ergies are of the form E1, E2, −E2, and −E1. Similarly, a
system with eight levels �a three-qubitsystem� is controllable
with a Lie algebra of dimension 36, significantly smaller
than su�8� with its 63 dimensions, only if the energies are
symmetrically distributed about an average. This result im-
plies that the state-controllability results of Ref. �6� are ap-
plicable only to some qubit implementations such as in
trapped ions �13,14�, and not to other implementations such
as NMR �15�.

II. SUFFICIENT CONDITION FOR STATE
CONTROLLABILITY

The wave function � is constructed as a unitary transfor-
mation of a reference or pass state �16�, represented in Clif-
ford’s geometric algebra by the primitive projector P. The
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unitary transformation is an exponential operator of anti-
Hermitian elements of the Lie algebra for the system

� = eaP, a � Lie algebra, �2�

and P can be represented by the singular matrix

P = 	1 0 . . .

0 0 . . .


 
 �

� �3�

with 0’s everywhere except at the upper left diagonal posi-
tion. One can verify the normalization tr��†��
=tr�Pe−aeaP�=tr�P�=1. In this form, the wave function, as
an element of the Clifford algebra, represents an arbitrary
single state of the system as a square matrix, corresponding
to X mentioned in the previous paragraph but with a single
nonvanishing column on the leftmost side. The form �2� is
equivalent to a column-matrix representation of the spinor
�, but as seen below its algebraic form is useful in manipu-
lations of the unitary operations acting on the pass state.

Our sufficient condition for a Lie algebra that governs the
pure-state control of a quantum system is based on the fol-
lowing: the parametrization of the wave function using uni-
tary exponential operators ea of the Lie algebra defines a
complete control scheme if we are able to reach an arbitrary
ray in the complete state space. We illustrate the procedure
first in general terms and then give explicit examples.

We require that, for any pair of basis states � j ,�k of the
state space, there exists an anticommuting pair of anti-
Hermitian elements akj ,bkj of the algebra that relates them:

�k = akj� j = − ibkj� j ,

akj = − akj
† , bkj = − bkj

† , akjbkj + bkjakj = 0. �4�

The basis states have the projective form �2� of a minimal
left ideal of the Clifford algebra. Assuming unit normaliza-
tion �akj�2=−1= �bkj�2, it follows that we can write �k

=exp�akj� /2�� j =−i exp�bkj� /2�� j, and the more general
superposition

exp��akj cos � + bkj sin ��
�

2
�� j

= � j cos
�

2
+ �ke

i� sin
�

2

= exp�ckj
�

2
�exp�akj

�

2
�exp�− ckj

�

2
�� j �5�

is expressed as a continuous “rotation” with real angle pa-
rameters � ,�, in state space, where

ckj =
1

2
�akjbkj − bkjakj�

is another element of the Lie algebra, and we noted that
ckjakj =bkj and �ckj�2=−1. There are thus simple unitary op-
erators as in Eq. �5� to transform any basis state of the sys-
tem into an arbitrary linear superposition of that state and
any other basis state. More generally, it can be shown �17�
that products of such unitary operators allow transitions from

one basis state to any linear combination of the states. One
additional element b j j is needed to simply change the com-
plex phase of � j:

i� j = b j j� j . �6�

The elements akj ,bkj ,ckj are generators of the control group
and represent the effect of coupling fields. Given any initial
basis state � j, a general state of the system is a real linear
combination

� = �
k

��kjakj + 	kjbkj�� j, �kj,	kj � R , �7�

of the akj and bkj generators operating on � j, where for no-
tational convenience we write a j j =1. In practice, the ele-
ments akj ,bkj ,ckj are members of the same small set. As we
demonstrate below, a set of N distinct elements is sufficient
to create, through its commutators, a Lie algebra of N�N
+1� /2 dimensions.

Calculating the Lie algebra of a higher-dimensional sys-
tem can require intensive computations, but there is an el-
egant and efficient approach using techniques of Clifford’s
geometric algebra. The N-level quantum system can be de-
scribed using multivectors in a geometric algebra. The bivec-
tors are well known as generators of the spin groups, and it
has been shown �18� that in fact every classical Lie group
can be represented as a spin group or subgroup thereof. Here
we introduce the possibility of using the full set of anti-
Hermitian multivectors �including, for example, trivectors
and six-vectors� to generate the control group. We illustrate
our method with examples of one- and two-qubit systems,
and then generalize to show how the control of an n-qubit
system can be achieved by a Lie algebra generally smaller
than su�N� as long as the field-free energy levels are sym-
metrically distributed about an average.

Example: Single-qubit control

In the simplest example, Clifford’s geometric algebra Cl3
of three-dimensional Euclidean space enables us to describe
a single qubit �N=2� �19�. In this case, Pauli spin matrices
can represent the three orthonormal vectors �basis elements
of grade 1�: e j =� j, j=1,2 ,3. The products of grade 2,

e12 = e1e2, e23 = e2e3, e31 = e3e1, �8�

form a basis for the bivector space and generate rotations.
There is a single independent element of grade 3, namely, the
trivector

e123 = e1e2e3, �9�

whose matrix representation is i times the unit matrix. These
elements along with the identity span the full linear space of
the closed algebra Cl3.

We can take the basis states of the qubit system to be
�0= P and �1=e13P. Then we note by the “pacwoman” prop-
erty of projectors �19,20�, namely, e3P= P, that i�1= ie1P
=e23P and i�0=e12P. The N=2 generators a10=e13,c10
=−e12 generate the control Lie algebra spin�3�, which is iso-
morphic to su�2�, so�3�, and sp�2�. An arbitrary state can be
expressed by
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� = exp�− e12
�

2
�exp�e13

�

2
�exp�− e12




2
�P ,

which, in fact, is just the Euler-angle expression for the
Bloch-sphere representation of the state �19�. Note that, since
the exponents form a closed Lie algebra, no generators out-
side of the algebra arise from an expansion of the unitary
operator �11�.

The energy levels of the system are generally the eigen-
values of the free-evolution Hamiltonian H0. Without restric-
tion, we can assume a basis for the system in which H0 is
diagonal. Since commutators �Lie products� of H0 with the
control transformations must remain within the controlling
Lie algebra, we need to construct H0 from the unit matrix
plus elements of the Lie algebra. To ensure that H0 is diag-
onal, its contributions from the Lie algebra are restricted to
the Cartan subalgebra, defined as the largest set of commut-
ing generators of the Lie algebra. For the two-state system,
the Cartan subalgebra of su�2� comprises a single element,
namely, the generator e12=�1�2= i�3. We thus construct a
general free-evolution Hamiltonian for a two-level system
�apart from an offset energy proportional to the unit matrix�
as

H0 = − ie12� = ��1 0

0 − 1
� . �10�

III. GEOMETRIC REPRESENTATION
OF MULTI-QUBIT CONTROL

For systems of multiple qubits, the orthogonal unit vec-
tors of the appropriate Clifford algebra can be represented as
tensor products �Kronecker products� of the Pauli matrices as
shown in Table I. Bivectors, trivectors, etc., can be obtained
by the product of the unit orthogonal vectors among them-
selves.

Any homogeneous multivector �comprising elements of a
single grade g� in the real Clifford algebra Cln for an
n-dimensional Euclidean space can be classified as Hermit-
ian or anti-Hermitian according to its grade. Elements of

grade 0,1,4,5,8,9 or generally whenever the grade is 0 or
1 mod 4, are Hermitian, whereas those of other grades are
anti-Hermitian. This is important because the bivectors on
one hand, as well as the complete set of anti-Hermitian mul-
tivectors on the other hand, form Lie algebras of compact
groups. In some algebras for Euclidean spaces of odd dimen-
sion, as for example in Cl3 or Cl7, the highest-grade multi-
vector �the volume element� is anti-Hermitian but commutes
with every element of the algebra, and it therefore must be
excluded from the set of anti-Hermitian elements that, to-
gether with their commutators, form the Lie algebra.

Example: Two-qubit control

The four-level system, understood as comprising two qu-
bits, is controlled using the bivectors plus trivectors of the
Clifford algebra Cl4 of four-dimensional Euclidean space or,
equivalently, by the bivectors of a Clifford algebra for a five-
dimensional Euclidean space, namely, the nonuniversal Clif-
ford algebra Cl5�1+e12345� /2, a left ideal of Cl5, which is
isomorphic to Cl4. These bivectors are the elements of a
spin�5� algebra, which is isomorphic to so�5� and to sp�4�.
The primitive projector for two qubits can be represented in
terms of bivectors e jk �see Table I� by

P =
1

4
�1 − ie12��1 + ie45� . �11�

The dimension of the control algebra is 10. Because the el-
ements form a closed algebra, in this case spin�5�, we know
that no other generators are needed for state control. The
Cartan subalgebra in this case is two dimensional, and its
elements can be represented by diagonal matrices for two of
the spin�5� elements, from which we can construct the free-
evolution Hamiltonian �apart from a constant offset and with
=1�

H0 =
i

2
��2 + �1�e45 −

i

2
��2 − �1�e12. �12�

This Hamiltonian has symmetric eigenenergies as repre-
sented in Fig. 1 for the case of two electronic levels �trapped-
ion qubit� coupled with a harmonic oscillator in its two low-
est levels �14�

TABLE I. A matrix representation of orthonormal vectors for
some dimensions. The 4�4 matrix representation for five dimen-
sions �5D� is not faithful for the universal Clifford algebra Cl5 �it is
a homomorphism rather than an isomorphism� but does represent
all bivectors uniquely and is therefore adequate for state control.

4D and 5D 7D

e1=�3 � �1 e1=1 � �3 � �1

e2=�3 � �2 e2=1 � �3 � �2

e3=�3 � �3 e3=1 � �3 � �3

e4=−�2 � 1 e4=1 � �2 � 1

e5=−�1 � 1 e5=�3 � �1 � 1

e6=�1 � �1 � 1

e7=�2 � �1 � 1

|D5/21�

|D5/20�

|S1/21�

|S1/20�

ωωωω2 ωωωω1

FIG. 1. Symmetric energy levels of the two-qubit system in a
trapped ion �14�. The electronic states �S1/2� and �D5/2� are coupled
with the first two levels of a harmonic oscillator.
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H0 =	
�2 0 0 0

0 �1 0 0

0 0 − �1 0

0 0 0 − �2

� . �13�

The sufficient condition for state controllability discussed in
Sec. II thus leads to a class of systems with energy levels
symmetrically distributed about a center, such as those that
can be found in trapped-ion qubits �13,14�.

The unitary transition operators among the eigenstates can
be expressed �see Eq. �5�� in the form
exp�c� /2�exp�a� /2�exp�−c� /2�, where � determines the
magnitudes of the state amplitudes and � gives the relative
phase. The transition between states is complete when �=�,
as in a � pulse. Table II shows the generators a ,c for each
transition in the two-qubit system. Note that, with �= ±� /2,
the partial transitions 1↔2,0↔3 induced by the coupled-
qubit bivector e24, create four entangled Bell states. We also
point out that our algebraic factorization of the unitary tran-
sition operator is quite distinct from the factors of 2�2 sub-
matrices proposed, for example, by Ramakrishna et al. �21�.

Thus all the transitions, together with control of the rela-
tive phase, require no more than the five nonzero elements in
Table II. These elements and their commutators give all ten
independent elements of spin�5�. However, only four of the
five are required in a minimal set, since, for example, e45 can
be obtained from the other four:

1

2
�e12,e24� = e14,

1

2
�e13,e35� = e15,

1

2
�e15,e14� = e45 = exp�e15�/4�e14 exp�− e15�/4� .

Fewer than four is easily seen to be insufficient to generate
all the elements of spin�5�, so that four is the number of
elements that is necessary and sufficient for state control of
an arbitrary two-qubit system. The anti-Hermitian multivec-
tors used to define controllable schemes are summarized in
Table III for small systems.

The Lie algebras of interest are of dimension N�N+1� /2,
which is the same as the dimension of the symplectic Lie
algebras sp�N� �for even N�. The Dynkin diagrams for lower
dimension are shown in Fig. 2 including the case of sp�4� to
show the isomorphism with so�5� and thus with spin�5�.

IV. EXPLICIT CONTROL SCHEME

The method is readily extended to higher even values of
N. An explicit control scheme shows that an arbitrary super-
position of states in a quantum system with an even number
of energy levels symmetrically distributed about an offset

TABLE III. Lie algebras and their controllable n-qubit systems.
N=2n is the number of levels and also the minimum number of
elements needed to produce the entire algebra as a result of a re-
cursive application of the Lie product.

Clifford algebra Qubits N Lie algebra Dim

Cl3 bivectors only 1 2 su�2� 3

Cl4 anti-Hermitian 2 4 sp�4� 10

Cl5 bivectors only 2 4 spin�5�sp�4� 10

Cl6 anti-Hermitian 3 8 sp�8� 36

TABLE IV. Matrices representing the initial entry subset of gen-
erators, which produce the complete sp�N� Lie algebra upon recur-
sive application of the Lie products on all the possible pairs of
generators.

	
0 1 0 ¯ 0 0 0

− 1 0 0 0 0 0

0 0 0 0 0 0



0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 ¯ 0 − 1 0

� 	
0 0 0 ¯ 0 0 0

0 0 1 0 0 0

0 − 1 0 0 0 0



0 0 0 0 1 0

0 0 0 − 1 0 0

0 0 0 ¯ 0 0 0

�
. . .

	
0 i 0 ¯ 0 0 0

i 0 0 0 0 0

0 0 0 0 0 0



0 0 0 0 0 0

0 0 0 0 0 i

0 0 0 ¯ 0 i 0

� 	
0 0 0 ¯ 0 0 0

0 0 i 0 0 0

0 i 0 0 0 0



0 0 0 0 i 0

0 0 0 i 0 0

0 0 0 ¯ 0 0 0

�
. . .

FIG. 2. Dynkin diagrams corresponding to some of the symplec-
tic Lie algebras in low dimensions and the case for so�5�, which is
isomorphic to spin�5�.

TABLE II. Generators for transition operators in two-qubit sys-
tems �see text�.

a c Transitions

0 e12 0↔0,1↔1,2↔2,3↔3,

e13 e12 0↔1,2↔3

e24 e12 1↔2,0↔3

e35 e45 0↔2,1↔3
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can be produced from another arbitrary superposition using a
set of fields, and the Lie algebra implied by these field cou-
plings is of dimension N�N+1� /2. This scheme is based on
the subspace controllability theorem �22� which describes the
method of transferring any superposition of states to any
other superposition through a pivot state �pass state�. This

builds on the work done by Eberly and co-workers on the
control of harmonic oscillator states �23,24�.

In the general case of the even N-level system with sym-
metric energies, this scheme is implemented by transferring
population in any superposition of states to the ground state
�0� through a sequential application of fields. �In Table II, we
show the fields connecting all energy states, and in practice
some of these may correspond to qubit-qubit couplings.
However, this scheme will succeed with any sequentially
connected quantum transfer graph �25�.� To obtain an arbi-
trary final-state superposition, the time-reversed sequence of
fields is applied starting from �0�. Since the system is finite,
we conclude that it is arbitrarily controllable. Note that un-
coupled n-qubit systems are all cases of the general even-
level system with symmetric energy distributions

The control algebra for this scheme contains only N�N
+1� /2 elements, which can be always constructed defining
an initial set of N generators with representation matrices of
the form shown in Table IV.

These matrices generally represent linear combinations of
the anti-Hermitian generators a jk, b jk, and c jk introduced
above. For two qubits, this initial set of generators can be
constructed from linear superpositions of the spin�5� genera-
tors as

�− e13,− �e15 + e24�/2,e23, �e14 − e25�/2� . �14�

The complete algebra is then found from all the new possible
independent commutators calculated recursively until the lin-
ear space is exhausted �25�. The Cartan subalgebra can be
directly obtained from the initial set �Table IV� by calculat-
ing the commutator of the two elements in each column of
the table, giving all N /2 diagonal matrices of the Cartan
basis, as shown in Table V.

This basis of the Cartan subalgebra is used to define free-
evolution Hamiltonians, all of which are seen to have energy
levels ±Ek, k=1,2 , . . . ,N /2, symmetrically distributed
around an average �the offset� energy. To give another ex-
plicit example, the general free-evolution Hamiltonian of a
three-qubit system is then

	
E1 0 0 0 0 0 0 0

0 E2 0 0 0 0 0 0

0 0 E3 0 0 0 0 0

0 0 0 E4 0 0 0 0

0 0 0 0 − E4 0 0 0

0 0 0 0 0 − E3 0 0

0 0 0 0 0 0 − E2 0

0 0 0 0 0 0 0 − E1

� . �15�

TABLE V. Matrices representing a basis of the Cartan
subalgebra.

2i	
− 1 0 0 0 ¯ 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1 0

0 0 0 0 ¯ 0 0 0 1

�
2i	

0 0 0 0 ¯ 0 0 0 0

0 − 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0



0 0 0 0 0 0 0 0

0 0 0 0 0 − 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 ¯ 0 0 0 0

�
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V. SUMMARY

A Lie algebra of N�N+1� /2 elements—significantly
fewer than N2 —is shown to be sufficient for arbitrary con-
trol of an even-level quantum system, specifically of �n
=log2�N��-qubit systems, but only if the energy levels are
symmetrically distributed about an average energy. All ele-
ments of the algebra can be produced by commutator prod-
ucts from a minimal set of N elements, which is the mini-
mum number of generators for state control of the N-level

system. These results have the potential to lead to more ef-
ficient optimal-control schemes for quantum state engineer-
ing and production of entangled states in specific quantum-
computing implementations.
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