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Information hiding and retrieval in Rydberg wave packets using half-cycle pulses

J. M. Murray,1 S. N. Pisharody,1 H. Wen,1 C. Rangan,2 and P. H. Bucksbaum'
1Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
2Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4
(Received 1 May 2006; published 4 October 2006)

We demonstrate an information hiding and retrieval scheme with the relative phases between states in a
Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer
phase-encoded information from an optically accessible angular momentum manifold to another manifold
which is not directly accessed by our laser pulses, effectively hiding the information from our optical inter-
ferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the infor-
mation back into the optically accessible data register manifold which can then be read out.

DOLI: 10.1103/PhysRevA.74.043402

I. INTRODUCTION

Coherent excited states of multilevel quantum systems
have been proposed as quantum bit registers for storing and
manipulating information [1-3]. Previous work has demon-
strated the use of the quantum phases of the states in a Ry-
dberg wave packet for information storage and showed the
applicability of terahertz half-cycle pulses (HCP’s) to re-
trieve and manipulate this information [4-9]. Recently, we
have measured the effects of a HCP on the phases and am-
plitudes of Rydberg p-state data registers [10]. In the current
work, we extend this investigation to the possibility of per-
forming sequential coherent operations on the stored infor-
mation by using multiple HCP’s. Since any program is a
sequence of operations, the ability to perform multiple op-
erations on all or selected parts of the stored data is an es-
sential requirement for information processing.

We use a pair of HCP’s acting on a Rydberg wave packet
to demonstrate the storage and retrieval of information from
the wave packet. In our experiments, information is stored in
the phases of each of the states of the wave packet, with
respect to the phase of a reference state. The first HCP acts
on an np Rydberg wave packet, storing the information by
redistributing the complex probability amplitudes of the
states in a deterministic manner [ 10]. Our means of detecting
the stored information is a wave packet holography tech-
nique that has previously been applied to wave packet sculpt-
ing [11]. This technique uses interference with an €=1 ref-
erence Rydberg wave packet, so it is sensitive only to the
p-state populations in the wave packet. The non-p states
populated by the HCP are therefore hidden from measure-
ment. A subsequent HCP can redistribute the € # 1 state
populations back into the p states and make the information
available for measurement. This ability to hide selective
parts of the information and retrieve it at will allows us to
introduce operators timed to occur between the two HCP’s,
enabling us to act on a subset of the stored information.
Here, we report the demonstration of this information hiding
and retrieval scheme.

II. EXPERIMENTAL METHODS

A tightly focused 1079 nm pulse from a Ti:sapphire-
pumped optical parametric amplifier excites ground-state ce-
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sium atoms from an effusive source from the 6s state into an
intermediate 7s launch state. A spectrally shaped 800 nm
pulse excites an n=27,...,32 p-state Rydberg wave packet
with equal phases and approximately equal amplitudes [6].
This wave packet is subsequently kicked by a weak terahertz
HCP polarized along the same direction as the laser pulses.
The duration of the HCP (0.5 ps) is significantly shorter than
the Kepler period (~3 ps). This suggests that an impulse
approximation can be used, and theory and experiment con-
firm this [5]. The HCP impulsively transfers a momentum
0=0.0017 a.u. (atomic units) to the Rydberg electron. This
momentum kick transfers population from an initial €=1
manifold into other p states as well as € # 1 angular momen-
tum states. With the correct choice of HCP delay T, we can
selectively depopulate one of the states [10]. A second HCP
is applied at time 7,, transferring amplitude from non-p
states back into the €=1 manifold. The resultant changes in
phase for those p states are then measured by exciting the
reference p-state Rydberg wave packet at different delays 7
with a second ultrafast pulse, identical to the first. The state-
selective field ionization spectrum is used to analyze the in-
terference between the wave packets and determine the phase
relationships between the states in the wave packet. Details
of this phase measurement procedure have been described
previously [10].

III. THEORETICAL ANALYSIS

Information stored in the phases of the states of the wave
packet is retrieved through correlation measurements. For
two p states |j) and |k), the noise-free correlation between
their populations is given by

rjk(T) = COS[(d’jl ~ ) - (¢j2 ~ ) - (wj — w)T7]
=cos(Pj — wj 7). (1)

Here, ¢, is the phase with which the state lj) is excited, a
time 7 before the reference pulse excites the j component of
the reference wave packet with phase ¢;,. The Rydberg-state
frequency for state |j) is denoted by w;. The amplitude of this
correlation curve is unity in the absence of technical noise
and decoherence. The presence of decoherence and back-
ground noise results in a measured correlation amplitude
[10]
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where oy is the standard deviation of the noise present in the
measurement of state ljy and o is the standard deviation
of the population identified as state |j). Noise can also intro-
duce an uncertainty Ad;, in the phase of 7.

The correlation amplitude r; is a periodic function of the
reference time delay 7 [Eq. (1)]. The measured correlation
curve is described primarily by its phase and its amplitude.
The effect of a HCP is to modify the phases and amplitudes
of the correlation curves. The amplitudes and phase shifts of
the correlations due to the double HCP kick depend on the
relative phases between the p states, and hence on the HCP
delays 7', and T5,.

For information processing purposes, it is useful to quan-
tify the amount of information that can be reliably retrieved,
both with and without a HCP kick. When storing information
in the quantum phase ¢, of a state |k) (with respect to some
reference), one can divide the phase range [0,27) into N
different partitions, each spanning a phase of 277/ N and rep-
resenting a different discrete logical level [12]. For example,
if we have ten partitions, the scheme will be a decimal sys-
tem. The information capacity of any digital encoding
scheme with N logical levels scales as log N [13-15]. The
number of logical levels distinguishable in the quantum
phase is related to the precision with which the phase can be
measured, ¢,+A¢;/2. If the uncertainty in phase, Agy, is
zero, the phase (and the encoded information) is known ex-
actly; if the uncertainty is 27, nothing is known about the
phase. In the case of binary encoding, the unit of information
content is defined as a bit (1 bit=log?2). The information
capacity of a state with phase uncertainty A ¢, can be written
as

1 2 3)

ip=log —.

Ady
The state phases ¢, containing the encoded information
are extracted using the correlation technique. We measure the
correlation between all pairs of states. The phase associated
with each state can be calculated as the difference in phases
from multiple correlation measurements (for example, ¢,
=®, ,.rand ¢k=. Oy i~ D, for all j). The nois.e level in t.hese
measurements influences the phase uncertainty associated
with each phase difference. The quantity A ¢y is measured as
a weighted average of the phase uncertainties in the mea-

sured correlation curves,

> Widdy,

N-1
Ady=—
Eij
J

IDORVC Y

J

(4)

where W =1/A®, is the weighting factor in each equation
and the sum over the weights is included for normalization.
This phase uncertainty is used as described above [Eq. (3)] to
determine the amount of information retrieved from the mea-
surement of that phase. To obtain the fidelity of information
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FIG. 1. Correlations vanish. The choice of HCP; delay T
=5 ps moves population from the 31p state into neighboring angu-
lar momentum states such that the phase information that was con-
tained in 31p cannot be measured. All correlations involving 31p
vanish.

retrieval across the entire wave packet, we add the informa-
tion capacity of each state so that the total information con-
tent is

2
I=2,i,= log —. 5

IV. RESULTS AND DISCUSSION

We perform our experiment with a Rydberg wave packet
excited into np states with n=27,...,32. A correlation mea-
surement on this wave packet allowed us to determine A¢
=7° (i=5.7 bits) for the 31p state. Figure 1 shows a correla-
tion measurement when a HCP is applied at 7,=5 ps such
that the correlation vanishes for all pairs of states involving
31p. At this particular delay, population in state 31p has been
substantially transferred to other states, both €=1 and € # 1.
Much of the phase information that was initially stored in the
31p state is now inaccessible to our measurement technique,
which is sensitive only to the p states. The phase uncertainty
in the 31p state is 32° (i=3.5 bits) from this measurement.

In the absence of a half-cycle pulse, the information ca-
pacity of the wave packet as determined using the correlation
technique [Eq. (3)] is 35 bits. Following a HCP, for the data
illustrated in Fig. 1, this quantity becomes 29 bits. It can be
seen from Fig. 1 that a large part of the phase information
associated with 31p is lost.

When we apply a second HCP at a delay 7, following the
first HCP, it causes a redistribution of the states into the p
states depopulated by the first HCP in a coherent manner and
we can once again measure the phase information in the
previously missing state (see Fig. 2). The effect of the second
HCP is to recover the information hidden by the first HCP.
The uncertainty in the phase of the 31p state is reduced by
nearly a factor of 3 from 32° to 12° (i=4.9 bits).

The timing of the second HCP affects not only the final
phase and amplitude of the depopulated state but also those

043402-2



INFORMATION HIDING AND RETRIEVAL IN RYDBERG...

28p 29p 30p 31p 32p

1
O#/\,WMIVV\NWV\MW27P
-1

34 35 36

Reference s I AAAAL SAAAAY 28
Delay (ps) P

Correlation

PN 31p

FIG. 2. Correlations recovered. Applying a second HCP at T,
=6.3 ps coherently transfers population from neighboring angular
momentum states into the data register state n=31p. The correla-
tions with 31p are seen to return; phase information is recovered.

of the other p states. The second HCP will in general tend to
depopulate those other p states as well. At the delay shown in
Fig. 2, this produces a slight increase in the uncertainties of
the phases of the other p states (corresponding to less effi-
cient information retrieval); this counteracts the information
increase seen in 31p. The total information content (28 bits)
is nearly unchanged for this delay of the second HCP. The
improvement that we observe is in the increase in informa-
tion recovered from the 31p state.

We have also performed a separate experiment to deter-
mine whether the population transferred into the 31p state is
due to p-state redistribution alone or if it is also the result of
population transfer from non-p states as we expected. We
isolate the effects of neighboring € # 1 states on the recovery
of correlations by exciting a two-state wave packet where the
two excited states are energetically distant, in our case, 27p
and 32p. Neither state has any p-state neighbors to which it
is coupled by the weak HCP.

The effect of the HCP on the lower-energy 27p state is
minimal, while the same HCP causes significant transfer of
32p state amplitude into the neighboring ¢ #1 states,
namely, 31d, 33s, and 32s. The final populations of the non-
p states are small, relative to the 32p population. Note that
what we measure as 32p population also contains 31d popu-
lation; the states are nearly degenerate, and we do not resolve
them using ramped field ionization.

In the two-state experiment, none of the population was
transferred by the first HCP into other p states. Any popula-
tion transferred back into 32p as the result of a second HCP
must originate from a non-p state. Meanwhile, the effect of
the HCP on the lower-energy eigenstate (27p) is minimal.
The correlation thus becomes a measure of the actual phase
shift in 32p.

Since only two p-states are initially excited, there is only
a single correlation to be measured. In the absence of any
HCP, the phase difference is well defined [see Fig. 3(a)].
Upon application of a single HCP, the correlation amplitude
between 32p and 27p vanishes [Fig. 3(b)]. The phase infor-
mation is hidden because of depopulation of the 32p state in
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FIG. 3. Two-state wave packet correlations. (a) In the absence of
a HCP, the 27p-32p correlation is strong; the phase relationship is
well defined and easily read. (b) 7y=7 ps. The operation of the HCP
moves phase information into the 314 and 32s states, and that phase
information becomes unreadable. (¢) T,=14.2 ps. Application of a
second HCP at a later delay recovers phase information in the 32p
state.

the presence of noise, as has been previously established
[10]. When a HCP kicks the wave packet a second time, the
coherence between the 32p and 27p states is again observed
[Fig. 3(c)], as a result of transfer of coherent population from
non-p states into the partially depopulated 32p state. This
experiment proves that we can coherently transfer population
from states that are accessible to our measurement to states
that are inaccessible and then retrieve it at a later time.

We consider the robustness of the retrieved information as
a function of the delay between the two HCP’s. The first
HCP is applied at 77=4.1 ps such that it significantly de-
populates one of the states in our wave packet. In Fig. 4, the
information capacity of the wave packet after a single HCP is
represented by the dashed line. With the delay of the first
HCP fixed, a second HCP arrives at various delays and the
total information content following the two HCP’s is plotted
as a function of this delay (solid line). It is seen that at nearly
all delays the second HCP can reliably recover the informa-
tion hidden by the first HCP.

25

20
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Information Recovered
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10 20 30 40 50 60 70
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FIG. 4. Information recovered following second HCP. In the
absence of any HCP, the information recovered is at the level indi-
cated by the dotted line. An HCP arrives at a fixed delay T}
=4.1 ps after wave packet excitation, and the total phase informa-
tion retrieved following this HCP kick is indicated by the dashed
horizontal line. Following the first HCP, a second HCP kicks the
wave packet at various delays 7,. The information recovered fol-
lowing the second HCP (solid line) is shown as a function of the
time difference between the first and second kicks.
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The fundamental idea involved in the information hiding
and retrieval scheme is that of transferring state amplitudes
into different subspaces (those with € # 1), and transferring
them back into a particular manifold which we are able to
measure experimentally. As a further goal, we seek to learn
about the content of states in a larger Hilbert space than we
can measure directly. In the present work, both the excitation
of the larger Hilbert space and its probe were half-cycle
pulse operators. More generally, we find that we have a sys-
tem that spans a large state space, of which we are only able
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to directly measure a small fraction. Such a scenario need not
be limited to Rydberg atoms, but might include molecules
and other multilevel systems.
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