University of Windsor

Scholarship at UWindsor

Computer Science Publications School of Computer Science

2000

Higher order generalization and its application in program
verification

Jianguo Lu
University of Windsor

John Mylopoulos
Masateru Harao

Masami Hagiya

Follow this and additional works at: https://scholar.uwindsor.ca/computersciencepub

6‘ Part of the Computer Sciences Commons

Recommended Citation

Lu, Jianguo; Mylopoulos, John; Harao, Masateru; and Hagiya, Masami. (2000). Higher order generalization
and its application in program verification. Annals of Mathematics and Artificial Intelligence, 28 (1),
107-126.

https://scholar.uwindsor.ca/computersciencepub/5

This Article is brought to you for free and open access by the School of Computer Science at Scholarship at
UWindsor. It has been accepted for inclusion in Computer Science Publications by an authorized administrator of
Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/computersciencepub
https://scholar.uwindsor.ca/compsci
https://scholar.uwindsor.ca/computersciencepub?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/computersciencepub/5?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Preprint 0 (1999) 1-23 1

Higher order generalization and its application in

program verification

Jianguo Lu, John Mylopoulos

Department of Computer Science, University of Toronto

{jglu, jm}0cs.toronto.edu

Masateru Harao

Department of Artificial Intelligence, Kyushu Institute of Technology
harao@dumbo.ai.kyutech.ac. jp

Masami Hagiya
Department of Information Science, University of Tokyo

hagiya@is.s.u-tokyo.ac.jp

Generalization is a fundamental operation of inductive inference. While first
order syntactic generalization (anti-unification) is well understood, its various ex-
tensions are often needed in applications. This paper discusses syntactic higher order
generalization in a higher order language A2[1]. Based on the application ordering,
we prove that least general generalization exists for any two terms and is unique
up to renaming. An algorithm to compute the least general generalization is also
presented. To illustrate its usefulness, we propose a program verification system
based on higher order generalization that can reuse the proofs of similar programs.
Keywords: higher order logic, unification, anti-unification, generalization, program

verification.

1. Introduction

The word “generalization” is ubiquitous and one can find it used in almost
every area of study. In computer science, especially in the area of artificial intel-
ligence, generalization serves as a foundation of inductive inference, and finds its
applications in diverse areas such as inductive logic programming [17], theorem
proving [19], program derivation [6,9], and machine learning[18]. In a strict tech-

nical sense, generalization is a dual problem to that of first order unification and

2 Higher order generalization

is often called (ordinary) anti-unification !

. More specifically, it can be formu-
lated as follows: given two terms ¢ and s, find a term r and substitutions #; and
5, such that rf; = t and rfy = s. Ordinary anti-unification was well understood
as early as 1970 [22,20]. They proved the existence of a unique least general
generalization for first-order terms and came up with a generalization algorithm.
However, due to the fact that it is inadequate for many problems, there have
been many extensions of ordinary anti-unification along different directions.

One direction of extending the anti-unification problem is to take into con-
sideration some kinds of background information as in [17]. One typical example
is the relative least general generalization under # subsumption [21]. There are
various generalization methods in the area of inductive logic programming. More
recently, there have been proposals for generalization operations under implica-
tion[13], and in constraint logic[18].

Another direction of extension is to promote the order of the underlying
language. The problem with higher order generalization is that without some
restrictions, generalization is not well-defined. For example, suppose we have
two terms Aa and Bb, where A and B are functional constants and @ and b
are individual constants. The common generalizations of Ae and Bb without
restriction could be any of the following: fz, fa, fb, fab, fA, fB, ..., f(Aa, Bb),
f(g(A, B), g(a,b)),, where f and g are variables. Actually, there are an
infinite number of generalizations in this simple example. [3] regards all these
generalizations are equal up to renaming, hence in their framework least general
generalization exists and is unique. Obviously, some restrictions must be imposed
on higher order generalization.

This paper is devoted to the study of higher order generalization. More
specifically, we study the conditions under which the least higher order gener-
alization exists and is unique. The study is directly motivated by our research
on analogical(inductive) programming and analogical(inductive) theorem prov-
ing[15,7]. The most closely related works are [19,3]. Other related works are
[4,5].

[19] studied generalization in a restricted form of calculus of constructions

[2], where terms are higher-order patterns, i.e., free variables can only apply

! The words generalization and anti-unification are often used interchangeably. Here we will
use anti-unification to denote the pure syntactic first order anti-unification, i.e., instantiation
as the ordering, Robinson’s formulation as the language. We use generalization to denote its

various extensions.

Higher order generalization 3

to distinct bound variables. One problem with the generalization in higher-
order patterns is that of overgeneralization. Taking the above example, the least
generalization of Aa and Ba would be a single variable z instead of fa or fz.
Another problem of higher-order pattern is that it is inadequate to express some
problems. In particular, it can not represent recursion in its terms. For example,
the generalization of [z : N]fac(succ(z)) and [z : N]sum(succ(z)) would be [f :
N — N][z : N]f(z), while in most cases we would hope that the generalization
would be [f : N — N][z : N]f(succ(z)). In fact, in higher-order patterns, all
n-ary functions having different heads will be generalized into the same term
[z1, %2, ..., Ts) f(Z1, T2, ..., z,). The structure inside each term is not considered
at all by the generalization operation.

This motivated the study of generalization in M [3]. In M, free variables
can apply to an object term, which can contain constants and free variables in
addition to bound variables. In this sense, M A extends LA. On the other hand,
it also adds some restrictions. One restriction is that M A is situated in a simply
typed A calculus instead of calculus of constructions. Another restriction is that
M X does not have type variables, hence it can only generalize two terms of the
same type. The result is not satisfactory in that the least general generalization
is unique up to substitution. This means that any two terms beginning with
functional variables are considered equal.

Unlike other approaches, which mainly put restrictions on the situated lan-
guage, we focus on restricting the notion of the ordering between terms. Our
discussion is situated in a restricted form of the language A2[1]. The reason for
choosing A2 is that it is a simple calculus which allows type variables. It can
be used to formalize various concepts in programming languages, such as type
definitions, abstract data types, and polymorphism. It would also be desirable if
we could situate our discussion in LF[8]. But LF does not have type variables,
which means that we could only generalize two terms of the same type. The one
restriction we added to A2 is that abstractions should not occur inside arguments.
This restriction is required so that we can use the results of [12]. In the restricted

language A2, we propose the following:

e an ordering between terms, called application ordering(denoted as >), which
is similar to, but not the same as the substitution (instantiation) ordering
[20,22,19].

e A kind of restriction on orderings, called subterm restriction (the correspond-

4 Higher order generalization

ing ordering is denoted as >g), which is implicit in first order languages, but
usually not assumed in higher order languages.

e An extension to the ordering, called variable freezing (the corresponding order-
ing is denoted as >gr), which makes the ordering more useful while keeping

the matching and generalization problems decidable.

e A generalization method based on the aforementioned ordering.

Based on the >gp ordering, we have the following results similar to those

for first order anti-unification:

e For any two terms ¢ and s, t >gr s is decidable.
e The least general generalization exists.

e The least general generalization is unique up to renaming.

The rest of the paper is structured as follows. In the next section we intro-
duce some basic notations used in this paper. In Section 3, we present various
orderings, i.e., the usual application ordering(>), the application ordering with
subterm restriction(>s), and the application ordering with subterm restriction
and variable freezing extension(>gsr). In section 4 we provide the generalization
procedure. In Section 5, we demonstrate how generalization is used in program

verification.

2. Preliminaries

The syntax of the restricted A2 can be defined as follows[1]:

Definition 1 (types and terms).The set of types is defined as:
V ={a,a,ay, ...}, (type variables),
C ={v,v1,72 -.-}), (type constants),
T=V|C|T = T|[V]T, (types).
The set of terms is defined as:
X ={z,z1, 29, ...}, (variables),
A ={a,a1,asy, ...}, (constants),
Ay = X|A|A1AL|AT ,(terms without abstraction),
A = A|[X : TIA|[V]A | (terms).

Higher order generalization 5

Here for purposes of convenience, we use [z : o] instead of Az : 0. Also,
we use the same notation [V] to denote AV (and VV'), since we can distinguish
among A, A and V from the context.

The assignment rules of A2 are listed here for ease of reference:

Definition 2. Let 0,7 are types. I' ¢ : ¢ is defined by the following axiom and
rules:
(z:0)el
1. 'Fz:0
'tFt:(c—71) I'kFs:o
2. FHts:T (
Lz:obt:r
: 1
3.IF[z:olt:(oc— 1) (=)
I'Ft:lao
4. 'k tr :o[r/a]
I'tt:o ag FV(D)
5. I'F[a]t: [a]o

(start)

— F)

(VE)

(V1)

We say that a term ¢ is valid (under I') if there is a type o such that
I'Ft:0. We use Typ(t) to denote the type of t. Atoms are either constants or
variables. By closed terms we mean the terms that do not contain occurrences of
free variables. In the following discussion, unless specified otherwise, we assume
that all terms are closed, and in long 37 normal form. The symbol = denotes
afn-convertibility. Given A = [z : oy][zy : 09]...[z, : 0,] and term ¢, [A]t
denotes [z : 01][z3 : 02]...[z,, : 0,]t. When type information is not important,
[z : o]t is abbreviated as [z]t. [z,y : o] is an abbreviation for [z : o][y : o], and
01,02, ...,0 — Op41 i an abbreviation for o7 — 09 — ... = 0 — Op4q1. As
usual, terms are associated to the left, i.e., tsr = (£s)r. Sometimes, we write tsr
as t(s,r). Types are associated to the right,ie., a 5 5> v=a— (8 = 7).

Following [19], we have a similar notion of renaming. Given natural num-
bers n and p, a partial permutation ¢ from n into p is an injective mapping from
{1,2,...,n} into {1,2,...,p}. A renaming of a term [z; : oy][z2 : 02]...[x, : o))t
is a valid and closed term [z41) @ og)l[Tg2) * To)]-[Tpn) * To(m)lt- Intu-
itively, renaming amounts to permuting variables, also dropping some of the
abstractions when allowed. For example, [z3,21 : y]Azi23 is a renaming of

[z1, 22,23 : Y]Azq23.

6 Higher order generalization

We will also use the following conventions unless specified otherwise.

o, aq, ..., 3,81 ... range over type variables, i.e., the elements of V. 7,1, ... range
over type constants, i.e., the elements of C'. ¢, 01, ..., 7,7y, ... range over arbitrary
elements of theset T. z, x1,z2..., ¥y, Y1, Y2, ..., 2, 21, 22, ... range over both term vari-

ables and type variables, i.e., the elements in VU X. a, b, ... range over term con-
stants, i.e., the elements in A. ¢, ¢, ¢g, ... range over both term constants and type
constants, i.e., the arbitrary elements in C' U A, t,t1,%9, ..., 8,51, S2, ..., T, T'1, T'2, ...

range over terms and types, i.e., the elements in AU T.

3. Application orderings
3.1. Application ordering (=)

Definition 3 (>).Given two terms ¢ and s. ¢ is more general than s (denoted
as t = s) if there exists a sequence of terms and types ri, g, ..., 7k, such that

triry...ry is valid, and tryrq...rz; = s. Here k is a natural number.

To distinguish > with the usual instantiation ordering (denote it as >.
t > s if there exist a substitution # such that t0 = s.), we call = the application
ordering. Compared with the instantiation ordering, the application ordering
does not lose generality in the sense that for every two terms ¢ and s in A2, if
t > s, and t; and s; are the closed form of ¢ and s, then t; =g s1, where = will
be defined in section 3.3.

Example 4. The following are some examples of the application ordering.
o[fra—= a—allz,y:a]fzy

[f 27 =7y —= 7z, y: 7] 2y

[z, y : v]Azy

[y : 7]Aay

Aab.

—

Y Iy Iy Iy

Proposition 5. > is reflexive and transitive.

Proof. The reflexivity is trivial. For the transitivity, suppose t; > to, t9 > t3.
There is a sequence of terms or types ri1,712, ...; "1n, 721,722, --+s T2m, such that

t17‘117‘12...7‘1n = tg, and t27‘21’f‘22...7“2m = t37 hence t1rnrlg...rlnrmrm...rzm:tg. O

Higher order generalization 7

3.2. Application ordering with subterm restriction (=g)

Because * is too general to be of practical use, we restrict the relation to

=g, called subterm restriction. First of all, we define the notion of subterms.

Definition 6 (subterm).The set of subterms of term ¢ (denoted as subterm(t))
is defined as norm(decm(t)) U{Typ(r)|r € decm(t)}.
Here norm(t) returns the 87 normal form for the term ¢. decm(r) is to decompose

terms recursively into a set of its components, which is defined as:
1. decm(c) = {c} (constants are unaffected by decm);
2. decm(z) ={}; (variables are filtered out);

3. decm(ts) = decm(t) U decm(s) U {ts}, if there are no variables in ¢s;

= decm(t) U decm(s), otherwise;

4. decm([d]t) = decm(t).

Example 7. Assume A:vy—>~v—=>v,B:v—7,

subterm([z : v]Aza)
=norm(decm([z : y]Aza)) U{Typ(r) | r € decm([z : y]Aza)}
=norm(decm(Aza)) U{Typ(r) | r € decm([z : v]Aza)}
=norm(A,a) U{Typ(r)|r € deem([z : y]Aza)}
[,y :) Azy, a} U{Typ(r) | € {4, 0}}
={[z,y :v]Azy, 0,7,y = v =7}

subterm([f : v = 7][z : y]f(Bz)) = {[z : v]Bz,y = 7}.

As we can see, the subterms do not contain free variables. Actually, there
are no bound variables except for the term having its n normal form (the term
[z,y: v]Azy in the above example). Here we exclude the identity and projection
functions as subterms. This is essential to guarantee that there exists least gen-
eralization in the application ordering. The intuition behind this is that when we
match two higher order terms, in general there are imitation rule and projection
rule [11]. Here only imitation rule is used. For our purpose, it is projection rule
that brings about the unpleasant results and additional complexities in higher

order generalizations.

Definition 8 (>g).

8 Higher order generalization

Given two terms ¢t and s. t is more general than s by subterms (denoted as
t =5 s), if there exists a sequence of rq,ry, ..., rg, such that ¢ryry...rp = s. Here

r; € subterm(s),t € {1,2,...,k}, and k is a natural number.

Example 9. Here are some examples of the =g relation.
[Alalfe =5 Aa;
[Alz)fz =5 Bbe:
[a][z : o]z =g [z : v]z =5 Aa;
[fllz]fz #s a, since the only subterm of a is a.

Due to the finiteness of subset(s), the ordering »g becomes much easier to

manage than >.
Proposition 10. >g is decidable, reflexive, and transitive.

Proof. The decidability follows from the fact that the subterms of t; are finite.
The reflexivity is obvious. For the transitivity, suppose t; =g t9, to >g t3.
By definition of »=g, there is a sequence of terms or types rii,712, ..., rin €
subterm(ta), ro1,722, vy Tom € subterm(ts), such that t1r11712...71, = t2, and

toro17r99...T9, = t3. Hence tyrq1712...714721722...72,, = t3. Besides, since we can

not eliminate constants in ¢ when applying terms to it, and ry1, 712, ..., 71, are
constants in t,, so 711,712, ..., "1, must also be subterms of ¢3. Hence we have
t1 =5 ts.]

3.3. Application ordering with subterm restriction and variable freezing

extension (»=gr)

Consider the following two terms:
t = [o]ly) Aey,
s = [z]Aza.

In the instantiation ordering, suppose z and y are free variables, Azy is more
general than Aza by the substitution [a/y]. Or, by application interpretation of
substitution, ([y]Azy)a = Aza. But t #g s, i.e., we can not find a term r such
that tr = s. The problem is, before we instantiate y, we must instantiate z first.

To address this problem, we propose the following:

Definition 11 (>r).

t is a generalization of s by variable freezing, denoted as t > s, if either

Higher order generalization 9

e {>s5, 01

e for an arbitrary type constant or term constant ¢ such that sc is valid, ¢t = sc.

Intuitively, here we first freeze some variables in s, then try to do generaliza-
tion. The word freeze comes from [12], which has the notion that when unifying
two free variables, we can regard one of them as a constant.

The ordering >f is too general to be managed, so we have the following

restricted form:

Definition 12 (>gsr).
t =sF s, if either

e {>g5s,0r

e For an arbitrary type constant or term constant ¢ such that sc is valid, t > g

ScC.

Now we have [z][y]Azy »=gF [¢]Aza. The notion of >gr not only mim-
ics, but also extends the usual meaning of instantiation ordering. For example,
we have [z,y]Azy >sF [z]Azz, which can not be obtained in the instantiation

ordering.

Example 13. The following relations hold:

[a][z : alz =sF [a][f:a = o[z : o] fz

s [f iy =z qlfe

=5 [z q]Az

=s Aa;
[fllz, 2,y f(Azy, 2) =5 [z, 2,y]A(Azy, z) =5 A(Aab, Aab);

[fllz, 2,y f(Azy, z) =Fs [z,y]A(Azy, Azy); since Azy is not a subterm of
[z,y]A(Azy, Azy).

[o][f : @« = a][z : a]fr ¥sr [@][z : o]z, since identity and projection

functions are not subterms.

Proposition 14. For any terms ¢ and s,

1. t =gF siff there exists a sequence (possibly empty) of new, distinct constants

€1, Ca, ..., C, such that scicy...cp is of atomic type, and t =g scqcs...cp.

2. There exists a procedure to decide if ¢ = gp s.

10 Higher order generalization

3. Suppose t = s. If t =gp r, then s >gp r. If r =gr ¢, then r =g s.

Proof.

1. (=) Suppose t =g s. If s is of atomic type, then proof is trivial. Now
suppose s is of type ¢ — 7, ¢ is a constant of type o. If t >g s, then
t =5 sc. If t #5 s, by definition of > g, there exists ¢ such that ¢t >gr sc.

(<) Suppose there exists a sequence of new constants ¢y, ¢, ..., cg, such that
scycy...ct, is of atomic type, and t >g scicg...cp. By definition of >gp,
t >sF s€iC...Ck—1, L > SF 8C1C3...Ck—2, ..., L > SF S.

2. Since t »gp siff t =g scics...cp, and we know > g is decidable, hence t >gr s
is decidable.

3. If t =gF r, then there exists a sequence of new constants ¢y, ¢, ..., ¢k, such
that recycg...cp is of atomic type, and ¢t >=g rcicg...c,. Moreover, there exists
a sequence of terms or types rq,...,r;, such that trqi...r; = rcicy...cp. Since
t = s, we have sry...r; = reica...cp, S =sp r.
The second proposition can be proved in a similar way.
O

Proposition 15. Suppose t1 = [A]hs183...8m, t2 = [A]h's|s)...s), and t; =gF

to, then
1. m < n,
2. [Alsk =55 [A'l8}1p_pm, for k € {1,2,...,m}, and

3. If h is a constant, then A’ must be a constant, and h = &', m = n.

Proof. Suppose [A'] = [z1, 22, ..., 2;]. Since t; =g t2, we have
[Alhs15g...5,, =5 (h's]s)...5],)[¢/Z], where Z is a sequence zy, ..., z;, € is a sequence

: : [N !
of new constant symbols ¢y, ...,c;. Now, suppose each variable in h's|s}...s], is

fixed as a new constant. Then hs;ss...s,, should match A's|s}...s/ in the sense
of [Huet78]. As we know, the complete minimal matches are generated by the
imitation rule and the projection rule. Since the substitutions in the projection
rule are {h — [21,...,2m]zs|t € {1,...,m}}. They do not satisfy our subterm
restriction (remember the projection functions like [z1, ..., z,,]z; will never be a
subterm of any term). Thus the only way to match two terms is by using the

imitation rule. By imitation rule we have substitutions

Higher order generalization 11

{h = [21, cyzm]h/ (h1z1...20)...(AnT1...2n) }, Where hy,..h, are new variables.
On the other hand, the subterms of A's}s}...s!, 2 whose head is k' could only be:
[21, ..y zp)h 22020,
[Z2, ..., Tp)h s 20.. 20,
[Zig1yeeey Tp) B SY 8 wigy

where each s;’ is either s;-, or other possible terms inside the arguments

if 7' also occurs in the arguments. So the only possible substitution must be

h = [@ig1, .y xR/ sYsY . sl vipq.. 2y, where 1+ m = n, hence m < n. After the
substitution, we have to match the terms A's}...s!_ sis;...s, and h's|s,...s!,
i.e., [Alsy =sr [A]s},_p, for k€ {1,2,...,m}.

When £ is a constant, it is obvious that ' = A. |

It is clear that >gp is reflexive and transitive:

Proposition 16. For any terms ¢, tq,t9, t3,
1.t =gr t.

2. If ty »gF tg, ta >sF t3, then ¢ >gsF t3.

Proof.
1. Obvious.

2. We can assume that
1 = [A]hslsg...sm,

— ! ! ! 7 !
to = [A"]A'ryy...r148] 85...8

m?

ts = [A"h" 1115731 ..r3i8Y S5 .Sl
Case 1: m = 0, then it is easy to verify #; »gsr 3.

Case 2: m > 0. We have [Als; =gp [Al]s), =g [A"]s}, for k € {1,...,m}.
By inductive hypothesis, [A]sy =sr [A”]s}. If h is a constant, we have
h=h =h"i=3j=0, thus t; »gp t3. If h is a variable, let & substitute
h”’f‘gl...T‘QjT‘gl...Tgi.

O

2 Here the variables are frozen.

12 Higher order generalization

Definition 17 ().
t = sis defined as ¢t »gr s and s >gF t.

Example 18. [z,y|Azy = [y, z]Azy = [z, 2, y]Azy. This is because
[z,y]Azy =5 ([y, z]Azy)ab, hence
[z,y]Azy >sF [y, z]Azy.
Similarly, it can be derived that
ly, z]Azy = sF [z, y]Azy,
[z,y]Azy >sF [z, 2, y]Azy, and
[z, z,y]Azy =sF [z, y]Azy.

Proposition 19. t = s iff ¢ is a renaming of s.

Proof.

(=) Assume t = s, then t >gF s and s =gp t. Suppose
t = [Alhtity...ty, s = [A']h/s185...8,. Since t =sF s, we have m > n. Similarly,
we have n > m. So, m = n. If h is a constant, then &’ = h. Similarly, we note
that if A’ is a constant then &' = h. Hence, A and A’ must be either the same

constant, or a variable.

Case 1. m = 0. Obviously t and s only differ by renaming.

Case 2. m > 0. We have [Alty =sp [A']sg, and [A]sy =sp [Altg, for k €
{1, ..., m}. By inductive hypothesis, [A]t; and [A’]s; only differ by variable
renaming. On the other hand, A and A’ are either variables or the same

constant.
(<) We only need to consider the following two cases:

Case 1. Suppose
t= (21,29, xi]htity. b,
8= [Ty(1)s T(2)s s To(i)) P 1t2- i,
Then tey...c; = scy(r)...co), T = 5.
Case 2. Suppose
t = [z][x1, 22, ..., xi]ht1te. by,
S =21, 22, oy Ti]ht1te ..ty
where x does not occur in ht(tg...t,,. Then tc = s, s =g t. Also, we have
t =sF s, hence t & s.
Case 3. Suppose

Higher order generalization 13

t=[g:71 = Y2 = . = % = Y]gtita.tm,
S=[f 1 7s0) 2 Vo) = - = Yoty = VSte)te(2) - Lom)s
tA = s([Te1) P Vo(1) To(2) * Vo(2)) -+ Ta(i) | Yo(iy]AT172...2;), hence ¢ = s.
O

4. Generalization

Ift g s1 and t =gF s, then t is called a common generalization of s; and
sg. If t is a common generalization of s; and s, and for any common general-
ization ¢; of s; and sg, t1 =gF t, then t is called the least general generalization
(LGG). This section is only concerned with >gp, hence in the following discussion
the subscript SF is omitted.

The following algorithm Gen(t,s,{}) computes the least general generaliza-
tion of ¢ and s. Recall we assume ¢ and s are closed terms. At the beginning
of the procedure we suppose that all the bound variables in ¢ and s are distinct.
Here an auxiliary (the third) global variable C is needed to record the previous
correspondence between terms in the course of generalization, so that we can
avoid to introduce unnecessary new variables. C is a bijection between pairs of
terms(and types) and a set of variables. Initially, C is an empty set. Following
the usual practice, it is sufficient to consider only long fn-normal forms. Not

losing generality, suppose t and s are of the following forms:

t = [A)h(t1, tay .oy tr),

s = [AlW (r1, ..., 7, 51, S2, .., Sk), where h and A’ are atoms. Suppose
A, A A = Gen([Alty, [A']s1,C),

A A At = Gen([A, Aq]te, [A]; Aq]sg,C),

[A, AI, Ak]t; = Gen([A, Ak—l]tk7 [AI, Ak—l]ska C),

Typ(h) = 01,02, ..., 0k — Okt1,

Typ(h'(r1, ..oy Ti)) = Ty T2y ooy Th = Thpt-
The generalization algorithm could be defined as in figure 1.
In the following, let t U s = Gen(t, s, {}).

Example 20. Some examples of least general generalization.
[z :v]zU Aa = [z : v][e][y : o]y = [a][y : a]y, if Aa is not of type 7;
[z:7]eU Aa = [z : 9]y : v]y = [z : v]z, if Aais of type 7;

14 Higher order generalization

Gen(t,s,C):
Case 1: h =h': Gen(t,s,C) = [A, A, Ag)h(t), th, ..., t});
Case 2: h # h':
Case 2.1: Jz.((h, h'(r1, ..., 7i)),2) € C:
Gen(t,s,C) = [A, A, Aglz (8], 1), ..., 1))
Case 2.2: =3z.((h,h'(r1,...,mi)),z) € C,
Case 2.2.1: Typ(h) = Typ(h'(r1,...,1)):
Gen(t,s,C) = [A, A, ARllz 1 01,09, ..., 06 = Opg1]z(t], 15, ..., 1))
C:={((h,h'(r1,....,13)),2) }UC;
Case 2.2.2: Typ(h) # Typ(h'(r1, ..., 1i)):
Not losing generality, suppose o; # 7;,j € {1,2, ..., k, k+ 1}.
Case 2.2.2.1: Jo;.((0j, 1), 0;5) € C:
Gen(t,s,C) = [A, A, ARl 2 01, ooy 0y oo = Opgr |2 (E], 15, ., 11)s
C:={((h,h (r1,....,13)),) }UC;
Case 2.2.2.2: =3a.((0j,7j), ;) € C:
Gen(t,s,C) =
A, A AR][eg][z o1, ooy @y oo = Opga |2 (8], 8, o 1)s
={((h,h'(r1,...,1)),2) } UC;

C:
C:={((oj,15),a;)} UC.

Figure 1. Generalization Algorithm

[z]Azz U [z]Aaz & [z, y]Azy;
Aa U Bb = [f][z]fz,if A and B are of the same type;
AaUBbZ[o][f:a— 7]z a]fz,if Aiyy = v and By — 7;

Example 21. Here is an example of generalizing segments of programs. For
clarity the segments are written in the usual notation. Let

t = [z]mapl(cons(a, z)) = cons(succ(a), mapl(z)),

s = [z]map2(cons(a, z)) = cons(sqr(a), map2(z)).

Suppose the types are

mapl : List(Nat) — Nat; succ: Nat — Nat,

map2 : List(Nat) — Nat; sqr : Nat — Nat.

Then

tlUs=

Higher order generalization 15

[f: List(Nat) — Nat; g : Nat — Nat)][z]
f(cons(a, z)) = cons(g(a), f(2)))-

The termination of the algorithm is obvious, since we recursively decom-
pose the terms to be generalized, and the size of the terms strictly decreases in
each step. What we need to prove is the uniqueness of the generalization. The

following can be proved by induction on the definition of terms:

Proposition 22. 1. (consistency) tUs > ¢, tUs > s.

2. (termination) For any two term ¢ and s, Gen(t, s, {}) terminates.

3. (absorption) If ¢ > s, then t U s = ¢.
4. (idempotency) t LIt = ¢.

5. (commutativity) t U s = sU¢t.

6. (associativity) (tUs)Ur=tU(sUr).

7. Ift = s, thentUr = sur.
8. (monotonicity) If £ »= s, then for any term r, t Ur > sUr.

9. Ift =2 s, then tUs >t s,

Proof.

1. It can be verified that for each case of the algorithm, we obtain a more general

term.
2. It is obvious since we decompose the terms recursively.

3. Since t = s, we can suppose
t = [A)hs18g...8,,
s = [A'lh/r11...7148] 85...5., ;and
[Alsy = [A]s), k€ {1,...,m}.
If m = 0, then it is easy to verify the conclusion. Now suppose m > 0. Not
losing generality, suppose h is a variable which does not occur in s, and has
a single occurrence in ¢. h has the same type as h'rqy...r1;. Other cases can
be proved in a similar way. Now we can suppose t U s = [A"][f] ftite...tp.
If s;, is a constant, then s, must be the same constant. Hence 3 = s;. If sy,

is a variable, then f; is a new variable. There are two cases: one if s; has

16

Higher order generalization

only one occurrence in ¢t. Then ¢’ and ¢ only differ by renaming. The other
case is that s has multiple occurrences in ¢. Since t > s, all the occurrences
of s must correspond to a same term in s. Hence due to the presence of the
global variable C, all the occurrences of s; are generalized as a same variable.

Hence ¢ = ¢'. By inductive hypothesis, we have

[Alsy U [A']s], = [A]sk.

. From t > t and proposition 7.3 we can prove the result.
. It is obvious from the algorithm.

. Not losing generality, we can suppose

t = [A]hs182...8m,

s = [A'lh/ry1...r18) 858!

m)

— mzmptt 11" 1
r = [A"A"rgy. . rg r31.. 15587 5580

and suppose h, h', i are distinct constants, ¢, s, r are of the same type. The
other cases can be proved in a similar way. By inductive hypothesis, for
ked{l,..m},pe {1,...,i}, we can suppose:

([Alsk U [A]s}) U [A"]s = [A]si U ([AT]sy U [A"]s),

[Alsy U [A"]s, = [Tt

[T U [A"]sy = [T7]e7,

[A]sy, L [A"]sy =[]t

[Als L[]ty =[]t

[A]r1p U [A]rsp = [1]rp.

Here we suppose each I', I/, " are large enough to cover all the abstractions
in ty, ey b, th, . th and tq, ..., " respectively.

We rename the variables in [[']¢y, ..., [['],, such that there are multiple occur-
rences of a variable x in [[']ty, ..., [[']t,, if and only if its corresponding places

hold

in sy, ..., 8, hold a same term, and its corresponding places in ¢/, ..., s,
another same term. Similarly, we rename the terms [I']¢}, [['"]¢}. Then
(tus)Ur

=[S ftr. b U AR 791 rg5r1 738 85800

~ (07)(f) {1,

U(sur)

[A]hsy89...8, U [[][glgry...ri) ...t

= (1"]{ggt].. 4,

Hence (tUs)Ur 2¢tU (sUr).

o~

(12

Higher order generalization 17

7. Since t = s, t is a renaming of s. ¢ and s must be of the forms [A]hrirq...1,
and [A’lhriry...r,,. It is obvious that [Alhriry...r, Ur = [A'lhrirg..r, U r.

8. Since t > s, we have t U s 2 t, hence

tur

= (tUs)Ur (by proposition 7.7)
St (sUr) (commutativity)
>slUr (by proposition 7.1).

9. Fromt = s, we havet = s,s > t. Hence tUs=t, tlUs=slUt s,

Based on the above propositions, we can now prove:

Theorem 23. t U s is the least general generalization of ¢ and s, i.e., for any
term r,if r > t,r > s, thenr>tUs.

Proof. Since r = t,r = s, we have rUt = r, rlls=r.

rU(tUs)

X (rUr)u(tus) (idempotency)

(rut)u(rus) (commutativity and associativity)

12

12

rur (absorption)

1%

T (idempotency).
Hence by proposition 7.1 we have r = t U s. |

Higher order generalization can be used to find schemata of programs,
proofs, or program transformations. For example, given first order clauses

multiply(s(X),Y, Z) « multiply(X,Y, W), add(W,Y, 7).

and

exponent(s(X),Y, Z) < exponent(X,Y, W), multiply(W,Y, 7).,

we can obtain its least general generalization as

P(s(X),Y,Z) « P(X,Y,W),Q(W,Y, 7).

Higher order generalization can also find applications in analogy analy-
sis[14,9]. It is commonly recognized that a good way to obtain the concrete
correspondence between two problems is to obtain the generalization of the two
problems first. During the generalization process, we should preserve structure

as much as possible. By using the above higher order generalization method, we

18 Higher order generalization

can find the analogical correspondence between two problems in the course of
generalization.
In the following section we will introduce the application of higher order

generalization in reusing program proofs.

5. Reuse of program proofs

The verification of the correctness of software being developed is proved
extremely difficult. We propose a method to reuse program proofs based on
our higher order generalization method. A type checker(proof checker) is imple-
mented, and more proof examples are available at http://www.cs.toronto.edu/ jglu/proof.html.

The prefix notation of the syntax of a small programming language can be

defined as:

Definition 24 (Syntax of a small language).
Fxpr: Nat
Com : Type
assignment : [Var, Expr]Com
composition : [Com,Com]Com
ifthenelse : [Prop,Com,Com]Com
while : [Prop, Com]Com
hformula : [Prop,Com, Prop|Prop

We use the well-known Hoare’s notation[10] to denote the notions of pro-
gram correctness. The Hoare formula h formula(P,C, Q) means that if the pre-
condition P holds before the execution of the program €', and C' terminates, then
after the execution the post-condition) holds.

In the following, for the sake of clarity, the syntax of the small language is
written in infix notation instead of prefix notation. For example, the Hoare for-
mula h formula(P,C, Q) is written as the usual form {P}C{Q}. The assignment
statement assignment(z,t) is written as z :=t.

Now we can define the axiomatic semantics of the language as below:

Definition 25 (Axiomatic semantics).
assign : [P][t : Ezxpr][z : Var]|({([z]P)t}z := t{P})
seq : [P,Q, R : Propllc,d: Com]
[: {P}e{Q}]

Higher order generalization 19

[p2 : {Q}d{R}]
{P}e;d{R}
if :[P,Q,B: Prop
[c,d: Com)]
[p1 : {P A B}c{Q}]
[pe : {P AnotB}d{Q}]
{P}if Bthencelsed{Q}
while : [P, B : Prop]
[c: Com]
[p: {PAB}e{P}]
{P}whileBdoc{P A not B}
conR : [py : {P}c{Q}]
[p2 : [Q]R]
{P}c{R}
conl : [py : {P}c{Q}]
[p2 : [R]P]
{R}c{Q}

These are the usual axiomatic rules encoded in the higher order logic. Taking
the sequential rule seq for example, it is actually saying that if P, and R are
propositions, ¢ and d are commands, and if p; is a proof of {P}c{Q}, ps is a
proof of {Q}d{R}, then seq(P,Q, R, c,d,p1, p2) is the proof of { P}c; d{R}.

Here we follow the practice of intuitionistic type theory such as the one given
by Martin-lof[16], where we can treat propositions as types. In type theory, a
term ¢ is a proof of a formula P can be denoted as ¢ is of type P.

With the definition of the syntax and the semantics of this small language,

we can now prove the correctness of programs.

Example 26. The proof of
[P : Propl{([z: Nat]P)2}z := 2{P}
is
[Plassign(P, 2, z),
which can be verified by showing that [Plassign(P,2, z) is of type
[P : Propl{([z : Nat]P)2}z := 2{P}

Example 27. The following is a function and the specification to compute the

20 Higher order generalization

maximal of natural numbers.
Hy=[z,y,z: Nat]
{true}
if(z > y)then(z := z)else(z :=y)
{(z=zVvz=y)Az>z N2>y}
Its proof is
Py =if(true, ((z =aVz = y)Az > Az > y),z > y,assign(z, z), assign(y, z))

Example 28. Now suppose we have the following specification and the program,
which is to compute the minimal of two natural numbers:
Hy, =[z,y,z: Nat]
{true}
if(z < y)then(z = z)else(z :=y)
{(z=zVvz=yrz<zAnz<y}

In general it is not easy to prove a program is correct with respect to a
specification. But with the similar program in Fzample 25, we can, first, get the
least general generalization of Hy and Hsy, which amounts to

H =[z,y,z: Nat]
{true}
if(z ® y)then(z = z)else(z := y)
{z=2zVvVez=y)A(z@2)A(z0Y)}

where ® is a variable of type Nat — Nat — Nat.

With this generalization, we can find that a mapping exists between the
operators > and <. By replacing the > in P, with <, we obtained a new proof
Py:

Py=if(true, ((z = aVvVz = y)Az < zAz < y),z < y,assign(z, z), assign(y, z))

Finally, by running the type checker, P; is verified to be a proof of Hs indeed.

Of course, most of the proof reusing case will be much more complicated
as described above. [14,15] describe some rules and heuristics to map those

correspondences.

6. Conclusions

Using subterm restriction and a freezing extension, we define the ordering

=sr. As we have shown, this ordering and the corresponding generalization have

Higher order generalization 21

>SF ~F

zs// n

=L =M

~1SE, =1F

A

Y
W

Figure 2. Generalization cube

nice properties, comparable to those of the first order anti-unification. Most
notably, the least general generalization exists and is unique.

To summarize how our proposed higher order generalization compares with
other kinds of generalizations, we offer the generalization cube as depicted in
picture 2.

Here each vertex represents a kind of ordering. For example, > means the
usual instantiate ordering in a higher order language, say AP2 [1]. > the usual
instantiation ordering in first order language, > s the ordering in M A, =1 the
ordering in LA (i.e., in higher order patterns), etc.. The arrow in the diagram
represent implication. For example, if ¢ >g s, then ¢ =gr s, and t =g s. It can
be seen that the relations >gsr and > (also =1\ and »=ary) are not comparable.
By definition, =15 (the ordering >; with the subterm restriction) is the same as
>=1. That explains why we have good results with >gp.

Our work differs from that of others in the following aspects. Firstly, we
define a new ordering »gr. In terms of this ordering, we obtain a much more
specific generalization in most of the case. For example, the terms Aab and Bab

would be generalized as a single variable z in [19], or as fts in [3], where ¢ and s

22 Higher order generalization

are arbitrary terms. In contrast, our generalization algorithm would return [f]fab
as least general generalization. Secondly, our approach can produce a meaningful
generalization of terms of different types and terms of different arities, instead of
a single variable z as in [19,3]. For example, our method will be able to produce
the generalization of Aeb and Bb as fb. And finally, our method is useful in
applications, such as in analogical reasoning and inductive inference [9,14]. We

also demonstrated in this paper its application in program verification.

Acknowledgements

We would like to thank the anonymous reviewers for their in depth comments

and detailed suggestions.

References

[1] H. Barendregt, Introduction to generalized type systems, Journal of functional pro-
gramming, Vol. 1, NO. 2, 1991. 124-154.

[2] Coquand, T., Huet, G., The calculus of constructions, Information and Computa-
tion, Vol.76, No.3/4(1988), 95-120.

[3] C.Feng, S.Muggleton, Towards inductive generalization in higher order logic, In
D.Sleeman et al(eds.), Proceedings of the Ninth International Workshop on Machine
Learning, San Mateo, California, 1992. Morgan Kaufman.

[4] K. Furukawa, M. Imai, and Randy Goebel, Hyper least general generalization and
its application to higher-order concept learning, manuscript draft.

[5] Gegg-Harrison, Timothy S., Basic Prolog Schemata, CS-1989-20, Department of
Computer Science, Duke University, 1989.

[6] M. Hagiya, Generalization from partial parametrization in higher order type theory,
Theoretical Computer Science, Vol.63(1989), pp.113-139.

[7] Masateru Harao, Proof Discovery in LK System by Analogy, LNCS1345,pp.197-211,
Proc. of ASTAN’97, 1997.12.

[8] Robert Harper, Furio Honsell, and Gordon Plotkin, A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1), 143-184, January 1993.

[9] R.Hasker, The replay of program derivations, Ph.D. thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, 1995.

[10] C.A.R.Hoare, An axiomatic approach to computer programming, Communications
of the ACM, 12, Oct. 1969.

[11] G.P.Huet, A unification algorithm for typed lambda calculus, Theoretical Computer
Science, 1 (1975), 27-57.

Higher order generalization 23

[12] G.Huet, Bernard Lang, Proving and applying program transformations expressed
with second order patterns, Acta Informatica 11, 31-55(1978)

[13] Peter Idestam-Almquist, Generalization of Horn clauses, Ph.D. dissertation, De-
partment of Computer Science and Systems Science, Stockholm University and the
Royal Institute of Technology, 1993.

[14] Jianguo Lu, Jiafu Xu, Analogical Program Derivation based on Type Theory, The-
oretical Computer Science, Vol.113, North Holland 1993, pp.259-272.

[15] Jianguo Lu, Bo Yi, An Approach to Analogical Theorem Proving, in Shi(ed.), IFIP
Transactions A-19, Automated Reasoning, North Holland, 1992, pp. 285-294.

[16] P. Martin-lof, Intuitionistic type theory, Studies in Proof Theory, Bibliopolis, Napoli,
1984.

[17] Stephen Muggleton, Inductive logic programming, New generation computing,
8(4):295-318, 1991.

[18] Charles David Page jr., Anti-unification in constraint logic: foundations and appli-
cations to learnability in first order logic, to speed-up learning, and to deduction,
Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1993.

[19] Frank Pfenning, Unification and anti-unification in the calculus of constructions,
Proceedings of the 6th symposium on logic in computer science, 1991. pp.74-85.

[20] Plotkin, G. D., A note on inductive generalization, Machine Intelligence 5, Edin-
burgh University Press 1970, pp. 153-163.

[21] Plotkin, G.D., A further note on inductive generalization, Machine Intelligence 6,
Edinburgh University Press 1971, pp. 101-124.

[22] John C. Reynolds, Transformational systems and the algebraic structure of atomic
formulas, Machine Intelligence 5, Edinburgh University Press 1970, 135-151.

	Higher order generalization and its application in program verification
	Recommended Citation

	tmp.1354546489.pdf.h7PAG

