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Linear Dimensionality Reduction by

Maximizing the Chernoff Distance in the

Transformed Space

Luis Rueda∗ and Myriam Herrera†

Abstract

Linear dimensionality reduction (LDR) techniques are quite important in pattern

recognition due to their linear time complexity and simplicity. In this paper, we present

a novel LDR technique which, though linear, aims to maximize the Chernoff distance

in the transformed space; thus, augmenting the class separability in such a space. We

present the corresponding criterion, which is maximized via a gradient-based algorithm,

and provide convergence and initialization proofs. We have performed a comprehen-

sive performance analysis of our method combined with two well-known classifiers,

linear and quadratic, on synthetic and real-life data, and compared it with other LDR

techniques. The results on synthetic and standard real-life datasets show that the pro-

posed criterion outperforms the latter when combined with both linear and quadratic

classifiers.
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1 Introduction

Linear dimensionality reduction (LDR) techniques have been studied for a long time in the

field of pattern recognition. They are typically the preferred ones due to their efficiency, and

because they are simpler to implement and understand. We assume that we are dealing with

two classes, ω1 and ω2, which are represented by two normally distributed n-dimensional

random vectors, x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), and whose a priori probabilities

are p1 and p2 respectively. The aim is to linearly transform x1 and x2 into new normally

distributed random vectors y1 = Ax1 and y2 = Ax2 of dimension d, d < n, using a matrix

A of order d × n, in such a way that the classification error in the transformed space is as

small as possible.

1.1 Related Work

Various schemes that yield LDR have been reported in the literature, including the well

known Fisher’s discriminant (FD) approach [5], and its extensions: the direct Fisher’s dis-

criminant analysis [21], its kernelized version for face recongition [8], the combined principal

component analysis (PCA) and linear discriminant analysis (LDA) [19], the kernelized PCA

and LDA [18], and a two-dimensional FD-based approach for face recognition [20]. An im-

provement to the FD approach that decomposes classes into subclasses has been proposed in

[10]. Rueda et al. [16] showed that the optimal classifier between two normally distributed

classes can be linear even when the covariance matrices are not equal. In [15], a new ap-

proach to selecting the best hyperplane classifier (BHC), which is obtained from the optimal

pairwise linear classifier, has been introduced. A computationally intensive method for LDR

was proposed in [14], which aims to minimize the classification error in the transformed

space and operates by computing (or approximating) the exact values for the integrals. This

approach, though extremely time consuming, does not guarantees an optimal LDR. Another

criterion used for dimensionality reduction is the subclass discriminant analysis [22], which

aims to optimally divide the classes into subclasses, and then performs the reduction followed
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by classification.

We now focus on two LDR approaches which are closely related to our proposed method.

Let SW = p1S1 + p2S2 and SE = (m1 −m2)(m1 −m2)
t be the within-class and between-

class scatter matrices respectively. The well-known FD criterion consists of maximizing the

Mahalanobis distance between the transformed distributions by finding A that maximizes

the following function [5]:

JFD(A) = tr
{
(ASWAt)−1(ASEA

t)
}
. (1)

The matrix A that maximizes (1) is obtained by finding the eigenvalue decomposition of

the matrix:

SFD = S−1
W SE , (2)

and taking the d eigenvectors whose eigenvalues are the largest ones. Since SE is of rank

one, S−1
W SE is also of rank one. Thus, the eigenvalue decomposition of S−1

W SE leads to only

one non-zero eigenvalue, and hence FD can only reduce to dimension d = 1.

Loog and Duin have recently proposed a new LDR technique for normally distributed

classes [7], namely LD, which takes the Chernoff distance in the original space into consid-

eration to minimize the error rate in the transformed space. They consider the concept of

directed distance matrices, and a linear transformation in the original space, to finally gen-

eralize Fisher’s criterion in the transformed space by substituting the between-class scatter

matrix for the corresponding directed distance matrix. The LD criterion consists of obtaining

the matrix A that maximizes the function [7]:

JLD2(A) = tr
{
(ASWAt)−1[

ASEA
t −AS

1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W ) + p2 log(S
− 1

2
W S2S

− 1
2

W )

p1p2
S

1
2
WAt

]}
(3)
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where the logarithm of a matrix M, log(M), is defined as:

log(M) , Φ log(Λ)Φ−1 . (4)

with Φ and Λ representing the eigenvectors and eigenvalues of M.

The solution to this criterion is given by the matrix A that is composed of the d eigen-

vectors (whose eigenvalues are the largest ones) of the following matrix:

SLD2 = S−1
W

[
SE − S

1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W ) + p2 log(S
− 1

2
W S2S

− 1
2

W )

p1p2
S

1
2
W

]
. (5)

The FD criterion discussed above aims to minimize the classification error by maximizing

the Mahalanobis distance between distributions, resulting in an optimal criterion (in the

Bayesian context) only when the covariance matrices are equal [6], while the LD criterion

utilizes, as pointed out above, a directed distance matrix, which is incorporated in Fisher’s

criterion assuming the within-class scatter matrix is the identity.

1.2 Highlights of the Proposed Criterion

In this paper, we take advantage of the relationship between the probability of classification

error of the optimal (in the Bayesian sense) classifier and the Chernoff distance, and propose

a new criterion for LDR that aims to maximize the separability of the distributions in

the transformed space based on the Chernoff measure. Since we are assuming the original

distributions are normal, the distributions in the transformed space are also normal1. Thus,

the Bayes classifier in the transformed space is quadratic and the classification error (also

known as true error [5]) does not have a closed-form expression. Let p(y|ωi) be the class-

conditional probability that a vector y = Ax in the transformed space belongs to class ωi.

The probability of error can be bounded by the Chernoff distance between two distributions

as follows [5]:

1We note, however, that this assumption is not necessarily true in practice, and that our proposed criterion
is still efficient even when data has other distributions, as shown in the empirical result section.
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Pr[error] =

∫
R2

p1p(y|ω1)dy +

∫
R1

p2p(y|ω2)dy (6)

≤ pβ1p
1−β
2

∫
pβ(y|ω1)p

1−β(y|ω2)dy = pβ1p
1−β
2 e−k(β,A) , (7)

where R1 and R2 are the regions in which an object is assigned to class ω1 or ω2 respec-

tively. For normally distributed classes, it can be shown that the Chernoff distance is given

by [5]:

k(β,A) =
β(1− β)

2
(Am1 −Am2)

t[βAS1A
t + (1− β)AS2A

t]−1(Am1 −Am2)

+
1

2
log
|βAS1A

t + (1− β)AS2A
t|

|AS1At|β|AS2At|1−β
, (8)

where β ∈ [0, 1].

The larger the value of k(β,A) is, the smaller the bound for the classification error is,

and hence, in this paper, we propose to maximize (8). To clarify this, we note that the FD

criterion also aims to maximize the separability between distributions in the transformed

space, but coincides with the optimal classifier only when the latter is linear, i.e. when the

covariance matrices are coincident, a rare case. As observed above, the LD criterion utilizes

the Chernoff distance in its directed distance matrix but in the original space. This criterion,

however, does not optimize such a distance in the transformed space, as it can be observed

in the example given below. A few remarks are discussed prior to the example.

For normally distributed classes, (7) and (8) are useful for approximating the probability

of error for the optimal (Bayesian) classifier. Since this is not usually the case for real-

life data, other factors should be taken into consideration. First, normal distributions are

characterized by the first two moments, while it is not (always) the case for real-life data.

As pointed out in [5], the Chernoff bound can still be used when normality is not in place;

however, it is not as accurate as for normal data. Second, the distribution of the real-life
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data is usually not known, and it could follow a certain distribution function, not necessarily

normal, or even a mixture of distribution functions. Third, it is important to note that

the advantages of the Chernoff distance are taken in the context of a quadratic (Bayesian

for normal distributions), and hence changing the classifier, the resulting classification will

change too. Thus, using a linear or a kernel-based classifier could not have the same effect

as the quadratic classifier; however, the empirical results presented later show that still good

results presented later are obtained on real-life data.

Consider two normally distributed two-dimensional random vectors, x1 ∼ N(m1,S1)

and x2 ∼ N(m2,S2), where the underlying parameters are: m1 = [0.5001, 0.4947]t, m2 =

[2.1069, 1.4324]t, S1 = [0.8205, 0.4177; 0.4177, 2.8910], S2 = [5.1150,−4.3990;−4.3990, 5.7119],

p1 = 0.5479. Consider also a linear transformation y = Ax to the one-dimensional space,

i.e. A is of order 1 × 2, or equivalently At is a two-dimensional vector. As shown later in

the paper, we can just “rotate” At and produce different values for the Chernoff distance

in the transformed space, and only one value for each angle. Thus, in Figure 1, we plot

three different criteria for all possible values of the angle θ between At and [1, 0]t, including

JF (A) computed as in (1), JLD(A) computed as in (33), and the Chernoff distance in the

transformed one-dimensional space computed as in (8), where β = p1. The probability of

classification error in the transformed space, computed as in (6), is also plotted. The dotted

vertical lines represent the points at which the three criteria achieve a maximum value, a

single maximum for JF (A) and JLD(A), and two maxima (a local and a global) for k(β,A).

The solid vertical line represents the point at which Pr[error] is minimum, achieving a value

of Pr[error] = 0.2083. To compare the latter with that of the three criteria, we note that

the probability of error for the global maximum for k(β,A) is 0.2085, only 0.0002 away from

the optimal, while the probabilities of error for JF (A) and JLD(A) are 0.3417 and 0.3616

respectively, 0.1334 and 0.1533 away from the optimal. We also noticed that the probabil-

ity of error for the local maximum of k(β,A) is 0.3325, which is even smaller than those of

JF (A) and JLD(A). As we will also show later, we note that maximizing the criterion JF (A)

or JLD(A) does not necessarily imply maximizing the Chernoff distance in the transformed
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Figure 1: Plot of three different dimensionality reduction criteria, namely Fisher’s, Loog-
Duin’s, and the Chernoff distance in the transformed space, for a two-dimensional to one-
dimensional reduction example. The probability of error, computed as in (6), is also plotted.
The x-axis represents the different angles of the transformation vector A.

space (as our criterion aims to), and hence minimizing the classification error. Also, we

observe that the k(β,A) function has more than one peak and so, as shown later, it is not

possible to find a closed-form expression for the optimal solution.

2 The Proposed LDR: Two-class Case

The criterion that we propose aims to maximize the Chernoff distance between the trans-

formed random vectors, as in (8). Note that the function k in (8) has two parameters, β and

A, which have to be optimized. While for a given transformation matrix A, β takes different

values in [0, 1], here, we consider the heuristic adopted in [7], i.e. p1 = β and p2 = 1−β as a

way for “weighting” the respective covariance matrices in the Chernoff distance. Considering

different values of β is a problem that deserves further investigation.

2.1 The Criterion

Since after the transformation, new random vectors of the form y1 ∼ N(Am1;AS1A
t) and

y2 ∼ N(Am2;AS2A
t) are obtained, the aim is to find the matrix A that maximizes:
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J∗
c12

(A) = p1p2(Am1−Am2)
t[ASWAt]−1(Am1−Am2) + log

(
|ASWAt|

|AS1A|p1 |AS2A|p2

)
, (9)

where SW = p1S1 + p2S2, and the logarithm of a matrix M, log(M), is defined as in

(4). Using this definition, it follows that log |B| = tr{log(B)}. Also, since tr{BCD} =

tr{DBC}, we have:

(Am1 −Am2)
t[ASWAt]−1(Am1 −Am2) (10)

= tr{(Am1 −Am2)
t[ASWAt]−1(Am1 −Am2)} (11)

= tr{(Am1 −Am2)(Am1 −Am2)
t[ASWAt]−1} (12)

= tr{ASEA
t(ASWAt)−1} , (13)

where SE = (m1 −m2)(m1 −m2)
t. In this way, maximizing (9) is equivalent to maxi-

mizing:

J∗
c12

(A) = tr
{
p1p2ASEA

t(ASWAt)−1 + log(ASWAt)− p1 log(AS1A
t)− p2 log(AS2A

t)
}

(14)

Note that for any value of J∗
c12

(A), where the rows of A are linearly independent, there

exists an orthogonal matrix Q such that the Chernoff distance J∗
c12

(Q) is the same as that

of A. That is, the solution is always found in a compact set {Q : QQt = Id}, and thus:

max{A}J
∗
c12

(A) = max{Q:QQt=Id}J
∗
c12

(Q) (15)

This follows by decomposing At = RQ, where R is of order d× d and lower triangular,

and Q is of order d× n, such that QQt = Id (see Appendix A.1).

The relationship between the proposed criterion and two well-known criteria, FD and
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LD, follows. When S1 = S2, it is true that JFD = JLD2 . That is, FD will only lead to

a linear, optimal (in the Bayesian sense) classifier only when the covariance matrices are

coincident (although there are other cases in which the optimal classifier could be given in

terms of a pair of linear functions, and which are not discussed here – cf. [16]).

The relationship between the proposed and the LD criteria is not straightforward – we

thus analyze it for particular cases only. We assume that S1 and S2 are diagonal, and that

A is a d × n matrix with its d rows orthogonal to each other, i.e. AAt = Id. Assume also

that, pre and post-multiplying by S
1
2
W , so that SW = p1S1 + p2S2 = In, it can be shown that

(see Appendix A.2) JLD2(A) = J∗
c12

(A) only when the transformation matrix is of the form

A = [[0, . . . , 0, 1i1 , 0, . . . , 0]
t [0, . . . , 0, 1i2 , 0, . . . , 0]

t . . . [0, . . . , 0, 1id , 0, . . . , 0]
t]t, where ij ̸= ik,

j, k = 1, . . . , d. Additionally, analyzing the first order necessary conditions, it follows that

∇JLD2(A) = ∇J∗
C12

(A) only if A(logS1+ logS2) = (AS1A
t)−1AS1+(AS2A

t)−1AS2− 2A.

This is not necessarily true, except in very restricted cases. Suppose for example, and without

loss of generality, that A is 1× d and the 1 is at the first postion. Since At is an eigenvector

of SLD2 , it implies that (m11 −m21)
2 = p1 log λ11 + p2 log λ21. That is, the square difference

between the first components of the means will have to be the same as the weighted sum of

the logs of the first eigenvalues of S1 and S2.

From the above analysis (and Appendix A.2), we conclude the following. The special

case in which both JLD2 and J∗
c12

coincide, is when A has a row with exactly one 1 and the

rest of the components 0, and the 1s are at different columns. A contains the eigenvectors

of SLD2 , and which also coincide with the optimal solution to J∗
c12

. This implies that, first,

the projection is carried out onto an orthogonal subspace whose basis is canonical, and

that basis will represent a few features of the original space. Second, all features, except

those at positions i1, i2, . . . , id will be excluded in the transformed space, thus, transforming

the projection scheme into a feature selection method rather than a linear dimensionality

reduction method. Third, we seek for a combination of features so that we take advantage of

all features from the original space (and not some of them) towards maximizing the Chernoff

distance in the transformed space.
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2.2 The Algorithm and its Convergence

In order to maximize J∗
c12

, we propose the following algorithm, which is based on the gradient

method (how difficult is to find a direct solution is discussed in Appendix A.3). The learning

rate, one of the parameters to the algorithm is obtained by maximizing the objective function

in the direction of the gradient. The first task to do is to find the gradient matrix using the

corresponding operator, ∇, in the following manner:

∇J∗
c12

(A) =
∂J∗

c12

∂A
= 2p1p2

[
SEA

t(ASWAt)−1 − SWAt(ASWAt)−1(ASEA
t)(ASWAt)−1

]t
+2

[
SWAt(ASWAt)−1 − p1S1A

t(AS1A
t)−1 − p2S2A

t(AS2A
t)−1

]t
(16)

The formal procedure that maximizes J∗
c12

is shown in Algorithm Chernoff LDA Two

given below. The algorithm receives as a parameter, a threshold, τ , which indicates when

the search will stop. Also, by (29), once A is obtained, there always exists an orthogonal

matrix Q such that A can be decomposed into RQ. An additional step is then introduced

in the algorithm, which decomposes A into RQ, and utilizes Q in the next step. Note that

this regularization could be avoided, and hence the algorithm will also converge. However,

we include it for the following reasons. First, the set of all matrices of order d × n along

with its usual topology, the set {Q : QQt = Id} is a compact set; then, any continuous

function achieves its maximum in that compact set. Second, we have empirically found

that searching for a solution in the compact set runs faster than searching in the whole set.

Third, initialization of the secant method, as seen later, is easier as initial values can be

chosen in the compact set, i.e. by angle and not by value. Fourth, note that optimizing J∗
c12

could be stated as a constrained optimization problem. However, the constraint QQt = Id

imposes adding a multiplier. Due to the iterative nature of the solution, an extra step will

be required to find the corresponding multiplier, which is, in our case, avoided by imposing

the RQ decomposition.
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Algorithm Chernoff LDA Two

Input: Threshold τ

begin

A(0) ← maxA{J∗
c12

(AFD), J
∗
c12

(ALD)} // Max. of Fisher’s and Loog-Duin’s methods

k ← 0

repeat

ηk ← maxη>0ϕk12(η)

B← A(k) + ηk∇J∗
c12

(A(k))

Decompose B into R and Q

A(k+1) ← Q

k ← k + 1

until |J∗
c12

(A(k−1))− J∗
c12

(A(k))| < τ

return A(k), J∗
c12

(A(k))

end

It is not difficult to see that AlgorithmChernoff LDA Two converges. The convergence

argument is a generalization of that of the gradient algorithm given in [3]. While that proof is

for vectors only, i.e. for reducing to dimension one, our case deals with matrices of order d×n.

It, thus follows that (see Appendix A.4), if {A(k)}∞k=1 is the sequence of matrices generated

by Algorithm Chernoff LDA Two, then if ∇J∗
c12

(A(k)) ̸= 0, J∗
c12

(A(k)) < J∗
c12

(A(k+1)).

Otherwise, the algorithm terminates.

Algorithm Chernoff LDA Two needs a learning rate, ηk, which when small, conver-

gence is slower but more likely, while when ηk is large, convergence is faster but less likely.

However, when ηk is chosen carefully as in the algorithm, i.e. ηk ← maxη>0ϕk12(η), the

algorithm always converges. There are many ways of computing ηk, one of them being the

expression that maximizes the value of J∗
c12

in the next step [3]. Consider the following

function of η:
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ϕk12(η) = J∗
c12

(A(k) + η∇J∗
c12

(A(k))) . (17)

The secant method can be used to optimize ϕk12(η). Starting from initial values of η(0)

and η(1), at step j + 1, η is updated as follows:

η(j+1) = η(j) +
η(j) − η(j−1)

dϕk12

dη
(η(j))− dϕk12

dη
(η(j−1))

dϕk12

dη
(η(j)) , (18)

where
dϕk12

dη
is obtained by using Equation (43). This procedure is repeated until the

difference between η(j−1) and η(j) is as small as desired. One of the initial values of η is

η0 = 0 and the other value of η1 resulting from the angle difference between A at step k and

the matrix obtained by adding the latter and the product between the learning rate and the

gradient matrix, as follows (see Appendix A.5):

η1 =
d2ϵ− d

tr{A(k)[∇J∗
c12

(A(k))]t}
, (19)

where ϵ = cos θ, and θ is the angle between A(k) and [A(k) + ηk∇J∗
c12

(A(k))] with these

two matrices residing in a hypersphere of radius d.

Geometrically speaking, since ∥A∥F is a norm that satisfies the properties of a metric, we

can ensure that there exists a matrix norm ∥A∥ induced or compatible in Rn, such that for

any A ̸= 0, ∥A∥ =
√
λ1 holds, where λ1 is the largest eigenvalue of A [3, pp.33]. Then, since

that eigenvalue is λ1 = 1, the matrix norm induced results in
∥∥A(k)

∥∥ =
∥∥A(k+1)

∥∥ = 1. In this

way, we ensure that the rows of A(k) and A(k+1) reside in the same hypersphere in Rn, whose

radius is unity. Then, since those rows are linearly independent, they could be “rotated”

independently using a vector η of dimension d. However, Algorithm Chernoff LDA Two

uses a scalar instead of a vector. For this reason, the “rotation” can be seen on a hypersphere

of radius d and all the rows of A are rotated using the same scalar. As an example, if we

choose θ̂ = π/180, and suppose thatA(k) is of order 1×n, i.e. a vector inRn, we obtain a value

of ϵ ≈ 0.9998. Thus the variation between A(k) and A(k+1) is one degree, where, obviously,
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the value of η1 depends also on A(k) and ∇J∗
c12

(A(k)). Note that we are considering that

A(k) is the matrix Q, which is orthogonal and obtained by means of the RQ decomposition.

To conclude this section, we note that we could use a vector η to update the matrix A(k),

instead of a scalar. This would change the direction of each row in A independently, since

these rows are linearly independent and compose a basis in Rd. Thus, each of these rows

would be “rotated” by using a different scalar ηi, where the d scalars compose the vector η.

Studying this problem is one of the possible extensions of our work presented here in this

paper.

3 Multi-class Case

For the multi-class problem we assume that we are dealing with k classes, ω1, . . . , ωk, whose

a priori probabilities are given by p1, . . . , pk, and which are represented by k n-dimensional

normally distributed random vectors, x1 ∼ N(m1;S1), . . . ,xk ∼ N(mk;Sk). For the FD

criterion, the following definitions are used: SE =
∑k

i=1 pi(mi − m)(mi − m)t, where

m =
∑k

i=1 pimi, and SW =
∑k

i=1 piSi. Then, the FD approach aims to find a matrix

A that maximizes the criterion function given in (1), and which is obtained by finding the

d eigenvalues (whose eigenvectors are the largest ones) of the matrix given in (2).

The LD criterion for the multi-class problem aims to find the d×n transformation matrix

A that maximizes the following function [7]:

JLD(A) =
k−1∑
i=1

k∑
j=i+1

pipjtr
{
(ASWAt)−1AS

1
2
W[

(S
− 1

2
W SijS

− 1
2

W )−
1
2S

− 1
2

W SEij
S
− 1

2
W (S

− 1
2

W SijS
− 1

2
W )−

1
2 +

1

πiπj

(
log(S

− 1
2

W SijS
− 1

2
W )

−πi log(S
− 1

2
W SiS

− 1
2

W )− πj log(S
− 1

2
W SjS

− 1
2

W )
)]

S
1
2
WAt

}
, (20)

where SEij
= (mi −mj)(mi −mj)

t, πi =
pi

pi+pj
, πj =

pj
pi+pj

, and Sij = πiSi + πjSj. The

multi-class LD criterion is maximized as it is done for the two-dimensional case, by finding

13



the matrix A composed of the d eigenvectors (whose eigenvalues are the largest ones) of the

following matrix:

SLD =
k−1∑
i=1

k∑
j=i+1

pipjS
−1
W S

1
2
W

[
(S

− 1
2

W SijS
− 1

2
W )−

1
2S

− 1
2

W SEij
S
− 1

2
W (S

− 1
2

W SijS
− 1

2
W )−

1
2

+
1

πiπj

(
log(S

− 1
2

W SijS
− 1

2
W )− πi log(S

− 1
2

W SiS
− 1

2
W )− πj log(S

− 1
2

W SjS
− 1

2
W )

)]
S

1
2
W , (21)

Our multi-class criterion is not straightforward as the Chernoff distance is not defined for

more than two distributions. This is also the case of other classifiers, such as the well-known

support vector machines or kernel-based classifiers, for which majority votes of k(k − 1)/2

decisions are among the most widely-used schemes [1], as opposed to other schemes like one-

against-all or all-at-once, which suffer the problem of yielding unclassifiable regions [5]. In

our case, however, it is natural to maximize the weighted sum of pairwise Chernoff distances

between classes ωi and ωj, for all i = 1, . . . , k − 1, j = i, . . . , k. The “weights” used for the

pairwise class criterion are given by the normalized joint prior probabilities between classes

ωi and ωj, πiπj. The criterion, thus, consists of finding the optimal transformation Ax,

where A is a matrix of order d× n that maximizes the function:

J∗
c (A) =

k−1∑
i=1

k∑
j=i+1

J∗
cij
(A) , (22)

with:

J∗
cij
(A) = tr

{
πiπj(ASWij

At)−1ASEij
At + log(ASWij

At)− πi log(ASiA
t)− πj log(ASjA

t)
}

(23)

The gradient matrix, given by the first-order necessary condition, is the following:

∇J∗
c (A) =

∂

∂A

k−1∑
i=1

k∑
j=i+1

J∗
cij
(A) =

k−1∑
i=1

k∑
j=i+1

∇J∗
cij
(A) , (24)
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where

∇J∗
cij
(A) = 2πiπj

[
SEij

At(ASWij
At)−1 − SWij

At(ASWij
At)−1(ASEij

At)(ASWij
At)−1

]t
+2

[
SWij

At(ASWij
At)−1 − πiSiA

t(ASiA
t)−1 − πjSjA

t(ASjA
t)−1

]t
(25)

In order to find the matrix A that maximizes J∗
c (A), we use the same algorithm as for

the two-class case. The convergence proofs and initialization procedures are also a natural

extension of the two-class case. In the experimental section, we show some empirical results

for the multi-class criterion proposed here, which shows the advantages of optimizing the

Chernoff distance in the transformed space.

4 Empirical Results

In order to evaluate the classification performance of the proposed criterion, we present an

empirical analysis of the classification accuracy and the Chernoff distance in the transformed

space on synthetic and real-life data. Three LDR techniques are compared, namely FD and

LD as discussed in Section 1, and the proposed method, as presented in Sections 2 and 3,

namely RH. In order to analyze the classification power of the LDR techniques, two classifiers

are used in the transformed space, the linear and quadratic classifiers.

4.1 Synthetic Data

The tests on synthetic data involve ten different datasets of dimensions n = 10, 20, . . . , 100

each with two randomly generated normally distributed classes. The two classes of each

dataset, ω1 and ω2, are then fully specified by their parameters, m1, m2, S1 and S2. Each

element of the means, m1 and m2, was generated by following distributions U[0, b/n] and

U[b/n, 2b/n], where b was set to 10. Dividing by n makes sure that the classification task

is not easier when increasing the dimension. The eigenvalues of the covariances, S1 and
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n FD+Q d∗ LD+Q d∗ RH+Q d∗ FD+L d∗ LD+L d∗ RH+L d∗

10 0.28653 1 0.05314* 9 0.05323 9 0.28979 1 0.28882* 6 0.28883 9
20 0.22255 1 0.01968 18 0.01958* 18 0.22700 1 0.22018 3 0.21878* 4
30 0.15119 1 0.00269* 24 0.00269* 24 0.18218* 1 0.18248 27 0.18248 27
40 0.28725 1 0.00660 36 0.00657* 36 0.29784 1 0.29537 8 0.29466* 6
50 0.37045 1 0.00549* 49 0.00549* 49 0.39616* 1 0.39745 1 0.39745 1
60 0.32076 1 0.00068* 56 0.00068* 56 0.32292 1 0.31603 21 0.31525* 23
70 0.38187 1 0.00001* 28 0.00001* 28 0.38196 1 0.38191* 30 0.38191* 30
80 0.32314 1 0.00000* 37 0.00000* 37 0.34298 1 0.33417 23 0.33408* 25
90 0.32474 1 0.00000* 30 0.00000* 30 0.32636 1 0.32474* 1 0.32474* 1
100 0.19861 1 0.00000* 31 0.00000* 31 0.27859* 1 0.27873 78 0.27872 72

Table 1: Error Rates for the three LDR methods, FD, LD and RH, where the samples
are projected onto the d∗-dimensional space with d∗ giving the lowest error rate for d =
1, . . . , n− 1.

S2, were randomly generated as U[0, b], and the corresponding eigenvectors from a random

matrix in U(0, b/n) followed by a QR decomposition, taking the orthogonal matrix Q. This

ensures that the covariances are positive and definite. A linear transformation using S
− 1

2
1

was applied, obtaining covariances I and S
− 1

2
1 S2S

− 1
2

1 respectively, followed by a subsequent

linear transformation using Φ2, which contains the eigenvectors of S
− 1

2
1 S2S

− 1
2

1 . After all the

transformations, the underlying covariance matrices resulted in I and Λ2. We also randomly

generated p1 as a U[0.3, 0.7] and assigned p2 = 1 − p1. We trained three LDR techniques,

FD, LD and RH using these parameters, and for each dataset we generated 100,000 samples

for testing purposes. For each dataset, we found the corresponding transformation matrix

A for each dimension d = 1, . . . , n − 1. After the linear transformation is performed we

have tested two classifiers: the linear (L) classifier, which is obtained by averaging the

covariances matrices in the transformed space, and the quadratic (Q) classifier which is the

one that minimizes the probability of classification error assuming that the parameters in

the transformed normally distributed data are given by Ami and ASiA
t [5].

The minimum error rates obtained for each individual classifier for synthetic data are

shown in Table 1. The first column represents the dimension of each datset. The next

columns correspond to the error rate and the best dimension d∗ for the three LDR methods
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n FD LD RH
10 0.001 0.042 0.610
20 0.001 0.234 2.483
30 0.002 0.603 5.721
40 0.002 1.395 8.442
50 0.003 2.794 13.524
60 0.003 5.965 77.313
70 0.004 9.790 92.080
80 0.004 15.010 339.722
90 0.004 23.696 400.014
100 0.005 33.150 463.859

Table 2: Execution times for the training phase for the three LDR methods, FD, LD and
RH, run on synthetic data.

and for each classifier, quadratic and linear. The ‘*’ symbol beside the error rate indicates

that the lowest among the three methods, FD, LD and RH, was obtained. Note that for

FD, d∗ = 1, since, as pointed out earlier, the solution matrix contains only one non-zero

eigenvalue. We observe that for the quadratic classifier LD and RH outperformed FD for all

the datasets. Also, LD and RH jointly achieved the minimum error rate for seven datasets,

while RH obtained the best error rate in nine out of ten datasets. For the linear classifier,

again, LD and RH outperformed FD, and also RH achieved the lowest error rate in six

out of ten datasets, outperforming LD. In all dimensions, the LDR techniques coupled with

the quadratic classifier performed better than the LDR with the linear classifier. This is

due to the fact that the data used in the experiments obey the normal distribution. We

also observe that RH performed better than LD and FD, when coupled with both linear and

quadratic classifiers. Note that RH+Q achieved the lowest classification error in a dimension

lower than that of the original space. From these observations we conclude that the best

classification is due to: (i) the effect of reducing dimensions with RH, and (ii) the use of a

quadratic classifier in a lower dimension, and hence justifying the use of our proposed LDR

technique. Table 2 lists the cpu time (in seconds) taken by each of the LDR techniques, for

the training phase only, since the classification using either the quadratic or linear classifier

takes the same amount of time for each LDR, independently of the training phase. FD, as
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expected, takes fractions of seconds in all cases as they only reduce to dimension one. Also,

LD is much faster than RH, since the latter has to perform a gradient search; however, that

search is speeded up using the secant method for finding the best learning parameter. We

also note that LD and RH, yet slow, they both have to search over all dimensions, e.g. for

n = 100, they search for all dimensions from 1 to 99. This time could be reduced drastically

if reducing to lower dimensions, say, starting from one and up to a point in which the error

rate stabilizes or increases.

When comparing the performance of LD and RH, they both achieve similar error rates,

while RH is much (5 to 20 times) slower. These results are included as an indication on

how (i) LD and RH outperform FD, and (ii) observe the relationship between the time

spent by RH in comparison with LD. Against FD there is no point of comparison, since FD

reduces to dimension one and its performance in terms of error is quite poor. RH, however,

performs much better than LD (and FD) in real-life data (despite its higher running time),

as discussed in the next subsection. Finally we note that the time spent (and compared) by

the three methods is critical in the learning phase only, while in the classification stage, the

speed will remain constant for both LD and RH.

4.2 Two-class Real-life Data

As in the experiments on synthetic data, to test the LDR method proposed here, and to

compare it with others, we also performed a few simulations on real life data which involve

39 two-class, d -dimensional datasets drawn from the UCI machine learning repository [12].

Originally, seven datasets were of two classes, and the others were multi-class, from which

we extracted pairs of classes. We assumed the classes are normally distributed, and so the

mean and covariance were obtained for each class, and the prior probabilities were estimated

as pi = ni/(ni + nj), where ni and nj are the numbers of samples for classes ωi and ωj

respectively. We trained the quadratic (Q) and linear (L) classifiers on the data transformed

by the LDR methods in discussion, namely FD, LD, and RH, and obtained the mean of

the error rate for a ten-fold cross-validation experiment. The results for the best value of d,
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where d = 1, . . . , n with n the dimension of the original space, are shown in Table 3. The

first column indicates the name of the dataset and the pair of classes separated by “,” (when

classes are not given, it means the problem itself is two-class), where the name of the dataset

is as follows: W = Wisconsin breast cancer, B = Bupa liver, P = Pima, D = Wisconsin

diagnostic breast cancer, C = Cleveland heart-disease, S = SPECTF heart, I = Iris, T =

Thyroid, G = Glass, N = Wine, J = Japanese vowels, L = Letter, E = Pendigits, and O

= Ionosphere. The other columns represent the error rates2 as in Table 1. The error rate

marked with ‘*’ represents the lowest (optimal) one out of the three LDR, and for the same

classifier, e.g. one ‘*’ for quadratic and another ‘*’ for linear. In bold are the error rates

that are not significantly different from the optimal, where this significance is obtained from

a signed rank test [13] with a significance level of 0.01. The dimension to the right of the ‘/’

indicates that there is a lower dimension for which the error rate is not significantly different

from the optimal in that dimension.

For the quadratic classifier, RH obtained the lowest error rate in 29 out of 39 cases.

Compared to the other techniques, FD and LD yielded the lowest error rate both in 10

cases. This behavior is also observed for the linear classifier, in which RH wins in 25 cases,

while FD and LD obtained the lowest error rates in 9 and 21 cases respectively. It then

follows that RH obtained the lowest error rate in more cases than the others. In addition to

this, RH shows an excellent performance for obtaining an error rate not significantly different

from the optimal. This occurs in 34 out of 39 cases for RH combined with the quadratic

classifier, and in 35 out of 39 cases when RH is coupled with the linear classifier.

A more in-depth analysis on the dimension in which each LDR yielded the lowest error

rate reinforces the superiority of RH over the other two techniques. RH+Q yields the lowest

error rate for dimension one in 9 cases. Also, in 17 cases, RH+Q leads to an error rate that

is not significantly different from the optimal in dimension one. Another point to highlight

is that, in most of the cases (32 out of 39), RH+Q achieves the best results in dimensions

2To enhance the visualization of the results, we have omitted some pairs that give zero-error classification
for all cases. These are I,1,2; I,1,3; T,2,3; G,1,5; N,1,3; J,6,7. Also, since FD always reduces to dimension
one, we omit the column d∗.
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Dataset FD+Q LD+Q d∗ RH+Q d∗ FD+L LD+L d∗ RH+L d∗

W 0.03075 0.02783* 1 0.03075 1 0.03962 0.03815* 6/5 0.03962 1

B 0.36201 0.38857 4 0.35361* 1 0.30991 0.33016 5 0.30126* 5/4

P 0.22643* 0.25126 2 0.22643* 1 0.22903* 0.23038 7/5 0.22903* 1

D 0.03152* 0.04026 27 0.03152* 1 0.04207 0.02988* 20/18 0.03678 28

C 0.16494 0.16827 11 0.16137* 11/7 0.16160 0.15839 8 0.14482* 5

S 0.24777 0.04558 41 0.04281* 36/26 0.23364 0.17637* 19/11 0.18037 15/11

I,2,3 0.05000 0.03000* 1 0.04000 2/1 0.03000* 0.04000 1 0.03000* 1

T,1,2 0.02163 0.01081 4/3 0.00526* 3/2 0.05935 0.03274 4 0.02719* 4

T,1,3 0.02222* 0.02777 2 0.02777 2 0.03888 0.02777* 4/1 0.02777* 4/1

G,1,2 0.31000* 0.39761 7 0.39761 8 0.28190* 0.29571 8 0.28904 7

G,1,3 0.22361 0.20416 1 0.11250* 8/1 0.22361 0.20416 1 0.16111* 8/1

G,1,7 0.02000* 0.04000 8 0.02000* 1 0.04000 0.03000* 1 0.04000 1

G,2,3 0.15861 0.21333 8 0.15361* 8/6 0.15861* 0.16722 4 0.16611 8

G,2,5 0.10972 0.09833* 7/1 0.09833* 6/1 0.09972 0.08833* 7/1 0.08833* 6/1

G,2,7 0.02727* 0.06363 7 0.02727* 1 0.04636 0.03727 8 0.01818* 8/6

G,3,5 0.00000* 0.00000* 1 0.00000* 1 0.02500 0.00000* 6/2 0.00000* 7/1

G,3,7 0.06000 0.02000* 2 0.04000 4 0.06000* 0.06000* 1 0.06000* 1

G,5,7 0.05000* 0.07000 4 0.05000* 1 0.05000 0.05000 8 0.02500* 2

N,1,2 0.00714 0.00769 6 0.00000* 6 0.00769 0.00714* 11/9 0.00769 1

N,2,3 0.01666 0.01666 3 0.00833* 7 0.01666 0.00833* 12 0.01666 1

J,1,2 0.00143* 0.00526 3 0.00143* 1 0.00143* 0.00143* 11/7 0.00143* 1

J,1,3 0.00037* 0.00110 7 0.00037* 1 0.00110* 0.00110* 11/9 0.00110* 1

J,4,5 0.00751 0.00177* 7 0.00486 3 0.00441 0.00088* 9 0.00486 1

J,8,9 0.06680 0.05130* 11/8 0.05289 6/1 0.06947 0.07160 11/8 0.06840* 8/1

L,C,G 0.08354 0.05109 15 0.04708* 10 0.08354 0.08490 12 0.08157* 6

L,D,O 0.03340 0.01540 15 0.01477* 10/8 0.03278 0.03021* 14 0.03277 12/3

L,J,T 0.00974 0.00452 10 0.00387* 8/1 0.00974 0.00974 15 0.00908* 10/8

L,K,R 0.09887 0.04140* 12 0.04208 10/9 0.09620 0.09552 13/12 0.09420* 1

L,M,N 0.03175 0.01584 13 0.01459* 13/8 0.03493 0.03303* 13/12 0.03493 1

L,O,Q 0.04559* 0.05728 11 0.04625 1 0.04623 0.05013 11 0.04558* 9/5

L,P,R 0.02050 0.01217 9 0.01024* 9 0.02243 0.02178* 7 0.02242 6/1

L,U,V 0.01074 0.00759 15 0.00696* 9 0.01201 0.01138* 10 0.01138* 9/1

L,V,W 0.02705 0.02704 15 0.02243* 10 0.02970 0.03103 13 0.02838* 5

E,1,2 0.00305 0.00131 10 0.00087* 10 0.00655* 0.00655* 10 0.00655* 1

E,3,4 0.00227 0.00227 1 0.00227* 8/1 0.00227* 0.00227* 1 0.00227* 1

E,5,6 0.00137 0.00045 6 0.00000* 8 0.00182 0.00228 11 0.00182* 13

E,7,8 0.00091 0.00045* 3 0.00045* 3 0.00091 0.00045* 1 0.00091 1

E,9,10 0.01135 0.00047* 12 0.00094 12 0.01230 0.00993 11 0.00851* 6

O 0.15685 0.08536 8 0.08243* 8 0.14827 0.12613* 25/14 0.12859 25/1

Table 3: Error rates for the two-class datasets drawn from the UCI repository.
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lower than or equal to those of LD+Q; in 15 cases, RH+Q yields to the lowest error rate in

dimensions lower than or equal to five.

This demonstrates that RH outperforms the other two techniques in three aspects: (i) it

yields the lowest error rates in more cases than the others, (ii) it leads to error rates which

are not significantly different from the optimal in most of the cases, and (iii) it gives better

results than the other techniques while reducing to even lower dimensions than LD, and

hence speeding up the classification stage.

To show the results from a different perspective, and to analyze the classifiers on different

dimensions d = 1, . . . , n− 1, we plotted the error rate of the SPECTF dataset for all values

of d, and for two methods, LD and RH. FD was excluded, since as pointed out earlier, the

data can only be transformed to dimension one. The corresponding plots for the quadratic

classifier and the linear classifier are depicted in Figure 2. For the quadratic classifier, the

error rate (in general) decreases as the dimension d of the new space increases. Also, in

this case, RH clearly leads to a lower error rate than LD, while both converge to similar

error rates for values of d close to n. This reflects the fact that as the Chernoff distance in

the transformed space increases, the error rate of the quadratic classifier decreases. Note

that this behavior is more appropriate for the Bayesian (quadratic for normal distributions)

classifier, and not for other classifiers, such as the linear one, as explained below. It would be

an interesting problem to investigate the behavior of applying other classifiers to the result

of the LDR, e.g. other nonlinear or kernel-like classifiers.

For the linear classifier, the behavior is different, in the sense that the the error rate starts

decreasing to a certain point, to increase again after d = 20, while in most of the cases, RH

leads to error rates comparable to those of LD. Note also that the linear classifier is taken by

averaging the covariances, leading to an optimal classifier (in the Bayesian sense) only when

the covariances are equal, situation that is not very common to occur in real-life data. This

behavior is as expected, i.e. the error rate decreases quickly and stabilizes or even increases

(for the linear classifier, in this case) as d becomes larger. This is advantageous for our case,

as we can start reducing to dimensions 1,2, ..., until obtaining a reasonable error rate, the
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(b) Linear classifier.

Figure 2: Error rates for different dimensions on the SPECTF dataset.

error rate starts to increase, or the gain is not significant at all.

The plot of the Chernoff distance for different values of d = 1, . . . , n− 1, for RH and LD,

and for the SPECTF dataset is depicted in Figure 3. It is clear that the Chernoff distance in

the transformed space (y-axis), which is computed as in (34), increases as the dimension d

of the transformed space increases, leading to RH producing higher Chernoff distances than

LD. This, again, shows that since RH seeks for maximizing the Chernoff distance in the

transformed space, it is more likely to lead to the lowest error rate, when using a quadratic

classifier, in the transformed space. This corroborates the superiority of RH over LD and

FD, as shown in Table 3. Additionally, the Chernoff distance for RH increases much quicker

than that of LD in lower dimensions, which implies that the desired error rate (e.g. low

enough) can be achieved in lower dimensions.

4.3 Multi-class Real-life Data

The datasets involved in the experiments, again, taken from the UCI Machine Learning

Repository, are Iris plants, Pendigits, Thyrod gland, Wine, Glass identification, and Vowel

context. In order to avoid ill-conditioned covariance matrices, we have applied principal

component analysis (PCA) to Glass and reduced the data from dimension nine to eight, and
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Figure 3: Chernoff distance for the SPECTF dataset.

removed class ‘6’ to apply the 10-fold cross validation method. As in the two-class case, we

trained the three LDR techniques, namely FD, LD and RH, followed by a quadratic or linear

classifier, in a 10-fold cross-validation experiment. The average classification errors are given

in Table 4, in which d∗ indicates the dimension that yields the lowest error rate. For each

classifier, quadratic and linear, the LDR method(s) that produce(s) the lowest error rate(s)

is(are) marked with a ‘*’, and the error rates which are not significantly different from the

optimal are in bold. For the quadratic classifier, we note that the RH method yields lower

error rate in four times, while FD and LD reach the best error rate in two times. For the

linear classifier, both FD and LD lead to the lowest error rate four times each, while RH does

it in three times. This is as expected, since RH aims to maximize the Chernoff distance in the

transformed space, which is related to the Bayesian quadratic classifier, but not necessarily

to the linear classifier. Also, the error rates obtained using RH and the quadratic classifier

are in all cases (except in Iris and Glass) much smaller than the corresponding rate for the

linear classifier, independently of the LDR technique coupled with the latter. For example,

in Vowel, the error rate of RH+Q is more than 2% lower than that of LD+Q, and more

than 7% lower than that of FD+Q. Regarding the significance test, RH coupled with the

quadratic classifier leads to error rates not significantly different from the optimal in all

cases, and for the linear classifier in all except one case. This demonstrates the effectiveness
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Dataset FD+Q d∗ LD+Q d∗ RH+Q d∗ FD+L d∗ LD+L d∗ RH+L d∗

Iris 0.02666 1 0.02000* 1 0.02000* 1 0.02000* 1 0.02000* 1 0.02000* 1
Pendigit 0.04931 9 0.02319 15 0.02228* 14 0.12399* 9 0.12909 15 0.13009 15
Thyroid 0.03290* 1 0.04220 1 0.03744 4 0.09350* 1 0.09350* 4 0.09350* 1
Wine 0.01111 2 0.00555* 2 0.00555* 2 0.02225 2 0.01111* 5 0.01637 2
Glass 0.43330* 2 0.44680 4 0.44957 4 0.33870* 4 0.39677 6 0.41062 6
Vowel 0.37878 9 0.32222 6 0.30404* 6 0.46565 6 0.44444* 2 0.44444* 2

Table 4: Average error rates obtained from the three LDR techniques coupled with quadratic
and linear classifiers on the multi-class datasets drawn from the UCI machine learning repos-
itory.

of the proposed LDR method in achieving the lowest error rates for multi-class datasets.

4.4 Protein Interaction Data

To analyze the performance of the LDR methods on a real-life application, we tested them

on protein interaction prediction. Protein interactions are crucial in understanding cell

processes and biological functions. The interaction prediction problem has been studied for

quite a few years and the idea is to predict the type of complex or interaction sites. Our

experiments centered on identifying protein complexes of two types, transient and obligate

[11]. The dataset used includes 212 transient complexes and 115 obligate complexes [11].

The features for each complex represent the interaction energies: solvation and electrostatic.

These features were calculated by following the approach and programs given in [2], which

outputs the 20 residues in the two protein chains3 that provide the maximum and minimum

energy values contributing to the binding energy of the interaction. Energy values and residue

numbers are provided for chains A, B, and AB. The residue numbers are not included in

the results shown below, since they do not improve the classification accuracy at all (this

was observed in the experiments performed). Also, some of the energy values are linear

combinations or sums of other values. For this reason, we have compiled three different

datasets that include (i) solvation and electrostatic energy values for chains A, B and AB,

3Two chains per complex were taken. In case in which more than two chains were present they were
merged into two chains and renamed A and B. For example, for complex 1l9j C:HLM, two chains were
considered: A = C and B = HLM.
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Dataset n LD+Q d∗ RH+Q d∗ LD+L d∗ RH+L d∗

PPI-SE 160 0.279755 56 0.266185* 51 0.215795 19 0.215573* 25
PPI-E 120 0.320690 68 0.317464* 68 0.239266* 30 0.239266* 30
PPI-S 120 0.233927 4 0.199444* 2 0.219021 21 0.195996* 8

Table 5: Error Rates for two LDR methods, LD and RH, applied to the protein interaction
dataset, where d∗ indicates the lowest error rate for d = 1, . . . , n− 1.

(ii) electrostatic values for chains A and B, and (iii) solvation values for chains A and B.

The datasets are named PPI-SE, PPI-E, and PPI-S, and contain 160, 120 and 120 features

respectively. Two LDR methods, LD and RH, were trained, followed by a quadratic or linear

classifier, in a 10-fold cross-validation experiment, as in Section 4.2. Note that results for

the FD method are not included, since it yields an error rate of more than 30% for the

three datasets. The classification errors and the best dimensions d∗ for each LDR method

and classifier are shown in Table 5. Again, in bold are the values that are not significantly

different from the optimal. Considering solvation and electrostatic energies, i.e. dataset PPI-

SE, RH yields a lower error rate than LD when combined with the quadratic classifier, and

both yield similar error rates for the linear classifier. For electrostatic energies, i.e. dataset

PPI-E, RH also leads to lower error rate than LD for the quadratic classifier, but the error

rates for both methods are higher than those on PPI-SE. The best results were obtained on

the PPI-S dataset, that is, when using solvation energies only. RH yielded lower error rates

than LD for both quadratic and linear classifiers, where the difference for this case between

the two LDR methods is above 3% and 2% respectively. It is also worth mentioning that

the best error rates obtained by RH correspond to lower dimensions than those of the best

errors yielded by LD.

To visually analyze the results on the PPI-S dataset (the best case of the three datasets),

the error rates are plotted in Figure 4. The x-axis corresponds to the reduced dimension,

while the y-axis represents the error rates for both LD and RH. The error rates start to

decrease for lower dimensions, to stabilize at some point, and finally, increase with the

dimension. A noteworthy point to observe is that RH leads to substantially lower error
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(a) Quadratic classifier.
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(b) Linear classifier.

Figure 4: Error rates for dimensions d = 1, . . . , 80, obtained after applying LD and RH to
the PPI-S dataset.

rates for lower dimensions, for the first 25 and 15 dimensions for the quadratic and linear

classifiers. The average error differences between LD and RH were computed for the first

20 dimensions for both classifiers, resulting in 3.25% and 1.74% for the quadratic and linear

classifiers respectively. For larger dimensions, the difference is not significant at all, but the

errors are much higher than for lower dimensions. This demonstrates that RH leads to better

dimensionality reduction in even lower dimensions, and hence reducing the complexity of the

classification phase.

5 Conclusion

We have introduced a new criterion for linear dimensionality reduction (LDR), which, unlike

previous approaches such as Fisher’s and Loog-Duin’s, aims to maximize the Chernoff dis-

tance in the transformed space. We have derived the corresponding criteria, and provided

proofs for the convergence of the optimizing gradient-based algorithms. Additionally, we

have shown that for any input parameters there always exists an orthogonal matrix that

optimizes the proposed criterion. Based on this result, we have also provided and proved an

angle-based initialization criterion for the secant method used as an intermediate step in the
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main algorithms.

We have tested the proposed LDR criterion, RH, on synthetic and real-life datasets from

the UCI machine learning repository, and compared the results with other two LDR criteria,

namely FD and LD, all of these coupled with both a quadratic and a linear classifier. The

empirical results show the superiority of RH over the existing FD and LD criteria, mainly

when the techniques are coupled with the quadratic classifier, demonstrating the importance

of maximizing the Chernoff distance in the transformed space for such a classifier. We have

also included a test on protein interaction classification, which shows that RH yields to lower

error rates than LD.

One of the possible extensions for this work is to use a vector η to update the matrixA(k),

instead of a scalar. In this way, the direction of each row in A would change independently,

and hence each of the rows would be “rotated” by using a different scalar ηi. We are also

planning to investigate the use of other optimization techniques for our approach in order

to avoid local optima. A second problem to investigate involves the use of a parameter

β in optimizing k(β, a), as opposed to the heuristic β = p1. Finally, the application of the

proposed LDR technique to face recognition is an interesting problem to investigate, as quite

a few approaches have been proposed [9].
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Appendix A

A.1. Compactness of the Solution Set

Let A be any real d×n matrix, d ≤ n, whose rows are linearly independent, and J∗
c12

(A) be

defined as in (34). Then, it follows that max{Q:QQt=Id}J
∗
c12

(Q) ≤ max{A}J
∗
c12

(A).

If we apply the QR decomposition to the matrix At, which is full-row rank, we can ensure

that there exist unique matrices Q1 of order n × d whose columns are orthogonal, and R1

of order d× d which is upper triangular with real positive elements in its diagonal, in such

a way that4 At = Q1R1, or A = (Q1R1)
t = Rt

1Q
t
1 = RQ, where R is of order d × d and

lower triangular, and Q is of order d× n, such that QQt = Id. Then, we have:

J∗
c12

(A) = p1p2(RQm1 −RQm2)
t[RQSWQtRt]−1(RQm1 −RQm2)

+ log

(
|RQSWQtRt|

|RQS1QtRt|p1 |RQS2QtRt|p2

)
(26)

= p1p2 [R(Qm1 −Qm2)]
t [Rt]−1[QSWQt]−1R−1[R(Qm1 −Qm2)]

+ log

(
|R||QSWQt||Rt|

[|R||QS1Qt||Rt|]p1 [|R||QS2Qt||Rt|]p2

)
(27)

= p1p2(Qm1 −Qm2)
tRt[Rt]−1[QSWQt]−1R−1R(Qm1 −Qm2)

+ log

(
2|R||QSWQt|

(2|R|)p1 |QS1Qt|p1(2|R|)p2 |QS2Qt|p2

)
(28)

= p1p2(Qm1 −Qm2)
t[QSWQt]−1(Qm1 −Qm2)

+ log

(
|QSWQt|

|QS1Qt|p1 |QS2Qt|p2

)
. (29)

Since the determinant of a matrix and its transpose are the same, and p1 + p2 = 1, then

2|R| and (2|R|)p1(2|R|)p2 cancel out, resulting in J∗
c (A) = J∗

c (Q), or equivalently:

max{A}J
∗
c12

(A) = max{Q:QQt=Id}J
∗
c12

(Q) . (30)

4The upper triangular matrix R1 is obtained from the coefficients of the iterative expressions of the
Gram-Schmidt orthogonalization process [4].
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A.2. Relationship to the LD Criterion

To see the relationship between JLD2 and J∗
c12

, we, first, assume that S1 and S2 are diagonal,

and that A is a d× n matrix with its d rows orthogonal to each other, i.e. AAt = Id. Also,

we assume that, pre and post-multiplying by S
1
2
W , we have SW = p1S1 + p2S2 = In. Then:

JLD2(A) = tr{p1p2ASEA
t − p1A log(S1)A

t − p2A log(S2)A
t} , and (31)

J∗
c12

(A) = tr{p1p2ASEA
t − p1 log(AS1A

t)− p2 log(AS2A
t)} . (32)

Suppose now (losing generality, but aiming to analyze a particular case) that p1 = p2 =

1/2, and A is of order 1× d. Then, we have:

JLD2(A) = tr{1/2ASEA
t −A[log(S1) + log(S2)]A

t} , and (33)

J∗
c12

(A) = tr{1/2ASEA
t − [log(AS1A

t) + log(AS2A
t)]} . (34)

The eigenvalue decomposition of AS1A
t is of order 1 × 1. If there was a matrix that

satisfies J∗
c12

(A) = JLD2(A), we would have:

tr[log(AS1A
t) + log(AS2A

t)] = tr[A log(S1)A
t +A log(S2)A

t] . (35)

or equivalently,

tr[log(AS1A
t)] + tr[log(AS2A

t)] = tr[A log(S1)A
t] + tr[A log(S2)A

t] . (36)

Since A = [a1, . . . , an] is of order 1 × n and S1 = diag(s11, s12, . . . , s1n) is diagonal, we

have tr[log(AS1A
t)] = log(a21s11) + log(a22s12) + . . . + log(a2ns1n) = log (

∑n
i=1 a

2
i s1i). Also,

tr[A log(S1)A
t] =

∑n
i=1 a

2
i log s1i.

Since A is orthogonal, it is true that
∑n

i=1 a
2
i = 1. Additionally, logarithm is a con-
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cave “∩” function in (0,∞). Then, Jensen’s inequality [17] ensures that
∑n

i=1 a
2
i log s1i ≤

log (
∑n

i=1 a
2
i s1i), with equality if: (i) all s1i are equal, or (ii) only one ai is 1 and all aj, j ̸= i,

are equal to zero.

We can do the same with S2, leading to tr[log(AS1A
t)+log(AS2A

t)] ≤ tr[A log(S1)A
t+

A log(S2)A
t]. Moreover, this is also true for p1 ̸= p2, and hence tr[p1 log(AS1A

t)+p2 log(AS2A
t)] ≤

tr[p1A log(S1)A
t + p2A log(S2)A

t] and JLD2(A) ̸= J∗
c12

(A).

We then conclude that both criteria are different, except for special cases: when the co-

variances are equal or when the transformation matrix is of the formA = [0, . . . , 0, 1i, 0, . . . , 0].

As this is very restrictive, in general both criteria lead to different solutions. Note also that

this could also be generalized for d > 1 by an inductive argument on d, resulting in a matrix

of the form A = [[0, . . . , 0, 1i1 , 0, . . . , 0]
t [0, . . . , 0, 1i2 , 0, . . . , 0]

t . . . [0, . . . , 0, 1id , 0, . . . , 0]
t]t,

where ij ̸= ik, j, k = 1, . . . , d.

To reinforce this hypothesis, we analyze the first order necessary conditions. Suppose

that S1 and S2 are diagonal in such a way that SW = p1S1 + p2S2 = In. Also, since the

maximum resides in a compact set, for any matrix A of order d× n such that AAt = Id the

gradients reduce to:

∇JLD2(A) = 2p1p2[SEA
t −At(ASEA

t)]t − 2A(p1 logS1 + p2 logS2) , and (37)

∇J∗
c12

(A) = 2p1p2[SEA
t −At(ASEA

t)]t + 2[At − p1S1A
t(AS1A

t)−1 − p2S2A
t(AS2A

t)−1]t .

(38)

The solution matrix A for LD reduces to the d eigenvectors of SLD2 that satisfy the

condition AAt = Id. Also, ∇JLD2(A) = 0, then from the above expressions, we have

that 2p1p2[SEA
t −At(ASEA

t)]t − 2A(p1 logS1 + p2 logS2) = 0, and ASE − (ASEA
t)A =

2A(logS1 + logS2). If this was the solution matrix for the RH criterion, then it would

satisfy ∇J∗
c12

(A) = 0, and hence 2p1p2[SEA
t −At(ASEA

t)]t + 2[At − p1S1A
t(AS1A

t)−1 −
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p2S2A
t(AS2A

t)−1]t = 0. Then, it is true that 1
2
[SEA

t−At(ASEA
t)]t+2[At−1

2
(S1A

t(AS1A
t)−1+

S2A
t(AS2A

t)−1)]t = 0, which implies thatASE−(ASEA
t)A = 2[(AS1A

t)−1AS1+(AS2A
t)−1AS2]−

4A.

Taking both expressions in an equality, we have that 2A(logS1+logS2) = 2[(AS1A
t)−1AS1+

(AS2A
t)−1AS2]−4A. This implies thatA(logS1+logS2) = (AS1A

t)−1AS1+(AS2A
t)−1AS2−

2A, which is not necessarily true, except in exceptional cases.

A.3. A Direct Solution for η

As discussed previously, we emphasize that it is quite important to efficiently obtain the

value of η that maximizes the function ϕk12(η) given in (17). Thus, finding a direct solution

for the first-order necessary condition for this function would be the best option; however,

we now show that this seems not to be possible. We know that the first derivative of the

corresponding expression with respect to η results in the following expression:

dϕk12

dη
(η) = [∇J∗

c12
(A(k) + η∇J∗

c12
(A(k)))] · ∇J∗

c12
(A(k)) = 0 . (39)

Now, taking Equation (16), and doing some simple algebraic manipulations, we obtain:

∇J∗
c12

(A) =
∂J∗

c12

∂A
= p1p2

[
SEA

t − SWAt(ASWAt)−1(ASEA
t)
]t

+
[
SWAt − p1S1A

t(AS1A
t)−1(ASWAt)− p2S2A

t(AS2A
t)−1(ASWAt)

]t
= 0 . (40)

Substituting A for A + ηG, where G = ∇J∗
c (A

(k)) in Equation (40), and using the

resulting expression in (39), we obtain the following formula:
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{
p1p2{SEA

t + SEηG
t − SWAt

[
(A+ ηG)SW (A+ ηG)t

]−1 [
(A+ ηG)SE(A+ ηG)t

]
−ηSWGt

[
(A+ ηG)SW (A+ ηG)t

]−1 [
(A+ ηG)SE(A+ ηG)t

]
}

+SWAt + ηSWGt

−p1S1A
t
[
(A+ ηG)S1(A+ ηG)t

]−1 [
(A+ ηG)SW (A+ ηG)t

]
−p1ηS1G

t
[
(A+ ηG)S1(A+ ηG)t

]−1 [
(A+ ηG)SW (A+ ηG)t

]
−p2S2A

t
[
(A+ ηG)S2(A+ ηG)t

]−1 [
(A+ ηG)SW (A+ ηG)t

]
−p2ηS2G

t
[
(A+ ηG)S2(A+ ηG)t

]−1 [
(A+ ηG)SW (A+ ηG)t

]}t

·G = 0 . (41)

In order to obtain the value of η that satisfies the first order necessary condition we

would have to isolate η in Equation (41), which as can be seen is quite intricate. Say, we

have quadratic equations in η, and in some cases the inverse of these. This demonstrates

that, at least in most of the cases, a unique solution does not exist. Also, we do not even know

if the inverse of [(A+ ηG)SW (A+ ηG)] exists. To summarize, we observe that obtaining a

direct solution for η seems not to be possible, justifying the iterative solution based on the

secant method as proposed in Section 2.

A.4. Convergence

Theorem 1. Let {A(k)}∞k=1 be the sequence of matrices generated by Algorithm Cher-

noff LDA Two. If ∇J∗
c12

(A(k)) ̸= 0, then J∗
c12

(A(k)) < J∗
c12

(A(k+1)). Otherwise, the al-

gorithm terminates.

Proof. Consider the function ϕk12(η) as defined in (17). We have that for any η > 0, ϕk12(η) ≥

ϕk12(ηk) holds.

We observe now that ϕk12 is the following decomposition of functions:

η → A(k) + η∇J∗
c12

(A(k))→ J∗
c12

(A(k) + η∇J∗
c12

(A(k))) , (42)
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and that there exists an isomorphism between the matrix space of order d × n, d ≤ n,

with its inner product B · C = tr{B · Ct}, and the vector space of dimension dn with its

usual inner product.

Let us compute this derivative:

dϕk12

dη
(η) = [∇J∗

c12
(A(k) + η∇J∗

c12
(A(k)))] · ∇J∗

c12
(A(k)) , (43)

obtaining, for η = 0, the following expression:

dϕk12

dη
(0) = [∇J∗

c12
(A(k) + 0∇J∗

c12
(A(k)))] · ∇J∗

c12
(A(k)) =∥ ∇J∗

c12
(A(k)) ∥2F> 0 , (44)

where ∥ B ∥2F is the inner product B ·B = tr{B ·Bt}, also known as the Frobenius norm

[3], which always results in a nonnegative value.

If ∇J∗
c12

(Ak) ̸= 0,
dϕk12

dη
(0) > 0, then, there exists an environment near 0 in which the

function ϕk12 is monotonically increasing. Thus, we can make sure that there exists η > 0

such that for all η ∈ (0, η], we have ϕk12(0) < ϕk12(η). Using the latter inequality and

Equation (17), we obtain the following equality:

J∗
c12

(A(k)) = ϕk12(0) < ϕk12(η) ≤ ϕk12(ηk) = J∗
c12

(A(k+1)) . (45)

Note that if∇J∗
c12

(A(k)) = 0, we have thatA(k) = A(k+1), and hence if τ > 0, |J∗
c12

(A(k+1))−

J∗
c12

(A(k))| < τ , the algorithm terminates.

A.5. Initialization

We already know that A(k) is an orthogonal matrix of order d × n. By virtue of (29),

the algorithm allows to ensure that [A(k)][A(k)]t = [A(k+1)][A(k+1)]t = Id. Thus, we have

that
∥∥A(k)

∥∥
F

=
∥∥A(k+1)

∥∥
F

= d. This indicates that both matrices are located near the

environment of zero (null matrices) of radius d in the matrix space. Therefore, we have that
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the magnitude is preserved and only the direction of A is changed, which is measured by

the angle5 between A(k) and A(k+1). Note that J∗
c12

(A) = J∗
c12

(−A), and so it follows that

a maximum of J∗
c12

(A) resides in half of the environment of radius d. We arbitrarily choose

the angle difference between A(k) and [A(k) + η1∇J∗
c12

(A(k))]. Let θ be the angle between

A(k) and [A(k) + ηk∇J∗
c12

(A(k))]. Then, we have that:

cos θ =
tr{[A(k)][(A(k) + ηk∇J∗

c12
(A(k)))]t}

∥A(k)∥F
∥∥A(k) + ηk∇J∗

c12
(A(k))

∥∥
F

(46)

=
d+ ηktr{[A(k)][∇J∗

c12
(A(k))]t}

d
∥∥A(k) + ηk∇J∗

c12
(A(k))

∥∥
F

(47)

Since
∥∥A(k)

∥∥
F
= d and

∥∥A(k+1))
∥∥
F
=

∥∥A(k) + ηk∇J∗
c12

(A(k)))
∥∥
F
= d, we can write (47)

in the following manner:

cos θ =
1

d
+

ηktr{[A(k)][∇J∗
c12

(A(k))]t}
d2

(48)

Also, we know that cos θ ≤ 1 , and hence we choose a value of θ̂ → 0. This implies that

cos θ̂ → 1, as cos θ̂ = ϵ, then (48) leads to (19) .

5As in [4, pp. 60-61], the angle between two nonnull matrices A and B of order d × n is defined as
cos θ = A·B

∥A∥∥B∥ , where A ·B = tr{ABt}.
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