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Optimally shaped terahertz pulses for phase retrieval in a Rydberg-atom data register

C. Rangan and P. H. Bucksbaum
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 30 March 2001; published 17 August 2001!

We employ optimal control theory to discover an efficient information-retrieval algorithm that can be
performed on a Rydberg-atom data register using a shaped terahertz pulse. The register is a Rydberg wave
packet with one consituent orbital phase reversed from the others~the ‘‘marked bit’’!. The terahertz pulse that
performs the decoding algorithm does so by driving electron probability density into the marked orbital. Its
shape is calculated by modifying the target of an optimal-control problem so that it represents the direct
product of all correct solutions to the algorithm.

DOI: 10.1103/PhysRevA.64.033417 PACS number~s!: 32.80.Qk, 32.80.Rm, 03.67.2a, 42.30.Rx

I. INTRODUCTION

The interaction of terahertz-frequency electromagnetic
pulses with Rydberg atoms has produced many insights into
the dynamical properties of atomic systems@1#. The compa-
rable time scales of terahertz pulses with those of Rydberg-
state lifetimes make it possible to envision schemes of quan-
tum control. In this paper, we propose a method of
controlling Rydberg wave packets using shaped terahertz
pulses, and theoretically show how these pulses can be de-
signed to execute a quantum algorithm on a Rydberg-atom
data register.

It has been shown that information can be stored in the
phases of the constituent orbitals of a Rydberg wave packet
@2,3#. Recently, a terahertz half-cycle pulse was used to de-
code the information stored in a Rydberg-atom data register
@3#. This half-cycle pulse decodes the phase structure by re-
taining the population only in the orbital that was initially
180° out of phase with respect to the other orbitals, i.e., the
marked bit. However, this guess~unshaped! pulse does not
decode all marked bits of the register with the same effi-
ciency. In this paper, we aim to find the shaped THz pulse
that will optimally transfer most of the population to any
marked bit of the quantum data register.

II. OPTIMAL CONTROL THEORY

To design the terahertz pulse, we use a method that has
been used extensively in mathematical and engineering ap-
plications — optimal control theory~OCT! @4,5#. This theory
has also been applied to the control of quantum systems
@6–12# with some success in experimental implementation
@13#. We use OCT to design a terahertz frequency pulse that
can be used to achieve a desired target state. We then modify
the OCT target state to make it possible to discover not a
single target, but an optimized quantum algorithm. The wave
function of the Rydberg electron is the state variable and the
electric field of the terahertz pulse is the control parameter. A
functionalJ is defined, whose extremum must be calculated.
The functional consists of two parts, representing the desired
target and the cost. Our aim is to maximize the fraction of
the electron probability density in a target orbitaluak& at a
time T ~after the end of the terahertz pulse!. That is, the
target functional̂ Pk(T)&5^c(T)uak&^akuc(T)& must be a

maximum. The cost functional represents the constraint on
the control parameter, the terahertz fieldE(t). The integrated
energy of the pulse must be kept low, therefore the cost func-
tional is defined asY(T)5*0

Tdt l (t)uE(t)u2. Here l is a
penalty parameter, in general time dependent, that controls
the cost functional and hence the peak terahertz field. The
functionalJ written as

J5^c~T!uPkuc~T!&2Y~T! ~1!

must be maximized.
The aim is to find an optimal control functionE(t) that

maximizesJ. The wave-packet evolution is governed by the
Schrödinger equation. In atomic units,e5me5\51,

uċ~ t !&52 iH ~ t !uc~ t !&, ~2!

whereH(t)5H01E(t)z. The equation of motion acts as a
constraint on the evolution of the state and, in a manner
similar to that used in variational calculus, we introduce a
Lagrange multiplierul(t)& @14#. The unconstrained func-
tional that must be optimized is written as

J̄5J2E
0

T

dt@^l~ t !uċ~ t !&1^l~ t !u iH uc~ t !&1^c~ t !ul~ t !&

2 i ^ċ~ t !uHul~ t !&# ~3!

5^c~T!uPkuc~T!&2E
0

T

dt l ~ t !uE~ t !u2

22 Rê l~ t !uc~ t !&u0
T

1E
0

T

dt 2 Rê l~ t !uc~ t !&

2E
0

T

dt 2 Rê l~ t !u iH uc~ t !&. ~4!

Several iterative techniques for determining the optimal so-
lution have been developed@15–19#. Following the scheme
for an iterative solution proposed in Ref.@19#, the functional
J̄ is written as the sum of a terminal part and an integral
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J̄5G1E
0

T

dt R, ~5!

where

G5^c~T!uPkuc~T!&22Rê l~ t !uc~ t !&u0
T , ~6!

R52l ~ t !uE~ t !u212Re@^l̇~ t !uc~ t !&2 i ^l~ t !uHuc~ t !&#.
~7!

The maximum of bothG and R is sufficient to ensure the
maximum ofJ̄. Our objective is to iteratively determine the
optimal functionE(t) that maximizesJ̄. The functionalJ̄ at
the kth and (k11)th iteration is defined by the changes in
the wave function and the field. That is,

uc~ t !k11&[uc~ t !k&1uDc~ t !&,

Ek11[Ek1DE. ~8!

The difference inJ̄ between two successive iterations is writ-
ten as

J̄k112 J̄k5D11D21D3 , ~9!

where

D1[G„c k11~T!…2G„c k~T!…52Re@^c k~T!uPkuDc~T!&

2^l~T!uDc~T!&#1^Dc~T!uPkuDc~T!&, ~10!

D2[E
0

T

dt@R~ t,c k11,Ek11!2R~ t,c k11,Ek!#

522ReE
0

T

dt l ~ t !E* k~ t !DE~ t !

2E
0

T

dt l ~ t !uDE~ t !u2

22ReE
0

T

dt@ i ^lk~ t !uzDE~ t !uc k~ t !&

1 i ^lk~ t !uzDE~ t !uDc~ t !&#, ~11!

D3[E
0

T

dt@R~ t,c k11,Ek!2R~ t,c k,Ek!#

52ReF E
0

T

dt^l~ t !uDc~ t !&2 i E
0

T

dt^l~ t !uHkuDc~ t !&G .
~12!

Choosing

ul~T!&5Pkuc k~T!& ~13!

and

ul̇~ t !&52 iH kul~ t !&, ~14!

we find

D15^Dc~T!uPkuDc~T!&, ~15!

D2522ReE
0

T

dtF l ~ t !E* k~ t !DE~ t !1
1

2
l ~ t !uDE~ t !u2

1 i ^lk~ t !uzDE~ t !uc k~ t !&1 i ^lk~ t !uzDE~ t !uDc~ t !&G ,
~16!

D350. ~17!

The solution improves whenJ̄ increases or stays the same at
each iteration.Pk is a positive semidefinite operator; there-
fore, D1 is greater than or equal to zero. The change in the
control parameterDE is chosen to maximizeD2. The expres-
sion for D2 suggests the following change in the field at the
~k11!th iteration@19#:

DE~ t !5
2 i

l ~ t !
^lk~ t !uzuc k11~ t !&. ~18!

The appearance ofuc k11(t)& in the above expression im-
plies that the overlap ofuc(t)& andul(t)& is fed back imme-
diately to find the field at the next time step.

The optimal control algorithm consists of the following
steps.

~1! Starting from the initial wave packetuc (0)(0)&
5uc(0)& and a first guess for the terahertz fieldE(0)(t), the
wave packet is propagated according to Eq.~2! to find
uc (0)(T)&.

~2! Using Eq. ~13! to find ul(T)&, Eq. ~14! is iterated
backward to timet50 andul(t)& is found at every time step.

~3! With uc1(0)&5uc(0)&, Eq. ~18! is then used to find a
new value of the control fieldE1(t) and Eq.~2! is used to
propagate the wave-packet forward in time.

The second two steps are repeated until the target yield
converges to within the desired accuracy.

III. OPTIMAL PULSE FOR A SINGLE TARGET STATE

The first step in our approach is to find the optimal tera-
hertz field required to decode a single flipped state. The ini-
tial state of the Rydberg data register is a wave packet made
of the 24p through 29p orbitals of equal amplitudes and the
phase of the 26p ~the marked bit! orbital opposite to that of
the others. The initial guess terahertz pulse is a half-cycle
pulse @20# of pulse width 1 ps. The desired initial phase
structure occurs at the peak of the half-cycle pulse~i.e., at
0.5 ps!. We find the terahertz pulse that will optimally trans-
fer most of the population to the marked bit. The best value
of the penalty parameterl that controls the peak field of the
terahertz pulse to a reasonable value, and at the same time
produces the desired final state, was found to be roughly
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1010. One feature of several optimal fields obtained theoreti-
cally @7,11# is that the fields do not go to zero smoothly at the
times t50 andt5T. In the present system, the correct evo-
lution of the wave packet depends very sensitively on the
fields at the end points. The addition of a smooth switch on
and switch off of the calculated optimal field drastically
changes the evolution of the wave packet. Therefore, the
condition that the terahertz field continuously goes to zero
before and after the time interval of choice must be built into
the algorithm. To ensure that the terahertz field goes
smoothly to zero at timest50 andt5T, the penalty param-
eter l (t) is made a smoothly varying time-dependent func-
tion. The penalty on the pulse fluence is a thousand times
more at the end points than at the rest of the pulse duration.
The smoothness of the penalty function ensures a smooth
switching on and switching off of the terahertz pulse.

This OCT implementation is very successful in describing
the terahertz control of a Rydberg wave packet. The method
takes macrosteps in the control field at every iteration and
convergence is swift. The computational complexity is of the
same order as that of the wave-packet propagation. There-
fore, we use a split-operator method in a restricted basis of
essential states@21,3#. The energy eigenstates of cesium are
calculated using a pseudopotential method on a nonlinear
radial grid@22#. A time step of 10 fs ensures the accuracy of
the propagator, which is correct to the second order in the
time step. The numerical implementation of the local itera-
tive algorithm is extremely sensitive to numerical error, and
D3 must be maintained equal to zero to very high precision
@19#. The unitary nature of the symmetrized-product propa-
gator maintains this condition. The restricted basis consists
of 195 energy eigenstates with principal quantum numbern
ranging between 21 and 31, and angular momentum quantum
number l ,17. Absorbers ensure that population does not
get reflected from then521, n531, and l 516 ‘‘bound-
aries.’’ Using the selected state basis also imposes the con-
dition that the spectrum of the terahertz pulse is decided by
the energy range of the selected state basis. In this imple-
mentation of optimal control theory, we have chosen a fixed
pulse lengthT of roughly 8 ps. In other formalisms, this time
T may also be varied as a parameter.

The terahertz field that optimizes the population in the
marked 26p state is shown in Fig. 1~a!. The initial population
in the 26p state is 16.7%. The optimal pulse will decode the
information stored as phase by transferring most of the popu-
lation into the 26p state. With the initial guess pulse, the
population is 29.5%. After 50 iterations, the target yield is
increased to 52.8%. The spectrum and Husimi distribution
@23# of this optimal pulse are shown in Fig. 1~b! and Fig.
1~c!, respectively. Notably, the strong peaks in the spectrum
and the Husimi distribution do not correspond to any reso-
nance between the energy levels of the selected state basis.
The optimal terahertz pulse does not drive the system to any
particular resonant condition. Instead, it alters the phases of
the constituent orbitals of the wave packet so that they inter-
fere to produce the desired probability distribution.

Figure 2 shows the evolution of the wave packet as a
function of time while the optimal pulse is on. During the
terahertz pulse, probability can leak into other states not in

the register~the other states in the essential basis!. At the end
of the pulse, a large fraction of the electron probability den-
sity lies in the flipped orbital~marked bit! of the data regis-
ter. This can be thought of as using the other states of the
data register as working qubits, which are used during the
computation, but are not measured for any useful retrieval of
information.

One interesting feature of this optimal pulse is that the
peak field of roughly 1 kV/cm lasts for roughly 0.5 ps. For a
n̄526 wave packet, this field, which is beyond the field-
ionization limit, lasts for more than half the Kepler period
(;2pn3). Yet, 99% of the population remains in the se-
lected state basis. This feature is an example of interferomet-
ric stabilization@24#, seen in other atomic systems.

IV. OPTIMAL PULSE FOR A QUANTUM ALGORITHM

This terahertz pulse is optimal only for decoding the
flipped 26p orbital. That is, if the phase of a different state
were flipped, this pulse will not decode it. We wish to design
a universal terahertz pulse that will optimally decode any
flipped orbital of the wave-packet register. Therefore, we re-
define the optimal-control problem by considering an initial
state that is a product state of independent wave packets with
singly flipped orbitals,

FIG. 1. Optimal terahertz pulse that maximizes the population in
the marked 26p orbital. ~a! Electric field of the pulse as a function
of time shows a strong peak around 0.5 ps when the marked phase
structure occurs.~b! The Fourier transform of the pulse does not
indicate any atomic resonance.~c! The Husimi distribution of the
terahertz pulse.
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uC~0!&5uc25p
(1) ~0!& ^ c26p

(2) ~0!& ^ c27p
(3) ~0!& ^ •••. ~19!

The terahertz pulse acts simultaneously but independently on
all these wave packets. The desired final state is also a prod-
uct state of independent wave packets with the flipped bit
correctly decoded,

uC~T!&5u25p(1)& ^ u26p(2)& ^ u27p(3)& ^ •••. ~20!

The counterparts of Eqs.~13! and ~14! are straightforward.
At every time step, the updated terahertz field is found by
using a modified version of Eq.~18!, with the matrix element
of z replaced by a sum of matrix elements ofz, one from
each independent ‘‘subspace,’’

DE~ t !5
21

l ~ t ! (
i 51

N

^l ( i )
k ~ t !u izuc ( i )

k11~ t !&. ~21!

Using this method, we find the terahertz pulse that detects
any flipped orbital of theN-bit data register. The advantage
of this refinement is that the computational resources needed
increase only by a factor of the number of constituent states
in the wave-packet register.

We now find the optimal terahertz pulse that will decode
any flipped state in a six-state Rydberg data register. The
register consists ofnp states of cesium, withn from 24 to 29.

Population in the flipped orbital is amplified by the diffusion
of probability density from the adjacent states. This is an
example of the implementation of Grover’s search algorithm,
where information is stored in states with differing phases,
and a marked bit is amplified by ‘‘quantum diffusion’’@25#.
The outer statesn524 andn529 are therefore not included
in the optimization. The universal decoding pulse and its
effect on a wave packet with different marked bits is shown
in Fig. 3. After the pulse, the wave-packet population is dis-
tributed so that the flipped state is clearly amplified.

V. CONCLUSIONS

In conclusion, we have designed a terahertz pulse to
implement a search algorithm on a quantum data register.
Phase information stored in a Rydberg wave packet was op-
timally retrieved through the interaction with the pulse. Care-
ful attention was paid to the smooth switch on and switch off
of the terahertz pulse. We also show that it is possible to
design an optimal pulse that can achieve not only a desired
target state of an atom, but also implement a desired algo-
rithm.

To our knowledge, this is the first time that optimal con-
trol theory has been applied to the terahertz control of a
quantum system. This theoretical study motivates the experi-
mental design and control of broadband terahertz-frequency
pulses. Beyond quantum control, these results point to the
possibilities of using Rydberg atoms as quantum computers
and terahertz pulses to implement quantum algorithms.

FIG. 2. Calculated spectrum of the atomic wave packet as a
function of time while under the influence of the optimal terahertz
pulse. The wave packet is redistributed such that a significant por-
tion of the population lies in the marked orbital at the end of the
pulse.

FIG. 3. The terahertz pulse designed to optimally retrieve any
marked orbital of the Rydberg-atom data register.~a! The electric
field as a function of time.~b! Calculated spectra of the Rydberg
wave packet after the terahertz pulse for initial states with different
marked orbitals~i! 25p, ~ii ! 26p, ~iii ! 27p, and ~iv! 28p. The
crosses indicate the population of the marked orbital when the guess
HCP is used to retrieve the phase information.
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