
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Computer Science Publications School of Computer Science

2002

An interactive approach of assembly planning An interactive approach of assembly planning

Xiaobu Yuan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/computersciencepub

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yuan, Xiaobu. (2002). An interactive approach of assembly planning. IEEE Transactions on Systems, Man
and Cybernetics, Part A, 32 (4), 522-526.
https://scholar.uwindsor.ca/computersciencepub/11

This Article is brought to you for free and open access by the School of Computer Science at Scholarship at
UWindsor. It has been accepted for inclusion in Computer Science Publications by an authorized administrator of
Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/computersciencepub
https://scholar.uwindsor.ca/compsci
https://scholar.uwindsor.ca/computersciencepub?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/computersciencepub/11?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Interactive Approach of Assembly Planning

Xiaobu Yuan1

1School of Computer Science, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Abstract

Presented in this paper is an interactive ap-
proach of assembly planning. It provides a vir-
tual reality interface for production engineers
to program the virtual representation of robotic
manipulators in a three-dimensional operation
space. The direct human involvement creates a
user-defined assembly sequence, which contains
the human knowledge of mechanical assembly.
By extracting the precedence relationship of ma-
chinery parts, for the first time it becomes pos-
sible to generate alternative assembly sequences
automatically from a single sequence for robot
reprogramming. This interactive approach intro-
duces human expertise into assembly planning,
thus breaking down the computational complex-
ity of autonomous systems. Experiment and
analysis provide strong evidence to support the
incontestable advantages of “manufacturing in
the computer”.

1 Introduction

Given a set of machinery parts, the goal of
assembly planning is to produce optimized se-
quences of assembly tasks for robotic manip-
ulators to put together the product from its
components in a cost-effective fashion. Due to
the dominating effect that assembly operations
constitute in industrial manufacturing, assembly
planning has become one of the most expensive
and time-consuming segments of production pro-
cesses. Meanwhile, the strong influence that as-
sembly planning imposes on the productivity of

modern industry and on the study of robotics
has inspired uninterrupted research in the past
decades, and will continue to be an active topic
in the future.

Assembly planning mainly consists of two pro-
cesses, i.e., robot programming to teach robotic
manipulators carrying out assembly tasks and
sequence planning to determine the order of as-
sembly tasks for optimal mechanical assembly.
The old-fashion online approach suffers from the
downtime of robot operations, the danger im-
posed upon human operators, and the difficulty
of making adjustments for new products. Work-
ing offline inside the computer, in comparison,
promotes the development of automated manu-
facturing tools and allows for the integration of
different technologies from a wide range of orig-
inally separated areas.

Virtual assembly, for example, develops com-
puter tools, and helps to make assembly-related
engineering decisions through analysis, predic-
tive models, visualization, and data presentation
without realizing any of the physical products
and their supporting processes [4]. Nevertheless,
moving away from the physical world to the vir-
tual world also creates new challenges. In partic-
ular, assembly planning faces a complexity prob-
lem whose solution relies on path searching in a
high-dimensional configuration space [5].

This complexity problem exits in such sys-
tems that have to decide every movement of
the machinery parts and all the joint values of
robotic manipulators. In practice, it is common
to reduce the complexity by making assump-
tions. Free-flying objects, for instance, simplify

1

the problem into a logical planning problem [9].
However, it is only a sub-problem of assembly
planning as it leaves robotic execution out of as-
sembly plans. Among the approaches that work
on the complexity problem, the most influential
are the numerical potential field, connectivity
characterizing, and sequential frameworks [2].

In fact, human beings are excellent in think-
ing and working in the three-dimensional world.
Researchers have already started to consider
about introducing human expertise into assem-
bly planning [3], but difficulties arise from the in-
consistency in object manipulation between the
physical and virtual worlds. Window-based hu-
man/computer interaction is not sufficient for
three-dimensional operations. On the other
hand, virtual realty allows human operators to
work in a similar way as in the physical world.
It is therefore particularly useful for the engage-
ment of human expertise in the planning activi-
ties.

Applying virtual reality technology, this paper
develops a technique to engage human operators
in an online-style offline robot programming. It
extracts the precedence relationship of machin-
ery parts from user-defined assembly sequences,
and constructs assembly trees to generate alter-
native assembly sequences for optimization and
reprogramming. This approach of interactive as-
sembly planning make it possible to integrate
robot programming with sequence planning. It
operates at a low complexity, and does not need
the assumption of free-flying objects.

2 Virtual Programming

Robot programming teaches a robotic manipu-
lator how to perform assembly tasks by specify-
ing the manipulator’s trajectory of motion and
its end effector’s functions. As shown in Fig. 1,
the teaching pendant in a virtual environment is
simply a set of graphics models, each of which
represents a segment of the physical manipula-
tor. The connection of segments forms a linkage
of joints, and the numbering of joints goes from

P3P2
P1

P4 P5

P6

Figure 1: The Assembly of a Die-Set

the fixed base to the end effector. For any two
adjacent joints, a homogeneous transformation
mi

i−1 = Rz(θi)Tz(di)Tx(ai)Rx(αi−1) determines
their relationship, 0 < i ≤ l, where l is the link-
age’s degree of freedom.

Every assembly task involves three stages of
positioning [10]. The first stage specifies the pre-
assembly position of an object. In virtual pro-
gramming, it positions a virtual robotic manipu-
lator and prepares its end effector for object han-
dling. A human operator signals this position by
grasping an object with his hand after touching
the object. This operation ensures the human
hand actually reaches to the object, which not
only helps to physically bring the end effector
of a robotic manipulator close to the object but
also makes possible for the mapping of human
grasping to the manipulator.

The second stage considers the in-assembly
positions of an object. The practical nature of
mechanical assembly requires the object to move
along a safe and realizable path through the en-
vironment. The action that the human oper-
ator performs in the first stage prepares him
for physical-level object manipulation in the sec-
ond stage. The operator uses his hand to move
the object from its starting position toward its
targeted mating position, specifying the trajec-
tory of the end effector. At the same time, in-
verse kinematics applied on the transformation
sequence mn

n−1 · · ·m2
1m

1
0 computes the joint an-

gles of the simulated robotic manipulator.

Let the initial set of joint angles for an l-link

2

robotic manipulator be < j1(t0), · · · jl(t0) > at
the pre-assembly position. Inverse kinematics
takes the hand position as the end effector’s po-
sition at a given time t, and produces a new set
of joint angles < j1(t), · · · jl(t) > according to
the sampled tracking data. The result in turn
refreshes the configuration of the virtual manip-
ulator in display, which gives the operator visual
feedback about the distance between objects. If
the calculation has no solution, it means the ob-
ject’s position is unreachable. In the case when
there are multiple solutions, the chosen solution
is the one that presents the smallest difference of
joint angles right before time t along the trajec-
tory.

In the second stage of object positioning, the
operator uses primarily his visual sense and
his skills of working in the three-dimensional
workspace to ensure a collision-free path of the
object. The lack of physical restrictions in
a virtual environment, however, does not per-
mit accurate specification of fine motion. The
last stage of object positioning in virtual pro-
gramming therefore only needs the operator to
bring the moving object to its destination with
a close line-up of the reference-alignment coor-
dinate systems along their major axes [8]. The
operator then releases the object, and the system
completes the desired alignment operation to es-
tablish the post-assembly position of the object.

Virtual programming allows the human oper-
ator to teach a robotic manipulator performing
assembly operations through three-dimensional
human/computer interaction. The procedure
that the operator puts a set of machinery parts
together into a product actually defines a se-
quence of assembly tasks. Suppose a product P
consists of n component parts Pi, 1 ≤ i ≤ n, and
the user-defined sequence is the kth sequence in
a total of m possible sequences to produce P .
The user-defined assembly sequence then takes
a form in the following format.

P0
τ1(k)→ P1(k) · · ·

τj(k)→ Pj(k) · · ·
τn(k)→ Pn(k) (1)

where P0 is a stable workstation, and T =

τ1τ2 · · · τn is an ordered set of assembly tasks.

3 Precedence Knowledge Ex-
traction

Precedence constraints refer to the constraints
on the order of assembly tasks. They originate
from the common restrictions of mechanical as-
sembly that ensure the validity of assembly se-
quences, including the geometric relationship of
machinery parts, the stability of assembly oper-
ations, and the realizability of robotic manipula-
tors. An assembly sequence is feasible only if the
operation of all its assembly tasks satisfies these
precedence constraints. The extraction of prece-
dence knowledge in virtual assembly is a reason-
ing process that establishes the precedence rela-
tionship of all machinery parts according to the
information contained in a single user-defined as-
sembly sequence.

3.1 Constraints Detection

There are two types of constraints — direct con-
straints and implicit constraints. Let notation
PC(Pi, Pj) stand for the constraint that a ma-
chinery part Pi must be assembled before Pj is
in place, 1 ≤ i, j ≤ n and i �= j. It is a di-
rect constraint if PC(Pi, Pj) can only be deter-
mined by geometric reasoning. Otherwise, it is
an implicit constraint when PC(Pi, Pj) is infer-
able by constraint propagation. An implicit con-
straint PC(i, j) can be deduced from PC(i, μ) and
PC(μ, j), 1 ≤ μ ≤ n and μ �= i and μ �= j, when
both PC(i, μ) and PC(μ, j) are available for rea-
soning.

Constraints deduction starts with a prepro-
cessing that verifies the actual location of ob-
jects after assembling. If a mechanical part is
involved in the composition of any sub-assembly,
the product finished by the assembly sequence
of (1) provides the information to update the fi-
nal location with the sub-assembly. A transfor-
mation of the alignment coordinate system on
the mating object is enough to fulfill the cal-

3

culation. Otherwise, its final resting location is
the same as the position after it is released from
the hand for alignment. In addition, the gap
between the releasing and alignment positions
creates a sweeping volume, which identifies ge-
ometric constraints.

A direct constraint PC(Pi, Pj) exists in two sit-
uations. The first situation arises when there is a
direct reference-alignment relationship between
Pj and Pi. It means that the reference coordi-
nate system is on Pi and the alignment coordi-
nate system is on Pj by specification or through
revision in preprocessing. The first case takes
care of normal placement of objects. In compar-
ison, the second situation occurs when an inter-
section relationship exists between Pj and the
sweeping volume of Pi. It handles implied geo-
metric relationships.

For example, the assembly of a die-set as
shown in Fig. 1 requires defining a pair of co-
ordinate systems on P2 and P1 respectively to
stand up P2 at a guide-hole of P1. This reference-
alignment relationship makes up a direct con-
straint PC(P1, P2). Another direct constraint
PC(P3, P4) is detected, however, mainly because
there is no collision-free path to insert P3 after
P4 is in place. It is verifiable by first placing P4

on top of P2, and then checking the geometric
intersection between the sweeping volume of P3

and the graphics model of P4.

The die-set example also presents plenty of
situations that lead to implicit constraints.
For instance, the direct constraints PC(P1, P2)
and PC(P2, P4) lead to an implicit constraint
PC(P1, P4), i.e., the assembly of the punch holder
should follow the die holder; and PC(P1, P4) and
PC(P4, P5) lead to PC(P1, P5), which points out
that the assembly of the punch should be done
after the die holder is in place. Since the de-
tection of implicit constraints involves with sym-
bolic reasoning only, it is much faster to compute
than the detection of direct constraints.

3.2 Constraints Deduction

In corresponding to the two different types of
precedence constraints in assembling process,
constraints deduction employs an n × n matrix
M to maintain the result of both types of rea-
soning. All the values of elements m(i, j) in the
deduction matrix M are set to ‘-9 ’, 0 ≤ i ≤ n−1
and 1 ≤ j ≤ n, at initialization. Both i and
j are arranged in the order of machinery parts
as they appear in the user-defined assembly se-
quence. The index along the columns is the ac-
tual index in the sequence, i.e., from 1 to n; but
the index along the rows begins with 0 to include
the workstation P0 and ends with n− 1.

Constraints deduction first uses geometric rea-
soning to decide direct constraints on the diago-
nal elements of M . For m(i, j), i = 0,1,· · · , n−1
and j = i+1, its value changes from ‘-9 ’ to ‘1 ’
if PC(Pi, Pj) exists. Otherwise, there is no prece-
dence constraint between Pi and Pj , and the
value of m(i, j) is reassigned to ‘0 ’. The deduc-
tion then propagates to the upper-right region of
M . Additional geometric checks for direct con-
straints are necessary only if constraint propaga-
tion cannot determine the value of an element in
the region.

In the upper-right region of M , constraints de-
duction propagates with i increasing one by one
from ‘0 ’ to n−2 and j from i+1 to n−1. An im-
plicit constraint PC(Pi, Pj) exists under the con-
dition that both PC(Pi, Pi+1) and PC(Pi+1, Pj)
exist, i.e., the values of m(i, i+1) and m(i+1, j)
are either ‘1 ’ or ‘-1 ’. In such a case, m(i, j)
takes ‘-1 ’ as its new value. Alternatively, ge-
ometric reasoning is in action again to decide
for PC(Pi, Pj). The value of m(i, j) resets to ‘1 ’
when confirmed, or ‘0 ’ otherwise. The propaga-
tion continues until the last element in the upper-
right region.

This constraint deduction encourages the use
of symbolic reasoning whenever possible, thus
cutting down the number of geometric reasong.
At the end of this process, all elements along the
diagonal and in the upper-right region of the de-
duction matrix are reset from ‘-9 ’ to ‘1 ’, ‘0 ’, or

4

1. Create a graph G with a level0 node P0.

2. Create an empty set N0(0).

3. Set both node index i and level index k to 0.

4. Link Node(i, k) {
5. For j = i to n− 1 with j ++,

6. if m(i, j) = 1,

7. if m(l, j)! = 1 for every l in Ni(k),
8. create a levelk+1 node Pj;

9. make a levelk link from Pi to Pj;

10. add j to Ni(k);

11. For every j in Ni(k),

12. create an empty set Nj(k + 1);

13. add all the rest of Ni(k) to Nj(k + 1);

14. Link Node(j, k + 1) }.

Figure 2: An Algorithm of Tree Construction
from Deduction Matrix

‘-1 ’. Among them, an element m(i, j) of a value
‘1 ’ or ‘-1 ‘, 0 ≤ i < n−1 and i ≤ j < n, tells that
the assembly of Pi must be completed before the
assembly of Pj . Due to the implied relationship
between Pj and Pi in m(i, j), there is no need to
process the lower-left region of M .

4 Sequence Generation

Assmbly planning finally generates assembly se-
quences for optimization. The user-defined as-
sembly sequence embodies knowledge of mechan-
ical assembly, leading to the extraction of prece-
dence constraints. These constraints influence
the order of assembly tasks, and thus constitute
the basics of sequence generation. With a fur-
ther conversion from the deduction matrix to an
assembly tree [11], the interactive approach of
assembly planning develops an incomparable fea-
ture of virtual assembly — automatic generation
of alternative assembly sequences from a single
sequence.

An assembly tree is a simple form of directed
graph for the representation assembly sequences

[1]. In an assembly tree, a path from the root
node to a leaf node defines an assembly sequence.
The assembly tree for an n×n deduction matrix
M has n+1 levels. At its first level, line 1 of
the conversion algorithm in Fig. 2 creates a sin-
gle node P0 to indicate the workstation. The
algorithm then prepares in line 2 an empty set
for the node in the current level, and sets up in
line 3 two indices i and k . The actual tree con-
struction takes place in the recursive procedure
Link Node(·) whose operation consists of two
blocks of actions.
The first block starts from line 5. It goes

through the elements along the i -th row in the
upper-right region of the deduction matrix, and
checks for direct constraints. If m(i, j) = 1, Pj

becomes a child node of Pi at the (k+1)-th level
of the tree unless Pj is already in the set of Ni(k).
The first block of actions finishes by drawing a
link from Pi to Pj and adding index j to Ni(k)
in line 9 and line 10 respectively. Following it
in the remaining four lines from 11 to 14, the
second block immediately creates an empty set
Nj(k + 1) for every node in the current level.
It also copies the other elements of Ni(k) into
Nj(k+1), and initiates another round of process
for them.
In such a way, the recursive procedure expands

a node in the tree by taking as its child nodes all
its sibling nodes and the others that tend to link
to the node but not its siblings. At its comple-
tion, the assembly tree represents different ways
of putting together a product with its compo-
nents, including the one defined by the user. Any
path connecting the root to a leaf node in the tree
defines an assembly sequence as below. A differ-
ent index k1 indicates a different order of ma-
chinery parts Pj(k1), j = 1, · · · , n, which means
that Pj(k1) is not necessarily the same as Pj(k2)
even with the same index j in two sequences.

P0
τ1(k′)→ P1(k

′) · · · τj(k
′)→ Pj(k

′) · · · τn(k
′)→ Pn(k

′) (2)

It may be necessary for assembly planning to
specify some of the assembly tasks once again

5

when evaluating the different assembly sequences
against certain pre-selected criteria, such as the
length and linearity of assembly sequences [9].
The main reason is that assembly tasks applied
on the same objects are presumably the same
in all sequences as those interactively defined
in the user-defined assembly sequence. Due to
the change of order in the alternative sequences,
some tasks may need adjustments. Whenever
necessary, interactive assembly planning plays
back all the selected sequences and engages the
operator back into the virtual environment for
him to redefine tasks.

5 Experiments and Discussion

Experiments were conducted to examine the per-
formance of interactive assembly planning via
virtual reality. The tested machinery sets cov-
ered different object shapes and different task
difficulties. The emphasis, however, was on the
operation of the proposed interactive approach
and the new feature of sequences generation from
a single user-defined assembly sequence.

5.1 An Experiment on the Die-Set

The typical die-set shown in Fig. 1 consists
of three principal components: a punch holder
(P4), a die holder (P1), and two guideposts (P2

and P3). It also has a stamping punch (P5) and a
metal plate (P6) for coin-making. The equation
in (3) gives a feasible sequence of assembling the
die-set from its five components and placing the
metal plate for stamping.

Tab
τ1→ P1

τ2→ P2
τ3→ P3

τ4→ P4
τ5→ P5

τ6→ P6 (3)

In the sequence, the assembly tasks applied upon
the parts are as the following, where each of the
tasks τk, 0 < k ≤ 6, includes the details to in-
struct a robotic manipulator reaching to, moving

M P1 P2 P3 P4 P5 P6

P0 1 -1 -1 -1 -1 -1
P1 -9 1 1 -1 -1 1
P2 -9 -9 0 1 -1 0
P3 -9 -9 -9 1 -1 0
P4 -9 -9 -9 -9 1 0
P5 -9 -9 -9 -9 -9 0

Table 1: The Deduction Matrix of Die-Set

around, and releasing an object Pk.

τ1: place P1 with its half-open hole facing up;
τ2: stand up P2 by inserting it into a guidehole;
τ3: stand up P3 at the other guidehole of P1;
τ4: sit the two corner-holes of P4 on the guideposts;
τ5: insert P5 half-way through the bigger hole of P4;
τ6: slide P6 on top of the half-open hole of P1.

Right after the human operator finishes defin-
ing the assembly sequence of (3) in virtual pro-
gramming, interactive assembly planning takes
place to determine the precedence relationship
between objects. Following the order of object
manipulation, it checks all parts one by one for
geometric constraints. The first object P1 is al-
ways on the table P0, thereforem(0, 0) in Table 1
is 1. As P2 is in a hole of P1 through alignment,
the 1 -labeled m(1, 1) indicates that τ2 can take
place only after τ1. For a similar reason, the val-
ues of both m(3, 3) and m(4, 4) are 1.

However, there is no reference-alignment re-
lationship between either the pair of P2 and P3

or the pair of P5 and P6. The values of m(2, 2)
and m(5, 5) have to come from the intersection
check between P3 or P6 and the sweeping vol-
ume of P2 or P5. The result is 0 for both of
them. For the elements in the upper-right re-
gion, symbolic reasoning takes place first. For
example, the value of m(0, 1) becomes -1 simply
because m(0, 1) and m(1, 1) are already labeled
with 1. In the case of a 0 -labeled element in the
inference, a check of geometric intersection is un-
avoidable. This is how m(1, 2) obtains its value

6

Figure 3: The Assembly Tree of the Die-Set

as m(2, 2) has a 0 value.

Sequence generation begins to construct the
assembly tree after constraints deduction com-
pletes the deduction matrix of Table 1. The top
two levels of the tree are a graph description of
the first row of the matrix that links P0 with
all the objects with a 1 -labeled element in this
row. Therefore, element m(0, 0) results in a link
from P0 to P1 in the tree. The tree then expands
node P1 by adding its child nodes P2, P3, and P6.
The next level then expands the three nodes with
their brothers as the algorithm of Fig. 2 forbids
P4 becoming a child because it has two parents
P2 and P3 who happen to be brothers. The same
rules apply on the rest of the tree, and the final
product is a tree in Fig. 3.

Fig. 3 shows ten possible sequences to assem-
ble the die-set, including the one defined by the
operator. Taking a sequence out of the tree, a re-
play moves each object in the sequence one after
another by applying the corresponding assembly
task recorded during programming. For the first
sequence in the tree, as an example, the opera-
tions are as below. Interactive evaluation shows
that there is no problem applying the original
tasks on this new sequence.

Tab
τ1→ P1

τ2→ P2
τ3→ P3

τ6→ P6
τ4→ P4

τ5→ P5 (4)

5.2 Analysis and Discussions

Direct object manipulation in a three-
dimensional operation space is the key to
introduce human expertise into assembly plan-
ning. Through virtual reality, human operators
use their hands in human/computer interaction

Figure 4: An Experiment on the Pendulum As-
sembly

in a similar way as in the physical world. In
addition, direct object manipulation with hands
allows the mapping of human grasping to the
robotic manipulator. The typical role of a
hand-based user interface, nevertheless, is in
motion definition. With the help of inverse
kinematics, hand movements contribute directly
to the specification of assembly operations.

Other techniques are also available to im-
prove the efficiency and convenience of user in-
terfaces. Voice recognition, in particular, has
joined forces with vision-based gesture recog-
nition, which created an impressive new type
of user interface. Recent advances have pro-
duced moderate success in applications that in-
volves two-dimensional motions to, for example,
control mobile robots. Computer vision, how-
ever, has not reached the maturity of replacing
data glove devices to produce the detailed three-
dimensional robotic instructions as required by
assembly planning.

Interactive assembly planning includes both
constraints deduction and sequence generations.
For the elements along the diagonal and in the
upper-right region of a deduction matrix, there
is a need of n! checks to establish precedence re-
lationships. Experiment results indicate that a
large portion of the checks uses symbolic rea-

7

S P1 P2 P3 P4 P5 P6 P7 P8 P9

tab 1 -1 -1 -1 -1 -1 -1 -1 -1
P1 -9 1 1 1 1 1 -1 -1 -1
P2 -9 -9 0 0 0 0 1 0 -1
P3 -9 -9 -9 0 0 0 1 0 -1
P4 -9 -9 -9 -9 0 0 0 0 1
P5 -9 -9 -9 -9 -9 0 0 0 1
P6 -9 -9 -9 -9 -9 -9 0 1 -1
P7 -9 -9 -9 -9 -9 -9 -9 0 1
P8 -9 -9 -9 -9 -9 -9 -9 -9 1

Table 2: The Deduction Matrix for the Pendu-
lum Assembly

soning. The remaining checks use reference-
alignment relationship first and geometric inter-
section the last. As for tree construction, it is
pure symbolic. Its complexity ranges from O(n)
to O(n!n) depending on the product and its com-
ponents.

Running the procedure on the classical Pendu-
lum Assembly produced the constraint matrix in
Table 2. The constraint deduction process con-
ducted only 30 geometric checks. From the ma-
trix, a total of 840 different feasible assembly se-
quences was then generated. When running the
procedure on other products of different number
and configuration of machinery parts, the worst
case of sequence planning happens when no parts
rely on each other in assembly. It is a typical ex-
ample of combination explosion in the order of
parts’ number. The best case, on the other hand,
happens when every part relies on one and only
one of the other parts in assembly, in which only
one sequence is possible.

6 Conclusion

Virtual assembly is a pilot project of a much big-
ger vision on “manufacturing in the computer”.
The interactive approach presented in this pa-
per creates a way of introducing human expertise
into assembly planning and a mechanism of inte-
grating robot programming with sequence plan-
ning. Virtual assembly helps to identify and re-

solve issues related to the construction of an inte-
grated virtual manufacturing environment that
could enhance all levels of manufacturing deci-
sion and control.

References

[1] J. Bander. A heuristic-search algorithm for
path determination with learning. IEEE
Transactions on Systems, Man, and Cy-
bernetics, PART A: Systems and Humans,
28(1):131–134, Jan 1998.

[2] K. Gupta. The sequential framework for
practical motion planning for manipulator
arms: Algorithm and experiments. In
K. Gupta and A. del Pobil, editors, Prac-
tical Motion Planning in Robotics: Current
Approaches and Future Directions, pages 9–
31. John Wiley & Sons Ltd, 1998.

[3] K. Gupta and A. del Pobil. Successes,
failures, challenges and future directions of
robot motion planning. In K. Gupta and
A. del Pobil, editors, Practical Motion Plan-
ning in Robotics: Current Approaches and
Future Directions, pages 351–354. John Wi-
ley & Sons Ltd, 1998.

[4] S. Jayaram, H. Connacher, and K. Lyons.
Virtual assembly using virtual-reality tech-
niques. Computer-Aided Design, 8(29):575–
584, Aug 1997.

[5] J. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, Boston, 1991.

[6] S. Mok, K. Ong, and C. Wu. Automatic
generation of assembly instructions using
STEP. In Proc. of 2001 IEEE Interna-
tional Conference on Robotics and Automa-
tion, pages 313–318, May 2001.

[7] S. Mok, C. Wu, and D. Lee. Modeling auto-
matic assembly and disassembly operations
for virtual manufacturing. IEEE Transac-
tions on Systems, Man, and Cybernetics,

8

PART A: Systems and Humans, 31(3):223–
232, May 2001.

[8] H. Sun, X. Yuan, G. Baciu, and Y. Gu. Di-
rect virtual-hand interface in robot assem-
bly programming. Journal of Visual Lan-
guages and Computing, 10(1):55–68, 1999.

[9] R. Wilson and J. Latombe. Geometric rea-
soning about mechanical assembly. Artifi-
cial Intelligence, 71(2):371–396, Dec 1994.

[10] C. Wu and N. Kim. Modeling of part-
mating strategies for automating assem-
bly operations for robots. IEEE Trans-
actions on Systems Man and Cybernetics,
24(7):1065–1074, July 1994.

[11] X. Yuan. Interactive assembly planning in
virtual environments. In Proc. of the 2000
IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 1462–
1467, Nov. 2000.

9

	An interactive approach of assembly planning
	Recommended Citation

	nnu_invade.dvi

