
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Computer Science Publications School of Computer Science

2003

Virtual assembly with biologically inspired intelligence Virtual assembly with biologically inspired intelligence

Xiaobu Yuan
University of Windsor

Simon X. Yang
University of Guelph

Follow this and additional works at: https://scholar.uwindsor.ca/computersciencepub

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Yuan, Xiaobu and Yang, Simon X.. (2003). Virtual assembly with biologically inspired intelligence. IEEE
Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 33 (2), 168-175.
https://scholar.uwindsor.ca/computersciencepub/12

This Article is brought to you for free and open access by the School of Computer Science at Scholarship at
UWindsor. It has been accepted for inclusion in Computer Science Publications by an authorized administrator of
Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/computersciencepub
https://scholar.uwindsor.ca/compsci
https://scholar.uwindsor.ca/computersciencepub?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/computersciencepub/12?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Virtual Assembly with Biologically Inspired Intelligence

Xiaobu Yuan1 and Simon X. Yang2

1School of Computer Science, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
2School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Abstract

This paper investigates the introduction of bio-
logically inspired intelligence into virtual assem-
bly. It develops an approach to assist product en-
gineers making assembly-related manufacturing
decisions without actually realizing the physical
products. This approach extracts the knowledge
of mechanical assembly by allowing human op-
erators to perform assembly operations directly
in the virtual environment. The incorporation
of a biologically inspired neural network into an
interactive assembly planner further leads to the
improvement of flexible product manufacturing,
i.e., automatically producing alternative assem-
bly sequences with robot-level instructions for
evaluation and optimization. Complexity analy-
sis and simulation study demonstrate the effec-
tiveness and efficiency of this approach.

1 Introduction

Flexibility has been recognized as a desirable fea-
ture in manufacturing systems to ensure higher
quality while maintaining an increasing diversity
of products. Driven by the highly competitive
market, researchers in a wide range of appli-
cation areas, including engineering, economics,
and management, have worked on the develop-
ment of a variety of methods to achieve their
specific goals and/or subgoals through this fea-
ture. In particular, flexibility in product design
anticipates significant improvements in terms of
responsiveness to the market, speed of product

development, and saving in prototypes and ver-
ification testing [25].

Accordingly, virtual assembly fulfills design
flexibility by working in the computer. It re-
places physical objects with the virtual repre-
sentation of machinery parts, and provides ad-
vanced user interfaces for human operators to
design and generate product prototypes, to ana-
lyze and optimize manufacturing processes, and
to verify and control work-floor implements di-
rectly in the computer-synthesized working en-
vironment. The elimination of physical proto-
typing and on-site verification makes virtual as-
sembly a powerful tool to reduce the life-cycle
of manufacturing and to adapt changes or intro-
duce new products.

Presented in this paper is an approach that
introduces biologically inspired intelligence into
virtual assembly. The discussions start with a
brief survey of the research topics directly re-
lated to this work. The focus then turns to the
introduction of human expertise of mechanical
assembly and the incorporation of a biologically
inspired neural network into the development of
a virtual assembly system. The benefits of flex-
ibility become evident with the capability of an
interactive assembly planner to produce alter-
native assembly sequences from a single user-
defined sequence. Finally, this paper concludes
with simulation study and discussions on exper-
iment results.

1

2 Related Work

Robot-based mechanical assembly uses robotic
manipulators to put together products from its
component parts. Correspondingly, virtual as-
sembly needs to deal with the issues of robot
programming and assembly planning. In addi-
tion, it has to handle the challenges created by
applying technologies such as virtual reality and
neural networks.

2.1 Robot programming

Robotic manipulators fit machinery parts to-
gether by performing assembly tasks in specified
sequences. Each task instructs a robotic ma-
nipulator to perform an assembly operation and
to establish a mating relationship between ob-
jects. The old-fashion online robot programming
requires human operators to physically move a
teaching pendant. It records the actual move-
ments of joints and uses them to control robots
for high volume productions. Online program-
ming suffers from the down-time of robot oper-
ations, the danger imposed upon human oper-
ators, and the difficulty of making adjustments
for new products.

In comparison, offline programming promotes
the development of automated manufacturing
tools and allows for the integration of differ-
ent technologies from a wide range of originally
separated areas. There has been a number of
methods developed for different applications [20].
They range from simple text-based program-
ming interfaces to computer-aided production
systems. The former requires long development
time and expert programmers to visualize joint
motions without a physical robot, and the latter
provides a full set of tools to design and program
the entire manufacturing process.

Graphical user interfaces present machinery
parts onto the screen and provide electronic mice
as an interactive device for object manipula-
tion. They are more convenient to use than text-
based interfaces, and are common in computer-
aided design/manufacturing [2], including most

of the commercial systems in the market such
as ROBOCAD and IGRIP. The drawback, however,
is that this type of human/computer interaction
is two-dimensional in nature. Decomposition of
three-dimensional assembly operations into two-
dimensional sub-operations is a must.

2.2 Assembly planning

Given a robotic manipulator and the design of
a product, the objective of assembly planning is
to determine feasible and optimal assembly se-
quences for the robotic manipulator to assemble
the product from its component parts [12]. The
assembly of m machinery parts by a robotic ma-
nipulator of k degrees of freedom creates a con-
figuration space of m+ k degrees of freedom. A
point in the configuration space defines a partic-
ular state of a workcell. Considering the original
layout of the workcell and the final scene of an
assembled product as the initial and destination
points in the configuration space, a feasible as-
sembly sequence then corresponds to a continu-
ous, safe, and realizable path that connects the
two points [21].

Consequently, assembly planning faces the
problem of path searching in an (m + k)-
dimensional configuration space. Assembly plan-
ning in theory is impossible as the required com-
putation time grows exponentially with the di-
mension of the configuration space. In prac-
tice, it is common to reduce the complexity by
making assumptions. Free-flying objects, for in-
stance, simplify the problem into a logical plan-
ning problem [26]. However, it is only a sub-
problem of assembly planning as it leaves robotic
execution out of assembly plans. Among the ap-
proaches that work on the complexity problem,
the most influential are the numerical potential
field, connectivity characterizing, and sequential
frameworks [7].

Assembly planning at its current stage has to
leave the actual motion of objects out of the
planning process. The majority methods classi-
fied under interactive planning, such as the one
in [5], are in fact dealing with mechanical disas-

2

sembly. Disassembly planning is fundamentally
different from assembly planning as it provides
only a subset of assembly sequences and consid-
ers a restricted set of allowable moving direc-
tions [19]. Other methods simplify mechanical
assembly to pick-and-place operations as a way
of avoiding motion planning, yet assembly plan-
ning without the actual movement of machinery
parts is hardly useful in practice.

2.3 Virtual reality

The recent development of virtual reality has
changed the way that human operators inter-
act with computers. New devices, such as head-
mounted display and data glove devices, become
affordable and more reliable. They extend user
interface from the classical two-dimensional to a
three-dimensional space. Virtual reality provides
a new means of immersing production engineers
in a computer-synthesized working environment
for them to interact with the virtual machin-
ery parts, specifying and visualizing assembly
activities. Though virtual reality technology is
still under development, researchers have already
begun investigating its application in industry
manufacturing.

The most straight forward application in-
cludes those that explore the sensing capability
of data glove devices. By requiring human op-
erators to put on data gloves while manipulat-
ing physical objects, a paper in [23] presented a
method to collect human movement of objects
for the integration of task planning and execu-
tion. A couple of others used the sensory reading
of finger joint bendings to map grasping opera-
tions from a user to the manipulator [11, 29].
Another practice in this category deals with
“teaching by showing”, and developed methods
of transforming human operations to symbolic
assembly commands with data glove devices [16].

Other applications emphasize more on the
advantages that virtual reality offers to hu-
man/computer interaction. Data glove devices
in this case become an instrument to construct
human hands into the virtual environment. It

makes possible for direct manipulation of virtual
objects [18, 24]. In addition, virtual reality may
go beyond reality by allowing object manipula-
tion at the conceptual level, i.e., to act at a dis-
tance [9]. An increasing number of projects has
started paying attention to the overall environ-
ment that could eventually allow production en-
gineers to plan, evaluate, and verify the assembly
of mechanical products in the computer [10].

2.4 Neural Networks

Path planning is a typical application area of
neural networks in robotics. Most models use
global methods to search the possible paths in
the entire workspace [1]. As a result, they suf-
fer from the same computational complexity as
assembly planning does. Other models also have
the problem of undesired local minima, which
may create traps in some cases such as concave
U-shaped obstacles [28]. Path planning with
penetration growth distance shows the advan-
tage of searching over collision paths [17], and
has the capability of generating optimal, con-
tinuous robot paths. Unfortunately, the neural-
network approaches that work with static envi-
ronments only are not suitable for interactive ap-
plications such as virtual assembly.

There is a number of models developed for
real-time motion planning through learning. For
instance, combining an adaptive sensory-motor
mapping model and an online visual error correc-
tion model may produce the trajectory of robot
manipulators at run time [14]; and dynamic nav-
igation of a mobile robot without any collisions
is possible through unsupervised learning [15].
Since learning-based path planning cannot per-
form properly in fast changing environments, vir-
tual assembly cannot use the neural networks
whose operation relies on explicit learning or cost
optimization.

3

Figure 1: State Transition Diagram of “Hand”

3 The Incorporation of Intelli-

gence

The advantage of virtual assembly does not come
from a simple imitation of the activities that take
place in the physical world during mechanical as-
sembly. Instead, its approach of working in the
computer creates the opportunity of integrating
a wide range of features into a seamless envi-
ronment. This section discusses the design of a
hand-based user interface and the construction
of a biologically inspired neural network. The
next section then discusses their application in
knowledge extraction and real-time path plan-
ning in a virtual assembly system.

3.1 Hand-based human/computer in-
teraction

The main difficulty of introducing human ex-
pertise into assembly planning roots in the in-
consistent ways of object manipulation in the
physical and virtual worlds. Window-based hu-
man/computer interaction is not sufficient for
the task of specifying three-dimensional assem-
bly operations, and the use of virtual reality de-
vices does not need to limit to data collection
only. By properly exploiting the object manipu-
lation capability of data glove devices, an opera-
tor may handle the virtual representation of ma-
chinery parts in a similar way as in the physical
world, and eventually become capable of engag-
ing in the planning activities.

In a virtual environment, all objects are graph-

ics models that follow no physical restrictions.
The hand cannot pick up any objects in the vir-
tual environment as they tender to run through
each other like ghost objects. A hand-based user
interface uses the continuous measurement from
a space tracker to determine the position and
orientation of the hand. It also uses the sen-
sory inputs from a data glove device to signal
the bending of figure segments in terms of joint
angles. A combination of different hand postures
may activate different control commands or initi-
ate the gesture sampling for motion specification
[22].

In particular, a closing hand triggers the hold
command to make a selection or uphold an ac-
tion; an open hand implies free, which releases
an item in possession or frees the hand from
constraints; a point sign invokes items for se-
lection; and an “OK” sign means time to quit,
i.e., to terminate a running process. Shown in
Fig. 1 is a state transition diagram [4] of the
hand. The posture and gesture start as two con-
current states. They function in the super state
of ‘continuous modes’, generating control com-
mands and motions.

Before the hand picks up an object, the hold

command works primarily with free for hand
adjustment. It releases the hand from the con-
tinuous control mode. The motion of the hand
in the physical world no longer contributes to
the motion in the virtual environment. In such a
way, the hand is able to prepare itself to a desired
position or orientation. Object manipulation be-
gins with a point command, which prompts up
a space menu in the virtual environment and ac-
tivates menu selection. A casting ray from the
hand then highlights the menu item it hits, which
becomes selected when followed immediately by
hold.

If the selected item is labeled as “reference”,
the control goes into a remote selection mode, in
which a user selects graphics features to define
reference coordinate systems. The first feature
selected by a combination of point and hold

commands is the start point of an axis and the

4

second one is the end point. The first pair of
features defines the major axis z; and the sec-
ond pair defines the minor axis x. Reference
definition operates in an “action-at-a-distance”
fashion, which is available only in a virtual en-
vironment as physical limits does not permit
conceptual-level object manipulation.

Alternatively, the selection of another menu
item “motion” starts physical-level object ma-
nipulation. It checks for the intersection between
the hand and the machinery parts to see if the
hand touches any object. A hold posture grabs
the object in touch, and makes it to move to-
gether with the hand until a free posture re-
leases it. In either the “reference” or “motion”
mode, a quit command returns the control to
the menu state. One of them is in active until the
selection of menu item “done”. During the inter-
action, remote selection reduces required motion,
and direct manipulation maps grab-move-release
actions to the actual operations.

In addition to the listed items, two assembly
operations are implied in gestures at the release
of an object. They are slide and screw. The
slide command slides an aligned part into its
position. It triggers the sliding motion of an ob-
ject along the major alignment axis. This com-
mand is activated with a pushing gesture when
the object reaches to a proper alignment. The
screw command differs from slide in the way it
becomes active. It triggers the rotation of an ob-
ject down to its alignment, which happens with
a proper alignment and a twisting gesture. Both
sliding and screwing operations result in a full
alignment of objects by the computer.

3.2 A biologically inspired neural net-
work

The original model of the biologically inspired
neural network used electrical circuit elements to
describe a patch of membrane in biological neu-
ral systems [8]. Let Vm be the voltage across the
membrane, and Cm be the constant membrane
capacitance. The following state equation then
describes the dynamics of Vm.

Cm
dVm

dt
= −(Ep + Vm)gp + (ENa − Vm)gNa

−(EK + Vm)gK (1)

In the equation, EK , ENa , and Ep are param-
eters that represent respectively the saturation
potentials for the potassium ions, sodium ions,
and passive leak current in the membrane. Cor-
respondingly, the conductance in each of the
three channels is gK , gNa , and gp.

After setting Cm to 1, a shunting equation
takes its form by substituting Ep + Vm, gp,
ENa + Ep, EK − Ep, gNa , and gK with notions
xi, A, B, D, S+

i , and S−
i respectively.

dxi
dt

= −Axi + (B − xi)S
e
i (t)− (D + xi)S

i
i(t) (2)

In particular, xi is the neural activity of the i -th
neuron in the two-dimensional membrane. Pa-
rameters A, B, andD are three nonnegative con-
stants describing the passive decay rate, the up-
per and lower bounds of xi respectively. S

e
i is the

excitatory input and Si
i is the inhibitory input to

the neuron.

The equation in (2) is useful for understand-
ing the real-time adaptive behavior of individuals
to complex and dynamic environmental contin-
gencies [6]. In fact, this general shunting model
works with any discrete neural network in a high-
dimensional space provided the topological orga-
nization of the network characterizes the prob-
lem domain. In mechanical assembly, the task
space is M -dimensional if the robotic manipula-
tor it uses has M degrees of freedom. This ap-
plication then needs an M -dimensional discrete
neural network to model the robot operations.

Suppose a neuron Nq locates at a point q in
the M -dimensional network, q=<q1, · · · , qM>. It
connects to all its n direct neighboring neurons
Npj , pj=<pj1, · · · , pjM> and 1 ≤ j ≤ n. Fol-
lowing the notation in (2), xq and xp denote the
neural activities of Nq and Np respectively. A
modification to (2) produces the following shunt-

5

ing equation that defines the dynamics of Nq.

dxq
dt

= −Axq + (B − xq)([Iq]
+ +

n∑

j=1

ωqpj [xpj]
+)

−(D + xq)([Iq]
− +

n∑

j=1

ωqpjc[xpj − s]−)(3)

In the equation, Iq is the external inputs to
Nq. The two functions [x]+ and [x]− result in
max{x, 0} and max{−x, 0}, respectively. Pa-
rameters A, B, andD represent the passive decay
rate, the upper and lower bounds of Nq, respec-
tively. Parameter c is a constant in the range
[0,1], and s is an adjustable safety factor. Espe-
cially, the symmetric weights ωqp are determined
by a monotonically decreasing function f(|q−p|)
of the Euclidean distance between p and q. For
instance, f(a) = μ/a, if 0 < a < r0 for two posi-
tive constants μ and r0. Otherwise, f(a) = 0.

Every dimension of the M -dimensional neural
network maps to one particular joint of the M -
link robotic manipulator. In the k-th dimension,
the density of neurons depends on the increment
of the k-th joint, and the number of neurons cov-
ers the entire range of the k-th joint. The dy-
namics of neuron activity xq in (3) portrays the
operation of assembly tasks in such a way that
the location of neuron Nq in the network stands
for a particular joint configuration of the robotic
manipulator. Neuron Nq connects only to its
neighboring neurons in the network. A change
from a neuron to any of its neighboring neurons
triggers a change in the set of joint incremental
values.

For any task in an assembly sequence, the neu-
ron in the neural network that maps to the joint
configuration of the robotic manipulator picking
up a machinery part is a starting neuron Ns,
and the one that maps to the completion of the
assembly task by the robot manipulator is the
target neuron Nt. All the other neurons classify
into two types. One type, denoted by set {Nc},
includes all the neurons whose location maps to
a robot configuration that causes a collision be-
tween objects or objects and the robotic manip-
ulator; the other, {Nf}, counters in the rest of

neurons that lead to the collision-free movements
of the robotic manipulator.

Different external inputs to the neurons then
distinguish one type from another. The input Iq
in (3) to neuronNq is a large positive constant V,
V >> B, if Nq happens to be the target Nt. Iq
changes to -V if Nq is an element in {Nc}. Oth-
erwise, Iq is 0 for all the neurons in the set of
{Nf} (Fig. 2). As the starting neuron must be an
element of {Nf}, its external input is always 0.
In addition, the stimuli within the receptive field
of neuron Nq also include a sum of the weighted
neural activities from its direct neighbors. In
such a way, it allows the network to propagate
positive neural activity through excitatory con-
nections, and to restrain the negative activities
through inhibitory connections.

This neural network overcomes the drawbacks
of other neural networks. It uses only local
connections among neurons, and the computa-
tional complexity linearly depends on the neu-
ral networks size. Moreover, the underlying dy-
namic neural activity operates without explicitly
searching over the free workspace or the collision
paths, without explicitly optimizing any cost
functions, without any prior knowledge of the
dynamic environment, and without any learning
procedures. It is therefore useful for planning
real-time optimal robot motion in dynamics sit-
uations without the need of any learning proce-
dures.

4 A Virtual Assembly System

The front-end of a virtual assembly system
should be able to allow operators to specify and
evaluate assembly operations directly in a the
virtual environment. Its final output is a set of
optimized instructions that contains all the de-
tails to control robotic manipulators implement-
ing optimized assembly tasks.

6

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

X

Y

Object

Obstacles

A Target

0

5

10

15

20

0

5

10

15

20
−1

−0.5

0

0.5

1

Obstacles
Y

Target

X

A
ct

iv
ity

B

Figure 2: Collision-Free Path at Real Time

P3P2
P1

P4 P5

P6

Figure 3: The Assembly of a Die-Set

4.1 Virtual programming

As shown in Fig. 3, a robotic manipulator is
simply a set of graphics models in the vir-
tual assembly system, each of which represents
a rigid segment of the physical manipulator.
The connection of segments forms a linkage of
joints, and the numbering of joints goes from
the fixed base to the end. For any two adjacent
joints, a homogeneous transformation mi

i−1 =
Rz(θi)Tz(di)Tx(ai)Rx(αi−1) determines their re-
lationship, 0 < i ≤ M , where M is the linkage’s
degree of freedom [13].

Every assembly task involves three stages of
positioning [27]. The first stage specifies the pre-
assembly position of an object. It positions a
virtual robotic manipulator and prepares its end

effector for object handling. The second stage
takes care of the in-assembly motion of an ob-
ject. The practical nature of mechanical assem-
bly requires a robotic manipulator to move the
object along a safe and realizable path through
the environment. The last stage of object posi-
tioning places the object under manipulation at
its destination.

In the virtual assembly system, a human oper-
ator signals the pre-assembly position by grasp-
ing an object with his hand after touching the ob-
ject. This operation ensures the human hand ac-
tually reaches to the object, which not only helps
to physically bring the end effector of a robotic
manipulator to the object but also makes pos-
sible for the mapping of human grasping to the
manipulator. Due to the lack of physical restric-
tions in virtual environments, the post-assembly
position only requires the operator to bring the
moving object close to its destination. A free

command releases the object, and the system
completes the desired alignment with pre-defined
coordinate systems.

The configuration of the robotic manipulator
for the pre- and post-assembly positions corre-
sponds to the starting neuron Ns and the tar-
get neuron Nt in the neural network respectively.
Suppose Np is the neuron whose neural activity

7

xp yields the biggest value among all the v neigh-
boring neurons of Ns, i.e., xp = max{xsj, j =
1, 2, · · · , v}. Given the range of [Jks, Jke] for the
k-th joint of the robotic manipulator and a to-
tal number of tk neurons in the k-th dimension
of the network, an update from neuron Ns to
neuron Np activates the robot joints for an in-
crement of < r1(p1 − q1), · · · , rM (pM − qM) > ,
rk = (Jke − Jks)/tk.

By following the gradient ascent rule and
adaptively changing the current configuration,
the neural network globally guides the robotic
manipulator move around in the working envi-
ronment while avoiding possible collisions. The
movement of the robotic manipulator at the
same time brings the object under manipula-
tion from its starting position to its resting posi-
tion. The generated collision-free path then de-
termines the in-assembly position of objects. In
addition, it helps to decide the precedence re-
lationship of objects for the construction of the
deduction matrix, which is to be discussed in the
next subsection.

When the human operator finishes with all the
machinery parts, his operation of putting the ob-
jects together into a product actually defines a
sequence of assembly tasks. Suppose a product
P consists of n component parts Pi, 1 ≤ i ≤ n,
and the user-defined sequence is the kth sequence
in a total of m possible sequences to produce P .
The user-defined assembly sequence then takes a
form in the following format.

P0
τ1(k)→ P1(k) · · · τi(k)→ Pi(k) · · · τn(k)→ Pn(k) (4)

where P0 is a stable workstation, and τ i(k) de-
fines the transformation of the ith object Pi(k),
1 ≤ i ≤ n. The index k implies that the or-
der of objects and their associated transforma-
tion can be different in different sequences, i.e.,
Pi(k) �= Pi(k

′) and τ i(k) �=τ i(k
′) when k �= k′.

4.2 Interactive Assembly Planning

An interactive assembly planner consists of four
steps of sequence programming, constraints de-
duction, sequence generation, and interactive

evaluation in the specified order (Fig. 4). In
the first step, the operator exercises his exper-
tise of mechanical assembly through virtual pro-
gramming to define an assembly sequence as in
(4). The second step then extracts human exper-
tise from the sequence and uses this knowledge
to construct a deduction matrix with precedence
constraints.

An initialization first sets all the elements of
an n × n deduction matrix to -9. The row of
this matrix stands for the parts from P0(k) to
Pn−1(k), and its columns cover from P1(k) to
Pn(k), 1 < k < m. Each element in a row of the
deduction matrix implies if an object must be
in place before the other objects. A test run of
the neural network with the object in its resting
position then tells if such a precedence relation
exist when there are no collision-free paths to
move the other objects. Otherwise, the success-
ful generation of a collision-free path means that
there is no precedence constraint between this
object and another object.

Constraints deduction starts with the diago-
nal elements m(i, i), 1 < i < n − 1. Its value
changes to 1 if Pi(k) and Pi+1(k) makes a face
contact or if path generation fails to bring Pi(k)
to its destination after Pi+1(k) is in place first.
Otherwise, m(i, i) is 0. Afterwards, constraints
deduction of the upper-right region of the ma-
trix always tries to decide their precedence rela-
tionship first through symbolic inference. For an
element m(i, j), 0 ≤ i < n − 1 and i < j < n,
its value changes to -1 if both m(i, i + 1) and
m(i + 1, j) are either 1 or -1. When symbolic
reasoning cannot reach a conclusion, the neural
network is once again used to decide for m(i, j).

At the end of Step 2, all elements along the
diagonal and in the upper-right region of the de-
duction matrix are reset from -9 to 1, 0, or -1.
Among them, an element m(i, j) of a value 1,
0 ≤ i < n − 1 and i ≤ j < n, tells that the
assembly of Pi(k) must be done before the as-
sembly of Pj(k). Consequently, Pj(k) becomes a
child node of Pi(k) in a tree G of assembly se-
quences. In Step 3 of the interactive planner, se-

8

quence generation employs a recursive procedure
Link Node(.) to construct the tree according
to the elements of the deduction matrix.

An assembly tree represents assembly se-
quences with a simple directed graph [3]. In
the tree, a path from the root node to any
leaf node defines an assembly sequence. When
Step 3 finishes the completion of G, the vir-
tual assembly system is able to generate differ-
ent sequences from the user-defined sequence,
and evaluates them with predetermined mea-
surements. In practice, different criteria are pos-
sible, such as the number of involved robotic ma-
nipulators, the degrees of required freedom, the
number of primary operations, and the length,
linearity, and realizability of assembly sequences
[26]. When properly applied, they help to filter
out the majority but the most promising designs
for user verification.

5 Analysis and Simulation

Virtual assembly applies virtual reality tech-
niques for the development of computer tools
that help product engineers to make assembly-
related decisions through abstract analysis, pre-
dictive models, robot visualization, and data pre-
sentation without physically realizing the prod-
uct and its supporting processes. Experiments
have been conducted to examine the operation
of the virtual assembly system and the perfor-
mance of biologically inspired intelligence. Tests
covered a variety of machinery sets that involve
different object shapes and different task difficul-
ties.

Provided in this section are two groups of re-
sults for the assembly of a die-set. The first
group goes through the process of virtual assem-
bly to demonstrate the capability of producing
alternative assembly sequences from a single as-
sembly sequence. The role of the biologically in-
spired neural network in virtual assembly is then
demonstrated in the second group with details of
neural activities and joint displacement of two
robotic manipulators during collision-free path

generation. A subsequential discussion on the
experimental results gives analysis of this work.

5.1 The assembly of a die-set

A typical die-set for coin-making consists of three
principal components. They are basically a
punch holder (P4), a die holder (P1), and two
guideposts (P2 and P3), as shown in Fig. 3. It
also has a stamping punch (P5) and a metal plate
(P6). Equation in (5) gives a feasible sequence of
assembling the die-set from its five components
and placing the metal plate for stamping.

Tab
τ1→ P1

τ2→ P2
τ3→ P3

τ4→ P4
τ5→ P5

τ6→ P6 (5)

In the sequence, the assembly tasks applied upon
the parts are as the following, where each of the
tasks τk, 0 < k ≤ 6, defines the the pre-assembly
and post-assembly positions of object Pk.

τ1: place P1 with its half-open hole facing up;
τ2: stand up P2 by inserting it into a guidehole;
τ3: stand up P3 at the other guidehole of P1;
τ4: sit the two corner-holes of P4 on the guideposts;
τ5: insert P5 half-way through the bigger hole of P4;
τ6: slide P6 on top of the half-open hole of P1.

After the human operator finishes defining the
assembly sequence of (5) through virtual pro-
gramming, interactive assembly planning takes
place to determine the precedence relationship
between objects. Following the order of object
manipulation, it checks all parts one by one for
precedence constraints. The first object P1 is al-
ways on the table P0, thereforem(0, 0) in Table 1
is 1. As P2 is in a hole of P1 through alignment,
the 1 -labeled m(1, 1) indicates that τ2 can take
place only after τ1. For a similar reason, the val-
ues of both m(3, 3) and m(4, 4) are 1.

However, there is no reference-alignment rela-
tionship between either the pair of P2 and P3 or
the pair of P5 and P6. The values of m(2, 2) and
m(5, 5) have to come from the test run of path
generation between P3 or P6 and P2 or P5 with
the neural network, and the result is 0 for both

9

M P1 P2 P3 P4 P5 P6

P0 1 -1 -1 -1 -1 -1
P1 -9 1 1 -1 -1 1
P2 -9 -9 0 1 -1 0
P3 -9 -9 -9 1 -1 0
P4 -9 -9 -9 -9 1 0
P5 -9 -9 -9 -9 -9 0

Table 1: The Deduction Matrix of Die-Set

of them. For the elements in the upper-right re-
gion, symbolic reasoning takes place first. For
example, the value of m(0, 1) becomes -1 simply
because m(0, 1) and m(1, 1) are already labeled
with 1. In the case of a 0 -labeled element in the
inference, a check with path generation is un-
avoidable. This is how m(1, 2) obtains its value
as m(2, 2) has a 0 value.

Sequence generation begins to construct an
assembly tree right after constraints deduction
completes the deduction matrix in Table 1. The
top two levels of the tree are a graph descrip-
tion of the first row of the matrix that links P0

with all the objects with a 1 -labeled element in
this row. Therefore, element m(0, 0) results in
a link from P0 to P1 in the tree. The tree then
expands node P1 by adding its child nodes P2,
P3, and P6. The next level then expands the
three nodes with their brothers as the algorithm
forbids P4 becoming a child because it has two
parents P2 and P3 who happen to be brothers.
The same rules apply on the rest of the tree, and
the final product is a tree in Fig. 5.

Fig. 5 shows that there are ten possible se-
quences to assemble the die-set, including the
one defined by the operator. Although all se-
quences in the tree result in the same product,
the moving paths of objects may differ due to the
change of assembly order. The in-assembly posi-
tioning of objects, therefore, always rely on the
neural network to generate collision-free paths
for robotic manipulators to accomplish the as-
sembly tasks. For the first sequence in the tree,
as an example, the order and operation of assem-

bly tasks are as below.

Tab
τ1→ P1

τ2→ P2
τ3→ P3

τ6→ P6
τ4→ P4

τ5→ P5 (6)

5.2 Path generation with the neural
network

The biologically inspired neural network works
with multi-dimensional applications. For the
purpose of illustration, this group of experiments
uses a projected layout of the die-set assem-
bly workcell onto a two-dimensional plane, as in
Fig. 6. The assembly task is to move the guide-
post at the top-left area to its resting place at the
center-left region along an optimal path by a par-
ticular robotic manipulator. The goal, however,
is to evaluate the necessary robotic operations
when provided with different robotic manipula-
tors.

For a robotic manipulator of two-degrees of
freedom, the neural network has two dimensions.
A neural network with 40 × 40 topographically
ordered neurons is constructed to characterize
the workspace at a size of 40 × 40. The ini-
tial values of all neural activities in the shunting
equation of (3) are zero. The parameters are
chosen as A = 10 and B = D = 1 for the pas-
sive decay rate and the upper and lower bounds;
μ = 1, c = 0.9, s = −0.7 and r0 = 2 for the
neighborhood connections; and V = 100 for the
external inputs. The original configuration of
the robotic manipulator locates its end-effort at
(5,20) to pick up the guidepost, and the final
configuration is at (12,14) to place the object.

Fig. 6.(a) depicts the collision-free path to
complete this task. Due to the inability of
this robotic manipulator to rotate objects, the
guidepost under manipulation has to go around
from the top and then to the bottom of the
punch holder before it reaches to its destina-
tion. Fig. 7.(a) shows the traveling distance
along the x and y axis, which took 61 steps to
complete. In comparison, Fig. 7.(b) shows that
only 17 steps is necessary for a robotic manip-
ulator of three-degrees of freedom to complete
this task. The task, however, requires an addi-

10

Figure 5: The Assembly Tree of the Die-Set

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

X

Y

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

X

Y

(a) without rotation (b) with rotation

Figure 6: Collision-Free Moving Paths without/with Rotation

tional dimension of 24 neurons for path planning
and another type of robotic operation for object
rotation (Fig. 6.(b)).

5.3 Discussions

Experiments demonstrate the capability of vir-
tual assembly to integrate different technologies
into a seamless environment, and the advantages
that it brings to product manufacturing. The
process of virtual programming creates a scene
of product with an assembly sequence, which
in turn helps the interactive planner to decide
the precedence constraints and generate alterna-
tive sequences. While the user-defined assem-
bly sequence tells the pre-assembly and post-
assembly positions, the biologically inspired neu-

ral network determines the in-assembly position-
ing with robot-level details.

The planning process of Fig. 4 includes con-
straints deduction and sequence generations. For
the elements along the diagonal and in the
upper-right region of a deduction matrix, there
is a need of n! checks to establish precedence re-
lationships. Experiment results indicate that a
large portion of the checks uses symbolic rea-
soning. The remaining checks use reference-
alignment relationship first and path generation
the last. As for tree construction, it is pure
symbolic. Its complexity ranges from O(n) to
O(n!n) depending on the product and its compo-
nents. In comparison to completely autonomous
planning with a high-dimensional configuration
space, the presented approach of virtual assem-

11

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

time

po
si

tio
n

X position
Y position
Orientation

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

time

po
si

tio
n

X position
Y position
Orientation

(a) without rotation (b) with rotation

Figure 7: Translation Distances and Rotation Angles

bly is efficient and practical.

As for the neural network defined in (3), it is
fundamentally a high-dimensional extension of
the general shunting model of (2), whose neural
activity is as stable as the original model. In the
equation, xi increases at a rate of (B − xi)S

+
i ,

which is proportional to not only the excitatory
input S+

i but also a gain control term (B − xi).
When xi is less than B, a positive excitatory
contribution causes an increase in the neural ac-
tivity. If xi is equal to B, the excitatory term be-
comes zero and xi no longer increases, no matter
how strong the excitatory contribution is. When
xi exceeds B, B − xi becomes negative and the
shunting term pulls xi back to B, forcing xi to
stay below B.

A similar analysis applies to the last compo-
nent of the general shunting model in which the
inhibitory term forces the neural activity to stay
above the lower bound −D. Once the neural
activity goes into the range of [−D,B], it stays
in the range for any of the total excitatory and
inhibitory inputs. A change to B and D will
only change the range but not the relative value
of neural activity. In comparison, parameters A
and μ in (3) have a fundamental impact on the
proposed model. While A influences the tran-
sient response to input signals, μ controls the
propagation of neural activities among neurons.

The influence of parameters c and s on path
generation is the clearance distance from obsta-
cles. They determine the relative strength and
the threshold of the negative neural connections
respectively. When c is zero or s is higher than
the neural activity bound, the generated path
clips the corners of obstacles and runs down the
edges of obstacles, which results in the so-called
“too close” problems. On the other hand, if
clearance from obstacles is too large, the gen-
erated path stays as far as possible from the ob-
stacles when reaching the target, which results
in the so-called “too far” problems.

Optimality refers to automatically generating
smooth, continuous, and “comfortable” paths
from the starting to the target configurations,
without suffering from the two “too” problems.
The term “real time” refers to the way that
path generation reacts to changes in the envi-
ronment. Moreover, this neural network does not
suffer from local minimum, even in a complicated
maze-type environment of many deadlock situa-
tions. Target configuration is the only neural
activity source. The neural activity propagation
from the target to the starting position always
creates a feasible path with obstacle clearance.

12

6 Conclusion

This paper presents a novel approach of virtual
assembly with biologically inspired intelligence.
It develops a virtual assembly system to pro-
duce alternative assembly sequences from a sin-
gle user-defined sequence, making it flexible for
product engineers to choose the right design and
a proper manufacturing process according to pre-
determined criteria without the need of physical
realization. In addition, the biologically inspired
neural network provides details of robot opera-
tions for quantified analysis.

As a pilot project of the vision on “manufac-
turing in the computer”, virtual assembly helps
to identify and resolve issues related to the con-
struction of an integrated virtual manufactur-
ing environment that could enhance all levels
of manufacturing decision and control. Through
the investigation of intelligent technology and its
application in virtual assembly, this paper con-
stitutes a preliminary work of this project. There
are still plenty for improvements. Further re-
search is under active investigation in the direc-
tions of new expansions and practical applica-
tions.

Acknowledgment

This work was funded by Natural Sciences
and Engineering Research Council (NSERC) of
Canada.

References

[1] K. Al-Sultan and D. Aliyu. A new poten-
tial field-based algorithm for path planning.
Journal of Intelligent and Robotic Systems,
14(5):657–662, Oct 1996.

[2] T. Arai, T. Itoko, and H. Yago. A graphical
robot language developed in Japan. Robot-
ica, 15(1):99–103, Jan-Feb 1997.

[3] J. Bander. A heuristic-search algorithm for
path determination with learning. IEEE

Transactions on Systems, Man, and Cy-
bernetics, PART A: Systems and Humans,
28(1):131–134, Jan 1998.

[4] M. Fowler and K. Scott. UML Distilled: Ap-
plying the Standard Object Modeling Lan-
guage. Addison-Wesely, 1997.

[5] R. Gottipolu and K. Ghosh. An integrated
approach to the generation of assembly se-
quences. International Journal of Computer
Applications in Technology, 8(3-4):125–138,
1995.

[6] S. Grossberg. Nonlinear neural networks:
Principles, mechanisms, and architecture.
Neural Networks, 1:17–61, 1988.

[7] K. Gupta. The sequential framework for
practical motion planning for manipulator
arms: Algorithm and experiments. In
K. Gupta and A. del Pobil, editors, Prac-
tical Motion Planning in Robotics: Current
Approaches and Future Directions, pages 9–
31. John Wiley & Sons Ltd, 1998.

[8] A. Hodgkin and A. Huxley. A quantita-
tive description of membrane current and
its application to conduction and excitation
in nerve. Journal of Physiology London,
117:500–544, 1952.

[9] S. Jayaram, H. Connacher, and K. Lyons.
Virtual assembly using virtual-reality tech-
niques. Computer-Aided Design, 8(29):575–
584, Aug 1997.

[10] S. Jayaram, U. Jayaram, Y. Wang, H. Tiru-
mali, K. Lyons, and P. Hart. VADE:
A virtual assembly design environment.
IEEE Computer Graphics and Applications,
19(6):44–50, 1999.

[11] S. Kang and K. Ikeuchi. Toward automatic
robot instruction from perception — map-
ping human grasps to manipulator grasps.
IEEE Transactions on Robotics and Au-
tomation, 13(1):81–95, Feb 1997.

13

[12] J. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, Boston, 1991.

[13] R. Levary. Fundamentals of industrial
robots. International Journal of Computer
Applications in Technology, 7(1-2):55–66,
1994.

[14] L. Li and H. Ogmen. Visually guided mo-
tor control: Adaptive sensorimotor map-
ping with online visual-error correction. In
Proceedings of the World Congress on Neu-
ral Networks, pages 127–134, 1994.

[15] F. Muniz, E. Zalama, P. Gaudiano, and
J. Lopez-Coronado. Neural controller for
a mobile robot in a nonstationary environ-
ment. In Proceedings of 2nd IFAC Con-
ference on Intelligent Autonomous Vehicles,
pages 279–284, 1995.

[16] H. Ogata and T. Takahashi. Robotic assem-
bly operation teaching in a virtual environ-
ment. IEEE Transactions on Robotics and
Automation, 10(3):391–399, June 1994.

[17] C. Ong and E. Gibert. Robot path planning
with penetration growth distance. Journal
of Robotic Systems, 15(2):57–74, 1998.

[18] P. Palamidese. A virtual reality interface
for space planning tasks. Journal of Vi-
sual Languages and Computing, 10(2):99–
115, April 1999.

[19] V. Rajan and S. Nof. Minimal precedence
constraints for integrated assembly and ex-
ecution planning. IEEE Transactions on
Robotics and Automation, 12(2):175–186,
April 1996.

[20] Y. Regev. The evolution of offline program-
ming. Industrial Robot, 22(3):3–3, 1995.

[21] S. Russell and P. Norvig. Artificial Intelli-
gence: a modern approach. Prentice-Hall,
1995.

[22] H. Sun, X. Yuan, G. Baciu, and Y. Gu. Di-
rect virtual-hand interface in robot assem-
bly programming. Journal of Visual Lan-
guages and Computing, 10(1):55–68, 1999.

[23] C. Tung and A. Kak. Integrating sensing,
task planning, and execution for robotic as-
sembly. IEEE Transactions on Robotics and
Automation, 12(2):187–201, April 1996.

[24] P. Werkhoven and J. Groen. Manipulation
performance in interactive virtual environ-
ments. Human Factors, 40(3):432–442, Sept
1998.

[25] D. Whitney. Research issues in manufac-
turing flexibility — an invited review pa-
per for ICRA2000 symposium on flexibility.
In Proceedings of the 2000 IEEE Interna-
tional Conference on Robotics and Automa-
tion, pages 383–388, 2000.

[26] R. Wilson and J. Latombe. Geometric rea-
soning about mechanical assembly. Artifi-
cial Intelligence, 71(2):371–396, Dec 1994.

[27] C. Wu and N. Kim. Modeling of part-
mating strategies for automating assem-
bly operations for robots. IEEE Trans-
actions on Systems Man and Cybernetics,
24(7):1065–1074, July 1994.

[28] L. Wyard-Scott and Q. Meng. A poten-
tial maze solving algorithm for a micro-
mouse robot. In Proc. of IEEE Pacific Rim
Conference on Communications, Comput-
ers, and Signal Processing, pages 614–618,
May 1995.

[29] M. Yun, D. Cannon, A. Freivalds, and
G. Thomas. An instrumented glove for
grasp specification in virtual-reality-based
point-and-direct telerobotics. IEEE Trans-
actions on Systems, Man, and Cybernet-
ics Part B: Cybernetics, 27(5):835–846, Oct
1997.

14

Step 1. Sequence Programming :

For a given set of objects {P1, ...Pn},
define an assembly sequence as in (4).

Step 2. Constraints Deduction:

Initialize an n× n deduction matrix with -9.
For each diagonal element m(i, i), i = 0 · · ·n− 1,

check Pi and Pi+1 for precedence constraint,
set m(i, i) to 1 if they are related;
otherwise, set m(i, i) to 0.

For i = 0 to n− 2 with i++,
for j = i+ 1 to n− 1 with j ++,

if m(i, i+ 1) and m(i+ 1, j) are either 1 or -1,
set m(i, j) to -1 ;

else, check Pi and Pj for precedence constraint,
set m(i, j) to 1 if they are related;
otherwise, set m(i, j) to 0.

Step 3. Sequence Generation:

Create a graph G with a level0 node P0.
Create an empty set N0(0).
Set both node index i and level index k to 0.
Link Node(i, k) {

For j = i to n− 1 with j ++,
if m(i, j) = 1,

if m(l, j)! = 1 for every l in Ni(k),
create a levelk+1 node Pj ;
make a link from Pi at levelk to Pj ;
add j to Ni(k);

For every l in Ni(k),
create an empty set Nl(k + 1);
add all the rest of Ni(k) to Nl(k + 1);
Link Node(l, k+ 1) }.

Step 4. Interactive Evaluation:

For every path connecting P0 to a leaf of G,
evaluate this sequence with measurements.

For every optimized sequence,
play back tasks involved in each steps;
redefine the task when necessary.

Figure 4: The Algorithm of an Interactive As-
sembly Planner

15

	Virtual assembly with biologically inspired intelligence
	Recommended Citation

	nu_flexible.dvi

