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Photodetachment in combined static and dynamic electric fields

Chitra Rangan and A. R. P. Rau
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

~Received 19 November 1998; published 14 February 2000!

Through an exact solution of the time-dependent Schro¨dinger equation for an electron in a static electric
field plus the time-dependent electric field of the detaching radiation, the photodetachment cross section of H2

is calculated. Careful attention is paid to ensuring proper limiting behavior as the frequency of the time-
dependent field goes to zero. We do not find observable effects of a cross term between the two fields on the
detachment cross section. Our results point to possible gauge dependence and other difficulties ofS-matrix
formulations of multiphoton detachment and ionization.

PACS number~s!: 32.60.1i, 32.80.Gc

Following a detailed experimental study@1# of the photo-
detachment of H2 just above threshold in the presence of a
strong electric field~;100 kV/cm!, theoretical analyses
@2–4# accounted for the principal observed effects: a finite
cross section at the zero-field detachment threshold of 0.75
eV, an exponential falloff of the cross section for lower pho-
ton energies due to detachment aided by tunneling through
the static field’s potential, and oscillations in the cross sec-
tion about the zero-field value for energies above 0.75 eV.
This last may be viewed either as the effect of the sloping
static field potential on the outgoingp wave~‘‘Airy-function
oscillations’’! or as the interference between two pathways
for the escaping electron, one directly into the escape direc-
tion and the other after reflection of an oppositely moving
wave from the static field barrier. Such simple, and analyti-
cal, treatments of the effect of a static field on a free outgo-
ing p electron, with neglect of final-state interactions be-
tween it and the parent H atom left behind, sufficed to give a
complete and detailed accounting of the observed data@2,3#.
Treatment of such final-state interactions has also been car-
ried out subsequently@5#.

With the advent of intense lasers, there has also been
interest in multiphoton detachment and in nonperturbative
phenomena due to the dynamic electric field of the detaching
laser@6,7#. In particular, Gao and Starace@6# reinvestigated
the problem through an exact solution for the outgoing elec-
tron in combined static and dynamic electric fields. When
applied to H2, they claimed that a cross term between the
two fields leads to somewhat different results from previous
studies even in the weak-laser-field limit, the cross section
near the zero-static-field detachment threshold being low-
ered. This is the question we address here through an alter-
native derivation of this exact solution that pays careful at-
tention to its proper limiting behaviors. Our results do not
support the claims of lowered cross sections arising from a
cross term between the static and dynamic fields. On the
other hand, our analysis suggests a more general caution that
may apply toS-matrix formulations because results seem to
depend on the choice of gauge for the electromagnetic po-
tentials.

As in Ref. @6#, and adopting the same notation, we con-
sider a uniform static electric fieldEW s5Esẑ and the time-
dependent electric field of the laser~effects of its magnetic
field are as usual neglected as smaller! to give a total field

EW ~ t !5EW s1EW 0 sinvt5Esẑ1~E0xx̂1E0yŷ1E0zẑ!sinvt.
~1!

Describing the outgoing electron as moving in such a time-
dependent field, and neglecting any residual interactions with
the H atom left behind, the Schro¨dinger equation

i Ċ~rW,t !5@pW 2/21EW ~ t !•rW#C~rW,t ! ~2!

can be solved through separation in Cartesian coordinates.
Throughout, an overdot will denote differentiation with re-
spect tot and we set\5m5e51. Whereas Ref.@6# did so
through a passage to momentum space, we develop our so-
lutions in coordinate space through a technique of solving
such time-dependent equations by operator algebra@8#. By
working in coordinate space and directly with the electric
fields themselves, we avoid questions that arise in the mo-
mentum space formalism, particularly the gauge choice for
the vector potentialAW .

For a general time-dependent equation,

i ḟ~ t !5@ṁ~ t !A1 ṅ~ t !B#f~ t !, ~3!

where A and B are possibly noncommuting operators not
themselves explicitly dependent on time, the general solution
can be developed in terms of an evolution operator,U(t,0),
which is of the form of a product of exponentials, each in-
volving A, B, and successive commutators of them, along
with time-dependent functionsm(t),n(t),l(t),d(t), . . .
which obey first-order classical differential equations@8#.
Each Cartesian component in Eq.~2! involves only the op-
eratorsp2 and the linear coordinate so that apart from their
commutator proportional top, no further operators appear.
The resulting solutions involve four exponential factors.

For the x and y components, these solutions have been
previously recorded@8# and are

C~x,t !5exp@2 i ~E0x
2 /v3!~ 1

8 sin 2vt2sinvt13vt/4!#

3exp@2 iE0x~12cosvt !/v#

3exp@2 i ~E0xkx /v2!~sinvt2vt !#

3exp@ ikxx2 ikx
2t/2#, ~4!
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with an exactly similar expression iny.
The solution in thez coordinate can be similarly derived

through the procedure in Ref.@8# to give

C~z,t !5exp@2 i ~E0z
2 /v3!~ 1

8 sin 2vt2sinvt13vt/4!

1 i ~E0zEs /v3!~cosvt211v2t2/2!#

3exp@2 iE0zz~12cosvt !/v#exp@2 i ~E0zpz /v2!

3~sinvt2vt !#exp~2 i«zt !fA~z!, ~5!

where«z is the eigenvalue andfA(z) the Airy eigenfunction
@9# satisfying

S pz
2

2
1EszDfA~z!5«zfA~z!. ~6!

These results in Eqs.~4! and~5! parallel exactly the simi-
lar expressions in Ref.@6# but with additional phases that are
central to our discussion. An important difference is that we
have paid careful attention to the boundary condition att
50, that Eq.~4! reduce to plane waves inx and y with no
extraneous phase factors and Eq.~5! to the Airy stationary
state with again each of the three exponentials in the top two
lines of this equation reducing exactly to unity. Construction
through the evolution operator ensures this reduction@8#. In
contrast, Ref.@6#’s solutions retain att50, when the field
EW 0 sinvt vanishes, redundant phase factors because of their
choice of the vector potentialAW 5(cEW 0 /v)cosvt to describe
this electric field while working in momentum space. Indeed,
were we to modify their results by replacing cosvt above by
(cosvt21) in AW , which still describes the same electric field,
the two results would become identical. As we will see, this
seemingly slight difference in the choice of a gauge has im-
portant consequences. In our formalism, however, we work
directly with the electric field in Eq.~1!.

The appearance in Eqs.~4! and ~5! of the characteristic
combinations (sinvt2vt) and (cosvt211v2t2/2), in place
of the trigonometric functions alone as in Ref.@6#, has an-
other profound consequence. Our solutions remain well be-
haved in the limitv→0 ~which is closely related tot→0
because of the combinationvt) whereas some of the similar
terms in Ref.@6# and, in particular, the cross term involving
E0zEs in Eq. ~5!, blow up in this limit. This is a persistent
problem in the literature on intense dynamic fields@10#, that
several results seem not to admit passage to the static field
limit as one would expect of them. It is worth emphasizing
that within the momentum space formulation as in Ref.@6#,
different choices ofAW , differing only in a constant which
does not change the electric field, lead to different wave
functions. In particular, these functions can differ drastically
in the v→0 limit so that particular care may be necessary
for considerations of the static field limit. We also note that
these gauge questions have to do with alternative wave func-
tions for alternative vector potentials, not whether the dipole
matrix element for photoabsorption uses length, velocity, or
acceleration forms.

To calculate the photodetachment of H2, we follow Ref.
@6# in using Eqs.~4! and ~5! to describe the final-state wave
function along with a simple, much used ‘‘one-electron’’
representation of the ground state of H2 @2,3,6,11#,

C i~rW,t !5~B/r !exp~2kr !exp~2 i« i t !, ~7!

wherek5(22« i)
1/2, « i520.75 eV, being the energy of this

ground state, andB is a normalization parameter, equal to
0.31552 in atomic units@3,6#. This wave function has long
@11# proved very successful in describing photodetachment
for the energy range of interest and has been employed in all
the past work that we compare with. TheS-matrix element is
given as in Eq.~27! of Ref. @6# by

Sf i5~2p!21/2iBE
2`

`

dtE drW C* ~x,t !C* ~y,t !C* ~z,t !

3exp~2 i« i t !, ~8!

with the wave functions drawn from Eqs.~4! and ~5!.
Examining next the weak-laser-field limit, we expand the

factorsC* to first order inE0 and retain terms proportional
to it to get

Sf i5
i22/3BE0zEs

1/6

v2

3H Ai 8~2j!E
2`

`

dt~sinvt2vt !exp@ i ~« f2« i !t#

2 i
~Es

2/2!1/3

v
Ai ~2j!E

2`

`

dt

3~cosvt211 1
2 v2t2!exp@ i ~« f2« i !t#J , ~9!

where« f5
1
2 (kx

21ky
2)1«z and we have defined a dimension-

less energyj5«z(2/Es
2)1/3. The derivative in the first term,

denoted by a prime, is with respect toj, and arises from the
E0zpz operator in Eq.~5!.

The above result in Eq.~9! parallels exactly the one in
Ref. @6#, again with the replacement of sinvt and cosvt by
the forms that vanish up through terms of orderv2t2. Before
turning to the time integrations, the structure of Eq.~9! and
the origin of its second term in the curly brackets already
point to problems with the claim in Ref.@6# that this is a new
contribution not present in earlier treatments. Whereas the
first term in Eq.~9! arises from the expansion of theE0zpz in
Eq. ~5!, thus carrying the dipole operator that leads to the
transition element̂ CuE0zpzuC i&, the second term has its
origins in the cross termE0zEs of Eq. ~5!. But this is purely
a phase with no involvement of atomic operators, and there-
fore incapable of causing transitions.

Further confirmation of this conclusion that there is no
cross term proportional toEsE0z is provided by carrying out
the time integrations. In Ref.@6#, these integrations were
immediate, upon combining the exp(2ivt) piece of the sine
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and cosine with the other exponential in the integrand to
give, upon integration, 2pd(« f2« i2v). With the transition
probability Wf i defined as

lim
t→`

uSf i u2

t
52pWf id~« f2« i2v!, ~10a!

the cross section

s5
8pv

cE0
2 E Wf idkxdkyd«z ~10b!

was then evaluated.
We now handle these operations by evaluating the inte-

grals in Eq.~9! between limits2T and T analytically and
computings, finally taking theT→` limit numerically. In
the first part of this process, the analytical integration from
2T to T, we retain only the contributions that lead tod(« f
2« i2v) in the limit T→` as the only ones that correspond
to absorption of a single photon. AsT increases beyond a
few atomic units, our calculated photodetachment cross sec-
tion converges rapidly. The second term in Eq.~9! does not
contribute in accordance with our discussion above and, as
illustrated in Fig. 1, our results reproduce exactly those of
earlier work@2,3# even for static field strengths exceeding 1
MV/cm. All these results coincide as shown by the solid
curve. Only if both terms in the curly bracket in Eq.~9! are
retained, while simultaneously dropping the terms in2vt
and 211 1

2 v2t2, do we recover the results of Ref.@6# as
shown by the dashed curve. We conclude, therefore, that a
proper treatment leads to no reduction in the cross section
around the zero-static-field threshold as claimed in Ref.@6#.
The handling of time integrations with the2vt and 21
1 1

2 v2t2 terms would also confront a calculation such as the
one in Ref.@6# had this alternative gauge been used forAW .

The S-matrix integrations in Eq.~9! would then not simply
reduce tod functions but also involve the derivatives that we
have encountered.

In view of the discrepancy with the previous results in
Ref. @6#, we offer the following discussion. In the spirit of
the S-matrix formulation, the electric field in Eq.~1! is as-
sumed to be switched on starting att52` and switched off
at t5` adiabatically, although this is not explicitly imple-
mented in carrying out the time integrations, just as in Ref.
@6#. Therefore, our calculations follow exactly the same pro-
cedure as did Ref.@6#, except that our final state wave func-
tions in Eqs.~4! and ~5! differ from those in Ref.@6# as
pointed out above. We were led to these additional terms
involving 2vt and 211 1

2 v2t2 by our emphasis on the
proper limiting behavior ast→0 or v→0. Therefore, it may
be argued that Ref.@6# and this paper deal with different
problems, differing in when the electric fields are turned on.
But, as we have pointed out, these additional terms may also
be viewed as arising from the two different gauge choices for
AW , namely, (cEW 0 /v)(cosvt21), with or without that21. As
shown in Fig. 1, the difference between the dashed and solid
lines can be attributed entirely to this difference, which in
itself poses the question of gauge invariance of the cross
sections presented in Ref.@6#.

Some of these questions of the switching on and off of the
electric fields can be settled by developing explicit solutions
of Eqs. ~1! and ~2! with some specific form ofE(t) that
vanishes smoothly asutu→`, although this might require an
additional numerical integration, that int, for the calculation.
We also disagree with Ref.@6# in other regards. Most impor-
tantly, it seems to us that notwithstanding any multiple order
of interactions with the static fieldEs , as interpreted in the
S-matrix formalism, one-photon absorption in the limit of
weak laser fields must involve an amplitude proportional to
E0 , along with the matrix element of a dipole operator,
whetherrW or pW , and a corresponding energy-conserving delta
function d(« f2« i2v). Therefore, one-photon transitions
can be attributed only to terms that have such a structure
upon expanding exponentials in Eqs.~4! and~5! to first order
in E0 . The E0zEs term of Ref. @6# does not satisfy these
requirements. Likewise, in a related argument that may help
to clarify the points of disagreement, were we to seek two-
photon transitions by expanding the exponentials to order
E0

2, we would not expect any contribution from the first
terms involvingE0

2 sin 2vt in Eqs. ~4! and ~5! because they
contain no atomic operators. In this, we would differ from
Ref. @6# and other such treatments, whose Floquet expan-
sions get a contribution from these terms, the so-called
‘‘ponderomotive potential’’ then appearing in their resulting
energy-conservingd function for such two-~or multiple-!
photon transitions. Since this ponderomotive potential de-
pends on the continuous variableE0

2/v2, it need not be an
integer multiple ofv, placing it in conflict with the photon
picture of multiphoton absorption. We, on the other hand,
would face no such conflict~see also Ref.@12#!.

Finally, after completion of our work, we saw a recent
paper@13# on the one- and two-photon photodetachment of
H2 in combined static and dynamic fields, taking into ac-

FIG. 1. Photodetachment of H2 in combined static~1 MV/cm!
and detaching laser’s electric fields. , our results; , Ref.
@6#. Earlier calculations of Refs.@2# and@3# are essentially indistin-
guishable from the solid line.
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count final-state interactions of the electron with the residual
H atom. As already stated, our study was not concerned with
this interaction. But we note that Ref.@13#’s treatment of
such an interaction leads also to contributions similar in
structure to the ‘‘cross term’’ inE0zEs , namely, to a term
proportional to Ai(2j) in Eq. ~9!; see Eq.~72! of @13#. In
disentangling the two effects, of the cross term and the
electron-atom final-state interaction, and in coming to the
conclusion that the latter is small, Ref.@13# has compared
with the previously calculated effects of the cross term in
Ref. @6#. In view of our questioning of any depression of the
cross section around the zero-field detachment threshold due

to the cross term, the conclusion of Ref.@13# on the unim-
portance of the electron-atom final-state interaction will have
to be revisited.

We have also seen a recent paper@14# on H2 photode-
tachment in a static electric field and a pulsed laser field. The
authors consider quantum and semiclassical approaches dif-
ferent from both ours and Ref.@6#. These authors also note in
a footnote to their Eq.~6! that only a term in the derivative
of, but not in Ai~2j! itself, contributes, in agreement with
our conclusions.

We acknowledge useful discussions with Dr. A. F. Sta-
race and Dr. K. Unnikrishnan.
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