
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Computer Science Publications School of Computer Science 

2000 

P-Buffer: Hidden-line rendering with a dynamic p-buffer P-Buffer: Hidden-line rendering with a dynamic p-buffer 

Xiaobu Yuan 
University of Windsor 

Sun Hanqiu 
The Chinese University of Hong Kong 

Follow this and additional works at: https://scholar.uwindsor.ca/computersciencepub 

 Part of the Graphics and Human Computer Interfaces Commons 

Recommended Citation Recommended Citation 
Yuan, Xiaobu and Hanqiu, Sun. (2000). P-Buffer: Hidden-line rendering with a dynamic p-buffer. 
Computers and Graphics, 24 (3), 359-366. 
https://scholar.uwindsor.ca/computersciencepub/13 

This Article is brought to you for free and open access by the School of Computer Science at Scholarship at 
UWindsor. It has been accepted for inclusion in Computer Science Publications by an authorized administrator of 
Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/computersciencepub
https://scholar.uwindsor.ca/compsci
https://scholar.uwindsor.ca/computersciencepub?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/computersciencepub/13?utm_source=scholar.uwindsor.ca%2Fcomputersciencepub%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


P-Buffer: A Hidden-Line Algorithm In Image-Space

Xiaobu Yuan∗1 and Hanqiu Sun2

1Department of Computer Science, Memorial University of Newfoundland, St. John’s,
Newfoundland, Canada A1B 3X5

2Department of Computer Science & Engineering, The Chinese University of Hong Kong,
Shatin, N. T., Hong Kong

Abstract

Despite the emergence of highly realistic
computer-generated images, line-drawing images
are still a common practice in showing the shapes
and movements of three-dimensional objects. It
is especially true when rendering time is criti-
cal in interactive applications such as the mod-
eling and testing stage of computer aided de-
sign/manufacturing, computer animation, and
virtual reality. Hence much effort has been de-
voted to provide sufficient information of the dis-
played objects with the least amount of time.
While the techniques that determine visible sur-
faces in an image-space have the advantages on
rendering speed and processable shapes, those
that decide visible lines or line segments in an
object-space are more suitable for showing hid-
den lines.

The P-buffer algorithm introduced in this pa-
per is a method for rendering line-drawing images
with dashed hidden-lines. Being an image-space
method, this algorithm preserves the low compu-
tational cost and works on a wide range of object
shapes; as an extension to the Z-buffer algorithm
it, moreover, discloses hidden surfaces by show-
ing them with dashed lines. After a discussion on
rendering techniques of line-drawing images, this
paper presents this algorithm with pseudocode
in C++ programming language and shows some
experiment results as well. This image-space al-

∗Author for correspondence

gorithm can be used as a compromise approach
that reveals the concealed information of hidden-
surface-removed views for time-critical render-
ing.

1 Introduction

Line drawing is a classical technique of describing
three-dimensional objects on two-dimensional
surfaces. It has been used, even long before the
invention of computers, in engineering and archi-
tecture to show the shape and structure of ma-
chinery parts and buildings [1]. Even with the
emergence of highly realistic computer-generated
images in the past decade [2], it remains an ac-
tive topic and draws continuous attention from
different research areas [3, 4, 5].

Given a set of objects and the specification
of a view, the objects’ surface boundaries are
projected onto an image plane along a view-
ing direction [6]. A wire-frame picture is thus
obtained if the created picture contains all the
boundary lines. Otherwise, a line-drawing pic-
ture presumes opaque object surfaces and shows
only those boundary lines or segments that are
visible in the view. More preferably, the com-
plementary set of hidden lines and line segments
is also displayed but in a different style, such as
dotted or dashed lines [7].

The main advantage of a line-drawing picture
is that it provides sufficient information of three-
dimensional objects at a significantly low com-

1



putational cost. For instance, two images of a
machinery part are shown in Fig. 1, one rendered
by ray-tracing and the other by line-drawing. In
a test conducted on a Pentium 100 PC, Fig. 1(a)
took 470 seconds while Fig. 1(b) took less than
one second. In this particular comparison, to
provide the same shape information of the ob-
ject, the ray-tracing image took 700 times longer
than the line-drawing image.

Between ray-tracing and line-drawing, there
are also other techniques at the intermediate lev-
els. Phong-based rendering that uses a local
illumination model, for example, may produce
much better images than Fig. 1(b) but with sub-
stantially less computation than that spent on
Fig. 1(a). However, in the attempt of disclos-
ing the internal structure of this object, it be-
comes fairly easy in line-drawings when the set
of hidden lines is available; but with the other
techniques, making the object transparent is the
only way of achieving the expected result. It had
taken 6.5 times more time to render such a ray-
tracing image in the test.

The high efficiency of conveying the infor-
mation of three-dimensional objects makes line-
drawing the best choice for real-time interac-
tion [8, 9] and low-cost applications [10]. When
constraints on time are significant, the success
of an exercise depends heavily on how fast it
is to display objects. Hence, line-drawings are
widely used in the modeling stage and interfac-
ing components of computer animation, virtual
reality, and computer-aided design [11, 12]. This
practice will carry on unless vital progresses are
materialized in the cost and power of computer
hardware as well as the speed of rendering high-
quality images.

Generally speaking, the algorithms used to
render line-drawing images fall into two major
categories. The first category includes image-
space methods that determine which one of the
objects to display at a pixel according the ob-
jects’ distances along an imaginary viewing ray
through that pixel. The second category, on the
other hand, gathers in object-space methods. In

this group the rendering algorithms compare ob-
jects directly with each other to determine the
list of visible lines and line segments in a picture.

Since object-space methods keep track of
boundary intersections in the process of deter-
mining visible lines, it is easy for an algorithm in
this group to obtain a complementary list of hid-
den lines, which is essential when the concealed
information of a hidden-surface-removed picture
has to be provided in an application. However,
finding out intersections and determining the vis-
ibility of surfaces and lines are computationally
expensive especially when objects exhibit com-
plex shapes. On the contrast, image-space meth-
ods do not need any time-consuming intersection
checks. They are fast because they decide which
object to display at a pixel by projecting objects
onto the image plane.

Image-space algorithms unfortunately cannot
display hidden lines for the lack of facility to
retain a list of the surfaces that impact upon
each pixel. To overcome this problem, this paper
presents a modified image-space method, namely
the P-buffer algorithm. Being an image-space
method, it can be used to render line-drawing
images with a wide variety of three-dimensional
objects at a low computational cost. By intro-
ducing a pattern buffer, this method is also ca-
pable of showing hidden lines with dashed lines.
It is therefore useful to reveal the concealed infor-
mation for time-critical rendering. In the follow-
ing discussion, this paper presents the P-buffer
algorithm with C++ pseudocode, results of ex-
periment, and an example of possible application
in off-line robot programming.

2 Rendering of Line-Drawings

Objects are represented constructively by geo-
metric primitives in a computer. They are object
models in numerical formats. Given a viewing
coordinate system, object models are first trans-
formed to the new coordinate system; and then
the visibility of the surface boundaries is decided
for this particular view. Consequently, a line-

2



Figure 1: The Ray-traced Image and Line Drawing of an Object

drawing picture is generated which displays with
solid lines the visible boundaries and boundary
segments on the image plane. When needed, the
picture also shows invisible boundaries but with
a different style, such as dashed lines.

Which part of an object’s surface boundary is
visible in a viewing direction relies on its ori-
entation, i.e., the surface normal direction, in
the viewing coordinate system as well as its ge-
ometrical relationship with the other parts of
the object. A boundary may be entirely visi-
ble, partially visible, or entirely invisible. To de-
termine the visibility of surfaces for line-drawing
pictures, two typical approaches have been de-
veloped. They are the object-space methods and
image-space methods.

2.1 Object-space Methods

Suppose the set of objects in a scene has a to-
tal of m object surfaces in the three-dimensional
space; and each surface is defined implicitly with
an equation that takes the following form after

being transformed to the viewing coordinate sys-
tem:

fk(x, y, z) = 0 0 ≤ k < m (1)

Assuming that there is no change of visibility for
each individual surface in a given viewing direc-
tion, the m surfaces can be divided into two sets
— one for the completely invisible surfaces and
the other for the rest, which contains supposedly
n surfaces and n < m. This separation can be
easily accomplished by checking surface normals.

Afterwards, it has been a prolonged effort to
find out if the n non-invisible surfaces are visible
in the viewing direction [3, 13, 14, 15]. Given
any pair of the n surfaces, the visibility of their
boundaries depends on the geometric shapes and
topological relations of the two entities. If their
numerical representation is fi(x, y, z) = 0 and
fj(x, y, z) = 0 respectively, 0 ≤ i, j < n and
i 6= j, the intersection of their projected two-
dimensional equations on the image plane de-

3



termines if one surface overlaps the other in the
viewing direction,{

f ′i(x, y) = 0
f ′j(x, y) = 0

(2)

If there exists any occlusion, the depth value in
two original equations decides which surface is in
the front and therefore whose boundary could be
visible.

The earliest object-space algorithm worked on
convex polyhedra [16]. With only straight lines
and planar surfaces involved in the rendering pro-
cess, it is fairly easy to obtain the list of visi-
ble and invisible endpoints from parametric line
equations, and to find out the depth relation of
overlapped polygons according to their z values.
The basic idea also applies to objects of polygons
in concave relationships [17, 18]. Recent works on
how to remove hidden polygonal surfaces in the
object space can be found in [12, 19, 20, 21, 13].

If fi and/or fj contains curved surfaces, an
object-space line drawing algorithm may still
work provided that the curved surfaces are ap-
proximated by many small facets. Alternatively
if there is a close-form solution of Eq. 2 that de-
scribes the intersection of the two curved sur-
faces, the strategy of finding intersection and
then overlapping relationships can be principally
applied to create a line-drawing image. However,
the complexity and difficulty of intersecting two
general surfaces unfavorably limit object-space
methods to the applications with at most some
of the quadric surfaces [22, 23, 24, 25, 26].

2.2 Image-space Methods

Instead of using any explicit algorithm to decide
surface intersections, image-space methods only
require the z values from each of the surfaces
fk(x, y, z) = 0, k = 0, · · · , n − 1, for every <
x, y > coordinate of an image. Because of the
simplicity, an image-space line drawing algorithm
has a low computational complexity [27, 28] and
also is capable of rendering line-drawing pictures
that contain objects with a wide range of shapes.

The typical and famous image-space method
is the Z-buffer algorithm [29]. It employs two
buffers: one frame buffer to keep the image and
one depth buffer to determine which object’s
boundary should be kept in the image. Ini-
tialized to a distant value, the contents of the
depth buffer is updated to the closest depth val-
ues when the set of n objects is processed one by
one. Meanwhile the algorithm updates the frame
buffer with the pixels from the objects that con-
tribute the closest values in the depth buffer, and
it creates a line-drawing image when all objects
are processed.

Directly related to the Z-buffer algorithm is the
painter’s algorithm, which was simplified from
the depth-sort algorithm [30]. This algorithm
substitutes the depth buffer with a sequence of
pre-sorted objects and renders one at a time from
the sequence into the frame buffer. While the
painter’s algorithm is better for a limited num-
ber of object, the Z-buffer algorithm is better for
a larger number of objects. In addition, the Z-
buffer algorithm also is more predictable regard-
ing to the computational time required to render
an image.

The image-space algorithms can also be com-
bined with object-space methods into a scan-line
algorithm [31]. In this algorithm, a scan-line cov-
ers all the pixels in the frame buffer. Again, a se-
quence of pre-sorted objects tells which object is
in the front when the scan-line encounters several
objects. Both of the algorithms have to spend
more time on sorting and work mainly with ob-
jects of polygonal surfaces.

In comparison to the other rendering algo-
rithms for line-drawing images, the Z-buffer al-
gorithm has the advantages of easy implementa-
tion, less computational cost, and hardware sup-
ports. It has no limits on the shape of objects
either. Z-buffer algorithm yet has some notice-
able deficiencies. One of its major problems on
anti-aliasing has been solved with the A-buffer
algorithm [32], but its inability to show the hid-
den lines degrades its efficiency of providing suf-
ficient information of the displayed objects as re-

4



quired in applications. The following discussion
concentrates on how to solve this problem with
an additional pattern buffer.

3 The P-Buffer Algorithm

Image-space algorithms have the advantage in
rendering speed because they, instead of conduct-
ing surface-sorting and intersection-checking, use
the depth of surfaces to decide which bound-
ary lines should be visible in a viewing direction.
In the Z-buffer algorithm, for example, a depth-
buffer tells if the pixels belonging to a surface is
in front and therefore should cover those behind
it. The paint-over mechanism, though fast in ren-
dering, unfortunately also eliminates the chances
of displaying hidden lines. To reveal the con-
cealed information, a pattern buffer, or P-buffer
for short, is introduced in this paper. With a lit-
tle more operations or some extra working space,
the introduced algorithm is capable of displaying
hidden lines with dash-lines. Experiment results
are given with a testing pattern to show how the
algorithm operates.

3.1 The Algorithm

As described in Section 2.2, the Z-buffer al-
gorithm uses two buffers, a frame buffer and
a depth buffer. They are defined by the
two two-dimensional arrays frame_buffer[][]
and depth_buffer[][] in the C++ pseudocode
listed in the appendix of this paper. Both of them
are the same size as the image. Any declaration
of an object as an instance of class Z_Buffer will
automatically initialize the two buffers by the de-
fault constructor Z_Buffer() to the background
color and the maximal depth respectively.

In addition, at the request of a call to
image_Render(geom∗), the only accessible
member function of class Z_Buffer, the first
while-loop in this function processes one by one
all the geometric items in the object list with
a private function object_Retrieve(geom∗,
geom∗). Each individual pixel (x, y) of ev-

ery retrieved geometric item is then calculated
by pixel_Determine(geom, point2D∗, float∗,
boolean∗). The third (float) parameter of the
pixel-determining function keeps the depth at the
pixel; and the last (boolean) parameter is a tag
indicating if this pixel is on a boundary line,
which returns a TRUE value only if this pixel fits
into the projected boundary of an object or the
object’s surface normals around the pixel point
to both positive and negative directions in the
viewing direction.

The virtual function this_Algorithm(geom,
int, int, float, boolean) of class Z_Buffer is
an implementation of the z_buffer algorithm. It
has two conditional statements. The first one
checks if the new depth is closer than what the
depth buffer has at the given pixel; and the
second one, after updating depth_buffer[x][y]
with the new value, sets frame_buffer[x][y]
to a proper value because the new pixel be-
longs to a geometric item in front. Depending
on if this is a boundary pixel, the new value of
frame_buffer[x][y] can be either LINE_COLOR
or BACKGROUND_COLOR. The result is a line-
drawing image without hidden-lines, for instance,
as shown in Fig. 1(b).

The Z-buffer algorithm does not keep track of
the geometric items that make contributions to
the frame buffer. What it can do with the bound-
ary lines belonging to the hidden surfaces is to
erase them with BACKGROUND_COLOR or alterna-
tively not to touch them after they are gener-
ated, which actually results in a wireframe pic-
ture (Fig. 2(a)) though more straight forward
methods are available to render such images.

Let a pattern buffer define a grid of filter-
ing patterns, which is also the same size of
the image as the depth and frame buffers in
the Z-buffer algorithm. The value of all ele-
ments in the pattern buffer can only be either
‘1’ or ‘0’. At a position (x, y), 0 ≤ x, y <
image_width, the action of keeping or updat-
ing the content of frame_buffer[x][y] depends
on not only if the new depth is closer than
depth_buffer[x][y], as does the Z-buffer algo-

5



Figure 2: A Wireframe Image and Line-drawing with Dashed Hidden-lines

rithm, but if pattern_buffer[x][y] also allows
the change of frame_buffer[x][y]. In such a
way, a modified rendering algorithm, i.e., the
P-buffer algorithm, is developed that is capa-
ble of retaining those previously displayed but
later overwritten hidden-lines while also chang-
ing their style to distinguish them from the visi-
ble lines.

In this algorithm, a boundary pixel of a
front geometric item always overwrites the con-
tent of frame_buffer[x][y]; but an inte-
rior pixel of a front geometric item updates
frame_buffer[x][y] only if the filtering pat-
tern blocks frame_buffer[x][y], which hap-
pens when pattern_buffer[x][y] = 0. Other-
wise, when pattern_buffer[x][y] = 1 the con-
tent of frame_buffer[x][y] should be left un-
changed. If, on the other hand, the pixel being
processed is a boundary pixel and it belongs to a
geometric item whose depth value is farther than
depth_buffer[x][y], frame_buffer[x][y] still
needs to be updated to show the hidden informa-
tion whenever the pattern buffer allows it to pass

the filter. Hence the introduction of the filtering
pattern shows up the hidden-lines with the ‘1’s
while also breaking them into dashed lines with
the ‘0’s.

The derived P_Buffer class in the C++
pseudo-code further explains how the P-buffer
algorithm works. The default construc-
tor P_Buffer(), though blank itself, acti-
vates the default constructor Z_Buffer() of
its base class to initialize the frame and
depth buffers for any instance of this class.
When the new this_Algorithm(geom, int,
int, float, boolean) is invoked in an access
to image_Render(object_list), it immediately
checks the depth information of the current ge-
ometric item with the value in depth_buffer.
If any boundary portion of the current geo-
metric item is in the behind, segments of this
portion are still rendered into frame_buffer
on the condition that the filtering pattern
does not block them. Otherwise, the func-
tion this_Algorithm(geom, int, int, float,
boolean) of class P_Buffer creates the bound-

6



ary of the front-sitting object and breaks with
the filtering-pattern anything overlapped by the
projected region of this geometric item.

The Z_Buffer class and P_Buffer class can
be used separately to achieve the hidden-line re-
moval or the dashed hidden-line results although
neither of them can achieve both the results at
the same time. Or alternatively, by taking advan-
tage of the polymorphism provided by the object-
oriented programming language, the two classes
can be used together to render a line-drawing
image with or without dashed hidden-lines. This
can be accomplished by first declaring a pointer
*image_space of the base class Z_Buffer and
then pointing image_space to a new instance
of either Z_Buffer itself or its derived class
P_Buffer. At running time, a function call such
as image_space.image_Render(object_list)
generates the desired line-drawing image.

3.2 The Filtering Pattern

The selection of a filtering pattern plays an im-
portant role in the final result of the line-drawing
images rendered with the P-buffer algorithm. An
idea filtering pattern is a two-dimensional binary
array whose elements can be either ‘1’ or ‘0’.
Given any hidden line, the pattern should be so
arranged that the ‘1’s shows up this line while the
‘0’s breaks it into dashed segments. Since compli-
cated objects usually have surfaces whose bound-
ary exhibits a wide range of shapes, it is not guar-
anteed that any grid of filtering patterns can be
used in this algorithm to show the hidden-lines.
For instance, a chess board consists of black and
white squares. If the black squares block and the
white squares pass hidden-lines, a filtering pat-
tern of the chess board has the best performance
on vertical and horizontal lines. However, when
a straight line runs cross the diagonals of the
squares, this line will be either completely elim-
inated or totally untouched depending on what
kind of squares it runs through.

The P-buffer algorithm has been tested with 38
standard Macintosh patterns. Most of them are
not useful because they are either uniformly col-

ored (white or black) or do not work with bound-
ary lines in horizontal, vertical, or diagonal direc-
tions. The 8×8 bitmap shown in Fig. 3(a) is one
of the remaining patterns that yield acceptable
results. The line-drawing images in Fig. 2(b)
and Fig. 4(b), for example, were rendered by us-
ing a grid of this pattern (Fig. 3(b)) in the P-
buffer algorithm. To make the filtering pattern
virtually as big as the frame and depth buffer,
the basic pattern repeats itself in both the hor-
izontal and vertical directions until reaching the
desired size. Therefore, given a pixel at the x and
y coordinates, the following equation determines
what value is returned by the member function
value_Pattern(int,int),

value = basic_pattern[x%l][y%l] (3)

where basic_pattern[][] is a two dimensional ar-
ray that specifies the basic pattern, l is the di-
mension of the basic pattern, e.g., 8 for Fig. 3(a),
and % is the modulo operator.

In implementation, the basic pattern may be
different in size or shape from Fig. 3(a). Any
pattern could be useful for the P-buffer algorithm
as long as it satisfies the requirements, i.e., to
break lines while showing them. If speed becomes
so critical in an application that it counts in
each function call and each operation, a full size
pattern buffer can be initialized in the default
constructor of class P_Buffer to save the func-
tion call to value_Pattern(int, int) and the
two modulo operations in it. Since the redefined
this_Algorithm(· · ·) adds at most one more
conditional statement and a boolean operation to
the one defined in the base class Z_Buffer, the
P-buffer algorithm has the same computational
complexity as the classical Z-buffer algorithm.

3.3 An Example

The P-buffer algorithm renders in image space
line-drawing images with dashed hidden-lines.
Featuring the major advantages of line-drawing
algorithms in high-speed rendering, wide range of

7



Figure 3: The Filtering Pattern

processable shapes, and hidden-line generation,
this algorithm is particularly useful in interactive
applications where rendering time is critical. For
instance, off-line programming is a technology
that offers cost-effectively programming robots
to perform diverse assembly tasks in industry au-
tomation. To increase programming flexibility
and shorten manufacturing cycles, product engi-
neers manipulate on, instead of physical machin-
ery parts, CAD data and defines robot assembly
tasks in a virtual environment [33].

Given a task of assembling a sliding-door
guide, a sequence of operations has to be speci-
fied to place a wheel on top of a bracket and then
secure it with a bushing and two pins. One of
the assembly operations that a human operator
needs to do is to define reference coordinate sys-
tems on the machinery parts for alignment. Let
one reference system be on the front cylindrical
surface of the bracket (Fig. 4) and the other on
the inner cylindrical surface of the wheel. The
operator then has to interact via an input de-
vice, e.g., a three-dimensional data glove, to se-
lect points on the two surfaces to define the ref-
erence systems.

When the two machinery parts are arranged
as in Fig. 4(a), both the surfaces to work on are

visible to the operator. In such a case, he/she has
no problem defining the reference systems with
a view that shows no hidden-lines. If, however,
the wheel happens to be in front of the bracket,
the operator cannot see the bracket’s cylindrical
surface in a hidden-surface-removed view. As a
result, he/she has to use additional operations
to move aside the wheel first before the reference
system on the bracket can be specified.

Furthermore, it is difficult to decide when
the wheel touches the cylindrical surface of the
bracket as one must be in front of the other
one, thus hiding the needed information when
hidden-lines are removed. Since the P-buffer al-
gorithm reveals the hidden information by dis-
playing hidden-surfaces with dashed lines, a view
rendered with this algorithm (Fig. 4(b)) is al-
ways ready for the operator to pick hidden lines
for reference association during interactive ses-
sions to manipulate models. He/she can, there-
fore, operate in a predictable manner and use
much less interactions to accomplish the same
job.

8



Figure 4: An Example of P-Buffer Application

4 Conclusion

Image-space line-drawing algorithms are suitable
for time-critical rendering. Though simple, the
pictures rendered with these algorithms provide
sufficient information of a wide range of three-
dimensional shapes at a fairly low computational
cost. To compromise the inability of showing
hidden lines with image-space line drawing algo-
rithms, this paper introduces a modified Z-buffer
algorithm — P-buffer algorithm. The P-buffer
algorithm has the major advantages of image-
space algorithms but it is also capable of reveal-
ing the concealed information. Together with the
C++ pseudocode of the P-buffer algorithm, the
paper also shows some experiment results con-
ducted with a testing pattern. The presented
algorithm exposes a new approach to uncover
the hidden information for time-critical render-
ing. Since the performance of the P-buffer al-
gorithm relies on filtering patterns to generate
dashed hidden-lines and standard bitmap pat-
terns usually do not fit into the need, special
patterns is being designed for use as filtering pat-
terns. Meanwhile, active research has started

to investigate the use of this algorithm in ap-
plications that involves object manipulation via
human-computer interactions, e.g., virtual man-
ufacturing.

Acknowledgment

This work was supported by the Natural Sciences
and Engineering Research Council of Canada.

References

[1] T. E. French. Engineering Drawing and
Graphic Technology. McGraw-Hill, New
York, 14th edition (1993).

[2] J. Arvo and D. Kirk. A survey of ray tracing
acceleration techniques. In A. S. Glassner,
editor, An Introduction to Ray Tracing, pages
201–262. Academic Press, New York (1989).

[3] M. Deberg. Generalized hidden surface re-
moval. Computational Geometry-Theory and
Applications, 5(5):249–276 (1996).

9



[4] M.E. Brown. Visualization of 3-dimensional
structure during computer-aided-design. In-
ternational Journal of Human-Computer In-
teraction, 7(1):37–56 (1995).

[5] R. Cowie. From line-drawings to impressions
of 3d objects - developing a model to account
for the shapes that people see. Image and
Vision Computing, 11(6):342–352 (1993).

[6] Q. Zhu. Virtual edges, viewing faces, and
boundary traversal in line drawing represen-
tation of objects with curved surfaces. Com-
puters & Graphics, 15(2):161–173 (1991).

[7] D. Hearn and M. P. Baker. Computer Graph-
ics. Prentice Hall, second edition (1994).

[8] Xin Li and J. Michael Moshell. Modeling
soil: Realtime dynamic models for soil slip-
page and manipulation. In James T. Kajiya,
editor, Computer Graphics (SIGGRAPH ’93
Proceedings), volume 27, pages 361–368 (Au-
gust 1993).

[9] H. Plantinga, C.R. Dyer, and W.B. Seales.
Real-time hidden-line elimination for a rotat-
ing polyhedral scene using the aspect repre-
sentation. In Proceedings of Graphics Inter-
face ’90, pages 9–16 (May 1990).

[10] Luis Serra and Rodney Lionel Rhodes. Low-
cost hardware platform for developing real-
time 3D graphics. The Visual Computer,
6(5):254–265 (November 1990).

[11] L. Kjelldahl. Study on how depth-
perception is affected by different presenta-
tion methods of 3D objects on a 2D dis-
play. Computers & Graphics, 19(2):199–202
(1995).

[12] W.H. Chieng. Polygon-to-object boundary
clipping in object space for hidden surface re-
moval in computer-aided-design. Journal of
Mechanical Design, 117(3):374–389 (1995).

[13] W. Hsu and J.L. Hock. An algorithm for
the general solution of hidden line removal for

intersecting solids. Computers & Graphics,
15(1):67–86 (1991).

[14] J.G. Griffiths. A bibliography of hidden-line
and hidden-surface algorithms. Computer-
Aided Design, 10(3):203–206 (May 1978).

[15] E. Sutherland, F. Sproul, and A. Schu-
macker. A characterization of ten hidden-
surface algorithms. ACM Computing Sur-
veys, 6(1):1–55 (March 1974).

[16] L. G. Roberts. Machine perception of three
dimensional solid. In Optical and Electro-
Optical Information Processing, pages 159–
197. MIT Press, Cambridge (1964).

[17] P. P. Loutrel. A solution to the hidden-
line problem for computer-drawn polyhedra.
IEEE Trans. on Computers, 19(3):205–213
(1970).

[18] D. F. Rogers. Procedural Elements for Com-
puter Graphics. McGraw-Hill, New York
(1985).

[19] J.H. Reif. An efficient output-sensitive
hidden-surface removal algorithm for polyhe-
dral terrains. Mathematical and Computer
Modelling, 21(5):89–104 (1995).

[20] B.R. Vatti. A generic solution to poly-
gon clipping. Communications of the ACM,
35(7):56–63 (1992).

[21] M.T. Goodrich. A polygonal approach to
hidden-line and hidden-surface elimination.
CVGIP: Graphical Models and Image Pro-
cessing, 54(1):1–12 (January 1992).

[22] A. Limaiem. Geometric algorithms for the
intersection of curves and surfaces. Comput-
ers & Graphics, 19(3):391–403 (1995).

[23] C.K. Shene and J. Johnstone. On the lower
degree intersections of two natural quadrics.
ACM Transactions on Graphics, 13(4):400–
424 (1994).

10



[24] I. Wilf. Quadric-surface intersection curves
- shape and structure. Computer-Aided De-
sign, 25(10):633–643 (1993).

[25] J. Miller. Geometric approaches to non-
linear quadric surface intersection curves.
ACM Transactions on Graphics, 6(4):274–
307 (1987).

[26] R. F. Sarraga. Algebraic methods for in-
tersections of quadric surfaces in GMSOLID.
CVGIP, 22(2):222–238 (1983).

[27] E. Fiume. The Mathematical Structure of
Raster Graphics. Academic Press, San Diego
(1989).

[28] A. Fournier and D. Fussell. On the power
of the frame buffer. ACM Transactions on
Graphics, 7(2):103–128 (April 1988).

[29] E. Catmull. A Subdivision Algorithm for
Computer Display of Curved Splines. PhD
thesis, Computer Science Department, Uni-
versity of Utah (1974).

[30] M. Newell, R. Newell, and T. Sancha. A
solution to the hidden surface problem. In
Proceedings of the ACM National Conference,
pages 443–450, 1972).

[31] W. Bouknight. A procedure for gener-
ation of three-dimensional half-toned com-
puter graphics presentations. Communica-
tions of the ACM, 13(9):527–536 (September
1970).

[32] Loren Carpenter. The A-buffer, an an-
tialiased hidden surface method. In Hank
Christiansen, editor, Computer Graphics
(SIGGRAPH ’84 Proceedings), volume 18,
pages 103–108 (July 1984).

[33] M. Smith. An environment for more eas-
ily programming a robot. In Proc. the 1992
IEEE International Conference on Robotics
and Automation, volume 1, pages 10–16
(1992).

11



APPENDIX

12


	P-Buffer: Hidden-line rendering with a dynamic p-buffer
	Recommended Citation

	tmp.1355338420.pdf.KKO2L

