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Abstract: Butyne-1,4-diether hexacarbonyldicobalt complexes (1) undergo Lewis acid mediated 

4+3 cycloadditions with allylsilanes, incorporating halide from the Lewis acid to give 

halocycloheptynes (4, 6, 7). A phenyl group may be incorporated in place of the halogen (to give 

8) by use of benzene as solvent and with B(C6F5)3 as the Lewis acid; chlorobenzene and toluene 

also participate in the process. 

Key words: alkyne complexes, cobalt, ring closure, Lewis acids, nucleophiles 

 

The wide occurrence of cycloheptane containing molecules in nature and the limited 

number of routes of rapid access to seven membered ring systems have sparked much interest in 

methods for the direct construction of cycloheptanes.
1
 As a result of this interest, several research 

groups have made contributions to the development of cycloaddition reactions for the synthesis 

of cycloheptanes and their unsaturated counterparts.
2,3

 The most widely encountered of these 

have been 4+3 cycloaddition reactions, particularly versions involving reactions of substituted 

allyl- or oxyallyl cations with dienes,
4
 or those between bis(trimethylsilyl)enol ethers with 1,4-

diones.
5 

Suggested location for Scheme 1 

We have had an ongoing interest in cycloheptyne hexacarbonyldicobalt complexes, due 

the availability of reliable methods for substitution of cobalt alkyne complexes,
6
 their potential 

for entering into synthetically useful cycloaddition reactions,
7
 and in view of the instability of 

metal free cycloheptynes.
8,9

 Methods of preparation of these cycloheptyne complexes have most 

often been based on propargyl hexacarbonyldicobalt cation attack by allylsilanes,
10,11

 although a 

ring closing reaction on a propargyl cation by an unactivated alkene
12

 and a ring closing 

metathesis approach also exist.
13,14,15

 We have reported a 4+3 cycloaddition route to such 
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compounds based on the reaction of propargyl cations, formed sequentially by action of BF3-

OEt2 on 1, with allyldimetal equivalents 2.
11

 In addition to the cycloheptenyne complexes 3 

obtained from this process, under some conditions we obtained fluorocycloheptyne complexes 4. 

The presence of 4 suggests that the propargyl cation complex is capable of cyclization onto an 

alkene function, to at least an equilibrium extent, giving a cycloheptyne complex bearing 2
o
 alkyl 

cation which can be trapped by a fluoride source (Scheme 2). This in turn implies that more 

readily available allylsilanes could be used to obtain compounds such as 4, and that other 

nucleophilic species could be incorporated into the cycloheptane complex. As a result we have 

investigated the feasibility of these Lewis acid mediated 4+3 cycloaddition/nucleophilic trapping 

reactions between 1,4-butyne-diether-Co2(CO)6 complexes (1) and allyltrimethylsilane. A 

preliminary account of the results is contained in this report. 

Suggested location for structures 1-3 

Suggested location for Scheme 2 

 The 4+3 cycloaddition/trapping process proved to be relatively facile in the presence of 

BF3-OEt2. Slow addition of BF3-OEt2 (5 equiv) to a solution of allyltrimethylsilane (1.5 equiv) 

and 1a (0.05 M in CH2Cl2) afforded 4a in 60% yield. The main side product from this process 

proved to be diallylation complex 5a (21%). Alternative modes of addition were found to give 

higher yields of 4a; addition of a BF3-OEt2/allyltrimethylsilane mixture to 1a in CH2Cl2 gave 

75% of 4a and 20% of 5a, while addition of allyltrimethylsilane to a mixture of 1a and BF3-OEt2 

gave 75% of 4a with 8% of 5a.
16

 Use of less than 1.5 equivalents of allyltrimethylsilane gave 

incomplete conversion, indicative of some destruction of the allylsilane under the reaction 

conditions.  These three sets of conditions were applied to the other cases studied (Table 1), and 

each approach gave superior results in selected substrate/nucleophile combinations. Other 
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halogens could be incorporated by replacing BF3-OEt2 with alternate Lewis acids. Chlorinative 

cycloaddition of 1a could be accomplished by use of SnCl4, giving 6a in 78% yield. The 

corresponding bromination product, 7a, could be obtained with SnBr4, but only in low yield 

(26%). Other bromide containing Lewis acids, such as BBr3 and AlBr3, gave no 7a but extensive 

decomposition of the cobalt complex. 

Suggested location of structures 4-10 

 While investigating conditions of optimal fluorination, the reaction of 1a with BF3-OEt2 

and allyltrimethylsilane was attempted in benzene as solvent. In addition to a small amount 

(21%) of fluorination product 4a, a substantial amount of the tandem 4+3 cycloaddition/Friedel-

Crafts alkylation product 8a (48%) was obtained. Several Lewis acids (Bu2BOTf, TMSOTf, 

Et3B, B(OAc)3, Me3Al, MAO) were screened for their ability to allow arylation more cleanly. By 

far the superior Lewis acid for this purpose was found to be B(C6F5)3, which afforded 8a in 70% 

yield. This process could be extended to other arenes within a narrow nucleophilicity range;
17

 

toluene as solvent gave 9a in 58% as an inseparable regioisomeric mixture, while chlorobenzene 

as solvent gave 10a (51%) as regioisomeric mixture (from which isomerically pure ortho- 10a 

could be obtained after repeated chromatography). 

 Methyl- and phenyl- substituted dicobalt diether complexes 1b and 1c were also 

investigated. Fluorination, chlorination and benzene trapping reactions were readily 

accomplished on methyl substituted 1b, giving separable diastereomeric mixtures of the 

fluorination (4b, 74%, trans-:cis- = 1.6:1) and chlorination products (6b, 76%, trans-:cis- = 

1:1.9), but only the cis- diastereomer of the phenylation product (8b). The stereochemical 

assignments were made on the basis of the 
1
H NMR spectra, which suggest that the conformation 

of these cycloheptyne complexes is well approximated by a cyclohexane- like chair, with the 
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largest substituent preferring an equatorial orientation. The phenyl substituted substrate 1c was 

clearly less reactive to the final cyclization step; although fluorination (4c, 67%, trans-:cis- = 

1.5:1) and chlorination (6c, 60%, trans-:cis- = 1:1.9) occurred in reasonable yield, arylation 

occurred with poor efficiency (cis-8c, 26%) The yield of cis-8c could be increased to 52% by the 

addition of CH2Cl2 (final volume, 1:4 CH2Cl2:benzene) after the addition of the Lewis acid.
18

 

Suggested location for Table 1 

Reaction of propargyldicobalt cations with unactivated alkenes is infrequent, but 

precedented.
12,19,20

 The resultant cationic intermediates most often eliminate, but they have been 

trapped by internally located nucleophiles, and halogenation has been observed in cases 

involving a tertiary cation and benzopyran formation.
20a

 Related alkene trapping/fluorination 

reactions have also been observed in the case of dienyl tricarbonyliron cation initiated 

cyclohexane-forming reactions.
 21

 To the best of our knowledge, trapping of these resulting alkyl 

cations with external carbon nucleophiles has not been reported previously, although Prof. 

Tyrrell’s group has isolated products of further cyclization onto the alkyne unit following an 

oxidative workup.
20b 

 In summary, the ability to use the unactivated alkene in the ring closing step in the 4+3 

cycloaddition process allows the use of the less expensive and more readily accessible 

allylsilanes (relative to the silylstannanes (2)). In addition, the ability to trap the resultant cations 

to give the synthetically useful chloride function, and to arylate the cycloheptynes increases the 

synthetic flexibility of these 4+3 cycloaddition reactions. Work on expanding this process to 

incorporate other nucleophiles, and use of the products in further cycloaddition chemistry, are in 

progress. 
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1
H NMR   4.55 (dt, J = 44.0HF, 10.9, 1H), 3.20 (dq, J = 16.6, 3.8, 1H), 2.89 (m, 

1H), 2.82 (ddd, J = 16.4, 13.1, 4.4, 1H),  2.3-2.5 (m, 2H), 1.85 (m, 1H), 1.65 (dd, J = 

23.8HF, 12.1, 1H), 1.38 (d, J = 6.8, 3H); 
13

C NMR 200.0 (br), 105.7, 97.3, 95.2 (JCF = 

166.9), 45.0 (JCF = 21.8), 36.5, (JCF = 23.1), 34.0 (JCF = 14.4), 30.0 (JCF = 15.3), 22.2; 
19

F 

-75.4 (apparent dt, J = 44.0, 21.8); MS m/e 412 (M
+
), 384 (M

+
 - 1CO),  356 (M

+
-2CO), 

328 (M
+
-3CO), 300 (M

+
-4CO), 272 (M

+
-5CO), 244 (M

+
-6CO); HRMS m/e for 

C14H11Co2FO6 calcd (M
+
) 411.9204, found 411.9194. (trans-4c): IR (neat, NaCl) max 

2090, 2047, 2026 cm
-1

; 
1
H NMR   7.38 (m, 2H), 7.28 - 7.36 (m, 3H), 5.30 (dt, J = 

44.4HF, 6.9, 1H), 4.35 (dd, J = 12.5, 3.6, 1H), 3.23 (ddd, J = 16.4, 12.8, 4.1, 1H), 3.11 (d, 

J = 16.4, 1H), 2.61 (m, 1H), 2.52 (m, 1H), 2.11 (apparent dt, J = 37.9HF, 13.5, 1H), 1.81 

(apparent ddt, J = 39.2HF, 4.2, 13.8, 1H)  ; 
13

C NMR 199.6 (br), 142.8, 128.5, 127.5, 

127.1, 107.3, 99.9, 90.2 (JCF = 174.8), 42.0 (JCF = 5.7), 38.5 (JCF = 21.4), 33.2 (JCF = 

22.3), 27.7 (JCF = 6.5); 
19

F -119.5 (apparent q, J = 38.1); MS m/e 446 (M
+
 - 1CO),  418 

(M
+
-2CO), 390 (M

+
-3CO), 362 (M

+
-4CO), 334 (M

+
-5CO), 306 (M

+
-6CO); HRMS m/e 

for C19H13Co2FO6 calcd (M
+
) 445.9411, found 445.9423. (cis-4c): IR (neat, NaCl) max  

2091, 2048, 2028 cm
-1

; 
1
H NMR   7.38 (m, 2H), 7.2 - 7.3 (m, 3H), 4.71 (dt, JHF = 44.1, 

10.8, 1H), 3.97 (d, J = 12.0, 1H), 3.27 (ddd, J = 16.9, 7.5, 3.7, 1H), 2.89 (apparent dt, J = 

3.8, 14.7, 1H), 2.60 (dd, J = 21.8, 13.1, 1H), 2.49 (m, 1H), 2.32 (apparent dt, J = 10.8, 

12.5, 1H), 2.01 (apparent ddt, J = 10.8, 3.3, 13.1, 1H); 
13

C NMR 199.5 (br), 142.7, 128.6, 

127.3, 127.2, 106.0, 98.1, 95.4 (JCF = 167.5), 44.5 (JCF = 14.7), 41.7 (JCF = 23.1), 36.7 

(JCF = 23.0), 30.0 (JCF = 15.1); 
19

F -75.2 (apparent dt, J = 44.1, 20.6); MS m/e 446 (M
+
 - 
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1CO),  418 (M
+
-2CO), 390 (M

+
-3CO), 362 (M

+
-4CO), 334 (M

+
-5CO), 306 (M

+
-6CO); 

HRMS m/e for C19H13Co2FO6 calcd (M
+
) 445.9411, found 445.9403. (6a) IR (neat, KBr) 

max 2088, 2044, 2018, 1991 cm
-1

; 
1
H NMR  4.58 (t, J = 7.3, 1H), 3.26 (ddd, J = 16.6, 

10.6, 4.1, 2H), 3.03 (apparent dt, J = 16.6, 4.4, 2H), 2.27 (m, 2H), 2.07 (m, 2H); 
13

C 

NMR  198.8 (br), 99.0, 62.1, 37.1, 30.0; MS m/e 414 (M
+
), 386 (M

+
-1CO), 358 (M

+
-

2CO), 330 (M
+
-3CO), 302 (M

+
-4CO), 274 (M

+
-5CO), 246 (M

+
-6CO); HRMS m/e for 

C13H9ClCo2O6 calcd (M
+
) 413.8752, found 413.8755. (trans-6b): IR (neat, KBr) max 

2090, 2045, 2017 cm
-1

; 
1
H NMR  4.67 (t, J = 6.4, 1H), 3.40 (m, 1H), 3.33 (ddd, J = 16.6, 

12.4, 4.2, 1H), 3.08 (apparent dt, J = 16.6, 3.4, 1H), 2.25-2.35 (m, 2H), 1.93 (m, 1H), 

1.68 (dd, J = 14.4, 1.3, 1H), 1.33 (d, J = 6.8, 3H); 
13

C NMR  200.2 (br), 106.4, 98.1, 

61.3, 44.1, 35.8, 33.2, 29.4, 21.6; MS m/e 428 (M
+
), 400 (M

+
-1CO), 372 (M

+
-2CO), 344 

(M
+
-3CO), 316 (M

+
-4CO), 288 (M

+
-5CO), 260 (M

+
-6CO); HRMS m/e for 

C14H11ClCo2O6 calcd (M
+
-2CO) 371.9010, found 371.9006. (cis-6b): IR (neat, KBr) max 

2090, 2046, 2015 cm
-1

; 
1
H NMR  3.99 (tt, J = 11.1, 1.7, 1H), 3.22 (dt, J = 16.6, 3.4, 1H), 

2.94 (m, 1H), 2.87 (ddd, J = 16.6, 12.7, 4.0, 1H), 2.52 (m, 1H), 2.48 (m, 1H), 1.99 (m, 

1H), 1.79 (m, 1H), 1.35 (d, J = 6.7, 3H); 
13

C NMR  200.1 (br), 105.5, 97.0, 61.8, 49.0, 

40.4, 36.9, 32.8, 22.0; MS m/e 428 (M
+
), 372 (M

+
-2CO), 344 (M

+
-3CO), 316 (M

+
-4CO), 

288 (M
+
-5CO), 260 (M

+
-6CO); HRMS m/e for C14H11ClCo2O6 calcd (M

+
-2CO) 

371.9010, found 371.9006. (trans-6c): IR (neat, NaCl) max  3037, 2090, 2048, 2027 cm
-

1
;
 1
H NMR  7.37 (t, J = 7.5, 2H), 7.28-7.35 (m, 3H), 4.85 (t, J = 6.3, 1H), 4.52 (dd, J = 

12.0, 3.6, 1H), 3.40 (ddd,  J = 16.6, 12.5, 4.1, 1H), 3.15 (dt, J = 16.6, 3.3, 1H), 2.52 (m, 

1H), 2.42 (m, 1H), 2.36 (apparent t, J = 13.5, 1H), 2.08 (m, 1H); 
13

C NMR  199.9 (br), 

142.7, 128.5, 127.6, 127.2, 106.6, 99.1, 61.4, 43.9, 40.9, 36.0, 29.5; MS m/e 462 (M
+
-
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CO), 434 (M
+
-2CO), 406 (M

+
-3CO), 378 (M

+
-4CO),350 (M

+
-5CO), 322 (M

+
-6CO); 

HRMS m/e for C19H13ClCo2O6 calcd (M
+
-2CO) 433.9166, found 433.9162. (cis-6c:) IR 

(neat, NaCl) max  3030, 2092, 2048, 2028, 2016 cm
-1

; 
1
H NMR  7.37 (t, J = 7.4, 2H), 

7.25-7.35 (m, 3H), 4.14 (tt, J = 11.0, 1.8, 1H), 4.00 (dd, J = 12.2, 3.5, 1H), 3.29 (tt, J = 

16.8, 3.4, 1H), 2.95 (ddd, J = 16.8, 12.7, 4.1, 1H), 2.74 (m, 1H), 2.63 (m, 1H), 2.45 (m, 

1H), 2.15 (m, 1H); 
13

C NMR  199.5 (br), 142.6, 128.6, 127.3, 127.2, 105.7, 98.0, 62.0, 

47.5, 45.8, 40.7, 32.9; MS m/e 462 (M
+
-1CO), 434 (M

+
-2CO), 406 (M

+
-3CO), 378 (M

+
-

4CO), 350 (M
+
-5CO), 322 (M

+
-6CO); HRMS m/e for C19H13ClCo2O6 calcd (M

+
-2CO) 

433.9166, found 433.9164.  (7a): IR (neat, KBr) max 2090, 2046, 2016 cm
-1

; 
1
H NMR  

4.75 (t, J = 6.9, 1H), 3.27 (ddd, J = 16.7, 10.7, 3.7, 2H), 3.09 (dt, J = 16.7, 3.7, 2H), 2.33 

(m, 2H), 2.07 (m, 2H); 
13

C NMR  200.0 (br), 98.8, 56.6, 37.5, 31.5; MS m/e 458 (M
+
), 

402 (M
+
-2CO), 374 (M

+
-3CO), 348 (M

+
-4CO), 318 (M

+
-5CO), 290 (M

+
-6CO); HRMS 

m/e for C13H9Br
79

Co2O6 calcd (M
+
) 457.8246, found 457.8242. (8a): IR (neat, KBr) max 

3028, 2087, 2043, 2013 cm
-1

; 
1
H NMR  7.31 (t, J = 7.4, 2H), 7.21 (t, J = 7.5, 1H), 7.17 

(d, J = 7.6, 2H), 3.29 (dt, J = 16.5, 3.2, 2H), 2.91 (ddd, J = 16.5, 12.5, 4.1, 2H), 2.59 (t, J 

= 10.6, 1H), 2.14 (dt, J = 13.9, 3.4, 2H), 1.88 (m, 2H); 
13

C NMR  200.0 (br), 149.5, 

128.7, 126.3, 126.0, 100.4, 49.3, 38.1, 34.7; MS m/e 456 (M
+
), 400 (M

+
-2CO), 372 (M

+
-

3CO), 344 (M
+
-4CO), 316 (M

+
-5CO), 288 (M

+
-6CO); HRMS m/e for C19H14Co2O6 calcd 

(M
+
-2CO) 371.9607, found 371.9604. (cis-8b): IR (neat, KBr) max 3030, 2088, 2044, 

2021 cm
-1

; 
1
H NMR  7.31 (m, 2H), 7.20 (m, 1H), 7.15 (d, J = 7.1, 2H), 3.29 (dt, J = 

16.4, 3.1, 1H), 3.03 (m, 1H), 2.95 (ddd, J = 16.6, 12.6, 4.0, 1H), 2.66 (t, J = 10.7, 1H), 

2.10 (dt, J = 14.1, 3.6, 1H), 2.03 (dd, J = 14.0, 3.9, 1H),  1.86 (m, 1H), 1.65 (m, 1H), 1.33 

(d, J = 6.8, 3H); 
13

C NMR  200.4 (br), 149.6, 128.7, 126.2, 126.0, 107.4, 99.1, 48.4, 
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46.6, 39.1, 37.8, 35.0, 22.3; MS m/e e 434 (M
+
), 414 (M

+
-2CO), 386 (M

+
-3CO), 358 

(M
+
-4CO), 330 (M

+
-5CO), 302 (M

+
-6CO); HRMS m/e for C20H16Co2O6 calcd (M

+
-3CO) 

385.9763, found 385.9766. (cis-8c): IR (neat, KBr) max 3029, 2089, 2045, 2026, 2008 

cm
-1

; 
1
H NMR  7.18-7.37 (m, 10H), 4.11 (m, 1H, simplifies to dd, J = 9.7, 5.6 upon 

irradiation at  2.83), 3.37 (dt, J = 16.4, 3.2, 1H), 3.03 (ddd, J = 16.4, 12.6, 4.1, 1H), 2.83 

(br t, J = 10.7, 1H), 2.28-2.37 (m, 2H), 2.22 (dt, J = 14.1, 3.1, 1H), 2.04 (m, 1H); 
13

C 

NMR  199.9 (br), 149.3, 143.7,128.7, 128.4, 127.3, 127.0, 126.3, 126.1, 107.4, 100.3, 

50.0, 48.9, 43.5, 37.9, 35.1; MS m/e 504 (M
+
-1CO), 448 M

+
-3CO), 420 (M

+
-4CO), 392 

(M
+
-5CO), 364 (M

+
-6CO); HRMS m/e for C25H18Co2O6 calcd (M

+
-3CO) 447.9920, 

found 447.9917. (9a): (1.4:1:1 ortho:para:meta mixture) IR (neat, KBr) max 3022, 2088, 

2043, 2017 cm
-1

; 
1
H NMR  6.92-7.22 (m, 4H), 3.29 (m, 2H), 2.90 (m, 2H), 2.80 (t, J = 

10.2), 2.56 (t, J = 10.6) and 2.55 (t, J = 10.6) (1H), 2.35 (s), 2.34 (s), and 2.33 (s) (3H), 

2.11 (m, 2H), 1.86 (m, 2H); 
13

C NMR  200.7 (br), 200.0 (br), 149.5, 147.6, 146.6, 138.3, 

135.5, 133.7, 130.4, 129.3, 128.6, 127.1, 126.8, 126.4, 126.2, 125.7, 123.3, 100.4, 100.2, 

49.3, 48.8, 38.3, 38.2, 37.7, 35.1, 34.8, 34.7; MS m/e 470 (M
+
), 414 (M

+
-2CO), 386 (M

+
-

3CO), 358 (M
+
-4CO), 330 (M

+
-5CO), 302 (M

+
-6CO); HRMS m/e for C20H16Co2O6 calcd 

(M
+ 

-3CO) 385.9763, found 385.9767. (10a): (1.8:1:0.3 ortho:para:meta mixture) 

(ortho-10a): IR (neat, KBr) max 2096, 2048, 2030, 2015, 1994  cm
-1

; 
1
H NMR  7.38 

(dd, J = 8.0, 1H), 7.19-7.27 (m, 2H), 7.14 (m, 1H), 3.30 (dt, J = 16.4, 3.1, 2H), 3.14 (br, 

1H), 2.97 (ddd, J = 16.4, 12.6, 4.2, 2H), 2.13 (dt, J = 13.9, 3.3, 2H), 1.85 (br m, 2H); 
13

C 

NMR  200.2 (br), 151.0, 146.2, 132.4, 129.6, 127.1, 127.0, 100.3, 44.0, 37.3, 34.8; MS 

m/e 434 (M
+
-2CO), 406 (M

+
-3CO), 378 (M

+
-4CO), 350 (M

+
-5CO), 322 (M

+
-6CO); 

HRMS m/e for C19H13ClCo2O6 calcd (M
+
-2CO) 433.9166, found 433.9168. Peaks 
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attributable to the para isomer could be observed at 
1
H NMR  7.28 (d, J = 8.3, 2H), 7.09 

(d, J = 8.3, 2H), 3.28 (m, obscured, 2H), 2.90 (ddd, J = 16.5, 12.6, 4.1, 2H), 2.57 (t, J = 

10.6, 1H), 2.09 (dt, J = 14.0, 3.4, 2H), 18.3 (m, 2H) ; 
13

C NMR  200.6 (br), 147.8, 131.7, 

128.8, 127.6, 100.1, 48.6, 38.1, 34.6. Peaks from the meta isomer could be observed at 
1
H 

NMR  7.24 (apparent t, J = 7.7, 1H), 7.18 (br d, J = 8.5, 1H), 7.16 (br s, 1H), 7.05 (d, J = 

7.5, 1H), 2.12 (m, obscured, 2H); 
13

C NMR  151.3, 134.3, 130.0, 126.6, 126.1, 124.5, 

48.9, 38.0. 
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