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Abstract
In the tumor microenvironment, monocytes
respond to paracrine stimuli from breast cancer
cells by secreting molecules that participate in
breast cancer growth, invasion, intravasation and
metastasis. Here we examined the effects of
media conditioned by MDA-MB-231 human breast
carcinoma cells (231-CM) on expression and
secretion of proteases and secretion of cytokines
by U937 human monocytes. We found that
231-CM increased U937: 1) proliferation; 2)
expression, activity and secretion of the cysteine
protease cathepsin B (CTSB); 3) secretion of
matrix metalloproteinases (MMP)-2 and -9;
and 4) secretion of interleukin-6 (IL-6) and insulin-
like growth factor binding protein-1 (IGFBP-1).
We further demonstrated by western blotting
and enzymatic activity assays that the increases
in CTSB secretion and activity induced by
231-CM could be reduced by neutralizing antibodies
against IL-6. Our data suggest a role for IL-6 in

Introduction

Inflammatory cells enhance tumor growth, invasion
and metastasis [1]. Infiltration of monocytes correlates
with poor prognosis of breast cancers [2, 3]. The
monocytes are recruited by cytokines and chemokines
such as macrophage colony stimulating factor (M-CSF/
CSF-1) [4, 5] and monocyte chemoattractant protein
(MCP-1) [6] that are highly expressed by the breast
tumor cells. In the tumor microenvironment, the
monocytes undergo activation and differentiation and are
designated tumor-educated or tumor-associated
macrophages (TAMs) (for review, see [7] and [8]).

The immunological functions of macrophages include
phagocytosis, antigen presentation, production of cytokines
and proteases and recruitment of T-cells to sites of
inflammation [9, 10]. In the tumor microenvironment,
TAMs play dual roles as: 1) ‘classically activated
macrophages’ that secrete pro-inflammatory mediators
and recruit T-cells as in an early inflammatory response

increased monocyte expression and secretion of
CTSB in response to soluble factors secreted by
breast cancer cells.
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[5], and 2) ‘regulatory macrophages’ that express anti-
inflammatory cytokines and increase tumor growth,
invasion and metastasis [11]. Advances in intravital
imaging have provided new insights into the relationship
between tumor cell migration and invasion by TAMs in
murine mammary tumor models, establishing that
macrophages are present in high numbers at the invasive
margins of tumors and perivascularly in association with
intravasating tumor cells [12]. Indeed, TAMs have been
suggested to be “obligate partners for tumor cell migration,
invasion, and metastasis” [13].

Invasion of breast cancer cells is augmented by
proteases secreted from TAMs [3, 14, 15]. For example,
cathepsin B (CTSB), a lysosomal cysteine protease that
has been characterized as a “multi functional” enzyme in
cancer [16], is highly expressed in TAMs isolated from
MMTV-PyMT murine mammary carcinomas [5]. When
MMTV-PyMT mice are crossed with mice deficient in
CTSB, the absence of CTSB in the TAMs correlates
with a reduction in lung metastasis [17]. TAM CTSB
may increase invasion directly or indirectly by activating
latent or inactive matrix metalloproteinases (MMPs) [18],
secretion of which (e.g., proMMP-2 and proMMP-9) has
been associated with increased invasion of breast cancer
cells [14].

Using a live cell imaging assay for proteolysis
developed in our laboratory [19-22], we have shown that
co-culturing macrophages with breast carcinoma cells
increases degradation of the basement membrane protein
type IV collagen and that this degradation is reduced by
inhibitors of MMPs and CTSB [21]. Therefore, our aim
in the present study was to determine how breast cancer
cells modulate expression and activity of the proteases
CTSB, MMP-2 and MMP-9 in human monocytes. Our
results revealed that incubation of human monocytes with
conditioned media of breast cancer cells increased
monocyte: 1) proliferation; 2) expression, secretion and
activity of CTSB; 3) secretion of MMP-2 and -9; and 4)
secretion of IL-6 and insulin-like growth factor binding
protein-1 (IGFBP-1). Neutralizing antibodies against IL-
6 reduced the increases in CTSB expression, secretion
and activity.

Materials and Methods

Reagents
Fetal bovine serum (FBS) was from Invitrogen (Carlsbad,

CA); pepsin was from Roche (Indianapolis, IN); 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

was from Invitrogen (Carlsbad, CA). Polyclonal rabbit anti-
human CTSB antibody was prepared in our laboratory [23].
Horseradish peroxidase-labeled goat anti-rabbit IgG and micro-
bicinchoninic acid protein assay kits were from Pierce
Biotechnology (Rockford, IL). Human recombinant MMP-2 and
MMP-9 enzymes were a kind gift from Dr. Rafael Fridman
(Wayne State University, Detroit, MI). Western blotting
detection kits were from Amersham Pharmacia Biotechnologies
(Piscataway, NJ). IL-6 neutralizing antibody, Quantikine MMP-
2 Immunoassay and MMP-9 Fluorokine E immunoassay kits
were from R&D Systems (Minneapolis, USA); and
ChemiArrayTM Human Cytokine Antibody Array V kit was from
Chemicon (Temecula, CA, USA). Unless otherwise stated all
other reagents were from Sigma (St. Louis, MO).

Cell Lines and Culture
The MDA-MB-231 human breast carcinoma cell line [24]

was purchased from American Type Culture Collection
(Rockville, MD) as was the U937 human monocytic cell line,
which was isolated in 1974 by Sundstrom and Nilsson [25]
from a pleural effusion of a histiocytic lymphoma patient. Both
cell lines were maintained in RPMI-1640 complete medium (i.e.,
supplemented with 10% FBS, 2 mM L-glutamine, 1.5 g/L sodium
bicarbonate, 4.5 g/L glucose, 10 mM HEPES and 1.0 mM Na-
pyruvate). U937 cells possess monocytic characteristics and
differentiate into mature macrophages in response to different
stimulus such as cytokines, phorbol myristate acetate (PMA)
and vitamin D3 [26].

Preparation of 231-CM
MDA-MB-231 cells were seeded at 2.5 x 105 cells/ml in

RPMI-1640 complete medium into T-75 tissue culture flasks
and grown to approximately 80% confluency. Cells in each T75
flask were washed twice with phosphate-buffered saline (PBS)
and incubated in 10 ml of serum-free RPMI-1640 medium
overnight (18 h). Overnight media were collected and
centrifuged at 700 g at room temperature for 5 min to pellet
cells. The supernatant was collected and centrifuged at 2000 g
at 4 °C for 10 min to remove cell debris. Ten ml of the supernatant
was concentrated 10 fold (10X) to a final volume of 1 ml using
Amicon Ultracell 10K filters (Millipore, Billerica, MA), and
designated as 231-CM. We prepared different concentrations
from the 10X concentrated 231-CM by diluting the media 1 in
3, 1 in 4 and 1 in 6 with RPMI-1640 complete medium containing
5% FBS.

Cell Proliferation Assay
Proliferation of control and 231-CM-treated U937 cells

was quantified using a colorimetric MTT assay as previously
described [27] and cell growth curve [28]. For MTT assay, 5.0
x 103 cells in 100 µl of RPMI-1640 media were seeded per well in
96 well plates. At 3, 5 and 7 da, 10 µl of 5 mg/ml MTT was added
to each well and incubated for 4 h at 37°C. Then 100 µl of 20%
sodium dodecyl sulfate (SDS) was added to each well and
absorbance was measured at 570 nm using a Tecan Spectrafluor
Plus plate reader (Tecan, Durham, NC). For cell growth curves,
U937 cells were seeded in triplicate at a density of 50,000 cells/
well in 96-well plates in the absence (control) and presence

Mohamed/Cavallo-Medved/Rudy/Anbalagan/Moin/SloaneCell Physiol Biochem 2010;25:315-324
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(treated) of different dilutions of 231-CM. After 0, 3, 5 and 7 da,
samples were collected the adherent cells were trypsinized and
combined with media containing suspended cells. Collected
cells were centrifuged for 5 min at 1000g and counted with a
hemacytometer using Trypan blue to distinguish dead from
viable cells and growth curves were drawn.

Treatment of U937 Human Monocytes with 231-CM
U937 cells were seeded at 2.5 x 105 cells/ml in RPMI-1640

complete medium containing 5% FBS in the absence (control)
or presence of various dilutions of 231-CM (see above). At 3,
5 and 7 da, both non-adherent and adherent cells were
collected, washed twice with PBS and reseeded in serum-free
media overnight. Overnight conditioned media were then
collected and centrifuged at 4°C at 700 g for 5 min to obtain
non-adherent cells. The supernatant was re-centrifuged at 2000
g for 10 min and then concentrated using Amicon Ultracell 10K
filters (Millipore, Billerica, MA). The non-adherent U937 cells
were washed twice in cold PBS and solubilized in 150 µl lysis
buffer [250 mM sucrose, 25 mM 2-(N-morpholino)
ethanesulfonic acid, pH 7.5, 1 mM ethylenediaminetetraacetic
acid, 0.1% Triton X-100]. The adherent U937 cells were
harvested on ice into 200 µl lysis buffer by scraping with a
rubber policeman and added to cell lysates of corresponding
non-adherent U937 cells. Lysates were sonicated on ice five
times at 5 sec intervals using a 50 W Ultrasonicator. Protein
concentrations were determined using a micro-bicinchoninic
acid protein assay kit (Pierce Biotechnology, Rockford, IL)
according to the manufacturer’s instructions, and DNA
concentrations quantified as previously described [29].

CTSB Activity Assay
Activity of CTSB (active and latent) in U937 cell lysates

and conditioned media was assessed as previously described
[30] using a fluorometric CTSB-selective substrate Z-Arg-Arg-
NHMec (Bachem, Torrence, CA). Latent CTSB in the U937
conditioned media was activated with pepsin as previously
described [31]. CTSB activity was expressed as picomoles of
NHMec formed per min per µg DNA.

SDS-Polyacrylamide Gel Electrophoresis (PAGE) and
Immunoblotting
Samples were equally loaded (20 µg protein/well),

separated by 12% SDS-PAGE under reducing conditions and
transferred onto nitrocellulose membranes. Membranes were
probed with a polyclonal anti-human CTSB antibody (1:4,000)
and a secondary antibody conjugated with horseradish
peroxidase (1:10,000) in Tris-buffered saline wash buffer (20
mM Tris, pH 7.5, 0.5 M NaCl) containing 0.5% Tween 20 and
5% (w/v) non-fat dry milk. After washing, bound antibodies
were detected by enhanced chemiluminescence according to
the manufacturer’s guidelines.

Gelatin Zymography
MMP-2 and MMP-9 enzymatic activities in U937 media

samples were determined by SDS-PAGE gelatin zymography
[32]. Briefly, samples were denatured without reducing or

heating and electrophoresed in 10% SDS-PAGE containing
1% gelatin (w/v) at 4°C for 1 h. Gels were subsequently
incubated twice for 15 min in renaturation buffer containing
2.5% Triton X-100 at room temperature, washed twice with
water and incubated overnight at 37°C in developing buffer [5
mM CaCl2, 0.05% Brij 35, and 50 mM Tris (pH 7.8)]. Thereafter,
gels were stained with 0.5% Coomassie brilliant blue R-250 in
50% methanol and 10% acetic acid for 1 h and then de-stained
in a 50% methanol and 10% acetic acid solution. Clear bands
represent areas of proteolytic activity. Human recombinant
MMP-2 and MMP-9 were loaded separately as positive
controls.

Enzyme Linked Immunosorbent Assay
Total MMP-2 (i.e., latent and active) in U937 media was

quantified using a Quantikine MMP-2 Immunoassay kit
according to the manufacturer’s instructions. Active MMP-9
in U937 media was quantified using a Fluorokine E immunoassay
kit according to the manufacturer’s instructions.

Cytokine Antibody Arrays
Cytokines secreted by U937 cells were detected in U937

media samples, respectively, using a ChemiArrayTM Human
Cytokine Antibody Array V kit according to the manufacturer’s
instructions.

IL-6 Neutralizing Antibody (IL-6-NAb) Treatment
U937 cells were grown in RPMI complete medium

containing 5% FBS in the absence (control) and the presence
of 231-CM diluted 1 in 3 with RPMI complete medium containing
5% FBS. After 3 da, cells were washed twice with PBS,
resuspended in serum-free media with and without 2 µg/ml IL-
6-NAb. Following an overnight incubation, cells and media
were collected and prepared for SDS-PAGE and CTSB activity
assays as described above.

Statistical Analysis
Data are expressed as mean ± standard deviation (S.D.).

Statistical significance was determined using Student’s t test
with p ≤ 0.05 considered significant.

Results

231-CM increased proliferation of U937 cells
To investigate whether soluble factors secreted by

breast carcinoma cells affect proliferation of human
monocytes, we grew U937 cells in the presence or
absence of media conditioned by MDA-MB-231 cells
(231-CM; diluted 1:6, 1:4 and 1:3 in complete medium)
for 3, 5 or 7 da. We observed an increase in the
proliferation of U937 cells in the presence of different
dilutions of 231-CM at 3, 5 and 7 da using MTT assay
(Fig. 1A) and growth curves (Fig. 1B).

Cathepsin B in Breast Tumor-associated Monocytes Cell Physiol Biochem 2010;25:315-324
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231-CM increased CTSB expression, activity and
secretion by U937 cells
To determine whether soluble factors secreted by

breast carcinoma cells affect CTSB in monocytes, we
grew U937 cells in the presence or absence of 231-CM
(diluted 1:6, 1:4 and 1:3 in complete medium) for 3, 5 or 7
da followed by 24 h in serum-free RPMI medium and
determined the levels of expression, activity and secretion
of CTSB. At 5 da, incubation with 231-CM resulted in
increased levels of mature single chain CTSB in U937
cell lysates and of proCTSB in U937 media (data not
shown). Using a fluorometric activity assay, we
demonstrated significant dose-dependent increases in
CTSB activity in U937 cell lysates at 5 da with further
increases at 7 da (Fig. 2A). We also evaluated changes
in secretion of proCTSB by assaying pepsin-activatable
CTSB activity, i.e., latent proCTSB, in the U937 media.

Significant increases in secretion of proCTSB were
induced by incubation with 231-CM at all times analyzed,
yet were independent of the concentration of 231-CM
(Fig. 2B). Our results indicate that soluble factors
secreted from MDA-MB-231 carcinoma cells can
modulate levels of CTSB in U937 cells.

231-CM increased secretion of MMP-2 and -9
by U937 cells
To determine whether soluble factors secreted by

breast carcinoma cells affect the gelatinases MMP-2 and
MMP-9 in monocytes, we used gelatin zymography and
immunoassays. We detected a time-dependent increase
in secretion of proMMP-2 and proMMP-9 from U937
cells grown in the presence of 231-CM (Fig. 3A). Only
latent MMP-9 could be detected by zymography, whereas
both latent and active forms of MMP-2 were detected.

Fig. 1. Proliferation of U937 cells was increased by growth in
231-CM. U937 cells were grown in the absence (control) or
presence of different concentrations of 231-CM for 3, 5 and 7
da. Proliferation was assessed both by MTT (A) and growth
curve (B) assays. Bars represent absorbance (at 570 nm), which
is proportional to cell proliferation (A) and growth curve
represents number of living cells (B). Data represent mean ±
S.D. of three independent experiments; *, p ≤ 0.05 (as compared
to the control at each time interval).

Fig. 2. CTSB activity in U937 cells was increased by growth in
231-CM. U937 cells were grown in the absence (control) or
presence of different concentrations of 231-CM for 3, 5 and 7
da (treated). CTSB activity in cell lysates (A) and in media (B)
was measured against Z-Arg-Arg-NHMec and is expressed as
pmol/min/µg DNA. Activity in the media was measured after
pepsin activation of proCTSB as described in Materials and
Methods. Data represent mean ± S.D. of at least three
independent experiments; *, p ≤ 0.05 (as compared to the control
at each time interval).

Mohamed/Cavallo-Medved/Rudy/Anbalagan/Moin/Sloane
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A

B

C

Fig. 3. Gelatinase activity and expression by U937 cells was
increased in a time- and dose-dependent manner by growth in
231-CM. (A) Representative zymogram from three independent
experiments depicting gelatinolytic activity of proMMP-2 (72
kDa), MMP-2 (62 kDa) and proMMP-9 (92 kDa) in U937 cells.
Samples were loaded equally according to protein content and
separated on 10% SDS-PAGE containing 1% gelatin (w/v).
White bands indicate regions in which gelatin has been
hydrolyzed with lanes 5 and 6 being control lanes for
gelatinolytic activity of recombinant proMMP-9 and -2,
respectively. Lane 1 represents overnight serum-free
conditioned media of untreated U937 cells (control); lanes 2, 3
and 4 represent serum-free media of U937 cells grown with
different concentrations of 231-CM (1 in 6, 1 in 4 and 1 in 3,
respectively) for 3, 5 and 7 da. (B and C) Dose-dependent
increase in secretion of total (active and inactive) MMP-2 (ng/
ml) and active MMP-9 (ng/ml), respectively, from U937 cells
after 7 da of growth with 231-CM as compared to the control
U937 grown in complete RPMI media. Data represent results of
at least 3 independent experiments and are presented as mean
± S.D.; *, p ≤ 0.05 and **, p ≤ 0.001.

Fig. 4. Increased secretion of IL-6 and IGFBP-1 from U937
cells grown in 231-CM. (A) Representative cytokine antibody
array of media conditioned by untreated U937 cells (control).
(B) Representative cytokine antibody array of media
conditioned by U937 cells grown in 231-CM (1 in 4 dilution) for
7 da prior to incubating overnight in serum-free medium.
Increases in IGFBP-1 (lane 6 spot 10); osteoprotegrin (lane 8
spot 2) and NAP-2 (lane 7 spot 10); and a decrease in RANTES
(lane 4 spot 2) and I-309, (lane 2 spot 1) were observed .

In addition, we analyzed secretions from U937 cells with
immunosorbent assays for total (active and inactive)
MMP-2 or active MMP-9. We detected a significant dose-
dependent increase in the secretion of total MMP-2 (Fig.
3B) and active MMP-9 (Fig. 3C) from U937 cells that
had been incubated with 231-CM. Our results indicate
that soluble factors secreted from MDA-MB-231
carcinoma cells can modulate secretion of MMP-2 and -
9 from U937 cells. However, using a gelatin zymography
assay, we did not detect MMP-2 and -9 in 231-CM, which
indicates that MDA-MB-231 does not secrete MMP2
and 9 (data not shown).

231-CM altered the cytokine profile of U937 cells
To determine whether 231-CM induces secretion

of cytokines from U937 cells, we analyzed the cytokine

A

B

Cathepsin B in Breast Tumor-associated Monocytes Cell Physiol Biochem 2010;25:315-324
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profile of control U937 cells (Fig. 4A) and U937 cells
grown with 231-CM for a 7 da period (Fig. 4B) and then
incubated overnight in serum-free medium. Cytokine
antibody arrays revealed that U937 cells grown with 231-
CM exhibited increased secretion of IL-6 and IGFBP-1,
which was not detected in control U937 cells. While
secretion of other cytokines such as RANTES and I-309
was down-regulated, on the other hand osteoprotegrin
and NAP-2 were up-regulated in U937 cells grown with
231-CM.

Neutralizing antibodies to IL-6 reduced 231-CM
induced increases in CTSB expression, activity
and secretion by U937 cells
Since IL-6 was the predominant cytokine expressed

in U937 cells grown with 231-CM, we directly assessed
the effects of this cytokine on CTSB expression by U937
cells. U937 cells were incubated with 231-CM in the
presence and absence of an IL-6 NAb for 5 da and then
incubated overnight in serum-free medium.
Immunoblotting analysis revealed an increase in
expression of the single chain active form of CTSB (31
kDa) in U937 cell lysates and in secretion of proCTSB
(43/46 kDa) from U937 cells incubated with 231-CM
(Fig. 5A). Addition of IL-6 NAb reduced the levels of
CTSB expression and secretion to levels comparable to
those found in control cells. The changes in protein levels
of CTSB correlated with increases in CTSB activity in
U937 cell lysates (Fig. 5B) and secretion of pepsin-
activatable proCTSB from U937 cells (Fig. 5C). In
contrast, IL-6 NAb did not affect secretion of either MMP-
2 or -9, nor did a neutralizing antibody to IGFBP-1 have
an effect on CTSB expression, activity and secretion or
MMP-2 and -9 secretion (data not shown). Thus, our
data are consistent with IL-6 being one soluble factor
secreted from MDA-MB-231 breast carcinoma cells that
can modulate levels of CTSB in U937 cells.

Discussion

Increased infiltration of TAMs into breast
carcinomas correlates with poor prognosis [33]; however,
the mechanisms for this effect remain unclear. Genes
that function to suppress immune activation, promote
extracellular matrix (ECM) remodeling and tumor
angiogenesis are upregulated in TAMs [5]. In the present
study, since the cysteine protease CTSB and the
gelatinases MMP-2 and -9 participate in ECM remodeling
and angiogenesis (for review, [16, 34-36]) we examined

Fig. 5. IL-6-NAb reduced 231-CM induced increases in CTSB
expression, secretion and activity by U937 cells. U937 cells
were grown for 5 da in the absence (control) or presence of
231-CM or 231-CM plus 4 µg/ml IL-6 NAb. Cells were washed
and incubated in serum-free medium overnight prior to
collecting cell lysates and media. (A) Representative
immunoblot of cell lysates and overnight serum-free conditioned
media for CTSB. CTSB activity in cell lysates (B) and in media
(C) was measured against Z-Arg-Arg-NHMec and is expressed
as pmol/min/µg DNA. Specific activity of CTSB is shown as a
percentage of that measured in U937 cells treated with 231-
CM. Activity in the media was measured after pepsin activation
of proCTSB as described in Materials and Methods. Data
represent mean ± S.D. of at least three independent experiments;
*, p ≤ 0.05; ** p ≤ 0.01.
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whether breast carcinoma cells are able to modulate their
expression and secretion in monocytes. We determined
that 231-CM increased expression, secretion and activity
of CTSB and secretion of MMP-2 and -9 in U937 human
monocytic cells. These results are consistent with cross-
talk between carcinoma cells and macrophages within
the tumor microenvironment being able to modulate CTSB
expression through activation of monocytes. We have
previously shown that phorbol ester activation of human
monocytes increases CTSB expression [37] and activity
[21]. The induction of CTSB is not species-specific as
TAMS in the mouse mammary tumor-polyoma middle T
antigen (MMTV-PyMT) transgenic mouse model for
mammary carcinoma express higher levels of CTSB than
do macrophages distant from the tumor [38].
Furthermore, TAM CTSB has been causally linked to
metastasis: lung metastasis is reduced in MMTV-PyMT
mice crossed with CTSB-deficient mice [17]. We
therefore speculate that increased CTSB expression in
TAMs is a component of the tumor microenvironment of
metastasis recently identified as a prognostic marker for
prediction of hematogenous dissemination and distant
metastasis [39].

One potential role for CTSB is to initiate proteolytic
cascades on the surface of tumor cells that result in the
activation of downstream proteases such as proMMP-2
and -9 (for review, see [18, 40]). We observed increases
in secretion of MMP-2 and -9 from U937 cells that had
been incubated with 231-CM. Similar results have been
reported for other populations of macrophages, e.g.,
macrophages differentiated from human peripheral blood
monocytes [14] and the human THP-1 monocytic cell
line [41] and linked to increased invasiveness of a variety
of breast carcinoma cell lines. Thus, as with CTSB,
increases in TAM expression of MMP-2 and -9 are
induced by interactions between carcinoma cells and
macrophages within the tumor microenvironment.
Intriguingly, Hiratsuka et al. [42] report similar findings
for both TAMs and endothelial cells within lung
metastases. MMP-9 expression in TAMs is elevated and
those TAMs, via a mechanism modulated by vascular
endothelial growth factor receptor-1, increase MMP-9
expression in the endothelial cells [42]. Although the latter
study did not include breast tumors, it provides further
evidence that protease expression in TAMs can be induced
by cross-talk among cells. A recent report by deNardo et
al. [43] indicates that the cross-talk among cells in the
tumor microenvironment in the MMTV-PyMT model is
more extensive than previously appreciated, involving
CD4+ T lymphocytes, macrophages, immature myeloid

cells and carcinoma cells. Intriguingly, a subset of CD4+

T lymphocytes that express IL-17, as a result of activation
by IL-6 and TGFβ, has been linked to chronic
inflammation and thereby tumorigenesis (for a review on
the properties and putative functions of this new cell
lineage, see [44]). IL-17 [45] and other cytokines such
as tumor necrosis factor-alpha [14], produced by breast
carcinoma-associated macrophages, have been shown
to increase expression of MMP-2 and -9 in the TAMs.
Therefore, we profiled the cytokines, chemokines and
growth factors secreted by U937 human monocytes that
had been incubated with 231-CM.

The predominant identified cytokine secreted by
U937 cells grown in 231-CM was IL-6, a pro-
inflammatory cytokine that is expressed by classically
activated macrophages or M1 macrophages [11] and a
subset of alternatively activated macrophages or M2a
macrophages [8]. Moreover, we identified IL-6 as an
inducer of CTSB expression in U937 cells incubated with
231-CM. IL-6 increases proliferation and survival of
breast tumor cell lines and its expression at high levels in
breast tumors and patient sera is a negative prognostic
marker (for review, see [46]). IL-6 has previously been
found to increase expression of the proteases found to
be elevated in the present study: MMP-2 and -9 in non-
Hodgkin’s lymphomas [47], MMP-9 in squamous cell
carcinoma [48] and CTSB in myotubes [49]. The induction
of protease expression by IL-6 is consistent with the
recent report that IL-6 induces an epithelial-mesenchymal
transition in breast carcinoma cells [50].

Secretion of others factors was also modulated by
231-CM treatments, e.g., increases in IGFBP-1,
osteoprotegrin and NAP-2 and a decrease in RANTES
and I-309. IL-6 has been shown to stimulate production
of IGFBP-1 in the human hepatocellular liver carcinoma
cell line HepG2 [51] and of IGFBP-1, -3, -4 in co-cultures
of rat hepatocytes and Kupffer cells [52]. IGFBP-1 is a
neutralizing protein to IGF-1, a growth factor known to
stimulate cell growth, proliferation and migration ([53]).
Binding of IGFBP-1 to IGF-1 reduces cellular anabolism
and found to be associated with inflammatory disorders
([54]). Moreover, IGFBP-1 was shown to stimulate
cellular migration by binding to α5β1 integrin [55, 56].

Osteoprotegrin and NAP-2 are cytokines associated
with anti-apoptotic and cell survival mechanisms. For
instance, osteoprotegrin inhibits pro-apoptotic mechanisms
stimulated by RANKL and TRAIL by binding to both
proteins (for review [57]). NAP-2, a chemotactic agent
for neutrophils, was found to protect cells of hematopoietic
progenitor cells against cytotoxicity of chemotherapeutic
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drugs [58]. On the other hand, RANTES and I-309 are
chemokines responsible for leukocyte recruitment in the
tumor microenvironment [59, 60]. Down regulation of
these chemokines may reflect the immunosuppressive
properties of U937 cells grown in  231-CM. The studies
here were performed with only one breast cancer and
one monocyte cell line and thus need to be confirmed in
additional breast cancer and monocyte cell lines.
Furthermore, our ongoing studies using patient samples
will elucidate the role contribution of IL-6 and sIL-6R in
the metastatic phenotypes breast cancer.

TAM-derived IL-6 and downstream pathways that
are modulated by IL-6 may be targets for therapeutic
intervention in breast carcinomas. Indeed, the anti-tumor
agent, Yondelis or trabectedin, which is active against
human breast adenocarcinomas, inhibits the production
of IL-6 by both TAMs and tumor cells at sub-cytotoxic
concentrations [61]. IL-6 is a growth and survival factor
for tumors and has been reported to interact with the
immunosuppressive cytokine IL-10 to enhance
suppression of anti-tumor immune responses [8].
Here we have demonstrated that soluble factors secreted
by human MDA-MB-231 breast carcinoma cells exert a
paracrine effect on human U937 monocytes resulting
in increased secretion of IL-6 and thereby increased
expression, secretion and activity of CTSB. The
high levels of expression of CTSB in TAMs [5] and
the link between CTSB in TAMs and metastasis
[17] suggest that a downstream consequence of
targeting IL-6 may be to affect metastases as well
as primary tumors.
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