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A replenishment control system with uncertain 
returns and random opportunities for disposal 

Ben A. Chaouch 
Odette School of Business, 
University of Windsor, 
Ontario N9B 3P4 Canada 
Fax.: (519)-973-7073 
E-mail: chaouch@uwindsor.ca 

Abstract: We consider a replenishment control system in which product 
returns play an important role in inventory planning. We focus on the inventory 
of an individual item that is stored at a single location to meet a constant 
demand over time. We assume that the total amount of returns accumulated 
over a period of time can be represented by a compound Poisson process. We 
further assume that opportunities for inventory disposals or relocation arise 
occasionally in accordance with a Poisson process. We not only seek to resolve 
the issues of when to order and how much to order, we also consider the 
question of when to dispose of excess inventory and by how much. Inventory 
reductions occur when the opportunity for a disposal arises and the inventory 
position is deemed too high. After each disposal the inventory position is 
restored to a specified base-stock level. We develop a cost model of this system 
and highlight its properties through an extensive numerical study. 

Keywords: inventory management; product returns; disposals; stochastic 
models; level-crossing theory. 
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1 Introduction 

Customers return products to vendors for many different reasons. One common reason is 
when a customer returns non-conforming batches because the product’s quality or 
performance is not to her satisfaction. Stock et al. (2002) cite the following reasons for 
the expanding volume of product returns observed in North America: the growing 
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popularity of electronic retailing, the convenience of catalogue purchasing, longer 
warranty periods, and the low tolerance of customers for imperfect products. 

In the manufacturing sector, new environmental laws and take-back regulations have 
forced manufacturers to give due consideration to the management of return flows of 
products that may require remanufacturing, refurbishing, recycling, reuse or disposal (see 
Fleischmann et al., 1997; Blackburn et al., 2004). Current industry practice is to have all 
returns shipped to a central facility where they are evaluated and reused accordingly. 

The management of product returns has also become a top priority in retailing with 
the proliferation of easy and flexible returns policies at many levels in the supply chain. 
In order to please customers and make the return process a competitive advantage, free 
return policies are now a standard feature offered by many online retailers such as 
Zappos.com, the web’s popular shoe store (http://www.zappos.com). Zappos makes the 
process of returning unwanted shoes easy and convenient. Customers are given the 
opportunity to easily download a pre-paid return shipping label if they do not like the 
shoe and want to ship it back. While customers appreciate the convenience of free 
returns, one estimate pegs the shipping costs Zappos incurs for this service at around 
$100 million. 

Vendors also use generous returns policies as a way to encourage customers to stock 
and price products aggressively in order to increase sales. Such is the case for many  
high-volume and high-value products in the heavy equipment, appliance, and computer 
industries, where inventory return requests are accepted at no cost to the customer (Lonn 
and Stuart, 2003). Lonn and Stuart relate Caterpillar’s experience with returns and 
mention that “of the 36.4 million line items that are shipped annually from the company’s 
global distribution center, hundreds of thousands of unsold and unused items are 
eventually requested for returns by dealers”. Caterpillar needed a formula that can help 
with the decision of whether to accept or deny a return. 

These examples point to some important issues of inventory management for vendors 
that must deal with large quantities of returned products. Fleischmann et al. (1997) and 
Blackburn et al. (2004) discuss these issues at length in the context of reverse supply 
chains for commercial products. One important question of inventory management raised 
in these papers is: How should the vendor choose appropriate inventory policies when the 
flow of returns in quantity, quality, and timing cannot be predicted precisely in advance? 
In most cases, product returns exacerbate the inventory control problem. The reason is 
that, while inventory is being depleted by demand, the inventory position between regular 
replenishments may increase to unwanted levels because of frequent large returns. Once 
this inventory gets too large, the vendor may find it necessary or economical to offload 
the excess through disposal or other means in order to keep the inventory holding  
costs down. 

Many researchers have addressed this general problem in different ways and have 
proposed different quantitative models that can be used to determine optimal 
replenishment and disposal policies. In Section 2, we discuss the extensive literature that 
has addressed the problem of product returns and their impact on inventory management. 
In Section 3 we give a detailed statement of the inventory system with stochastic returns 
and disposals we study in this paper. Along the way, we relate our work to this literature 
and show how our approach differs from those taken in previous studies. Section 4 
presents a detailed analysis of the model, and Section 5 gives our conclusions. 
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2 Literature review 

The literature on inventory models that incorporates product returns and disposals has a 
long history going back to the 1960s. This literature includes both deterministic and 
stochastic models. For representative deterministic models, see Schrady (1967), Richter 
(1996), Teunter (2001), and Teunter and Van der Laan (2002) for EOQ-like models and 
Beltrán and Krass (2002) for a multi-period dynamic model. 

The literature on stochastic models can be divided into two important streams. One 
stream of models assumes that an item when returned is not quite ready for use and may 
require repair or remanufacturing before it can be added to the inventory available for 
sale or the so-called serviceable inventory. So each returned item is considered to be in a 
state of repair and a decision will follow as to whether it should be repaired or 
remanufactured and then added to serviceable inventory or discarded for good. These 
models make a clear distinction between serviceable inventory and repairable inventory 
and the two stockpiles are kept separate. The literature refers to this dichotomy as the 
two-echelon classification (Fleischmann et al., 1997). The general problem is to manage 
the two inventories concurrently. The goal is to determine the optimal quantities of new 
items to purchase and the amount to repair or to remainder of the repairable inventory, 
given a random demand for the product and random returns. 

This stream of models can further be divided according to the approach used to 
formulate the problem. Simpson (1978), Inderfurth (1997), Mahadevan et al. (2003), and 
Karaer and Lee (2007) all use a periodic review approach. In Simpson’s model, the 
inventory manager, who wants to satisfy a random demand for serviceables in an  
n-period problem with random returns, must decide how many new items to purchase and 
how many units to repair and/or junk of the repairable stockpile in each period given the 
current quantities of serviceables and repairables. Under the assumption of zero lead 
times for procurement and repair, he proves the optimality of a policy that is specified by 
three critical levels: a repair-up-to-level, a purchase-up-to-level, and a scrap-down-to-
level. Inderfurth (1997) shows that this form of policy remains optimal when fixed 
replenishment and repair lead times are added to Simpson’s model. 

Mahadevan et al. (2003) use a periodic review policy in a continuous-time setting. At 
each review period the manufacturing facility makes an order to raise the inventory 
position of serviceables to some fixed replenishment level S. The order is a two-step 
process. First the returned, but not yet reworked, items (or carcasses) are released for 
remanufacture to raise the inventory position to S. If the present inventory of carcasses is 
not enough for the inventory position to reach S, the shortfall is made up by placing an 
order for brand new items, which takes longer to manufacture. Demands and returns 
occur according to two independent Poisson processes with different intensities. Karaer 
and Lee (2007) quantify the benefit of obtaining visibility and advance information on 
return flows (i.e., returns currently being evaluated, reworked, and in-transit to DC 
stockpile) when setting optimal base-stock inventory policies. 

Of the models that use a continuous review approach, Muckstadt and Isaac (1981) is 
one of the primary early works to use a reorder-point order-quantity model formulation of 
the problem. The location has a facility to repair or refurbish returned items and a 
different facility to store serviceable inventory. A returned item joins a queue at the repair 
facility and waits its turn to be repaired. Once an item is repaired it is quickly added to 
the inventory waiting for sale. The processes generating demands and returns are 
assumed to be Poisson with different means. The authors approximate the stationary 
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distribution for net inventory and use it to develop a cost rate function. Van der Laan  
et al. (1996a, 1996b) extend Muckstadt and Isaac’s framework to include inventory 
disposals when the total number of returns reaches a critical level at the repair facility. 
They propose different approximation schemes, which are used to derive the average cost 
per time. 

Van der Laan et al. (1999) also use a continuous-review model approach. In this 
model, serviceable inventory is also supplied from two sources, remanufactured returns 
and newly manufactured products. Both returned and new products take a fixed lead time 
to manufacture. The authors analyse the impact of PUSH and PULL control strategies on 
costs for some given replenishment policies. 

The other important stream of models focuses primarily on serviceable inventory and 
its up-and-down fluctuations over time. Demands cause inventory to decrease, while 
product returns (already repaired or restocked as-is) or new order receipts cause it to 
increase. Repair or remanufacturing activities and the delays they engender are not 
considered explicitly as in the first category of models. In this group of models we also 
find periodic-review vs. continuous-review formulations. Cohen et al. (1980) consider the 
situation in which a constant fraction of the inventory sold in each period will be returned 
in good condition to the original stockpile after a fixed number of periods. The model 
allows for a fixed fraction of on-hand inventory to be lost to decay each period. The 
authors show that a myopic base-stock policy is optimal when the stock issued to satisfy 
demand is returned after one period. 

Products are often sold in returnable containers (e.g., pallets). Kelle and Silver (1989) 
consider the inventory of containers that are sent outside the firm to satisfy customers’ 
needs. A container may take a random length of time before it can be retrieved and 
reused again. There is also a probability for a container to go missing and never make it 
back. So orders for new containers are also required. A purchasing policy of these 
containers is determined in a discrete-time model so as to minimise total expected costs 
under a prescribed service level. 

Fleischmann and Kuik (2003) consider a standard single-item dynamic inventory 
model with i.i.d. ‘demands’. Here the demand in each period can be positive or negative 
and is understood as the difference between the amount sold and the amount returned. A 
negative demand results in an inventory increase. When an (s, S) ordering policy is used 
and inventory disposals are not considered, the authors show that the model can be 
transformed into a regular stochastic dynamic inventory model with no returns. 

The majority of papers described thus far assume that the process generating returns 
is independent of the demand process. This is often true when the item in question is sold 
in large quantities to a large base of customers and returns policies are sufficiently 
flexible. However, for rented or leased products where a service contract of fixed length 
is generally in place, the dependence between demands and returns is somewhat strong. 
Kiesmuller and Van der Laan (2001) study an inventory model in a finite planning 
horizon that allows for the return process to depend explicitly on the demand stream. 
Each sold item, if returned, is retrieved after a fixed length of time. The decision of 
whether to remanufacture or scrap a returned item is done at retrieval time. 

Heyman (1977), Fleischmann et al. (2002), and Yuan and Cheung (1998) use a 
continuous-review approach. These authors also restrict attention to serviceable inventory 
and its random behaviour over time. Heyman (1977) examines a single-item inventory 
system in which the stock level goes up and down as items are returned and demands are 
satisfied, respectively. The inventory level is allowed to fluctuate between two given 
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limits. When inventory reaches the lower limit, the arriving demands are satisfied on an 
emergency basis at no extra cost (i.e., backordering or lost sales are not allowed). When 
inventory reaches the upper limit, a returning item is automatically disposed of. The 
objective is to find the inventory upper-limit at which disposals are to take place. 

Fleischmann et al. (2002) analyse an inventory model with stochastic item returns. 
Replenishment orders are performed according to an (s, Q) policy based on the inventory 
position. They develop an expression for the long-run average costs when the returns and 
demands form independent Poisson processes. Yuan and Cheung (1998) address the 
situation of leased items that customers use for a random length of time and may or may 
not return for reasons outside the control of the firm. In other words, the return stream is 
entirely dependent on the demand stream, which is assumed to be Poisson. There is a 
fixed probability that the leased item will not be returned. Replenishment decisions are 
made according to an (s, S) policy. 

Recently there has also been research that extends the two-echelon structure 
mentioned above to more general structures. For example, DeCroix and Zipkin (2005), 
DeCroix et al. (2005), and DeCroix (2006) study multi-stage inventory systems that 
consider the impact of product returns on echelon inventories. In these systems, returned 
components or subassemblies are forwarded to their appropriate stage simultaneously. 

One of the assumptions inherent in most of the models described above relates to the 
way in which the return process is often represented. Returns are often assumed to arrive 
one at a time in a random fashion. The model we are about to present considers the next 
natural form of this process. That is, returns arrive in batches of varying sizes at random 
times; an important situation often faced by both manufacturers and retailers. 
Furthermore, our model includes the possibility of disposing or reallocating excess 
inventory when such a need arises in a manner that has not been considered before. 

3 Model description 

We focus on the inventory of an individual item that is stored at a single location, e.g., a 
distribution centre (DC). The inventory of this item is continuously monitored as it is 
depleted by demand. It is replenished by placing orders whenever the inventory position 
reaches a reorder point. We assume that the demand for this item is deterministic and 
occurs at a known constant rate of D units per unit time. Fisher (1997) characterises 
products as functional, products that have low-demand uncertainty and long-life cycle or 
innovative, products that have high-demand uncertainty and short-life cycle. Our model 
applies to the first category of products or those products that are in the mature stage of 
the life cycle. The inclusion of a random demand would certainly lead to a richer model; 
unfortunately, analysis of the model taken as a whole quickly becomes unwieldy. We 
believe that insight will not be diminished by our restriction to a uniform demand rate. It 
is well-established in the literature that general EOQ models are fairly robust; even large 
deviations in parameter values produce only small cost errors (Silver et al., 1998). The 
present model inherits this property as well. 

On occasions, however, the inventory of this item may experience upward jumps  
in-between normal replenishments because a quantity of this item has been returned and 
re-integrated into the stockpile. We assume that returns occur at random points in time 
and the quantity returned is a random variable. This is often the situation witnessed in 
practice as many returns arrive at the DC from varying sources and in varying quantities 
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and, thus, their arrival times and sizes are not known in advance. In what follows, we 
assume that the return process can be represented by a compound Poisson process 
denoted by R(t). R(t) represents the total number of units returned to serviceable 

inventory by time t. That is, R(t) is given by 
( )

1

( ) ,
N t

i
i

R t R
=

= ∑  where {N(t), t ≥ 0}is a 

Poisson process with rate λ, and Ri is the amount returned at the epoch of the ith event of 
N. {Ri, i = 1, 2, …} is a sequence of i.i.d. random variables with a common mean E[R] 
and variance Var[R]. N(t) and {Ri} are assumed to be independent. Moreover, we make 
the assumption that λE[R] < D, i.e., the average number of units returned per unit time is 
less than the demand rate. Otherwise, the product is liable to be discontinued. 

Our model can be viewed to belong to the second category of models described above 
that concentrates mainly on serviceable inventory and its day-to-day increases and 
decreases. The majority of models that use a continuous review procurement policy 
assume that the return process is a simple Poisson process, a reasonable approximation 
for some products. But, for many other products, returns can be larger than unit-size. Our 
model is intended to fill this gap. We will be able to assess the main effects of batched 
returns on the optimal replenishment and disposal policy. We note that the return process 
need not be independent of the demand rate D. Our results will remain unaffected if, for 
instance, the frequency or magnitude of returns were to depend explicitly on D. 

We further assume that the item in question is managed according to the following 
inventory policy. Whenever the inventory position drops to the order point s or lower, we 
order up to the target level s + q. That is, an order for q units is placed. Orders take a 
fixed lead time L to arrive. Moreover, due to the uncertain returns that are eventually 
restocked for sale, the inventory position may rise to unacceptable levels. When this 
happens and the inventory position is greater than s + q + Q, an inventory reduction is 
considered in order to re-establish current levels back to some prescribed level s + q + M 
for 0 ≤ M ≤ Q through disposal or reallocation of the excess. Thus, an action to bring the 
inventory position down to s + q + M is taken only when a surplus inventory of Q units 
has built up over and above the target level s + q. 

Our use of the word disposal here does not necessarily mean that the DC will turn to 
the first available liquidator or discount chain to quickly get rid of its excess inventory. 
Rather, we mean that the DC is on the lookout for the best opportunity that may come 
along to make good on its extra inventory. For example, disposal could mean finding a 
secondary market for the surplus inventory or redistributing the excess from one location 
to another location with demand for it. In general, opportunities of this kind arise in an 
unpredictable fashion and, thus, will exhibit some variability. Let us say that the product 
is carried in inventory at multiple locations and one or more of these locations find 
themselves in a backorder or low-inventory position. If the current location happens to be 
overstocked at those opportune times, the excess can be deployed quickly to the needy 
locations. Similarly, the price of the product in the secondary (e.g., a spot) market has 
turned favourable again and it makes sense for the location to take advantage of this 
opportunity to dispose of its excess and so on. Obviously, events of this type cannot be 
foretold and, thus, can be considered to happen at random times. For ease of presentation 
and tractability reasons, we assume that the times at which such opportunities materialise 
occur according to a Poisson process with rate θ, which is independent of N(t). 

Almost all models that consider disposals in the context we describe assume that 
disposition of returns occurs at the receiving stage of the process (Van der Laan et al., 
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1996a, 1996b; Kiesmuller and Van der Laan, 2001; Karaer and Lee, 2007; Blackburn  
et al., 2004). That is, the condition of product returns is assessed as early as possible and 
a disposition decision is carried out soon enough if the return is found to have no 
recoverable value. Van der Laan et al. (1996b) include a disposal option at the repair 
stage, where incoming returns are automatically discarded once the repairable inventory 
has reached a given limit. However, disposals can and should also occur at the 
serviceable inventory level if too many and frequent returns leave in their wake too much 
inventory. Van der Laan et al. (1996b) remark that a policy, which bases disposals on the 
overall inventory position, is often economically more attractive. In the proposed model, 
unlike the studies just described, disposals depend on the current state of the inventory 
position for serviceables. Thus, in terms of the previous work, our model can be viewed 
as an extension of the models presented in Heyman (1977), Muckstadt and Isaac (1981), 
Fleischmann et al. (2002), van der Laan et al. (1996a) and (1996b). These papers, 
however, consider different demand or return processes or, in most cases, do not include 
a disposal option. 

We develop a cost model of this system and present a solution procedure for 
determining the optimal policy parameters. Our objective is to minimise the expected 
system cost per unit time, which is the summation of the procurement cost, holding cost, 
shortage cost and disposal cost. We assume that unsatisfied demand is not lost, but can be 
backordered. 

The ordering and disposal policy considered in this paper, specified by the four 
control parameters s, q, M, and Q, is not only intuitive and easy to implement; it may also 
represent the optimal policy for the problem at hand based on our computational 
experience. While it is not easy to establish its optimality in the general context of our 
model, a policy structure close to it has been proven to be optimal under a different set of 
model assumptions (see Simpson, 1978 and Inderfurth, 1997). Our goal is to evaluate all 
the relevant costs associated with the inventory process for any policy in this class. The 
next section presents our model analysis. 

4 Model analysis 

To present our solution methodology, we need to introduce the following random 
variables to describe the behaviour of the system over time. For each time t ≥ 0, let 

I(t) = inventory on hand 

B(t) = backorders outstanding 

IN(t) = net inventory = I(t) – B(t) 

IO(t) = inventory on order 

IP(t) = inventory position = IN(t) + IO(t) 

D(t, t + L) = demand during lead time L 

R(t, t + L) = total number of units returned to serviceable inventory during lead time L 
S(t, t + L) = total number of units disposed of (or withdrawn) from inventory during lead 

time L. 
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A typical sample path of the inventory process is shown in Figure 1. 

Figure 1 A typical sample path of the inventory process (see online version for colours) 

 

The general method of attack that is commonly used in the literature to derive the 
performance measures of this type of system is to follow a four-step approach as outlined 
in Zipkin (2000, p.187). These steps are: 

a determine the limiting distribution of IP(t) 

b describe the relationship between IN(t), IP(t), D(t, t + L), R(t, t + L), and S(t, t + L) 

c determine (or use a reasonable approximation for) the limiting distribution of IN(t) 

d derive formulas for the relevant cost measures. 

Our analysis begins with the derivation of the cost rate function under the assumption that 
the replenishment lead time L is small and can be neglected. In this case s can be reduced 
to 0 with the understanding that stockouts are not to occur. In a later section we consider 
the case where the lead time of a replenishment order is a positive constant L. 

4.1 Cost model with zero lead time 

In this case the inventory position, which is also the inventory on hand, will be denoted 
by IP0(t). Our first preoccupation is to derive the steady-state distribution of IP0(t). Once 
this is done it will be a relatively simple exercise to obtain the relevant cost  
expression in terms of the policy parameters q, M and Q. Toward this end, let 

( )0( ) lim ( )
t

F x P IP t x
→∞

= ≤  represent the stationary probability distribution function of the 
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inventory position. We assume that the parameters of the model are such that the limit 
exists and is well defined. Also let f(x) = dF(x) / dx, where the derivative exists, be the 
stationary density of the inventory level at x. We shall use a level-crossing approach to 
find a closed-form expression for f(x). Although the level-crossing technique (LCT) was 
originally developed to find waiting time distributions for certain queueing models, it has 
evolved into a versatile method for obtaining probability distributions in many other 
stochastic models (see, for example, Brill, 2008; Azoury and Brill, 1986, 1992; Brill and 
Chaouch, 1995; Chaouch, 2001, 2007). The method will allow us to determine detailed 
rate balance equations from which f(x) can be extracted. For theoretical underpinnings of 
the method, we refer the reader to Brill (2008) and Brill and Posner (1977, 1981). 

The basic principle behind LCT is that in order to derive f(x), we examine crossing 
rates of the IP0(t) process into and out of some well-chosen state intervals. That is, for 
each level x ∈ [0, + ∞), we establish a flow rate equation so that the long-run total  
down-crossing rate equals the long-run total up-crossing rate (for example, see Brill, 
2008). This flow balance analysis equating the total flow into a state to the total flow out 
of the state has its roots in Markov-chain studies. 

Let us divide the state space [0, + ∞) into four non-overlapping intervals: [0, q),  
[q, q + M), [q + M, q + Q), and [q + Q, + ∞). Also let f1(x), f2(x), f3(x) and f4(x) refer to 
f(x) in these four intervals, respectively. A direct application of LCT yields the following 
system of rate balance equations: 

1 1 1 1 2
0 0

( ) ( ) ( ) ( ) ( ) (0) ( ),

0

q x
Df x G q y f y dy G x y f y dy Df Df q

x q

λ λ+ − = − + +

≤ <
∫ ∫  (1) 

2 2 2

1
0

( ) ( ) ( ) ( ) ( ) ( )

                                                           ( ) ( ) ( )

                                                   

q M x

x q

q

Df x G q M y f y dy G x y G q M y f y dy

G x y G q M y f y dy

λ λ

λ

+
⎡ ⎤+ + − = − − + −⎣ ⎦

⎡ ⎤+ − − + −⎣ ⎦

∫ ∫

∫
4 3        ( ) ( ),

q Q
f y dy Df q M

q x q M

θ
+∞

+
+ + +

≤ < +

∫
 (2) 

3 3 3

2

( ) ( ) ( ) ( ) ( ) ( )

                                                         ( ) ( ) ( )

                                                 

q Q x

x q M

q M

q

Df x G q Q y f y dy G x y G q Q y f y dy

G x y G q Q y f y dy

λ λ

λ

+

+

+

⎡ ⎤+ + − = − − + −⎣ ⎦

⎡ ⎤+ − − + −⎣ ⎦

∫ ∫

∫

0

1 4

        ( ) ( )

( ) ( ),
                                                             

q
G x y G q Q y

f y dy Df q Q
q M x q Q

λ ⎡ ⎤+ − − + −⎣ ⎦

+ +
+ ≤ < +

∫ (3) 
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2 1
0

( ) ( ) ( ) ( ) ( ) ( )

                                  ( ) ( ) ( ) ( ) ,

x q Q

x q Q q M

q M q

q

Df x f y dy G x y f y dy G x y f y dy

G x y f y dy G x y f y dy

q Q x

θ λ λ

λ λ

+∞ +

+ +

+

+ = − + −

+ − + −

+ ≤ < +∞

∫ ∫ ∫

∫ ∫  (4) 

The normalising condition is given by 

1 2 3 4
0

( ) ( ) ( ) ( ) 1.
q q M q Q

q q M q Q
f x dx f x dx f x dx f x dx

+ + +∞

+ +
+ + + =∫ ∫ ∫ ∫  (5) 

where G(x) is the cumulative distribution of the random variable Ri, the amount added to 
serviceable inventory when a return occurs, and ( ) 1 ( ).G x G x= −  

The validity of the steady-state flow-rate equations given in (1) to (5) stems from our 
assumption that both returns and disposal opportunities are generated by Poisson streams. 
Brill and Posner (1977, 1981) and Brill (2008) have supplied a general set of conditions 
under which rate balance equations of this type hold when steady-state conditions exist. 

Equation (2), for example, can be given the following intuitive explanation. For each 
x ε [q, q + M), consider the inventory process IP0(t) and its sample-path exits and 
entrances of the set of states [x, q + M). The left-hand side of (2) represents the long-run 
expected rate at which IP0(t) exits [x, q + M), while the right-hand side represents the 
long-run expected entrance rate of this same set. The exit rate of the set [x, q + M) 
consists of two parts. These are the two terms on the left-hand side of (2). For the first 
part, for small dx, we can interpret f2(x)dx as the long-run probability that IP0(t) is in the 
interval (x, x + dx). The average demand rate is D units per unit time and so a continuous 
down-crossing of level x (or exit) occurs at the long-run rate of Df2(x). This result follows 
from the basic theorem of level crossing theory (see Brill and Posner, 1981; Brill, 2008). 
The other part of the exit rate is when IP0(t) is at some level y between x and q + M with 
probability f2(y)dy and a return of more than q + M – y units occurs at that moment with 
probability ( ),G q M y+ −  which leads to an instantaneous jump out of interval  
[x, q + M). The integral gives the total probability of this event and when multiplied by λ, 
the average return rate per unit time, we get this part’s contribution to the exit rate. 

Now consider the entrance rate of the set of states [x, q + M). The total rate is the sum 
of four distinct parts. These are the four terms shown on the right-hand side of (2). The 
first two terms represent the rate at which returns, that find IP0(t) at some level y either 
between q and x (state 2) or between 0 and q (state 1), will raise inventory by at least  
x – y units, but no higher than q + M – y units. The third term represents the rate at which 
inventory reductions are performed because IP0(t) happens to be in excess of q + Q units 
and an opportunity for a disposal or withdrawal has presented itself. Such an action 
results in an instantaneous entrance into the set [x, q + M). This follows from our stated 
policy that disposals restore inventory back to stock level q + M. Finally, the fourth term 
Df3(q + M) is the continuous down-crossings (or entry) rate into [x, q + M), which occurs 
when IP0(t) is in the neighbourhood of q + M. 

Then, by equating the total exit rate and the total entrance rate of the set of states  
[x, q + M), we arrive at the rate balance equation given in (2) for each x in [q, q + M). 
Equations (1), (3) and (4) are obtained by similar reasoning. 
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Our next task is to find a solution to the system of equations given in (1) to (5). To 
achieve this, we need to consider a specific distribution for G(x). In what follows, we 
confine our analysis to the case where the amount returned Ri is exponentially distributed 
with parameter μ in order to develop useful insights into the effect of batched returns on 
procurement and disposal policies. This assumption is appropriate for returned products 
since, generally, returns are expected to be just smaller amounts of a certain product, not 
entire pallets or cases. For an exponential random variable a large portion of the amount 
returned will be below the mean. The other reason for this choice is that this distribution 
is somewhat easier to analyse than any other. Other forms of distribution can also be 
considered; however, the computational requirements become arduous and long without 
providing additional insight. Thus, specialising to a distribution for the amount returned 
given by ( ) ,  0,xG x e xμ−= ≥  we solve the system of equations (1) to (5) to find that f(x) 
can be given by 

1

( )

2

( )

3

( )

4

1( ) ,                      0
( , , )

1
( ) ,     

( , , )

( ) ,      
( , , )

( 1)( ) ,           
( , , )

a x

a q a x q

a x q Q

r x q Q

ef x x q
A q M Q

e e
f x q x q M

A q M Q

r a ref x q M x q Q
A q M Q

a r ef x q Q x
A q M Q

μ

μ μ

μ

μ

α

α

α

−

− − −

− − −

− −

−
= ≤ <

⎡ ⎤−⎣ ⎦= ≤ < +

+ −
= + ≤ < +

+
= + ≤ < +∞

 (6) 

where 

2

/ , 1 , / ,

( ) 4 2,

D a D

r a a

α λ μ α η θ μ

η η η

= = − =

⎡ ⎤= − − − +⎢ ⎥⎣ ⎦
 

and 

[ ]( ) 1 1
( , , ) ,

( )

( )
( , , ) .

1

a q

a M a Q

a M a Q

a q

r a e Q M r
A q M Q q

r a e re

r a e re A
A q M Q

e

μ

μ μ

μ μ

μ

μ−

−

⎡ ⎤+ − − −⎣ ⎦= +
⎡ ⎤+ −⎣ ⎦

⎡ ⎤+ −⎣ ⎦=
⎡ ⎤−⎣ ⎦

 

This expression for f(x) can be found directly by turning equations (1) to (4) into a set of 
four ordinary differential equations (ODE) and then employing the relevant techniques of 
ODE together with the normalising condition (5) to arrive at the solution shown in (6). 
We shall not go into the details of the derivation since, while lengthy, it is fairly 
straightforward. 

We are now in a position to derive the total of the expected cost of procurement, the 
cost of holding stock, and the cost of disposal per unit time. Let us denote by IP0 the 
random variable whose probability density function is given by (6). IP0 represents the 
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long-run inventory position (and also on hand in this case). To present an expression of 
the cost rate function, let us define 

K1 = fixed cost of a replenishment order 

C1 = procurement cost per unit 

K2 = fixed cost of disposal 

C2 = disposal cost per unit 

h = inventory carrying cost per unit per unit time 

J(q, M, Q) = expected total costs per unit time. 

The total cost J(q, M, Q) can be given as follows: 

[ ] ( )

[ ]

0 1 1 1

2 2 4

( , , ) (0)

( ) ( ) ,
q Q

J q M Q hE IP K C q Df

K C x q M f x dxθ
+∞

+

= + +

+ + − −∫
 (7) 

where 

[ ]0 1 2 3 4
0

( ) ( ) ( ) ( ) ,
q q M q Q

q q M q Q
E IP xf x dx xf x dx xf x dx xf x dx

+ + +∞

+ +
= + + +∫ ∫ ∫ ∫  

Df1(0) is the expected number of orders per unit time, and the last term in the summation 
is the expected disposal costs per unit time. 

In general product returns go through some form of handling or refurbishing before 
they become resalable. Thus, additional costs are involved in the process. Suppose that 
the cost of refurbishing a returned product is fixed and is independent of the time it took 
to spruce up the unit. Let this cost be C3 per unit. In this case, since the average number 
of returned units per unit time is λ / μ in our model, the expected total refurbishment cost 
per unit time is simply C3(λ / μ). Hence this cost component is a constant in our context 
and, thus, can be omitted from the objective function. 

In situations where C3 depends on time and is expressed in $/unit/unit-time then, in 
order to evaluate the expected total refurbishment costs per unit time, one needs to know 
the average refurbished inventory at any point in time. Unfortunately, this quantity is not 
easy to calculate exactly. Nonetheless, in Section 4.2, we propose a heuristic approach to 
approximate this cost component. 

Next, using (6) and carrying out the operations, it can be shown that 

[ ]
2

2 3 4 5 61
0

(2 )( )2 ,
a a q a M a Q a q Q M Q Mq a qE IP

A A
− − + + + + −+

= +  (8) 

where the constants a1 to a6 above are given by 

1 2 32 2 2

4 5 6

1 1 ( 1),    ,    ,

1 ( 1)1 ,    ,    .
2

a r a ra a a
a rr a

r r a r r aa a a
a a r

α α α
μ μμ
α α
μ μ

+ +⎡ ⎤ ⎡ ⎤= = − = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ +⎡ ⎤ ⎡ ⎤= + = − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Moreover, Df1(0) = aD/A, and the last term given as an integral in (7) is given by 
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⎝ ⎠⎣ ⎦
 

Figure 2 Cross sections of the cost rate function J(q, δ, Q) evaluated at an optimal point  
(q, δ, Q) = (33.98, 0.76, 162) (see online version for colours) 
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An optimal ordering and disposal policy can be determined by minimising the cost rate 
function J(q, M, Q) given in (7) with respect to the decision variables q, M and Q. 
Because the Hessian of J evaluated at any (q, M, Q) involves complicated terms and is 
not easily malleable, it is difficult to establish necessary and sufficient conditions that 
will guarantee a unique global minimum. This cost function, however, is fairly easy to 
study numerically. We used the computational software package Mathcad 12 to 
investigate its behaviour and properties over an extensive set of parameter values. Our 
numerical trials showed that not only is J a fairly well-behaved function it also has a 
quasi-convex shape. Figure 2 shows cross sections of the cost function for a given set of 
parameter values. Note: In order to eliminate the constraint M ≤ Q and simplify the 
optimisation task a bit, we made the change of variable M = δQ and substituted this 
change into the cost function. With this change the variables become q, δ, and Q, and the 
constraint set reduces to q ≥ 0, Q ≥ 0, and 0 ≤ δ ≤ 1. One important characteristic of this 
function is that the total cost drops sharply as q, δ, and Q are increased, and, akin to 
general EOQ models, is fairly flat in the area of the minimum total cost. 
Table 1 Optimal ordering and disposal policies and costs for various return fractions 

1/μ α q* M* Q* J* 

0.1 38 145 183 1,682.54 
0.3 33 114 152 1,470.10 
0.5 29 89 124 1,312.70 
0.7 24 68 102 1,245.92 

20 

0.9 20 54 86 1,281.55 
0.1 38 147 187 1,730.09 
0.3 34 124 162 1,633.56 
0.5 30 104 142 1,603.32 
0.7 27 89 126 1,639.56 

50 

0.9 24 77 113 1,733.72 
0.1 38 150 190 1,787.96 
0.3 35 133 172 1,802.01 
0.5 32 119 158 1,863.35 
0.7 30 107 145 1,965.84 

100 

0.9 27 97 135 2,102.74 
0.1 39 157 197 1,905.69 
0.3 38 151 191 2,123.22 
0.5 37 146 186 2,348.20 
0.7 36 141 181 2,579.88 

500 

0.9 35 137 176 2,817.55 

Notes: Parameters: D = 400, θ = 15, μ and α vary, h = 15, K1 = 30, C1 = 3, K2 = 30,  
C2 = 3. Also, for each μ, the EOQ’s are 38, 33, 28, 22, and 13 as α is increased. 
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Table 2 Optimal cost components for various return fractions 

1/μ α J1 J2 J3 

0.1 318 1,365 0 
0.3 377 1,092 1 
0.5 473 826 14 
0.7 579 597 70 

20 

0.9 656 433 193 
0.1 359 1,368 4 
0.3 488 1,118 27 
0.5 615 902 86 
0.7 722 730 188 

50 

0.9 805 598 331 
0.1 383 1,385 20 
0.3 537 1,181 84 
0.5 671 1,010 182 
0.7 784 871 311 

100 

0.9 879 758 465 
0.1 369 1,455 82 
0.3 499 1,372 252 
0.5 621 1,298 429 
0.7 736 1,230 613 

500 

0.9 845 1,169 803 

Notes: Parameters: D = 400, θ = 15, μ and α vary, h = 15, K1 = 30, C1 = 3, K2 = 30,  
C2 = 3 

4.2 Implications of returns on the optimal procurement and disposal policy 

In this section we present some numerical examples along with interpretations to 
illustrate the influence that changing the fraction returned α and other parameters have on 
the optimal ordering and disposal policy. Recall that α is equal to λ/μD and represents the 
expected proportion of returned products relative to current demand. In our main 
illustrative example, we set D = 400, θ = 15, h = 15, K1 = K2 = 30, and C1 = C2 = 3. 1/μ is 
given the values 20, 50, 100 and 500 to represent small to large expected inflows per 
return occurrence, respectively. α is varied as 0.10, 0.30, 0.50, 0.70, and 0.90 to show 
instances ranging from low to high customer return rates relative to actual demand. 
Observe that for fixed D and μ, increasing α means that returns are arriving at an 
increasing frequency, i.e., λ is increased. Our numerical results for this data set are 
summarised in Table 1 and Table 2, where we have used the non-linear solver in  
Mathcad 12 to optimise our cost function. The values for the optimal solution were 
rounded to their nearest integer and are given in the original variables q, M, and Q. 

Table 1 shows optimal ordering and disposal quantities and total costs for various 
return proportions α and expected size per return instance 1/μ, while Table 2 presents the 
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individual cost components. J1 are the costs of holding inventory or the first term in (7); 
J2 and J3 are the ordering and disposal costs or the last two terms in (7), respectively. 
Table 3 Optimal ordering and disposal quantities for different parameter values 

θ 1/μ α q* M* Q* J* 

20 0.1 38 144 182 1,682.54 
 0.5 28 85 116 1,317.37 

100 0.1 38 148 186 1,799.25 

3 

 0.5 31 107 142 1,994.81 
20 0.1 38 145 183 1,682.54 
 0.5 29 89 124 1,312.70 

100 0.1 38 150 190 1,787.96 

15 

 0.5 32 119 158 1,863.35 
20 0.1 38 144 184 1,682.53 
 0.5 29 91 128 1,311.13 

100 0.1 38 151 192 1,784.51 

40 

 0.5 33 122 162 1,832.18 
20 0.1 38 142 184 1,682.53 
 0.5 29 92 130 1,310.38 

100 0.1 38 152 192 1,783.03 

100 

 0.5 32 124 164 1,819.52 

Notes: Parameters: D = 400, θ, μ, and α vary, h = 15, K1 = 30, C1 = 3, K2 = 30 and C2 = 3 

Furthermore to show how disposal opportunities and their expected frequency of 
occurrence (i.e., parameter θ) influence the performance of the system, θ is given the 
values 3, 15, 40 and 100; values representing fairly rare to highly frequent occasions for 
disposal. A sample of our results is shown in Table 3. Finally, to measure and illustrate 
the impact of disposal costs on the optimal policy parameters and costs, we varied the 
cost of disposition from low to high in relation to the cost of ordering. These results are 
displayed in Table 4. 

The results of Tables 1, 2, 3 and 4 exemplify the typical behaviour of the optimal 
policy and costs we observed for a wide variety of parameter values. To comment on the 
pattern of behaviour exhibited in these tables, let us use Heyman’s terminology and refer 
to q + Q as the ‘keep level’. Recall that, in our model, a disposal takes place only when 
the inventory position exceeds this keep level and an opportunity to liquidate or 
redistribute excess inventory comes along. 

First, one important observation gleaned from our computational experiments relates 
to the form of the optimal policy. Our results show that when a disposal is called for, the 
optimal policy dictates that enough units are to be disposed of to reduce current inventory 
levels to well below keep levels. In other words, the optimal M is an interior-point 
solution in [0, Q]. This was the case in a large number of parameter settings we 
experimented with. In view of this, we conjecture that the ordering and disposal policy 
proposed in this paper is indeed the optimal policy for the problem at hand. 
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Table 4 Optimal ordering and disposal quantities and costs for varying disposal costs 

(K2, C2) 1/μ α q* M* Q* J* 

20 0.1 38 76 84 1,682.30 
 0.3 34 62 67 1,465.88 
 0.5 29 51 57 1,285.39 

0.1 38 77 85 1,722.38 
0.3 35 68 75 1,590.35 

(1, 0.1) 

50 

0.5 32 60 66 1,488.86 
20 0.1 38 144 182 1,682.54 
 0.3 33 114 152 1,470.10 
 0.5 29 89 124 1,312.70 

0.1 38 147 187 1,730.09 
0.3 34 124 162 1,623.56 

(30, 3) 

50 

0.5 30 104 142 1,603.32 
20 0.1 38 245 345 1,682.54 
 0.3 33 224 282 1,470.56 
 0.5 28 168 217 1,322.93 

0.1 38 290 347 1,732.38 
0.3 34 236 291 1,657.79 

(60, 9) 

50 

0.5 29 190 243 1,705.40 

Note: Parameters: D = 400, θ = 15, h = 15, α and μ vary, K1 = 30, C1 = 3, K2 and C2 vary 

Second, we wanted to find out whether the economic order quantity (EOQ) based on net 
demand (demand minus expected return) can be used as a quick-and-dirty formula to 

calculate q*. This quantity is given by 1

1

2
.

aDK
EOQ

h
=  This formula or a modification 

of it has been shown to work well in the literature (for example, see Van der Laan and 
Teunter, 2006). In our case the EOQ also turned out to be a good approximation of q*, but 
only for low return rates and when the expected batch-size per return is small. In general, 
we found that the EOQ undershoots q* by a fair margin when the frequency of returns is 
relatively high or when the batch-size of returns 1/μ is large (see Table 1 for example). 

For the data shown in Table 1, Table 3, and Table 4 we see that the optimal policy 
parameters are all decreasing as α is increased as one would expect. In other words, with 
increasing return rates, the order frequency is sharply reduced by lowering the optimal 
order quantity q*, which leads to a decrease in ordering costs. Inventory carrying costs, 
on the other hand, begin to increase rapidly and, to keep them in check, it becomes 
optimal to lower keep levels and to resort to frequent disposals. As mentioned earlier, q* 
does not drop as fast as the EOQ prescribes when net demand falls. That is, q* 
incorporates the possibility of future disposals and is calculated so as to create an overall 
balance between the costs of holding, ordering, and disposal. 

In turn, the optimal total costs may exhibit a different behaviour as α is changed in the 
specified range. These costs may first decrease and then increase or they may just 
increase as α is increased. The actual behaviour depends on the arrival frequency of 
returns and especially on their magnitude. As can be seen from Table 1 and Table 2, for a 
relatively low expected return batch-size, total costs are decreasing until the return 
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frequency reaches a certain threshold before they start increasing. For example, when the 
expected batch-size per return is 1/μ = 20, this critical threshold is as high as α = 70%. 

This observation leads to the following remark. Some companies try to prevent 
returns when it is possible to do so, either by stating a zero-returns policy from the outset 
or by negotiating special agreements with their suppliers to have them handle all returns. 
Under short replenishment lead times, the results of Table 1, Table 2, Table 3 and Table 4 
tell us the policy of accepting no returns or just a few is not always the best course of 
action as it depends very much on the nature of the return flow. If returns arrive in 
smaller bunches, total costs may decrease for a while even as the flow intensity increases. 
The increase in holding and disposal costs because of returns is more than offset by the 
savings in ordering costs because of smaller q*. However, when the batch-size of returns 
is sufficiently large, accepting returns can be a costly proposition even if such returns 
arrive slowly. 

Consider now the effect of changes in parameter θ on the optimal control parameters 
and costs. Table 3 provides an illustration. In general we found that q* does not appear to 
be affected very much by whether disposal opportunities are aplenty or scarce. On the 
other hand, keep and dispose-down-to levels change in a predictable way in response to 
changes in θ. If opportunities for disposal are rare, we lower keep levels so we can take 
advantage of them sooner to lower costs when they do occur. If they happen fairly 
frequently, we set keep levels higher because we will have many chances to lower costs 
through disposals when it is convenient. Also, note that for a given μ, total costs are 
decreasing in θ. 

In Table 4 we illustrate the effect of disposal costs on the optimal policy and costs. 
The results agree with intuition. If disposal costs are cheap in comparison to ordering 
costs, we set keep levels fairly low and dispose of inventory whenever we can. If these 
same costs are expensive, we set keep levels fairly high with the intent of keeping and  
re-using most of the returned inventory to satisfy future demand. 

Let us now return to the question of refurbishment costs and how they can be 
incorporated into the objective function (7) when the cost of refurbishing a unit depends 
on time. For any ordering and disposal policy given by q, M, and Q, recall that the 
expected number of orders per unit time is given by Df1(0) = aD/A(q, M, Q), where aD is 
the net demand and A(q, M, Q) is given in (6). Quantity A in this formula can be 
interpreted as the order quantity in an equivalent deterministic EOQ model with effective 
demand aD and an order frequency equal to the one in the stochastic model. Note that A 
would be equal to q if returns never occurred (i.e., λ = 0). Consequently, the average 
inventory resulting from replenishments at any point in time can be approximated by A/2. 
Now E[IP0] represents the total average inventory, which includes both newly ordered 
and returned items. We can use the difference E[IP0] – A/2 to approximate the long-run 
average returned inventory. Thus, if C3 is the refurbishment cost per unit per unit time, 
the expected total refurbishment costs per unit time can be given by C3(E[IP0] – A/2). 

We incorporated this cost component into the objective function (7) to see how the 
optimal solution is affected by it. We found that the inclusion of this cost does not change 
our conclusions or the overall behaviour of the optimal policy and costs described above. 
Naturally the addition of refurbishment costs into (7) will affect the disposal decision in 
that keep and dispose-down-to levels are lower than the ones with these costs not 
included. To illustrate, suppose D = 400, 1/μ = 20, α = 0.3, θ = 15, h = 15, K1 = K2 = 30, 
C1 = C2 = 3, and C3 = 1.5. In this case, the optimal policy prescribes values of q* = 33,  
M* = 105, and Q* = 140 and the optimal total costs are $1,482.66 (compare these values 
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with those given in Table 1). The optimal holding, ordering, disposal, and refurbishment 
costs are $376.03, $1,092.52, $1.58 and $12.52, respectively. 

An alternative way of incorporating the cost of acquisition, refurbishment, or 
handling associated with returns into the model is simply to allow this cost to be part of 
the unit disposal cost. Disposing of refurbished items after they have been restocked is 
equivalent to foregoing the value that has been added to them and, thus, C2 should reflect 
this fact. If the refurbishment cost is high, however, this will translate into a higher C2 
and, therefore, into higher keep levels. In effect, this will lead to fewer disposals. 

In closing this section, we note that the order point was set equal to 0 for this case of 
zero lead time. However, it may be desirable to allow for a planned shortage due to the 
potential of returns. In fact, this may lead to lower total costs if the holding cost is 
relatively high. This backorder case can be dealt with easily given our previous analysis. 
Let IP′ represent the inventory position when w is the number of backorders that are 
accumulated when an order of size q is received. Then, IP′ = IP0 – w, w ≥ 0. If we let f′(x) 
denote the probability density function of IP′, then f′(x) = f(x + w), where x ≥ – w and f(.) 
is given in (6). Hence, an expression for the total costs (including backorder costs) can be 
derived quickly from (6). 

4.3 Cost model with non-zero lead time 

In this section we look at the more complicated case of a positive lead time L. Since 
demand in our model occurs continuously at a constant rate of D units per unit time, it is 
tempting to conclude that the reorder point s should be set equal to DL modulo q so that 
orders will arrive just as inventory reaches zero. However, as we shall see later, this may 
not be the best course of action when there is a chance of an inventory increase during a 
lead time because of returns. Therefore, a ‘planned’ shortage can be risked by setting the 
reorder point below the expected demand during lead time. Such a shortage may not 
materialise because enough returns may arrive in the interim to raise inventory so as to 
eliminate the risk. 

To formulate an exact cost model in this situation, we need to know the stationary 
distribution of the net inventory IN(t). In principle, the derivation of the distribution of 
IN(t) can be obtained from the following basic relationship (see Figure 1): 

( ) ( ) ( , ) ( , ) ( , )IN t L IP t D t t L R t t L S t t L+ = − + + + − +  (9) 

Expression (9) holds since lead time is assumed to be constant and, thus, crossing of 
orders cannot happen. The stationary distribution of IP(t) can be obtained easily from our 
previous analysis. Let IP represent the steady-state inventory position for the non-zero 
lead time case. IP can be given as IP = IP0 + s, where s is the reorder point. Thus, IP is 
just a translation of IP0. The stationary distribution of IP0 has already been derived in 
Section 4.1. Furthermore, in our case, D(t, t + L) is equal to DL for all t. As noted 
previously, R(t) is a compound Poisson process, which has independent and stationary 

increments. Thus, we have
( )

1

( , ) ( )
N L

n
n

R t t L R L R
=

+ = = ∑  for all t. Moreover, the times at 

which inventory disposals occur are events of a Poisson process ( )N t  with rate 

4 ( ) .
q Q

f x dxθ
+∞

+∫  The amount disposed of at the nth occurrence of this process is  
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Sn = IPn – (s + q + M). IPn is the inventory position at the epoch of the nth event of .N  

Clearly, 
( )

1

( , ) ( )
N L

n
n

S t t L S L S
=

+ = = ∑  for all t, since the amounts disposed of in disjoint 

intervals are independent. Letting t → ∞, let us rewrite equation (9) as: 

0 ( ) ( )IN s DL IP R L S L= − + + −  (10) 

where IN is the steady-state net inventory for the positive lead-time case. 
Although the stationary distribution of each term on the right hand-side of (10) is 

readily available, obtaining the exact distribution of IN from (10) is no easy task. The 
random variables involved in (10) are not independent of each other. Consequently, 
rather than try to develop the exact distribution for IN, we will resort to an 
approximation. 

One important approximation that has worked well in practice and has often been 
used in the literature is the normal distribution (see Muckstadt and Isaac, 1981;  
Van der Laan et al., 1996a, 1996b; Zipkin, 2000). That is, the probability density function 
of IN is approximated by a normal density. We will use equation (10) to approximate 
both the mean ν and variance σ2 of this normal distribution. That is, ν and σ2 are 
calculated as follows: 

[ ]
[ ]

0
2

0

[ ] [ ( )] [ ( )]

[ ] [ ( )] [ ( )]

v E IN s DL E IP E R L E S L

VAR IN VAR IP VAR R L VAR S Lσ

= = − + + −

= ≈ + +
 (11) 

In the calculation of σ2 the covariance terms were left out. Now 

[ ] [ ]22
0 0 0 ,VAR IP E IP E IP⎡ ⎤= −⎣ ⎦  where E[IP0] and 2

0E IP⎡ ⎤⎣ ⎦  can both be derived from (6). 
Moreover, R(L) is compound Poisson random variable; thus, E[R(L)] = λE[R]L and 
VAR[R(L)] = λE[R2]L. E[S(L)] and VAR[S(L)] are given by 

4

2
4

[ ( )] ( ) [ ]

[ ( )] ( ) [ ]

q Q

q Q

E S L f x dx E S L

VAR S L f x dx E S L

θ

θ

+∞

+

+∞

+

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫
 

where S is the (random) amount withdrawn from inventory at a disposal epoch. Note that 
S can also be given as S = X + Q – M, where X is the amount in excess of s + q + Q at a 
disposal epoch. The distribution of X is given by 

[ ]0 0( ) [ ] /
( ) ( ) ,   0

1 ( )

x P X x P IP q Q x IP q Q
F q Q x F q Q x

F q Q

Ψ = ≤ = ≤ + + > +

+ + − +
= ≥

− +

 (12) 

where F is the cumulative distribution of IP0. 
When the distribution for the amount returned is given by ( ) ,  0,xG x e xμ−= ≥  

expressions for all quantities entering into the calculation of ν and σ given in (11) as 
functions of the decision variables s, q, M and Q are given in the appendix. 
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In addition, we performed a simulation study and diagnostic checks to verify the 
accuracy of the normal distribution as a substitute to the distribution of net inventory IN 
given in (10). Based on our test trials, this approximation turned out to be fairly good and 
represented a reasonable model for the distribution of net inventory. Minor departures 
from the normal distribution occurred mostly along the upper-part in the right-tail of the 
distribution. 

We are now ready to give an approximate cost rate function for this case of non-zero 
lead time. Let u(x) represent the density function of IN. u(x) is approximated by a normal 
density with mean ν and variance σ2 given in (11). Let I and B represent the long-run  
on-hand inventory and number of backorders, respectively. Then, 

0
[ ] ( )E B u x dx ν νσφ ν

σ σ−∞

⎛ ⎞ ⎛ ⎞= = − Φ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

[ ] [ ] [ ]E I E IN E B ν νν σφ ν
σ σ
⎛ ⎞ ⎛ ⎞= + = + − Φ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

φ(.) and Φ(.) are the standard normal density and standard normal distribution functions, 
respectively. Since orders and disposals are based on the inventory position, the expected 
ordering costs and the expected disposal costs per unit time are the same as those 
obtained for the zero-lead-time case. Therefore, if we let h and b denote the holding and 
backorder cost, respectively, per unit per unit time, the cost rate function can be given by 

( )1 1

2 2

( , , , ) ( )

( 1) 1                     

aD K C q
J s q M Q h h b

A

a r C M Q K
rA r

ν νν σφ ν
σ σ

θ
μ μ

+⎛ ⎞⎛ ⎞ ⎛ ⎞= + + − Φ − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎡ ⎤⎛ ⎞+
+ + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 (13) 

The goal is to determine values for s, q, M, and Q that minimise the cost function given  
in (13). First, for fixed q, M, and Q, it can be checked that J is convex in s. Therefore, the 
optimal value of s is the unique solution to ∂J / ∂s = 0. It follows that s* satisfies the 
following equation: Φ (–v / σ) = h / (b + h). Thus, the optimal value of s is then given by 

[ ] ( )( )* 1
0[ ( )] [ ( )] ( )s DL E S L E IP E R L h b hσ −= + − + + Φ +  

The optimisation problem can be reduced to a search in the three variables q, M, and Q 
by substituting this expression for s* into the objective function (13). 

To provide some numerical results for the lead-time case, we again used the  
non-linear solver in Mathcad 12 to perform the optimisation task. Furthermore, to 
compare the results of this case to the ones discussed without lead times, we shall use the 
same example which we presented in Section 4.2. That is, we let D = 400, θ = 15, h = 15, 
and b = 20, K1 = K2 = 30, and C1 = C2 = 3. The lead time L is given the values 1, 6  
and 12. To highlight the effects of the Compound Poisson nature of the return flow, we 
let 1/μ take on the values 20 and 100, while α is varied as 0.1, 0.3, 0.5, 0.7 and 0.9.  
Table 5 displays our results. 
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Table 5 Optimal policy values and costs for various parameters and lead times 

L 1/μ α s* q* M* Q* J* 

0.1 328 76 148 152 1,862.83 
0.3 244 82 156 162 1,986.36 
0.5 159 81 153 160 2,026.70 
0.7 69 75 150 157 2,075.96 

1 20 

0.9 –21 68 151 159 2,218.54 
0.1 321 100 291 294 2,615.65 
0.3 229 112 309 313 3,401.74 
0.5 136 114 319 324 3,961.75 
0.7 43 113 329 334 4,475.95 

 100 

0.9 –48 111 340 346 5,006.02 
0.1 2,127 99 316 316 2,597.58 
0.3 1,648 108 318 318 3,304.82 
0.5 1,168 105 297 300 3,732.76 
0.7 679 95 272 275 4,078.38 

6 20 

0.9 209 81 258 261 4,515.71 
0.1 2,126 129 667 668 4,287.86 
0.3 1,641 143 651 652 6,320.03 
0.5 1,150 142 630 632 7,745.25 
0.7 671 136 617 619 9,020.08 

 100 

0.9 242 129 619 621 10,324.48 
0.1 4,288 110 381 381 3,135.72 
0.3 3,335 121 451 451 4,253.18 
0.5 2,377 118 398 398 4,959.59 
0.7 1,410 106 353 355 5,521.62 

12 20 

0.9 471 87 324 326 6,155.25 
0.1 4,294 144 934 934 5,501.06 
0.3 3,338 159 890 891 8,423.04 
0.5 2,366 157 839 840 10,450.96 
0.7 1,410 147 800 802 12,236.19 

 100 

0.9 563 136 789 790 14,066.52 

Notes: Parameters: D = 400, θ = 15, μ, α, and L vary, h = 15, b = 20, K1 = K2 = 30, and  
C1 = C2 = 3 

Our sensitivity analysis and interpretations will be limited to the effect of changes in the 
fraction returned relative to demand combined with changes in lead times. Comparing the 
results of Table 5 to those of Table 1, Table 2, Table 3, and Table 4, we see that when 
lead times are considered, the behaviour of the optimal policy parameters and total costs 
may take a different look. First, as we remarked earlier, to account for the potential of 
returns that can drive serviceable inventory to well above the reorder point during a 
replenishment lead time, an order need not be placed when the inventory position is equal 
to DL. In fact, the reorder point s* should be set much lower than DL as evidenced in 
Table 5. In other words, as long as demand-rate fluctuations remain low over time, 
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shortages are intentionally planned as their full impact may not be felt because of the 
possibility of an inventory increase during a lead time. 

In addition, for fixed L, we also see that the reorder point s* drops substantially as the 
fraction returned increases, while the order quantity q* is only moderately adjusted at 
times first up and then down (see Table 5). Thus, even though expected net demand is 
dropping, it is sometimes better to raise q* for a while. The larger q* together with returns 
adding to inventory will delay ordering and, thus, reduce ordering costs. The reduction 
plus the occasional disposal will temporarily be enough to absorb the increase in holding 
and backorder costs. We remark that, unlike the zero lead-time case discussed in  
Section 4.2, the EOQ based on net demand does not provide a simple approximation to q* 
in this case. q* is set much higher than what the EOQ would suggest. 

Changes in Q* or the difference between order-up-to levels and keep levels are far 
more complicated. They appear to depend on the nature of the return flow one 
experiences and also on lead time length. As can be seen from Table 5, for a given L, Q* 
displays different behaviours as α is increased. For shorter lead times and smaller 
returned lots, Q* can first increase and then decrease as α changes. In other instances, a 
different response is observed. Thus, to achieve that fine balance in the costs involved, 
the optimal policy can take many forms indeed. 

Another key difference is seen in the behaviour of Q* – M* or the gap between keep 
levels and dispose-down-to levels. Compared to the results of Table 1 this gap gets 
narrower and, for a sufficiently long lead time, it drops to 0. Thus, in this instance, 
disposals are limited only to the excess that has accumulated over and above current keep 
levels. 

In the no lead-time case we saw that total costs may decrease for a while and then 
increase as return rates increase, i.e., accepting some returns may temporarily result in a 
cost advantage. However, as shown in Table 5, this is not the case for a non-zero lead 
time under the same demand, return and cost conditions. Here total costs show a steady 
increase in the relevant α range. The increase is more pronounced for longer lead times. 

Finally, all other things being equal the qualitative effects of varying lead times on s*, 
q*, M*, Q* and overall costs are as one would expect. For fixed µ and α, an increase in 
lead time results in an increase in the values of the policy parameters and the total cost of 
replenishment, carrying inventory, shortage, and disposal. While we believe the 
qualitative effects described in Table 5 to be typical, nothing general can be established 
analytically due in large part to the complicated form of the cost function given in (13). 

5 Summary and conclusions 

In this paper we considered a replenishment control system that incorporates random 
returns and disposals of excess inventory when necessary. In this model we assumed that 
the demand rate is constant and deterministic, and that the total amount of returns 
accumulated over a period of time is represented by a compound Poisson process. 
Moreover we assumed that inventory reductions occur only when beneficial opportunities 
for disposal or relocation arise at times governed by a Poisson process. 

We zeroed in on serviceable inventory and its day-to-day fluctuations. We used an  
(s, q) inventory policy to control the when and how much to order when the 
replenishment lead-time is constant. In this case, the target for the inventory position is  
s + q. This target level may occasionally be exceeded because too many products have 
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been brought back and added to inventory. When an opportunity for a disposal arises, it is 
pursued only when the inventory position is above target s + q + Q. Each disposal 
restores inventory levels to target s + q + M, where 0 ≤ M ≤ Q. 

We derived expressions for the total costs per unit time, which consisted of ordering, 
holding, shortage, and disposal costs. This model makes specific the influence that 
returns arriving in varying quantities have on the behaviour of optimal procurement and 
disposal policy and costs. Our sensitivity analysis showed that this behaviour can take 
unexpected forms. The actual behaviour depends on the interplay of lead times, the 
arrival frequency of returns, and especially on the size of the amount returned, among 
other things. For example, in the presence of lead times, the order quantity q* may go up 
for a while as expected net demand drops before it is lowered again. Also, even in the 
case of short lead times, we observed that the EOQ formula based on net demand 
(demand minus expected return) is not always a good substitute for calculating q*. This 
approximation works well only when return rates are low and/or the expected batch-size 
per return is small. 

Another important observation taken from our computational results pertains to the 
optimal amount that should be disposed of as a result of excessive inventory due to many 
returns. In general, depending on lead time length, a sufficient amount is cleared so that 
the resultant inventory levels are well below current keep levels. When lead times are 
long, however, it is only necessary to clear the current excess over keep levels. 

Similarly, some companies try to circumvent the hassle of returns by simply stating a 
zero-returns policy or by striking special arrangements with their customers to take sole 
responsibility of the returns. Our numerical examples show that this strategy of total 
avoidance is not always the best as it depends on the nature of the return flow. When lead 
times can be neglected, accepting and restocking returns can temporarily lead to lower 
total costs (see Table 1, Table 2, Table 3, and Table 4 for example). 

Finally, since the demand rate is constant over time in our model it may be tempting 
to claim that the reorder point should be set equal to the demand during lead time so that 
orders will arrive just as the inventory hits zero. This is not the optimal decision in the 
presence of returns when there is a chance of inventory increases during a lead time. In 
fact a shortage risk is taken by setting the reorder point well below the demand during 
lead time. Such a shortage may not happen at all if enough items are returned during a 
lead time. Our model allows to quantify how much of a shortage can be risked given the 
actual demand, the frequency and size of returns, and the system’s costs. 

In terms of future work, there are some worthy extensions to the model presented in 
this paper. Our model was intended for products that have low-demand uncertainty and 
long life cycle, e.g., a functional product. It would be worthwhile to extend this analysis 
to products that have demand uncertainty that cannot be ignored. One possibility would 
be to represent demand uncertainty by a compound Poisson process. Additionally, our 
analysis has centred on a pragmatic form of stocking and disposal policy specified by 
four control values, which, we suspect, constitutes an optimal policy for the model 
analysed in this paper. Future research should attempt to establish its optimality in a 
formal setting. 
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Appendix 

Assume that the distribution for the amount returned is given by ( ) ,  0,xG x e xμ−= ≥  and 
define 

( ) [ ]

[ ]

[ ]

3

1

1

2

2

2

3 3
3

3

2

24
( )

4

6

5

1
3 2( , , )

( )
1 1 ( )

2
( , , )

( ) ( )
( , , )

( )
1 ( )

2

( )
1 ( )

2
( , , )

1

( , , )

q M

Q M

q qb q
B q M Q

A

q M
b e q M e

B q M Q
A

b q Q q M
B q M Q

A

q Q
q Q

b
q M

q M e

B q M Q
A

b

B q M Q

β β

β

β

β
β

β
β

β
β

− −

−

⎛ ⎞+ +⎜ ⎟
⎝ ⎠=

⎡ ⎤+
⎢ ⎥− + + +
⎢ ⎥⎣ ⎦=

⎡ ⎤+ − +⎣ ⎦=

⎡ ⎤+
⎢ ⎥+ + +
⎢ ⎥
⎢ ⎥⎧ ⎫+⎪ ⎪⎢ ⎥− + + +⎨ ⎬⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦=

−

=

[ ]25
5

( )
( )

2
b q Q

b q Q

A

⎡ ⎤+
⎢ ⎥+ +
⎢ ⎥⎣ ⎦  

where 
2 3 3

1 2 3 4
3

5 6 5

, 2 , 2 , ( ) 3, 2 ,

, 2 ( 1) ,

a b b b r a b r

b r b a r b

β μ α β α β α β

μ

= = = = + =

= = +
 

A and A are defined in (6). 
Then, [ ] [ ]22 2

0 1 2 3 4 5 0 0 0,  ,E IP B B B B B VAR IP E IP E IP⎡ ⎤ ⎡ ⎤= − + + − = −⎣ ⎦ ⎣ ⎦  and E[IP0] 
is given in (8). Also, E[R(L)] = (λ / μ)L and VAR[R(L)] = 2(λ / μ2)L. Using (6) and (12), 
it can be shown that Ψ(x) = 1 – erμx, x ≥ 0. Thus, the random variable X is exponentially 
distributed with parameter – rμ > 0. It follows that E[S] = E[X] + Q – M = Q – M – 1/rμ 
and E[S2] = VAR[X] + E[S]2 = 1/(rμ)2 + (Q – M –1/rμ)2. Using (6) again, we have 

2 2

( 1)( 1/ )[ ( )]

( 1) 1 ( ) ( 1/ )
[ ( )] .

a r Q M r LE S L
r A

a r r Q M r L
VAR S L

r A

θ μ
μ

θ μ μ

μ

+ − −
= −

⎡ ⎤+ + − −⎣ ⎦= −

 

Finally, using all the above, we can express ν and σ2 in (11) as functions of the decision 
variables s, q, M, and Q. 
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