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INTEGRINS, including the β1-integrins, have been
linked to tumor progression and the remodeling of

extracellular matrix (ECM) associated with this pro-
gression.1–4 Alterations in the expression and function
of β1-integrin occur during prostate cancer progres-
sion.5,6 For example, an invasive phenotype is associ-
ated with a shift to expression of α6β1.

7 In human
breast carcinomas, expression of β1-integrin has been

reported to be unchanged8 but also to be increased and
predictive of poor survival.9 In vitro, a function-
blocking antibody to β1-integrin reverses the malig-
nant phenotype of breast cancer cells grown in three-
dimensional cultures.10–12 In vivo, the antibody-treated
tumor cells form fewer and smaller tumors upon sub-
cutaneous injection into nude mice.10 In another in
vivo study, antibody-treated breast cancer cells inject-
ed into the tail vein of nude mice formed fewer lung
metastases.13 Further evidence that β1-integrin is criti-
cal for proliferation of breast tumor cells has been
shown by its targeted disruption in the mammary
epithelium of mice predisposed to develop mammary
carcinomas.14 The ability of the mammary epithelial
cells to proliferate both in vitro and in vivo is compro-
mised, as is the initiation of tumorigenesis. Thus, 
β1-integrin functions in the maintenance of a polarized
cellular architecture and cell proliferation.

Physical associations between β1-integrin and sev-
eral classes of proteases, endogenous inhibitors of
those proteases, or protease binding partners have
been identified, yet a mechanism for β1-integrin
involvement in the proteolytic remodeling of ECM
has not been established. β1-Integrin forms a stable
complex with the urokinase plasminogen activator
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Functional Live-Cell Imaging Demonstrates that 
ββ1-Integrin Promotes Type IV Collagen Degradation 
by Breast and Prostate Cancer Cells
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Abstract
The ability of tumor cells to adhere to, migrate on, and remodel extracellular matrices is mediated by cell surface receptors
such as ββ1-integrins. Here we conducted functional live-cell imaging in real time to investigate the effects of modulating ββ1-
integrin expression and function on proteolytic remodeling of the extracellular matrix. Human breast and prostate cancer
cells were grown on reconstituted basement membrane containing a quenched fluorescent form of collagen IV. Generation of
cleavage products and the resulting increases in fluorescence were imaged and quantified. Decreases in the expression and
activity of ββ1-integrin reduced digestion of quenched fluorescent–collagen IV by the breast and prostate cancer cells and cor-
respondingly their invasion through and migration on reconstituted basement membrane. Decreased extracellular matrix
degradation also was associated with changes in the constituents of proteolytic pathways: decreases in secretion of the cys-
teine protease cathepsin B, the matrix metalloproteinase (MMP)-13, and tissue inhibitors of metalloproteinases (TIMP)-1 and
2; a decrease in expression of MMP-14 or membrane type 1 MMP; and an increase in secretion of TIMP-3. This is the first
study to demonstrate through functional live-cell imaging that downregulation of ββ1-integrin expression and function reduces
proteolysis of collagen IV by breast and prostate cancer cells.
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receptor (uPAR), linking β1-integrin to serine proteas-
es.15 Downregulation of uPAR in colon cancer cells
disrupts the uPAR–β1-integrin complex without
changing the expression of β1-integrin.16 Thus, the
associated reduction in degradation of radiolabeled
collagen IV is not directly linked to β1-integrin. On
the other hand, β1-integrin may play a direct role in
adhesion: maspin, a putative serine protease inhibitor
and tumor suppressor, associates with β1-integrin in
mammary epithelial cells, where its function is not
inhibition but rather regulation of adhesion to ECM
secreted by these cells.17 β1-Integrin is also linked to
matrix metalloproteinases (MMPs) via interactions
with tissue inhibitors of metalloproteinases (TIMPs)
and with TIMPs through tetraspanins. These interac-
tions play roles in cell survival, apoptosis, and angio-
genesis but are independent of MMP activity.18 Direct
interactions between cysteine proteases of the cysteine
cathepsin family and β1-integrin have not been identi-
fied19; however, cysteine proteases, β1-integrin, and
tetraspanins are present in the same membrane
microdomains. Furthermore, these microdomains
also contain both serine proteases and MMPs, sug-
gesting that cell-surface proteolytic pathways may be
initiated from these membrane regions. In colon can-
cer cells, for example, cathepsin B has been localized
to caveolar lipid rafts through its binding to
S100A10, the light chain of the annexin II heterote-
tramer.20 Downregulation of caveolin-1 reduces asso-
ciation of cathepsin B, S100A10, urokinase plasmino-
gen activator (uPA), uPAR, and β1-integrin with lipid
raft fractions of these cells.21 Furthermore, there is a
reduction in invasion through reconstituted basement
membrane (rBM) and in degradation of collagen IV. A
direct role for β1-integrin in degradation of collagen
IV has not been demonstrated. 

In the present study, we performed functional live-
cell imaging in real time and used β1-integrin short
hairpin ribonucleic acid (shRNA) interference and β1-
integrin function–blocking antibodies to determine
whether β1-integrins play a role in the degradation of
ECM by breast and prostate carcinoma cells. We
demonstrate that downregulating β1-integrin expres-
sion and function significantly reduces degradation of
collagen IV, as well as invasion and migration of the
breast and prostate carcinoma cells. We further show
that there are parallel changes in multiple constituents
of proteolytic pathways that have been implicated in
ECM degradation, cell migration, and invasion.

Materials and Methods

Cell Culture

BT-549 human breast and DU145 human prostate car-
cinoma cells were purchased from American Type
Culture Collection (Rockville, MD) and cultured in
RPMI 1640 supplemented with 10% fetal bovine
serum (FBS) and Dulbecco’s Minimal Essential
Medium (DMEM) supplemented with 10% FBS,
respectively (Sigma, St. Louis, MO).

Construction of ββ1-Integrin shRNA

The plasmid to transcribe β1-integrin shRNA con-
tained the sequence for top strand (sense), 5'-
GATCCAGCTTCTCTGCTGTTCCTTCTCAAGA-
GAAAGGAACAGCAGAGAAGCTCATTTTTTG-
GAAA-3', and for bottom strand (antisense), 5'-
AGCTTTTCCAAAAAATGAGCTTCTCTGTTC-
C T T T C T C T T G A G A A G G A A C A G C A G A -
GAAGCTG-3' (Integrated DNA Technologies,
Coralville, IA). Two microliters of each oligonu-
cleotide solution (1 µg/µL) were mixed in 46 µL 1X
DNA annealing solution. The mixture was heated to
90˚C for 5 minutes and then cooled to 37˚C and incu-
bated at room temperature for 1 hour. The annealed
shRNA template insert was ligated into a pSilencer
vector, pSilencer3.1-H1Puro (Ambion, Austin, TX),
using the standard cloning technique. The identity and
orientation of the construct were confirmed by DNA
sequencing. The negative control plasmid encodes an
shRNA sequence not found in the mouse, human, or
rat genome database (Ambion). 

Establishment of Stable ββ1-Integrin shRNA BT-
549 and DU145 Cell Lines

Parental BT-549 and DU145 cells grown to 60% con-
fluency were transfected with β1-integrin shRNA using
FuGENE 6 reagent according to the manufacturer’s
instructions (Roche). Transfected cultures were select-
ed with puromycin (0.5 mg/mL for BT549 cells and 
1 µg/mL for DU145 cells) and antibiotic-resistant
colonies grown under selection conditions. 

Semiquantitative Reverse
Transcription–Polymerase Chain Reaction

RNA was isolated from parental cells and cells trans-
fected with β1-integrin shRNA using RNeasy Mini Kit
(Qiagen) and reverse-transcribed. One milligram of
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total RNA was annealed with 0.5 mg oligo-dT15 and
reverse-transcribed in a 20 mL volume containing 1×
reverse transcription buffer (Promega), 0.1 mg/mL
bovine serum albumin (BSA), 40 U RNAs in 1mM
dNTPs, and 200 U mouse Moloney leukemia virus
reverse transcriptase at 37˚C for 120 minutes. PCR
Master Mix (Promega) was used for subsequent PCRs.
For β2-microglobulin (150 bp product) and β1-integrin
(210 bp product), the amplification conditions were as
follows: 25 cycles of 94˚C for 30 seconds, 60˚C for 30
seconds, and 72˚C for 1 minute, followed by a final 10-
minute extension at 72˚C. The primer sequences were
as follows: β2-microglobulin forward, 5'-TTAGCTGT-
GCTCGCGCTACTCTCTC-3'; β2-microglobulin
reverse, 5'-GTCGGATGGATGAAACCCAGACACA-
3'; β1-integrin forward, 5'-ATCATTCCAATTG-
TAGCTGGT-3'; and β1-integrin reverse, 5'-TTTTCC-
CTCATACTTCGGATT -3' (DNA Technologies).

Preparation of Cell Lysates and Conditioned
Media

Cells were grown to approximately 80% confluency in
100 mm dishes and then serum-starved overnight.
Cells were harvested using RIPA buffer containing
protease inhibitor cocktail (Roche). The conditioned
media were collected, centrifuged at 2,000g, and con-
centrated using Millipore UltraFree 10K filters. 

Immunoblotting

Cell lysates or conditioned media were normalized
based on DNA determinations and subjected to SDS-
PAGE using 12% gels. The protein was transferred to
nitrocellulose and then immunoblotted using rabbit
antihuman β1-integrin polyclonal antibody,22 mono-
clonal β-actin antibody (Sigma), monocloanal MMP-
14 (R&D Systems), and rabbit antihuman cathepsin B
polyclonal antibody23 in 5% nonfat milk–Tween-Tris
buffered saline (T-TBS). Membranes were probed with
horseradish peroxidase–labeled secondary antibodies
(Pierce) in 5% nonfat milk–T-TBS. Reactive proteins
were detected using chemiluminescent kits (Perkin
Elmer Life Sciences, Waltham, MA). Cell lysates or
conditioned media were also analyzed by a human
MMP antibody array (RayBiotech) according to the
manufacturer’s instructions.

Immunocytochemistry

Cells were grown on rBM (BD Bioscience) -coated cov-
erslips for 16 to 24 hours. Nonpermeabilized cells were

stained for surface β1-integrin at 4˚C and cells permeabi-
lized with saponin were stained for intracellular β1-
integrin at room temperature according to our pub-
lished procedures.24 Cells were fixed and then blocked
for 45 minutes by incubating with PBS containing 
2 mg/mL BSA. The cells were incubated with primary
antibody (rabbit antihuman β1-integrin or preimmune
rabbit IgG) for 2 hours. After washing with PBS, the
cells were incubated for 1 hour with Texas red–
conjugated affinity-purified donkey antirabbit IgG 
containing 5% normal donkey serum (Jackson
ImmunoResearch). Cells were then washed, mounted
upside down with Slow Fade antifade reagent
(Invitrogen Life Technologies) on glass slides, and
observed with a Zeiss 510 LSM confocal microscope.

Live-Cell Proteolysis Assay

Glass-bottom microwell 35 mm Petri dishes
(MatTek Corporation) were coated with 100 mL of
rBM containing 25 mg/mL of DQ-collagen IV
(Invitrogen Life Technologies) and placed in a 37˚C
incubator for 15 minutes to solidify. Cells (3–4 ×
104) were plated on top of the rBM and incubated at
37˚C for 30 to 60 minutes until they attached.
Culture medium with or without β1-integrin-blocking
antibody mAb 13 (20 µg/mL) was added and the
cells cultured for 16 to 24 hours. Preimmune IgG,
instead of β1-integrin-blocking antibody, was used as
one control and rBM-coated coverslips without cells
as another control. Degradation products of DQ-
collagen IV (green) were imaged with a Zeiss LSM
510 META NLO confocal microscope at 488 nm
using a 40× water immersion objective. Z-stack
images were captured and used to make three-
dimensional reconstructions of the spheroids
(Autovisualize software). Using both Metamorph
6.0 and Volocity 4.2.0 software (Perkin Elmer), the
intensity of DQ-collagen IV degradation was meas-
ured, normalized to the number of nuclei (stained
with Hoechst [Invitrogen Life Technologies] and
pseudocolored red), and expressed as fluorescent
intensity per cell. Using the Z-stack, the depth to
which the cells invaded into the rBM was assessed
by the presence of fluorescent cleavage products.

Cathepsin B Activity Assays

Cathepsin B activity assays on cell lysates and
overnight serum-free conditioned media were per-
formed as previously described.25 A 100 µM final con-
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centration of benzyloxycarbonyl-L-arginyl-L-arginine-
4-methyl-7-coumarylamide (Z-Arg-Arg-NHMec)
(Bachem) substrate was used and fluorescence was
measured in triplicate at 1-minute intervals over a
30-minute period in a Tecan Spectrafluor Plus plate
reader at an excitation of 360 nm and an emission of
465 nm. Procathepsin B in the media was activated with
0.4 mg/mL pepsin prior to conducting the assays. DNA
assays were performed on each sample, and cathepsin B
activity was expressed as pmol/min/µg of DNA. DQ-
collagen IV substrate (50 µg/mL) was also used as a sub-
strate in this assay and incubated overnight with condi-
tioned media at 37˚C. Following overnight incubation,
fluorescence was read at an excitation of 485 nm and an
emission of 535 nm and recorded as relative fluorescent
units (RFU)/µg DNA. To inhibit cathepsin B activity, we
incubated samples in the presence of 10 µM CA074, a
highly selective inhibitor of cathepsin B,26 for 60 minutes
prior to performing the assays. 

DNA Assay

A 5 µL aliquot of cell lysate was incubated with a
1:10,000 dilution of SYBR Green in DNA assay buffer
(100 mM NaCl, 10 mM ethylenediaminetetraacetic
acid, pH 7.0, 10 mM Tris) for 15 minutes in the dark.
Fluorescence intensities were read at an excitation of
485 nm and an emission of 535 nm. DNA concentra-
tions were determined from a standard curve of
known concentrations of salmon sperm DNA
(Invitrogen Life Technologies).

Cell Adhesion Assay 

Cells were harvested using cell dissociation buffer
(Invitrogen Life Technologies) and suspended in
serum-free media with 0.1% BSA, and 5 × 104 cells
were seeded in triplicate on 24-well tissue culture
plates coated with 5 µg/mL of either collagen I, colla-
gen IV, laminin, or fibronectin (BD Biosciences). The
cells were allowed to attach for 30 minutes, and unat-
tached cells were removed by washing with PBS. Then
2 µM of calcein–acetoxymethyl ester (calcein-AM,
Invitrogen Life Technologies) in PBS was added to the
cells and incubated for 30 minutes at room tempera-
ture. Fluorescent intensities were measured at an exci-
tation of 485 nm and an emission of 535 nm. 

Wound Healing Assay

Cells were grown as a monolayer to 100% confluency
in 35 mm dishes. Medium was replaced 5 to 6 hours

before wounding with RPMI plus /0.1% BSA for BT-
549 cells and DMEM plus /0.1% BSA for DU145
cells. A scratch wound was created using a rubber
scrapper across the cellular monolayer. Detached cells
were removed by washing, and the remaining cells
were incubated at 37˚C for 20 hours. The cells were
imaged at 5-minute intervals on a Zeiss LSM 510
META NLO microscope, equipped with a controlled
environmental chamber that maintains a 5%
CO2/humidified atmosphere at 37˚C, using a 10×
water immersion objective. 

Invasion Assays 

Invasion assays were performed using Boyden cham-
bers according to our published procedures.27 Briefly,
polycarbonate filters (8 µm pores for BT-549 and 
12 µm pores for DU145) (Poretics) were coated with
1% gelatin followed by rBM (50 µg/filter) (BD
Biosciences). Cells (2.5 × 104 cells in 200 µL) in medi-
um containing 1% FBS in the presence and absence of
20 µg/mL of β1-integrin-blocking antibody (mAb 13)22

were seeded onto the rBM-coated filters and mediuma
with 5% FBS was used as the chemoattractant.
Following overnight incubation, the filters were
removed, air-dried, and stained with Diff-Quik (Dade
Behring), and the cells that had invaded were counted
and imaged using 10× and 40× objectives. 

Statistical Analysis 

The statistical significance between control and indi-
vidual conditions was determined by t-test. 

Results

Downregulation of ββ1-Integrin in Human Breast
and Prostate Carcinoma Cells

We investigated the consequences of β1-integrin down-
regulation in human breast (BT-549) and prostate
(DU145) carcinoma cells that were stably transfected
with shRNA encoding β1-integrin. Clones of each cell
line were chosen and compared with parental cells and
control cells that had been transfected with shRNA
encoding a nontargeting sequence. We confirmed that
levels of β1-integrin RNA and protein were reduced in
the shRNA clones, illustrated here for clones BTshβ1-
8 and DUshβ1-5 (Figure 1, A and B), but not in con-
trol cells transfected with nontargeting shRNA (data
not shown). Clones in which β1-integrin expression
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was reduced more than in the BTshβ1-8 and DUshβ1-
5 clones did not survive beyond three to four passages.
Two other clones, BTshβ1-11 and DUshβ1-14, in
which β1-integrin expression was reduced less than in
the BTshβ1-8 and DUshβ1-5 clones, were not evaluat-
ed further (data not shown). Staining of the BTshβ1-8
and DUshβ1-5 clones confirmed a reduction in the
protein levels of β1-integrin intracellularly (Figure 1C)
and on the cell surface (Figure 1D). Downregulation of
β1-integrin did not affect cell viability as determined

by live/dead assays; both parental cells and clones
were 99% viable (data not shown).  

Functional Live-Cell Imaging Illustrates that
Downregulation and Blocking of ββ1-Integrin
Reduces Degradation of the ECM Protein
Collagen IV 

We have previously used a functional live-cell proteol-
ysis assay28 to demonstrate in real time the ability of
BT-549 human breast carcinoma and DU145 human

Figure 1.  Downregulation of β1-integrin in breast and prostate carcinoma cells by short hairpin ribonucleic acid (shRNA) interference. Breast
(BT-549) and prostate (DU145) carcinoma cells were stably transfected with a plasmid containing β1-integrin shRNA. BT-549 and DU145
clones (BTshβ1-8 and DUshβ1-5 are illustrated here) were established and maintained in selection media as described in experimental proce-
dures. A, Total RNA was isolated from parental cells and clones and subjected to reverse transcription followed by polymerase chain reac-
tion (PCR) using primer sequences to β1-integrin and β2-microglobulin (as a control for equal loading). PCR products were separated on a
1.2% agarose gel and stained with ethidium bromide. B, Cells were solubilized in lysis buffer without reducing agents, equally loaded, sub-
jected to SDS-PAGE, and immunoblotted with antibodies against β1-integrin. Equal loading (normalized by DNA determination) was veri-
fied by probing with antibodies against β-actin. Immunoblots are representative of at least three experiments. C, Cells were immunolabeled
for intracellular β1-integrin with polyclonal β1-integrin antibodies at room temperature in the presence of saponin. D, Surface labeling with
polyclonal β1-integrin antibodies was performed at 4˚C in the absence of saponin. Texas Red–conjugated affinity-purified donkey antirabbit
IgG was used as a secondary antibody. Bars = 10 µm.
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prostate carcinoma cells to degrade a quenched fluo-
rescent form of collagen IV (ie, DQ-collagen IV).24,27,29

Fluorescent degradation products were observed both
pericellularly and intracellularly. Here we examined
the degradation of DQ-collagen IV by live BT-549,
DU145, BTshβ1-8, and DUshβ1-5 cells. The cells were
grown overnight on rBM containing DQ-collagen IV
in the presence or absence of the β1-integrin-blocking
antibody mAb 13 (Figure 2, A and B). Preimmune IgG
was used as a control and showed no effect on DQ-
collagen IV degradation (data not shown).
Representative single optical sections at the equatorial
plane are illustrated in Figure 2, A and C, and three-
dimensional reconstructions of the optical sections are

shown in Figure 2, B and D (see also Videos 1 through
4 showing DU145 cells [online version only]).
Degradation products of DQ-collagen IV were
observed pericellularly and intracellularly.
Downregulation of β1-integrin expression and func-
tion resulted in smaller cellular spheroids and a reduc-
tion in proteolysis of DQ-collagen IV (see Figure 2).
Owing to the reduced size of tumor spheroids, we con-
firmed that proteolysis per cell was also reduced
(Figure 3, B and E). Proteolysis was quantified using
our established protocols28 in which the total integrat-
ed intensity of fluorescence throughout an entire Z-
stack is measured (Metamorph 6.0) and normalized to
the total number of nuclei (Volocity 4.2.0) within that

Figure 2.  Reduced expression or function of β1-integrin in BT-549 and DU145 cells decreased degradation of DQ-collagen IV. BT-549,
BTshβ1-8, DU145, and DUshβ1-5 cells were seeded in glass-bottom dishes coated with a mixture of reconstituted basement membrane and
DQ-collagen IV in the presence or absence of the β1-integrin-blocking antibody mAb 13 (20 µg/mL). Following overnight incubation at 37˚C,
DQ-collagen IV cleavage products (green) were imaged with a Zeiss LSM 510 META NLO microscope, using a 40× water immersion objec-
tive, and superimposed on differential interference contrast (DIC) images of cellular spheroids. A and C, Z-stack images were captured, and
a representative optical section at the equatorial plane is shown for each cell line in the presence and absence of mAb 13. B and D, Three-
dimensional reconstructions of the Z-stacks were created using Metamorph 6.0 and AutoVisualize softwares, and an XY view of the DQ-
collagen IV degradation is illustrated (see also Videos 1 through 4 [online version only]). Bars = 10 µm.
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Figure 3.  Reduced expression or function of β1-integrin in BT-549 and DU145 cells decreased the intensity and depth of degradation of DQ-
collagen IV. BT-549, BTshβ1-8, DU145, and DUshβ1-5 cells were seeded onto glass-bottom dishes coated with recombinant basement 
membrane–DQ-collagen IV mixture in the presence or absence of the β1-integrin-blocking antibody mAb 13 (20 µg/mL). Following overnight
incubation at 37˚C, DQ-collagen IV cleavage products (green) were imaged with a Zeiss LSM 510 confocal microscope using a 40× water
immersion objective. Nuclei were stained with Hoechst (pseudocolored red here). A and D, Z-stack images were captured and used to make
three-dimensional reconstructions of the spheroids (also see Videos 5 through 8 [online version only]). B and E, Using both Metamorph 6.0
and Volocity 4.2.0 softwares (Perkin Elmer, Waltham, MA), the intensity of DQ-collagen IV degradation was measured, normalized to the
number of nuclei, and expressed as normalized integrated intensity per cell. C and F, The depth over which proteolysis occurs in the Z-stack
of each cell line was recorded. Graphs are representative of at least three experiments and presented as mean ± SD. **p < .01. SD bars are
not depicted in B and E because the values are negligible. 
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Z-stack28 to determine proteolysis per cell. The reduc-
tion in both spheroid size and proteolysis was more
extensive when BTshβ1-8 or DUshβ1-5 cells were also
incubated with the β1-integrin-blocking antibody mAb
13. The depth to which the cells invaded was assessed
by measuring the z-axis distance over which green flu-
orescence products of proteolysis were observed (see
Figure 3 and Videos 5 through 8 showing DU145 cells
[videos with online version only]). Reduced degrada-
tion of DQ-collagen IV corresponded to reduced inva-
sion (see Figure 3, C and F, respectively), suggesting a
role for β1-integrin in invasion of tumor cells via
degradation of the ECM. We should indicate that the
larger impact observed in the cells inhibited by β1-integrin
antibodies versus cells transfected with β1-integrin

shRNA is because the mAb 13–blocking antibody,
which is specific for β1-integrin, inhibits all accessible
β1-integrin molecules, whereas the shRNA inhibition
does not knock down β1-integrin completely.

Downregulation and Blocking of ββ1-Integrin
Reduces Tumor Cell Invasion 

We further investigated whether β1-integrin is
required for these cells to invade through rBM.
Cells were grown on rBM-coated filters for 24
hours, and the cells that invaded through the filters
were stained (Figure 4, A and C) and counted
(Figure 4, B and D). Since BT-549 cells migrate as
single cells and DU145 cells migrate as sheets of
cells, we assessed invasion through 8 and 12 mm

Figure 4.  Invasion of BT-549, DU145, and β1shRNA transfected cells through recombinant basement membrane (rBM). rBM-coated filters
were placed in Boyden chambers and media containing 5% fetal bovine serum (FBS) was used as a stimulus in the bottom compartment of
the chambers. BT-549, DU145, BTshβ1-8, or DUshβ1-5 cells were seeded (2.5 × 104 cells in 200 µL) in the top compartment of the cham-
ber with 1% FBS and incubated at 37˚C overnight. Invasion of BT-549 and DU145 cells was also assessed in the presence of 20 µg/mL of
the β1-integrin-blocking antibody mAb 13. A and C, The cells that had invaded were stained, counted, and imaged using 10× and 40× (insets)
objectives. B and D, Graphs are representative of at least three experiments and presented as mean ± SD. **p < .01. 
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pore filters, respectively. Downregulation of β1-
integrin reduced invasion of BTshβ1-8 cells by 74%
and DUshβ1-5 cells by 46%. The β1-integrin-
blocking antibody mAb 13 was more effective in
reducing invasion of BT-549 and DU145 cells than
was shRNA. Invasion of the BT-549 and DU145
cells was reduced by 95% and 63%, respectively.
These data indicate that β1-integrin is involved in
invasion of breast and prostate carcinoma cells
through rBM in vitro.

Downregulation of ββ1-Integrin Decreases Secretion
of Procathepsin B

The reductions in ECM degradation by β1-integrin
downregulated cells suggest that β1-integrin expres-
sion and function may regulate the expression and
activity of proteolytic enzymes. Our previous studies
revealed that secretion of procathepsin B from
breast fibroblasts is reduced in the presence of β1-
integrin-blocking antibodies.30 Here we found that
secretion of procathepsin B (43/46 kDa) was
decreased in BTshβ1-8 cells (Figure 5A), an effect
that was not observed in the prostate cancer cells
stably transfected with β1-integrin shRNA (data not
shown). There was a corresponding increase in
intracellular mature cathepsin B (ie, 31 kDa single
chain and 25/26 plus 5 kDa double chain) in
BTshβ1-8 cells. Cathepsin B activity assays confirm
the immunoblotting data; there was an increase in
active cathepsin B intracellularly and a decrease in
secretion of pepsin-activatable procathepsin B in the
BTshβ|1-8 cells (Figure 5B). In addition, we analyzed
the ability of the conditioned media to degrade DQ-
collagen IV in vitro in the presence and absence of
the highly selective cathepsin B inhibitor CA074
(Figure 5C).26 There was a reduction in degradation
of DQ-collagen IV by the conditioned media of
BTshβ1-8 cells compared with BT-549 cells. The
degradation of DQ-collagen IV was partially inhib-
ited by CA074, confirming that cathepsin B partici-
pates in the extracellular degradation of DQ-
collagen IV. Furthermore, the level of DQ-collagen
IV degradation in the parental and β1-integrin
downregulated cells in the presence of CA074 was
comparable, implicating secreted cathepsin B in the
extracellular degradation of this ECM protein. 

Downregulation of ββ1-Integrin Decreases MMP-
14 Expression and Secretion of MMP-13, TIMP-
1, and TIMP-2 and Increases Secretion of TIMP-3

Given that inhibition of cathepsin B did not abolish
the degradation of DQ-collagen IV, we also investi-
gated the effects of β1-integrin downregulation on
the expression and secretion of MMPs, the family of
proteases most extensively linked to ECM degrada-
tion. We found that expression of MMP-14 was
reduced in both β1-integrin downregulated breast
and prostate cancer cells (Figure 6A). In addition,
using antibody array analysis, we observed that the
secretion of MMP-13 was reduced in β1-integrin
downregulated prostate cancer cells but not in 
β1-integrin downregulated breast cancer cells (Figure
6B). There was also a decrease in secretion of 
TIMP-1 and -2 and an increase in secretion of TIMP-
3 from the prostate cancer cells. These data indicate
differential roles for β1-integrin in the regulation of
MMP and TIMP expression and secretion that is
dependent on the tumor cell type.

Downregulation of ββ1-Integrin Reduces Adhesion
to Collagen I and IV and Migration

We investigated the effects of β1-integrin on adhesion
and migration of BT-549 and DU145 cells. Adhesion
of BTshβ1-8 and DUshβ1-5 cells to collagen I and IV,
but not to fibronectin and laminin, was reduced com-
pared with that of parental cells (Figure 7, A and B,
respectively). We also investigated the effect of β1-
integrin downregulation on cell migration in wound
healing assays. During the 24 hours after wounding,
migration of the cells was imaged at 5-minute inter-
vals. Parental BT-549 and DU145 cells migrated faster
than did BTshβ1-8 and DUshβ1-5 cells. Although both
parental and β1-integrin downregulated BT-549 cells
migrated as individual cells into the wounded (cell-
free) areas, there was more migration of parental cells
than BTshβ1-8 cells after 20 hours (Figure 7C).
DU145 parental cells moved collectively as a sheet of
cells and had nearly closed the wound after 20 hours,
whereas only a few DUshβ1-5 cells had moved into the
wounded areas (see Figure 7C). These data indicate
that β1-integrin is involved in the adhesion and migra-
tion of both breast and prostate cancer cells. 
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Discussion

β1-Integrin facilitates signaling events that promote
ECM adhesion, migration, and degradation, thereby
supporting tumorigenesis. Given the complexity of

ECM, multiple families of proteases (serine, cysteine,
and metallo-) participate in ECM remodeling and
degradation. Indeed, numerous studies have linked β1-
integrin expression to alterations in proteases; howev-
er, this study is the first to use functional imaging on

Figure 5.  Secretion of procathepsin B was reduced in β1-integrin downregulated BT-549 cells. A, BT-549 and BTshβ1-8 cell lysates and
overnight serum-free conditioned media were equally loaded, analyzed by SDS-PAGE, and immunoblotted with an anticathepsin B antibody;
lysates were immunoblotted with an antiactin antibody as a loading control. Immunoblots are representative of at least three experiments.
B and C, Cell lysates and media were assayed for cathepsin B activity against Z-Arg-Arg-NHMec substrate, and activity was recorded as
pmol/min/µg DNA. D, Media were assayed for cathepsin B activity against DQ-collagen IV substrate, in the absence (black bars) and pres-
ence (white bars) of the highly selective cathepsin B inhibitor CA074, and activity was recorded as relative fluorescent units (RFU)/µg DNA.
Graphs are representative of at least three experiments and presented as mean ± SD. **p < .01.  
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live tumor cells to show the effects of downregulation
and/or blocking the function of β1-integrin on collagen
IV degradation by a network of proteases in both
breast and prostate cancer cells. These findings are
also accompanied by a decrease in cell adhesion to and
invasion through collagen IV–containing matrix.

Collagen IV, the structural backbone of the base-
ment membrane, interacts with integrins and serves as
scaffolding for the binding of other basement mem-
brane components.31 We have previously demonstrated
that a network of proteases, including MMPs, serine
protease plasmin, and cysteine protease cathepsin B,
participate in the degradation of collagen IV in breast,

colon, and prostate carcinoma cells.27,32 In the current
study, downregulation of β1-integrin expression and/or
function revealed differential effects on protease expres-
sion and secretion depending on the tumor cell type. For
example, in β1-integrin downregulated breast cancer
cells, secretion of procathepsin B was reduced, an effect
not seen in prostate cancer cells. β1-Integrin-blocking
antibodies also reduces secretion of procathepsin B by
breast fibroblasts, and, conversely, β1-integrin-activating
antibodies stimulate secretion of procathepsin B by
these cells.30 In highly invasive melanoma cells grown in
collagen I, inhibition of β1-integrin activity by blocking
antibodies reduces the secretion of both pro- and

Figure 6.  Expression of matrix metalloproteinase (MMP)-14 and secretion of MMP-13 and tissue inhibitor of metalloproteinase (TIMP)-1
and -2 were reduced and secretion of TIMP-3 was increased in β1-integrin downregulated BT-549 and DU145 cells. A, BT-549, DU145,
BTshβ1-8, and DUshβ1-5 cell lysates were equally loaded, analyzed by SDS-PAGE, and immunoblotted with an anti-MMP-14 and antiactin
antibody (loading control). Immunoblots are representative of at least three experiments. B, Conditioned media from these cells were ana-
lyzed on a human MMP antibody array (RayBiotech).
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mature forms of cathepsin B.33 A functional link
between cathepsin B and β1-integrin is also seen in
angiogenic signaling where antiangiogenic endostatin, a

fragment of collagen VIII that is generated by cathepsin
B,34 blocks α5β1 integrin function.35 Interestingly, we
recently found that cathepsin B and β1-integrin colocal-

Figure 7.  Adhesion and migration of BT-549, DU145, and β1shRNA transfected cells. Adhesion assays were performed by seeding 50,000
BT-549 (A, black bars), DU145 (B, black bars), BTshβ1-8 (A, white bars), or DUshβ1-5 (B, white bars) cells in 24-well tissue culture plates
coated with collagen I, collagen IV, laminin, or fibronectin (5 µg/mL). After 30 minutes, unattached cells were removed by washing with
phosphate-buffered saline (PBS). Two millimolars of calcein AM in PBS was added to the adherent cells for 30 minutes at room temperature.
Fluorescent intensities were measured at 485/535 nm and expressed as relative fluorescent units (RFU). Graphs are representative of at least
three experiments, and data are presented as mean ± SD. *p < .05; **p < .01. C, Wound healing assays were performed on 100% confluent
live cells in 35 mm dishes. Prior to wounding, cells were incubated in serum-free media containing 0.1% bovine serum albumin for 5 to 6
hours. After the wounds were made, detached cells were removed by washing and adherent cells were incubated at 37˚C for 24 hours and
then imaged by phase-contrast microscopy using a Zeiss LSM 510 META NLO microscope with a 10× immersion objective. Images are rep-
resentative of at least three experiments. Bar = 50 µm.
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ize to caveolae of endothelial cells during differentiation
of these cells into tube-like structures in vitro (unpub-
lished data, 2008), a process associated with degrada-
tion of collagen IV (unpublished data). Cathepsin B has
also been found to colocalize with β1-integrin along
with uPA and its receptor uPAR in the caveolae of HCT
116 cells, an association mediated by caveolin-1 expres-
sion.21 Given that cathepsin B can activate pro-uPA to
uPA,36 caveolae may serve as an initiating site for cell
surface proteolysis. 

Although β1-integrin downregulation did not
affect cathepsin B in prostate cancer cells, there were
effects on MMPs and TIMPs. We show that downreg-
ulation of β1-integrin reduces expression of MMP-14,
also observed in breast cancer cells; reduces secretion
of MMP-13 and TIMP-1 and -2; and increases secre-
tion of TIMP-3. In human chondrocytes, β1-integrin-
blocking antibodies inhibit the induction of MMP-13
expression in these cells by type I collagen.37

Conversely, induction and activation of MMP-13 are
augmented by β1-integrin-activating antibodies in
human skin fibroblasts grown on a collagen I
matrix,38 thus indicating that MMP-13 expression
and activation in these cells are regulated by the inter-
action between β1-integrin and the ECM. The
decrease in MMP-14 expression and TIMP-2 secre-
tion in the β1-integrin downregulated prostate cancer
cells is interesting since MMP-14 is an activator of
MMP-2 and TIMP-2 acts as a linker protein for the
activation of pro-MMP-2 by MMP-14.39 In ovarian
carcinoma cells, β1-integrin was shown to stimulate
the activation of pro-MMP-2 by MMP-14.40

Although we also observed a decrease in TIMP-1
secretion, TIMP-3 secretion was increased in β1-
integrin downregulated prostate cancer cells. The
association between TIMP-3 and β1-integrin is not
clear; however, TIMP-3 is the only TIMP to complete-
ly inhibit the sphingosine-1-phosphate-induced and
α2β1-dependent invasion of endothelial cells in colla-
gen matrices.41 A reduction in TIMP-1 expression was
previously reported in β1-integrin downregulated
DU145 cells,42 and TIMP-1 is hypothesized to inter-
act with the CD63/β1-integrin signaling complex,
which is required for cell survival and motility.18 The
association of β1-integrin with MMP-14 also involves
cell migration. In endothelial cells, MMP-14 partici-
pates in cooperation with β1-integrin during migra-
tion of these cells on various ECMs.39 MMP-14 was
also found colocalized with β1-integrin in actin-rich,

“collagenolysis-free” leading edges of migrating
fibrosarcoma and breast carcinoma cells grown on a
three-dimensional collagen matrix.43 It was suggested
that at the leading edges of these migrating cells,
adhesion and remodeling of the ECM that facilitate
forward movement.43 Here we show a perturbation in
the migration of β1-integrin downregulated cells, an
effect likely associated with the observed changes in
protease and inhibitor expression and secretion.

Our data also revealed that a reduction in β1-
integrin expression and activity in both breast and
prostate carcinoma cells decreased cell migration and
adhesion to type I and IV collagen. These data com-
plement previous studies that show that the interac-
tion of human prostate cancer cells PC3 with the col-
lagen matrix of bone is mediated by collagen-binding
integrin α2β1 and is enhanced by ttransforming
growth factor β1.

44,45 Moreover, bombesin-mediated
activation of pro-MMP-9 in PC3 cells is facilitated
by ligation of β1-integrin to collagens I and IV and
fibronectin,46 which increases uPA expression, 
membrane-linked uPA activity, and activation of Src
and phosphatidylinositol 3-kinase, thereby augment-
ing invasion of these cells.46 Our findings, however,
revealed no effect of β1-integrin on the binding of
breast and prostate cancer cells to fibronectin or
laminin. Similar observations are reported in cell
adhesion assays using squamous cell carcinoma
cells.47 On the other hand, several studies show a role
for β1-integrin adhesion to fibronectin and laminin,
including several cell signaling events.3 It is plausible
that the lack of effect of β1-integrin downregulation
on adhesion to fibronectin and laminin can be
explained by integrin redundancy, as reported for
adhesion of breast cancer cells to fibronectin or 
vitronectin.48

Thus, our study using functional imaging of live
cells demonstrates an involvement for β1-integrin
expression in the degradation of collagen IV via pro-
cathepsin B secretion and activity, MMP-14 expres-
sion, and MMP-13 and TIMP-1, -2, and -3 secretion.
Involvements of α integrins that interact with β1-
integrin during collagen IV degradation are currently
being investigated. In addition, other mechanisms that
contribute to the proteolysis of ECM, such as the
urokinase plasmin(ogen) cascade and signaling path-
ways involving p21-activated kinase,49 will be exam-
ined with respect to their roles in β1-integrin-mediated
ECM degradation and invasion of tumor cells. 
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