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A unified treatment of the non-relativistic and relativistic
hydrogen atom: IIL. The reduced Green functions

Robin A Swainson and G W F Drake
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Received 4 September 1990

Abstract. This is the last in a series of three papers in which it is shown how the radial
part of non-relativistic and relativistic hydrogenic bound-state calculations involving the
Green functions can be presented in a unified manner. The work presented here is concerned
with the reduced Green functions which arise in second-order stationary state perturbation
theory. Using a simple linear transformation of the four radial parts of the relativistic
reduced Green function it is shown how the non-relativistic and relativistic functions are
special instances of the solution of a general second-order differential equation. The general
solution of this equation is exhibited in the form of a Sturmian expansion, and complete
solutions in both cases are presented. Recursion relations are deduced for the radial parts
of both reduced Green functions and their matrix elements are examined in detail. As a
test of the given functions the second-order effect of a perturbation of the nuclear charge
is calculated and is shown to agree exactly with the value expecied from a simple Taylor
expansion of the hydrogenic energy formula.

1. Introduction

This is the last in a series of three papers in which we present a unified treatment of
non-relativistic and relativistic calculations involving the Coulomb Green functions
{cocrs) for hydrogenic systems, In the previous two papers [1, 2] we have seen how a
linear transformation of the defining radial equations can be used to transform the
analysis of the relativistic Dirac-Coulomb wavefunctions and Green functions (DCwFs
and DCGFEs) into a simple generalization of the corresponding analysis of the non-
relativistic Schrédinger-Coulomb wavefunctions and Green functions (scwrs and
sCGFs). In the present paper we extend this work to include both the non-relativistic
and relativistic reduced Coulomb Green functions (rRcGFs), which arise when the
energy variable for the ordinary cGr coincides with an energy eigenvalue. The RCGFs
are required in second-order stationary state perturbation theory as is shown in most
elementary texts on quantum mechanics.

The definition of the reduced Green functions in an abstract setting is based on a
consideration of the corresponding definition of the ordinary Green function, The
ordinary Green function G(z) corresponding to the Hamiltonian H (with eigenvalues
E and associated eigenstates ¢r; ) was shown in the previous paper [2] to be represented
by a sum over the complete set of eigenstates of the system in the following way:

G(z)=3 Yethi/(E—z). (1.1)

It is clear from this representation that if the energy variable z is equal to an eigenvalue
E' of H the ordinary Green function will be undefined since the denominator will be
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1802 R A Swainson and G W F Drake

zero for all states corresponding to this eigenvalue. This difficulty is overcome by
‘defining the reduced Green function G(z) to be given by

G(E") =Y ¢t/ (E—E') (12)
= lim [G(2) = e/ (E'-2)] (1.3)

where the prime on the sum in (1.2) indicates that the subspace of eigenfunctions
corresponding to eigenvalue E’ is to be omitted, and the sum in (1.3} is over that
subspace. An equivalent definition [3] used by several authors is

G(EY=d/dz[(z— ENG(2)]|.—¢-. (1.4)

If H is represented by a differential operator H, acting on a Hilbert space of functions
on R?, G(z) is itself represented by a function G(r,, r.; z) on R’ xR which satisfies

(H, - E’)G(rl: ry; EN=8(r;— 1) =X de{r)oLAry) {(1.5)

which is the defining differential equation of the reduced Green functions. The RCGFs
have been calculated from the known forms of the cGF using both the limiting procedure
(1.3) and the differential property (1.4). In this work we will find it convenient to solve
the deﬁning differential equation (1.5) directly.

The non-relativistic reduced ouhluunﬁgﬁ‘—\,o‘u“’)ulu Green function ( \R3CGF ) Wwas
apparently first examined in detail by Hameka {4]. Using the limiting procedure based
on a calculation of the general radial scGr he calculated the first term in the partial
wave expansion of the function for the ground state, giving it in terms of products of
Whittaker functions. Hostler [3] was able to find a closed form expression for the total
ground state rscGr using (1.4), and shortly thereafter derived a series expansion similar

ta tha Sturmian avnancinn 31
t0 ¢ Surmian CXpansion (2.

Two quite different forms of the radial rscGF corresponding to a general energy
level were given by Sherstyuk [6] and by Khristenko and Vetchinkin [7]. Both treatments
are based on known forms for the general radial scGr. Sherstyuk takes as his point
of departure the representation of the radial scGF as the product of Whittaker functions
(see [2] equation (2.13)) and, with the aid of {1.4) derives a solution consisting of a
rather complicated infinite series written interms of r., and r_, This form was simplified
by Johnson and Hirschfelder [8] who have presented a solution for the radial rscGF
involving finite series and known special functions, which is, nonetheless, not easy to
work with and exhibits no obvious means of generalization to the relativistic problem.
Khristenko and Vetchinkin [7] took as their starting point the Sturmian expansion of
the radial scGF ([2] equation (2.6)) and employed the limiting procedure embodied
in (1.3) to deduce a Sturmian form for the radial rscGF. It is this form we will reproduce
here as a consequence of our unified treatment of the non-relativistic and relativistic
RCGF.

Attempts to derive a compact formula for the relativistic reduced Dirac-Coulomb
Green function (RDCGF) have been notably less successful. In the early seventies Zon
et al [9] obtained the ground state RCGF for the second-order Dirac equation from
which the ground state RDCGF could be obtained by application of a three-dimensional
differential operator, though this was not explicitly done. Manakov and Zaprayagaev
later [10] applied a limiting process to a form of the radial DCGF obtained using the
second-order Dirac equation to find a form of the radial RpcGF for the special case
of j = n—4. Both of these methods lead to a form of Sturmian expansion. Hylton [11],
taking a quite different position found a general solution for the radial RpcGF based
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on the standard form of the radial DcGF given in terms of Whittaker functions. This
solution, left in the form of various special functions and integral representations is
not ideally suited to explicit calculations.

We have been able to resolve the difficulties associated with discovering general
forms of the rscGF and RDCGF by extending the methods introduced in the first two
papers in this series [1,2]. In keeping with the general thrust of this work we have
treated the angular part of the analysis in the standard manner since we believe this
to be understood well enough to present few difficulties in actual calculations. The
radial equations in the relativistic case have been treated as before by applying a simple
linear transformation. In this way the defining radial equations for the rscGr and the
transformed RDCGF are seen to be special cases of a more general equation which we
present and solve in appendix 1. That this should be so is not quite as trivial as it
appeared to be for the ordinary Green functions considered in the previous paper [2);
inthe present case there are functional differences between the defining radial equations
for the rsCGF and transformed RDCGF. The solution obtained in appendix 1, along
with a normalization condition examined in appendix 2, allows us to write down
Sturmian expansions of the radial rRsCGF in section 2 and of the radial rRDCGF in
section 3. The solution of the general relativistic RDCGF given in section 3 in a simple
and useful form is, we believe, new. Other forms of the solutions, such as those
presented for the ordinary radial cGFs in {2] are not available for the RCGEs. In section
4 we derive various recursion relations between different radial rcGFs which have been
given only for the non-relativistic functions in previous studies but which we present
for the relativistic functions too. These recursion relations are obtained simultaneously
for both the non-relativistic and the relativistic functions using the results presented
in appendix 3. In section 5 we show how one might go about calculating matrix
elements of the Green functions. Again the difference in the method for the two cases
is minor; we have even been able to give a form of the hypervirial theorem applicable
in both cases.

Very often calculations which seem to involve the reduced cGr do 50 in name only;
the functions involved are actually general ccrs evaluated at an energy eigenvalue.
Such calculations include the polarizabilities of the hydrogen atom. We thought it
important to test our solutions for the rocGF directly, and this we do in section 6
where we calculate the second-order energy shift due to a small perturbation of the
nuclear charge. Obviously this quantity can be found from the Dirac formula for the
hydrogenic energy levels; our calculation consists then of a sharp test of the main
results of this paper. Section 6 also contains some concluding remarks to this series
of papers.

2. The reduced Schridinger—Coulomb Green function

The reduced Schrodinger-Coulomb Green function, G(r, , ¥2; n) corresponding to the
energy E, is defined to be the solution, subject to appropriate boundary conditions, of

# #? a

(__Vi_ _En) G("1,"2',")=5("|"l'z)"‘2 wnim(rl)d’nfm(rz)* (2-1)
2m amr,

where Yy, (r) = R (r) Y, (f} is the Schrodinger-Coulomb wavefunction defined in

[1], and Ehe sum is over the entire manifold of states with energy E,. A functional

form of & suitable for use in specific calculations can be found by following basically
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the same analysis as was used in solvmg the ordinary Schridinger-Coulomb Green
function [2]. We begin by expanding G in terms of spherical harmonics [12],

G("l, fzin)=12§r(rl, r2;n)Yfm(F1)Y;|:n(F2) (2.2)

and substitute this expansion into (2.1). Application of the orthogonality conditions
for spherical harmonics leads to two radial equations for §:

& 2.d I(I+1) 1
_— .|._.._
(drf r dr. r% ar, a2n2) gf(rls ras ")
8
-Q2m/h*) ——= (ri—r2) for I=n (2.3a)
rhra
2 8(r, —
=-(2m/ k") —r"’j——Rnr(n)Rn:(h) for l<n. (2.3b)
12

It is immediately clear that for /= n the reduced radial functions are identical to the
full radial functions obtained in [2],

gilri, rayn)=gi(r, ra; n) for I=n (2.4)

with the energy variable fixed at the eigenvalue. The solution of the second equation
requires first a discussion of the appropriate boundary conditions.

Consideration of the forms of the full radial Green function and the radial wavefunc-
tions leads us to require that

gi(ry, 23 1) > O(r) as r~0 (2.5a)

B, s m)=e/" as  r-—>o (2.5b)
and

gi(r, rasn)y=g(r,, r;; m). (2.5¢)

We further require that g be unique. It follows from the general definition of the
reduced Green functions that they must be orthogonal to the relevant energy eigenspace.
Since adding terms in R,; to §, will not affect (2.3b) we make the following additional
restriction on §;:

J' Rnf(ﬁ)g:(rl,fz;")r%drlzo (2.6)
Q

and similarly for r,. With these formalities over, we can now quite rapidly solve
equation (2.3b). In fact a somewhat more general equation is solved in appendix 1,
and the solution to {2.3b) follows from the solution presented there with ¥ =n, A =1,
and & =1/ an. Thus, in the notation of appendix 1

§:(r1, ry, n)= +2m/ﬁ2§nf(rla r2; 1/an). 2.7
The values of o, and 7, are obtained from the definition of R, given in [1]:

oy =(2/an)*(4/n*a>}(n—1-1)Y/(n+1)! n=0. (2.8)
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The arbitrary constant A4, is fixed by the normalization condition (2.6), which can be
readily calculated given the analysis presented in appendix 2. In fact, in this case
A,;=1. Thus the final form of the solution is

&ilry, ras n)=+2m/ B2/ any " (r,r,) @7 an
il
(&
I+1+DI+1+i—n)

—-1-1
.{_(2”;("—+[))! L2 2r/am)[(n =D LA 2/ an)

(""'I)Lil 2(2’2/0")]+L21 1(2"1/‘1")14? —1(2r;/ an)

L3 2r/an) LY (2ry/ an)

~ DL 2r an) — (n+ DL (2r/ an)JLE L (2rz/cm)}) (2.9)

The asterisk appearing on the summation sign indicates that the term for i=n—1/—1
is to be omitted.

In the previous paper [2] varicus properties of special functions were employed
to show how many other functional forms of the radial scGF could be derived from
the Sturmian form. Similar methods cannot be employed here because of the {omitted)
singularity within the infinite sum. Nonetheless the Sturmian form for the radial rscGr
given in (2.9) can be shown to be appropriate for many applications. This will be,
therefore, the only form we present in this paper.

A solution of (2.1} corresponding to the form of the radial SCGF given in terms of
Whittaker functions [2] has been given by Johnson and Hirschfelder [8]. However,
certain terms in that solution corresponding to products of Laguerre polynomials have
been obscured by the complicated analysis involved, and the possibility of extending
the presentation as a whole to the relativistic case is not obvious. An integral solution,
bypassing the separation into angular and radial parts has been obtained by Hostler
[3]; again the relevance to the relativistic case is unclear.

3. The reduced Dirac—Coulomb Green function

As in the previous section, our treatment here of the rpcGF follows closely the
development of the full bcGF we presented in [2], and indeed we retain the notation
of that paper. The Dirac-Coulomb wavefunctions given in [1] will also be employed
extensively in the following. At the outset, however, we note that the energy eigenvalues
eny depend on |x| alone; thus, whereas in the non-relativistic case there are n—1
values of / with energy corresponding to the principal quantum number n, in the
relativistic case only two values of k, +|«|,
in some ways the RDCGF is easier to deal with than the rscGF.

The RDCGF G(r; , #2; N, y) corresponding to the energy eigenvalue g, is the 4x4
matrix function satisfying

e d Zh .
[(a .-1)(-—' C-—r1+'cﬁK)+ﬁmc 2_2 C-mNT]G(rl,rz;N,y)
r, dr, r

=8(r—r)l, Z[‘PNKM(H)‘I’NKM(Q) +¥ N M) ¥ e xM(r2)1’] 3.1
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subject to suitable boundary conditions, and where the summation is for M = |«|+3.
Following the analysis for the general pcGrF [2] we expand G and ¥ in terms of the
spinor spherical harmonics [12],

—x{k+1/2—-M\"?
F‘T 2 +1 Yl 2-172 m-17200, &)
M
8 w)=
Xx( ,‘P) K+1/2+M 1/2 (3'2)
2k +1 Y|'<+l/21—1/2,M+1/2(0, (P)
that is we let
Glriir: N y)= T ( g (r, r)XE(FOXE(7) —i§L2(r,,rz)xt(F,)Xﬂl(Fz)) (33)
1s » ] - - A A A - A A -
Ky ‘gil(rl,rz)Xﬁk(rl)X‘f:T(rz) giz("l, rz)Xﬁk(rl)XEZ("z)
and
ff’"(r)x.’l‘(ﬂ)
v = ) )
o= (e i o4
Thus, as in the case of the radial RsCGF two separate situations obtain:
1 d k
1 d k 421 AR
(——r,+—) {—eo—eny—aZjn) Be 8k
r, dr, r
5(r —
=—(rr' - 2) 1,/ he k# tx (3.5)
172
8(ri—r) Y4 (n)
= ..lr : IZ/ﬁC—( :Vk(rl) (f;wk(rz) f;jk(rz)) k=%« (3.6)
iz 2 1

For k # £« the radial RDcGF is thus precisely the same as the general radial DcGr
given in the previous paper, evaluated at £ = £,. Thus the analysis presented in [2]
is immediately applicable and the problem is solved.

In the case where k = £« we have a somewhat more difficult equation to deal with.
Nonetheless a solution along the lines established in [1] and [2] is possible, and this
we now present. As before we let

giw‘(r))= ({w‘(r)
(gs”“(r) X f;”‘(r)) (3.7

(ﬁ.‘:(n, r) R, rz))

ﬁil(rls ) ’;iz(rl, r2)

and

A11 A12
gi(r, 1) gk("l,"z))

=Xl . X (3.8)

k(gil(ru ) giz("l» r3) k

where

)_fk=(1 X“) Xo=(-k+n/aZ  y=VK-a'Z’. (39)
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Then

-aZ y—1 d

~ Enk + X ). .

(B0~ enk/7) ( R dr.) (h}(‘(n,rz) h!f(r:,rz))
—aZ +1.d hi! 3

( o ¥ + ) (— SN-,,k/"Y) k(rl:rZ) w(ry, )

EN.,
Y n dr,

={1-— 8“‘ ) _ 74 glNk(r]) Nic
= (1= X3/ he=" = e Vy (O:Z k )(gfk(r.))(gl ((r)gs" (r2).
(3.10)

The set of four equations embodied i m (3.10) separate into two pairs which then
simplify further. The first pair, relating AL and %', is

" -1 d a
(?EO_ENyk)hllcl(rn, r:)+ [—QZ&‘N?'"‘Y(Y —_’)] il(’u r:}

¥y dr]

~y1—xy 20z ’”/ﬁ — [kgM(r)

L))

+aZg M (r)1g *(ry)/ he (3.11a)

+1 d ~ .
[_aZENy+ ')’(yr +a'r_)] h}cl(rl s 1) = {yept EN'yk)h.'zcl(rls r3)
1 1

=—[aZg™(r)+kgd*(r)]g™ (rn)/ e (3.11b)

We now substitute (3.11b) into (3.11a) to eliminate the off-diagonal term; we have the
added problem of dealing with the wavefunctions however. The analysis is simplified
using the recursion relations for the relativistic wavefunctions derived in the first paper
of this series, and which we reproduce here for clarity:

l: (d y+1)*az‘5N7]grk(r)=(')’50+ EN-yk)géw(r) (3.12a})
dr r
[ (;r“ " I) + "‘Zﬁm]g?”‘(r) = (veo— enyk)g (). (3.12b)

Then (3.112) and (3.11b) imply that

d2 L2d v(y+1} 2aZ .
- 2y 8(r — 1) N Nk
= (gg+enk/ Y1~ X3) . +2(en, +aZ/r gl (r)g M (r) (3.13a)
2
and
N d +1 “
hil(rl,r2)=l/(6~7k+£07)['y(§+yr )—aZsN?]h}‘l(r,,rz)
1 1

+[aZg(n) + kg2 (r) g1 (r,)/ hie. (3.13b)
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The second pair of equations is

(SG_Eva/T)EE("n r2)+(_?§ENY+Y—1

__d’) hz (ri, r2)

r dr,

=~ (kg (r) + aZg*(r )]t (r2)/ he, (3.14a)

{ aZ v+1

d
\" — EN-,."'_“"’F_) hk (ri, r)—(eo+enk/ 'Y)hk (r,r2)
Y Fi

=y(1-X%)/ he

__—5(’1 . r2) [aZg ™ (r )+ kg2"(r) 183" (r2)/ hie. (3.14b)

On substituting (3.14a) into (3.14b} and using (3.12a) and (3.126) we find,

2 —
he (d +2 d 'Y('Y 1)+2aZ

2 {22
ENy —wNy) hio(r, 1)

drl r dr r? n
—endNE—~X3) &
ez e XD 2N o vaz/r)gd (el ) (315a)
Y nra
and
12 d y—1 22
he(r, ) =—v/(enyk — €0y} ¥ a taZey, | hi'(r, )
r, rn
—[kgi™(r)) + aZgl(r)1g2%(r,)/ Be. (3.15h)

The form of both (3.13a) and (3.15a) is remarkably simple; these two equations,
along with the radial equation for the RscGF, are special cases of a more general
equation, the salution of which is derived in appendix 1. The appropriate boundary
conditions can be readily inferred from the solution of the ordinary pcGr. Referring
to (A1.9), and since in this case, in the notation of appendix 1,

a,=(20n,) " (e / 26 (N =Y [T(2y+ N+1}N +¥)] T=aZo,/en,
1= Qo) (N /26 NY[T(2y + NN + )] Ty =aZo,fen,

we can immediately write down expressions for the diagonal radial rocGr. However,
it is advantageous to consider the orthogonality condition we are imposing on G,

JWLk(rl)é(f1, ry; N, y)dr =0 k=%« (3.16}

Expanding ¥ and Gin spinor spherical harmonics, and transforming the radial RDCGFs
according to {3.8) leads us to two independent orthogonality conditions:

J {[(kg M (r) + aZgh*(r 1A 1y, 1)
+[aZg M (r) + kgN (r)1hE (ry, 1)} i dr =0 (3.17a)
J. {[(kg (r)+aZg, k("t)]hlz(’h"z)

+{aZgM(r) + kg (r)1A(r,, 1)}t dr =0, (3.17b)
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Expressing the integrands in terms of the diagonal elements only, performing partial
integrations where necessary and using the recursion relations for the radial wavefunc-
tions, leads to the following two equivalent conditions:

ZYJ (eNy+aZ/r1)g (rl)h”(rhrz)rldrl

+I [azgM(r)+ kg2 (r)Pridr, g1 (r,)/ he =0 (3.18a)
0

272 J' (EN)«-‘-aZ/rl)g?k(rl)ﬁiz(rl9 Tz)"f dr
0

+J- [kg Y () + aZgy (r)Pridr, g2 (r)/ hc=0. (3.18h)
0

The integrals involving the Green functions are special cases of one performed in
appendix 2, while the integrals of the wavefunctions can be performed using the results
of [1] (appendix 3). We find then that

fe. I —g a1 (1,19}
e bAR ATl

A =% a2 T
gt 1 /L Nyiv [=1i]

We are now in a position to write down the diagonal elements of the radial RDCGF,
which are

R, 1) = 20n, (Enpk + e0y )/ [Belk + ¥) 12w, ) (20n,ra) 7 €0 o0

co il
x(z S TRy +2+D)(i+1- N)L?YH(2‘”~v”1)1’~f”'(2w~,r2)
(N-1M!

z 2z
N ) F S TN T (N T )

X {LNLY " (2onn) — 2y + N) LV 2on, ) 1LV (2on,12)
+ (1= 2ka R,/ [Eny (Enyk + £ ) D LR (2eonyr)) LRZ 2e0ny72)

+ L en,n INLY Y Qupyra) - (27 + N)L““(ZcuNyrz)]}) (3.20)

and

’;iz(”l , F2) = szy(eN-yk —egy)/[ he(k+ ’Y)](szy"l)Tv’(szyrz)y_l <

—(rl-i-rz]wNY

*'—‘ 27A| y-1

(22 T(2y+i)(i— N) L7 ' Qopyr ) LT 7 2008, 1)
2 2 N!

o/ T TN (N )

X {[(N+1) LY 2onyn) = (29 + N =1 LY Qo ) 1LY T Qan,rs)
+(1 —kairy/["v'Ny(ENyk" SOY)J)L%V—]QWN#H)L?_ (Qwnyrs)

+ LY 2o, ) [(N + DLV 2wy} — (2¥+ N = DLV Qon, ) ]})
(3.21)
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Notice that A" and A** are symmetrical in r, and r,. This is not the case for the
off-diagonal terms, which can be easily deduced using the results of appendix 3. Thus
(3.11b) and {A3.8), together with the explicit forms of the Dirac-Coulomb wavefunction

given in 1], imply thai

3 (1) =1/ [he(k + ) 18(r ~ r)/Vrir;

b )y e—('!”’}‘"-”-*

4203, /[ h SRS T4 PRUNY o,
T LWN'W' |._u AT Y NN [N O}
(i+1)! )
* L1242 L?7+1 9
( .}:a r2y+1+i)(i+1-N) i1 Qo) (2wp,ra)
N!

+ (£ 2

( N’Y/EO) T2y + N)N+7)

X {[IN+ 1)L Qo) — 27+ N = DL Qun,r LR Qwnyts)

+3LR T 2wnn ) LY Qwpyra)
+ L (2N I NLY T (2 n,72) ~ (27+N)L2*+1(2wm,r2)]})

Similarly, (3.15b) and (A3 13) imply that
h ("1»"2)— ("2,"1)

(3.22)

(3.23)

We have now found useful functional representations of the radial RDCGF, rep-
resentations we believe to be new. It remains to note that the non-relativistic limit is
consistent with the radial rRscor found in the last section. In fact, using exactly the
same methods as were used in the first two papers of this series to ascertain the
non-relativistic limit of the radial Dirac-Coulomb wavefunctions and the radial Dirac-

Coulomb Green function we see that for k =|k|==1 and for k=—|k|=-1-1

(8 &Y (8 )
g &7 0 o/
4. Recursion relations for the radial Green functions

In appendix 3 we prove that
d A+l
2|:)\ (—-—+—~—) - mv]g‘“(r. , P w)
dar, n
=8(r —r)/Vrr—n(nn) e"re LI 1(20)1"1)142“1 {(2e0r3)

+(2w)2,\+1 A— lrg e—(rl+r2)w

- i +1)!
X(Z* 1_51- )) = L,%i,—l(Zwr,)L,?AH(Zwrz)

+o, (v -—/\2)/(2w)2"+3{(AA+2)L2,," Y Qor YL (20r,)

+[(v— A+1)L2—A+1(2¢9"1) (V+A—1)L2;\Al—l(zwrl)]L%\—T\l—l(zwrl)

+ L2 Qwr (v = A L2 2or) — (v + )LD (2wr2)]})

(3.24)

(4.1)
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and, since g is symmetric in r, and r, and the delta function is even,

d A-—
2[’\( - 1)'*'“”’]8»)\—1("1,"2;“-’)
dr, r;

=_6("‘1_FZ)/Vr1r2+TA—1(rIr2)A Lemtntr );..Lza 1(209"1)1}11\[(20”2)

_ (2(0)2)“11"?—1@ e—(rl+r2)w

* (i+1)! Al 2a+1
(E_‘O r(2/\+1+[)(A+1+, ) ?+] (2wr,)L (2(!”'2)

T, 1/(2‘9)2A+I{(A 1+2)L%/’\ Al(zwrl)L“ —1{2er2)

+ L3 2on)[(v = A) L5 2or) — (2 + A) LI, (20r,)]

(v =A+ DL Qo) - (v+a - 13050 (2mr1)]Lit*;‘_,(2wrz)}).
(4.2)

If at this point we make the assumption that

U'A—!/UA=TA—1/7A=(V2_’\2)/(2W)2 (4-3)

(which is clearly true for the particular values of ¢, and 7, relevant to the RSCGF and
RDCGE)} then we can combine (4.1) and (4.2) to deduce the fundamental recursion
relation,

A+1 R d A-1 ”
2[,\(i+—-—) —wv] Z.a(r, B2} w)+2[z\ (d__ )‘Hﬂl’] Buai(r, s @)

dr I ry r

=—n(rnr)* e~ 2 1(20"'1)[4? —1(2wr5)
+r(r) e RO L2 2 VL (2e0ry)
+0'A(V2”A2)/(ZW)Z[AA — Ayl
x 7y e e DA Qe YA (2wr). (4.4)

Two further reiations can be readily derived from {4.4). We note first the two recursion
relations proven in [1] and restated here as (A3.4) and (A3.9). These two relations
imply that

[A(1+A+l)—wv]r*_ e L (2or)

dr r
= _2w2r:\ eker2A+l 1(2(0")"'2(/\2/"_0)1’)?"\ 1 —ru.-L2A 1(2(1."') (4‘5)
and
[/\ (i—h —1) +wv] rte e [ (Qewr)
dr r

= (A =AY/2r Ve T L 2ar) + 2(@v — AY )t e T LA Qur). (4.6)
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Now, by virtue of the definition of 2, equation (A1.1), we have

-_— — _ v .
dr2 ) drz rs w gw\—l(rl’ L w)

_ 2[d2+2 d _Aa-1) 2er

20 A
- ————t—w a1y, T2 @
dr% r, dr, r% r, ]gv i(n,rs )

+w2('\2— Vz)év)\—l(rl , @)
= wz(hz— Vz)év;\‘l(rl yry @)= 8(ri—r)/nr,
Aoy T o/ 1)) e L2 Q0 ) LI (2o, ) (4.7)
Thus, the fundamental relation (4.4} together with (A3.4), (4.5) and (4.7) implies that

+1 d A+l «
[:A(_g_‘l",‘ )—mp][,\(_+ )—'&W]gn(rl,"ziw)
drl r drl Fa

+ @ (A=) glry, 1y @)
=A%8(r—r)/{rr)
— (Aot wvn, ) (rr)t e L2 0 wr YL (2wr)
FH P = ANo (A=A, ) e e 2 (00 r VLN 2wr,)
~ 12w e AT AL Qorn ) YL (2or)
~ i T L Qen ) L Qen)). (4.8)

This relatively complicated equation represents a A-lowering relation for the g,. In
fact, as we shall soon see, for the particular cases of the radial rRscGF and RDCGF the
relation simplifies.

A A-rajsing relation can be derived in an entirely analogous manner, using now
{A3.9) and (4.6). We find in this case that

d ir-1 d aA-1 n
A —- + av —= +wv | Bu-1(ry, r2; @)
dl‘l r drz s

+w*(A% - yz)gv.\(rls r; o)
= )\25("1 —r}/nn
~ (Ao, Forn)(nr)t e TP L2 Qo) LN (Qer,)
_%O'A(Vz“Az)(A —Aa- 1)("1"2)'\ e—(rH’)LfLA 1(2“"'1)1};'“)« 1{2wr))
—in(P =A% AT 5 L5 2eor ) 5L (2wr)
+ L (Qwr)) L2 (20r0)]. (4.9)

The recursion relations given above for the general radial rcGr subject to the
condition (4.3) can be applied to the specific functions we are considering in this paper
quite easily. All that is required are the particular values of a,, 7, and A, relevant to
the radial rscGF and rDCGF. In both cases {4.3) holds, and it is a simple matter, given
the definitions of the wavefunctions presented in [1], ta derive the following formulae.
In the non-relativistic case, (4.8} and {4.9) become

h2/2m[ (dd +%]')-1/ ][ (f*‘%)‘l/a]&(ﬁ,rz,ﬂ)

= #%/2m(n* - P)/(any’ i (r,, 123 1)
+P28(ry = 1)/ 1ra— PRy (R Ru—i(r2) (4.10)
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and

d [-1 d -1 .
ﬁ2/2m[1(a———-r )+1/a][!(d—r—————r )+1/a] gioi{ry, ra; n)
1 1 2

=h*/2m(n" —P)/(an)’g(r,, r; n)
‘Hza(rl_rz)/rlrz_Ianl("l)Rnr(?’z) (4.11)

while the fundamental relation (4.4) becomes

[1("d—+l+—1) - 1/0] giry,ry;n)= —[l(i—l_l) +1/a] gia(ry, ry; m). (4.12)

dry, n dr, n

In the relativistic case we find, in the notation of [ 1],

d +1 d +1 “
ﬁc/(eN7k+£0y)[y(d—r+ 7r )—aZsNy:I[y(a:-+ yr )-—aZeN,,:Ihi'(rl,rz)
1 1 2 2

= —ﬁcw?VyN(N-l_zy)/(SN'yk"— 507)’;%2("1 s r2)+2y2/(x t+y)é(r—n) nn
= 2kg D™ (r) g (r) — aZ[ @M (r) g2 (r2) + X (r )21 (r)] {4.13)

and

d v-1 d -1 An
hc/(stk—eoy)[y(a-— )+ﬂZ€N~,][Y(d—r—7 )+aZ€Ny]h§2(r1,rz)
1 2

Ll r;

= —hcan, NN +27)/ (enyk + egy) R (1, 1)+ 277/ (s + ¥)8(r, — 1)/ 1,1
—2kg ¥ (r) g () ~ aZ[g ™ (r) g2 () + g5 (r ) g (ra)]. (4.14)

In the relativistic case the fundamental relation (4.4) is actually a relation between the
off-diagonal terms of the radial RDCGF.

The recursion relations for the radial rscGr (4.10) and (4.11) were given in a
slightly different form in [8). The relations for the relativistic functions are, we believe,

new.

5. Matrix elements of the radial RcGF

In the previous paper [2] we presented two different techniques which lead directly
to formulae for matrix elements of the radial car. The first, and most general technique
depends on the evaluation of double Laplace transforms (pLTs) of the radial cGr, and
allows for the direct computation of a wide range of matrix elements. Though various
different forms of the DLT were given, rather complicated analysis would be required
for some calculations, especially if the number of terms involved was significant.
Compact expressions for a somewhat more restricted class of matrix elements are
possible using the second technique, which is basically a generalization of the hyper-
virial theorem well known in the study of matrix elements of hydrogenic wavefunctions.



1814 R A Swainson and G W F Drake

Both techniques become rather less useful when applied to the RcGF, in the first
case because we have only presented one form for the radial RcGE (the Sturmian
form}, and in the second case because the defining differential equation for the radial
RCGF contains additional terms.

Nonetheless these difficulties do not often emerge in actual caiculations involving
the rcGF. Usually we are interested in the matrix elements of the radial RcGF with
respect to the corresponding wavefunction. In this case, the energy variable of the
RCGF coincides with the eigenvalue of the wavefunction. In such circumstances, concise
expressions for the matrix elements may be found by appealing to the orthogonality
properties of Laguerre polynomials. For example

Ime"x"L?(x)Lf(x) dx=38 I'(a+i+1)/i! {5.1)

Q

implies that

oy
—wr, A1 7 204) Y . —wr, A+1p2a+1
J. e T LYSL Qo) galn, i w)e ey T LN (2wr) dry di,
Q

= A/ Ca )Y T[T e+ A+ 1)}/ (p -2~ 11T (5.2)
Similarly, since
o al'{a+1)/i! j=i
J e x "Ly (x)LF T (x) dx = { —T(a+i)/(i—1)! j=i-1 (5.3)
’ 0 j<i-1

and

35(&},1’21; 1) =(b-1/(a-Di$b-D-gb-a)]  a#),R(b-a)>0  (54)

we can easily show that

a0
J e L Qar) g, 1 @) e L225 2ery) dry diry
0

= (2a) T I(r+ 1)/ (2 = Mo (v = A (A, —40)/ (20)
+aA p = A —DYT(r+ A+ D[P (v+A+1)—$(2A+ D]} (5.5)

These two integrals are required for the calculation of the relativistic shift in the energy
due to a small perturbation of Z, the nuclear charge, in hydrogenic ions. Though this
calculation is of no intrinsic interest, given that the standard formula for the energy
levels is still valid, it nonetheless provides us with a simple test of the validity of many
of the results obtained in this paper, and is therefore presented in section 6.

Although many other such integrals can be derived from the basic properties of
Laguerre polynomials, if all else fails we can resort to the calculation of matrix elements
from the double Laplace transforms,

o0

K (p.,pz;w)=_“ rir e g (r, s @)y e T dr di. (5.6)

Jg R
0



A unified treatment of the hydrogen atom: III 1813

The general form for K, which we omit here, is found as in [2) using the formula

J re e Prt e LA 2wyl dr

[
=@ * N A+ i+ 1)/ p~ ) (pr1y el
+
XzF.("i,AH—u, —p - /\*r,[p i]) (5.7
A particular case of the prT, which has attracted attention elsewhere [13], is

obtained when w, = ;= A+ 1. Then the hypergeometric functions in (5.7) become
unity and we find

i:éﬂ.\+1(pl s P2 w)
=2 o(p,+ 1) po+ 1)]72

) ("*f Qo PC(r+ A+ 1)/ (v =4 - DIF(P Y™

x[(p+A+ )P+ P)~(v~A—1)(1/P,+1/P)+A,]
B F(Z/\ +2+’1) (PIPQ}‘) (5.8)

*
,Zo I‘ A+l )
whete Py=(p,~1)/(p,+1) and P,=(p,—1)/(p>,+1). The infinite sum in this
expression can be transformed in such a way as to reduce to a finite sum when A is
an integer, as is the case for the radial RscGr. We begin by noting that

® I{a+i+1)}

(j_l)trj;-_:o N+1-7) ‘
r .
~atplgt)+ype s T D o

—J'f IT{e—i+ji~Dix/(1—-x)P 2 (5.9)

1/m! UZD (m yf:—-y—log(]—x)—(l-x)"" ‘E (r:e) P+ 1)(~x) (5.10)
=0

and, for B not a positive integer
YT@+1) T Mx - ;0(I~AJ"B/(B*-r)—JogX+[¢( B~ (51

where y = (1) is Euler’s constant. Thus in the non-relativistic case, when A =/ and
v=n we have

w Hmmi
=‘(;(nf;r—?i!‘)’!{(PxPz)"_'—][v'f(ﬂ—l)Hog%ﬂ
oo
(i) L) e ]
n—l-2 1 _ _ n—j-2-i
_ ;021!(";{{_1;! it (Plz(;l)ip;z) I)) } 5.02)
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while in the general case

i:: i!().+l—y+i)(PlP2)
T(p+Aa+1) .
_m{(PlPZ) |:"t'("_)‘)+lll(—vw)l)—log(Plpz)

+_§ 1/(v+)\a—i)(——~—2(p‘+p2) )I_H]

(p+1){p+1)
_v—)\—2 i!F(V+)\—i)( 2(P|+P2) )iv+h+2}
So Tr+a+1) \(p—1(p—1) ' (5.13}

The non-relativistic case can also be treated by splitting the infinite sum into two parts,

®  (21+1+i)

g NPT ETA/E i
Zo i!(1+1—n+i)(P‘P2)
m=I-2  (2]+1+1i) meiey B (ntI+1+0)! ;
= z _(”—(P1P2)+(P1P2) ”Z—#(PJP:)“
i—o I+ 1—nT1) j=g (A— 1T IHET
n--2 (24140} .
= .(——).(Puf’z)'

o i+ 1—n+i)

+1/(n—1- 1)!(P1P2)"_H{(n+ N1 log(———(plz-:;)_('_‘l:_;l))

2 (p—f-1+i)! A D(p+ DV
rere § G5 [((Pzrplip;) I

a result which has been derived in a different manner elsewhere [13].

The final method of obtaining matrix elements we will consider here is an extension
of the hyperviriai theorem which we ireaied in [2]. As before, we assume we have
operators Ay, and B, related by
[d2 +2 d A(A+1) 20

+___w12 viw A Aeri,\+l_ (2(‘)"))
drr rdr r r ] wralr .

=B (r* e L2 (20r)) (5.15)
though now both »—A—1 and »'—A"—1 are non-negative integers. The radial RCGF

£.. satisfies (Al.1), so it immediately follows that

J r%év'»\'(rlar2;w,)B:)":fw’(r? _m'Lz'\ 1(2“)"1))‘1"1

0

==~ AN (1} eT 2 LI, (20r)))

(=]
+j. r;;(o'x‘*"fx/ﬁ)(r’; _m"LzAH l(zwrl))

0

X AU (rye L3, 2ry)) drl(ré’ e‘”"zLi’}i‘*[‘\!_l(zwrZ)) (5.16)
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which may be compared with [2] (6.3). Further reduction is possible if a third operator
Cu\e. exists, such that

d 2d NA+D 20

—_—t e ——— 4 a2 vhar o A —wr 2ZA+1
[er r d" r2 r w CVA«J (r € L,, A— l(zwr))

=(on+ 7/ PALE (P e LML (20r)) (5.17)

since, in that case, by the hypervirial theorem for wavefunctions, the integral and thus
the second term on the rHS of (5.16) vanishes.

6. Worked example and conclusions

Since the Sturmian form of the radial RDCGF is rather complex, we consider it important
to test it here by employing it to solve a problem for which the solution is already
known. Suppose we perturb the nuclear charge Z by a small amount 5 and calculate
the resulting second-order shift in the energy levels. This can be done easily enough
by expanding the relativistic energy,

F = m}f}\.u- YHI(N+ ) N N A (613
E (N4 [N+ y)+(aZ)] (6.1)

as a Taylor series in 7. The coefficient of %7, representing the second-order shift, is
then given by

A’Eppe= —(an)’mc/(2¥ ) (kP + Ny*)/ [ N* + K2+ 2Ny ]2
+3(6” = Y INy (- + Ny)/ [N+ >+ 2Ny T, (6.2)

Alternatively, we might try to use second-order perturbation theory, in which case the
energy shift is given by

2 —_ N Nic £(r, r) §l2(r1,f2))
A°Epen= J’(anﬁc/r,)[f, (r) f2 (h)](m( L) £ )

x( f},‘((:;)(anﬁc/rz)(r,rzfdr, dr,. (6.3)

which becomes, written in terms of the transformed radial functions,

o BN e, ) BR(r, 1)
2 — 2 Nie N 2 i 1572 o 172 -2
A Eper! - (G’T]ﬁﬂ) J [gl (rl) gZ (rl)]_Xx (hi1(rl’ rz) hiz(rl , rz))X

N«
X (gllwgrz))) {(ryr;) dr, dry. (6.4)
The radial integrals of off-diagonal terms may be simplified by noting that h iy, )=
i '(r;, ). The remaining integrals are performed using (5.1} and (5.3) and integrals
given in {1] appendix 2. Some tedious manipulation of the resulting expressions leads
directly to (6.2). Thus we see not only that the results of section 3 are consistent with
this calculation, but also that real and exact calculations are possible within the
framework of our analysis.

The whole purpose of this series of papers has been the presentation of a method
by which exact relativistic calculations of second-order processes may be reduced to
simple generalizations of equivalent non-relativistic calculations. In a further paper
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we will present a detailed analysis of the relativistic polarizability of the hydrogen
atom. Many other second-order processes may be treated in a similar manner; for
example, the calculation of relativistic two-photon decay rates can be seen to reduce
to a generalization of the non-relativistic calculation, As far as we are aware, while
the non-relativistic decay rates have been treated analytically, the corresponding
relativistic calculation has only been performed numerically [14, 15]. An analytical
calculation would serve to clear up discrepancies between these numerical treatments.

While the most significant aspect of the analysis presented in these three papers
has been the simplification of calculations of relativistic second-order processes in
hydrogen-like atoms, this is by no means all we have achieved. As a consequence of
our treatment of the relativistic equations we have brought to light close similarities
between the relativistic and non-relativistic functions. We have seen how the wavefunc-
tions, the Coulomb Green functions and the reduced Coulomb Grieen functions can
be treated as specific instances of more general functions, the recursion properties of
which we have found in a general manner. The integral properties of these general
functions when specialized to the non-relativistic or relativistic cases lead to powerful
tools for calculating matrix elements. It is likely that further properties of the general
functions exist which, when discovered, will simplify relativistic calculations even
further.
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Appendix 1. General solution of the radial RCGF defining equation

In this appendix we find the solution of a general radial rcgF defining differential
equation which allows us to treat both the relativistic and non-relativistic cases in
sections 2 and 3 in the same manner. The problem is to solve

2 +1) 2
(d_“'3 i—M‘Fﬂ_EF) §w\(r1’ 23 w)

dri r dn P r
=~8{r,—r)/ nn+{c,+n/r)(rrn)’ g~ (ntrpe
x L% (2wr) L2 Qo) (AL1)

where v— A —1 a positive integer, and where
vy w+1, = Qo) r—A-DYT(r+A+1) (A1.2)
subject to the conditions that

gunlri, r; @)= 0(r)) as 1, >0

Fow

Gualr, ryw)=>e™ " as r, -

guA(rl, r; ) =§u:\(r2s r; o).

OQur solution begins with the observations that

— L= fa .
ATT’\,-’

R s DT DA W L, DN Y £ IR Y
DR LlIF = LV Jf Ll T\ L0
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and, appealing to the recursion relation for Laguerre polynomials given in appendix 4,
(20r —20) L2250 Qor) = —[(v = AL Qor) H (v + A L2500, (Al.4)

Thus, taking as our starting point the solution to the corresponding defining equation
for the general radial cor ([2], appendix 1) and noting ([ 1] equation (3.28))

(iﬁi A(;H—l) 2wy
_ -

wg) e ™ LA 2wr)
/

\df F ar r
=2w(i+A+1~p)r " e ™ L2 2wr) (AL.5)
we find
d> 2 d AA+1) 2ww 2)( ,
-y = " A+1 A (e
(dr% r, dr, I f @ (2w) (rra)"e :

(!
* t

X TA+ 2+ DA+ it1—2)

L,2-2+'(2wrl)Lf"H(2wrz))

1!
= (2w )P TIATI A ot re Z* i L2 (20r )L Qary)

i=o T'(2A+24+1)
=—8(r—r Y rr g g fp Vi)t am(ntrhe P2A41 g, 0
Ui LIV B E LIS SR VAR WS L) < Ay —A—I\&Wr )
x LML Qars) + o, /200 ™ ) et
x[(v = A L2 Qar) + (v + A L2 2 Qor) 1L Qer,) (A1.6)

where, in the last step we have used our representation of the delta function ([2]
equation (A1.19))

!

(ryrp)* 2 et _§0—F(2H2+ ) L' 2or) L 20r)
=(1/20)* 28 (r,—r2). (ALT)
Now, since
(L2 L2000 20 )
dr* rdr r r
xio:/ QP rt e (v - AL Qor) — (v + )L 2]}
=—g,/20r e T [(r — VL2 Qer)+ (2 + A) L2 (20r)] (A1.8)

and, given (A1.5) with i=»—A—1, we find as a solution to (Al.1) symmetrized with
respect to r, and 7,

Gulr,rw)= (2(1))2""'"1(1'~lr-2)’L e lntrlw

- i!
%k L?’\-'.l 2 L?/\'f‘l 2
x(.-=0 F2A+2+i)A+i+1—p) (2awr) (2wr)

+ 0, (1/2e) P [{(v— M L2 Qor) — (v +A)
x P (2 ) 1L, Qor,) + AL (2w ) 2200 (Qor,)

+ L2 Cor )y — DL Qo) — (v + A) LN 2(2wr2)]}) (A1.9)

where A, is an arbitrary constant, to be determined by the normalization conditions.
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Appendix 2. The normalization integral

In this appendix we calculate the general normalization integral given by

IA=J' (U'A+TA/T1)" e_er? 1(2’4"'1)8;:»\("!,"2,“3)"1(“'1
0

N J‘ r?““l mrlgw\(rls Fa, w)[(akr1+TA)L2A+l ,(2(01".)] drl
0

= J. 'r)lH-] 'gv)\(rl ’ r25 w) X [_O-A(V A)/zwL2A+l(2wr1)

o]
+(voy/w+ T;\)L:»At\l— (Qwr) —ay(v+A)/2wL30 A20n}]dry (A2.1)
since (see appendix 4)
xLP500 () = —(r = ML () + 20 L0050 (x) ~ (w+ A LS La(x).

Now, taking note of the form of g,, given by (A1.2) and the orthogonality property
of Laguerre polynomials,

J' e *x"Ly(x)La(x}dx=8,,[(n+a+1}/n! (A2.2)
0
we deduce that
L=r5e L0 Qor)o, /(2w)
x[Ay =200/ ) *PT(v+A+1)/(v—2—-1)1] (A2.3)

where we have used (Al.2) to eliminate 7, from the RHs.

Appendix 3. Single variable differential properties

In this appendix we examine [A{d/dr,+ (A+1)/r)—wv]g.(r, r; w) and [A(d/dr -
(A—=1)/r)+wvld._(r, r; ). Just as in the case of the ordinary radial cGr [2]
knowledge of these two expressions is required for the calculation of the off-diagonal
terms of the radial RocGF (section 3), as well as for the derivation of various recursion
relations (section 4). We follow closely the method of [2] (appendix 2) although the
analysis is here complicated by the presence of additional terms in the general radial
rcGF. To facilitate the presentation we begin by splitting the radial RcGF into two parts,

Eoalre, r; @) = (2w)? (rr) e~
. Y
x.=n T2a+2+i)(A+i+1—-v)
F(ry, 1y @)= (rr)* e T 0, (1/20)°
x{[{v = A) L2 2wr) — (v + V) LML 20r) 15 (20r,)
+ AL Qen ) LI (20r,)
+I2M 2on)[(v = ML Qor) — (v + VDL (20r) 1) {A3.2)

L2220 L2 (20r,) (A3.1)

iy
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$o that
gw\(”h ;s w)zglA(rls a3 w)+§i,\(rl) Fi;w). (A33)
Now since ([1] equation (3.29))
d +1
[A ;"-+A-"——"') —wv-l [#* "™ L7 (2er)]
L \ar rJ J
=w(i+A+1—v)r* e ™ L (20r)
++ DA+ 20 e L Q) (A34)
we find
d A+l "
dry n
it
= (2w_)2“"l(r,r2)" e"{rﬁ"z)w( Z* m LZAH(Za)r )L2A+l(2wr )
i=0
(i+1)

/(2 Z* o TQAF1+D(A+1+izp)

=%5("1_’2)/‘V SLF)
_% vo,/w+1,)(rrn) ef(r‘“z)sz'\ 1(2"4”'1)L2AA 1(2wry)

+%(2w)2)\+l r.'\—lré\ e—(r|+r2)¢u

) ) \
LET Qer) L (2wr,) )

0 (i+1)

w §F
Zo TRA+1I+D(A+1+i~)

L3T (2wn) L 2wr,) (A3.5)

where we have employed the representation of the delta function given in ([2] equation
(A1.19)) as well as the special relationship between &, and 7, given in (A1.3). We also
find, from (A3.4)

d A+l
[A(_"" )_WV]ﬁia(rlsrziw)
dr, r

= 0x/Qw)(nirs) €71/ (20y)
X{[(r = A p—A+D(r+A+DIZT,Cor)
~(r+ ) r=—A-De+A-DL ) Qor)] L (2or,)
+(r =AM r+2) AL Qon) B (2wr,)
+(r = D+ L Qor)[(# - ALY Qor) = (v + A LS Q20r,) 1}
+ol(v=A L Qor)+ (v + LS, Cor) 250 Qer)]. (A3.6)
Now
[(» = ) L3 Qory+ (v + ML Q200 ] =2(r —or) L2 (20r)
=2vL2N L, Qer) -1/ 2N {[(r +A) (v + A - 1) L2251 (2wr)
—2(r =)+ AL 2en) + (v = A v = A+ DAL, Q)] (A3
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and thus, combining (A3.5) and (A3.6)
d A+1 "
2[)\ (E:l+-";1—) —wv] Eunlry, 1y w)
=8(rn—n)/vrnr- TA("IFZ)A - +r2)wL2A+1 (zwrl)f-}“r 1(2wr,)

+(2m)2)\+lrl— r e_(rl+r2)w

(i+1)! 2a-1 2A+1
(.2: FRA+1+idAa+1+i~v) Ly Qor) L™ (2er,)

+ o, (P =AY/ QoY A, + 2 L2 Qor) AL (2or,)
H{(rv—A+ DL 2er) = (#+ A= 1)L Qor) 1B (Qwry)

+ L2 Qar ) (v = AN LA Quor,) — (v +A)L2ASE (2wr2)]}) (A3.8)

This constitutes our first main result of this appendix.
The second calculation is performed in a similar manner. Since ([1] equation (3.30))

I 7d a-1)\

,_'\\ ——~)+va(1' e [P 2wr))
=—w(i+A—v)rr e LA 2wr) - 201 - 85}t e T LA 20r)
(A3.9)
we now deduce that
d A-1 ,
A ar tor | ga-i(rn, rn; o)
= ”‘%5("1 - "z)/\/ﬁ"'%( VO-A—]/w+'T:\—l)(rlr2)A_] gTinTne
X L2 Qor) L2 Qo) =320y T et
= {i+1)! Coaiiia s dn—iia o
% M L 20r) L2 2w0ry) (A3.10)

*
So TRA+HT+D(A+1+i—v)

and

—_— vigi,_ , @
dr, rl Wl ignaalh, 2

=—1/(2w)?0,_ 0 (rr,) " emtY
x[[(z—A+1) L%, Qor)+ (v + A — 1D LS50 Qor) A5 Qor,)
+2wr{[(v —A+ DL Qor) — (v +A - DL Q20r)JL225 2or,)
+ A, L Qar) L2 2w+ L2 (2er)
x[(r—A+ 1D LN Qo) = (v+A = 1) L2 Qwr)]. (A3.11)
Since
(v=A+ DL, Qo) v+ A =1L (2wr)
=2(v—wr) L2}, 2wr)
= 2L Qwr) = 20r{ L 20r) — 2L 1 (20r) + L2 ,20r)]  (A3.12)
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we can combine {A3.10} and (A3.11), and thus find

d A-1
A d—r,_ " |+ wv | goaoi(r, 12 @)

_%5("1“"2)/\’"'17'2+%TA—|(1'1’2)'\_I e—(rl+r2)sz;\ ](2¢0T1)L2A 1(2(!)"2)

_%(2(0)2,\“?,:«’_;4 e—(rli-rl)w

* (i+1)! 2a+1
(azo FRA+1+80(A+1+i—-) LI Qwr ) L 2ery)

+U,\_l/(Zm)z"H{[(v—)L)Lf,’\__ﬁl(jlmr,)*(v+/\)L2VA:\' L2wr 12431 20r,)
F2FA DL o) L5 2wn) + LMY (2wr,)

X[{v=A+ 1)L (Qwr)—(v+A— 1)L2,*_;'_1(2wr2)]}) (A3.13)

which constitutes the second result we wished to present in this appendix.

Appendix 4. Notation and special functions

Hypergeometric functions.

(@), =T(a+n)/T(a)

(a), x"
1F1(Cl‘ B x) Z('B)n n'
(a)}n(B)n x
2Fila, Brv:ix x)= Z )" F
(). Aap)n X

pFalens o3 Buons )= L e R

Laguerre polynomials.
o [{a+1+n) )
Ly(x) “Tatim Firl-n;a+1;x)

(n+ 1)Ly (x)+(x—a—2n—1)L3(x)+(n+a)Li_(x)=0

Dirac marrices.
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