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ANALYSIS OF A BUILD-OPERATE-TRANSFER 
SCHEME FOR ROAD FRANCHISING 

Xiaolei Guo and Hai Yang 

Department of Civil Engineering, The Hong Kong University of Science and Technology, 
Clear Water Bay, Kowloon, Hong Kong, China 

 

ABSTRACT 

Private provision of public roads through build-operate-transfer (BOT) contracts is increasing 
around the world. Under a BOT contract, a private firm would build a road, charge tolls to 
road users for a period, and then transfer the road to the government. By viewing a BOT 
contract as a combination of three variables of concession period, road capacity and toll 
charge, we study optimal BOT contracts which maximize social welfare and allow the private 
sector an acceptable profit. We also study how to reach optimal BOT contracts, either 
through bilateral negotiations between public and private sectors, or through competitive 
auctions. 

1 INTRODUCTION 

How should society go about expanding its road systems? Who would decide where to 
provide more road capacity, and how much more? Where would funds for expansion come 
from? The recent world-wide tendency toward the introduction of commercially and privately 
provided public roads proves to be an efficient answer to these questions (Roth, 1996). 
Private provision of roads is driven by a number of factors. A primary motivation is a 
widespread belief that the private sector is inherently more efficient than the public sector, 
and therefore builds and operates facilities at less cost than the public sector. Also, the public 
sector, facing taxpayer resistance, may simply be unable to finance facilities that the private 
sector would be willing and able to undertake for a profit. In addition, if new road space is 
provided as an “add-on” to an existing network system, and if road users find it worthwhile to 
patronize this new road and pay charges, and if the charges cover all costs (including 
congestion and environmental costs), all may gain benefit, and there would be no obvious 
losers. Even those who do not use these new roads would benefit from reduced congestion on 
the old ones (Mills, 1995). For these reasons, the commercial and private provision of 
transport infrastructure has attracted fast-growing interest in recent years and is being 
employed to finance modern road systems. 
 
Private provision of roads is typically made through a so-called build-operate-transfer (BOT) 
contract. Under a BOT contract, the private sector would build and operate the road at its own 
expense and in turn should receive the revenue from road toll charge for a period, and then 
the road will be transferred to the government. BOT projects use the market criterion of 
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profitability for road development and rely on the voluntary participation of private investors, 
who hope to benefit financially from their participation. A BOT contract generally involves 
three fundamental decision variables: the concession period, the road capacity and the toll 
charge. These three variables are crucial for both the private firm and the government to 
reach their respective objectives: the private firm wishes to undertake the road project for a 
maximum profit throughout the concession period; while the government aims to maximize 
social welfare throughout the whole life of the road by awarding the road concession 
contract. The concession period, representing the number of years for operating the road by 
the private firm, directly governs the total toll revenue of the private firm as well as the total 
social welfare gain during the life of the road (the concession period and the post-concession 
period). The selected road capacity makes impacts on both the private firm’s profit and the 
total social welfare in either direct or indirect manners. First, the road capacity determines the 
road construction cost, the major investment cost of the private firm for the road project; 
second, the road capacity affects the congestion degree and thereby the travel time on the 
road, which in turn affects the travel demand and, as a result, the revenue and the social 
welfare. The toll charge under the operation of the private sector to a large extent determines 
the total revenue that the private sector receives and the social welfare gain as well during the 
concession period. In summary, each of the three fundamental variables of concession period, 
road capacity and toll charge, plays an important role in forming a feasible BOT contract. 
Their values determine how, and under what circumstances, a road BOT project is feasible 
and profitable, and how the project will benefit the private investor, the road users and the 
whole society. 
 
Most previous analyses of BOT road projects have focused on capacity choice and toll setting 
and the resulting profitability and social welfare gain; the concession period is usually 
assumed to be given and fixed (unit cost of capacity per unit period is thus a given constant). 
An important result in the early literature is the self-financing theorem for congestion pricing 
and capacity choice of a single road in a first-best environment in which the toll is set equal 
to the difference between the marginal social cost and the marginal private cost of a trip. 
Under certain technical conditions, the revenues from optimal congestion pricing just suffice 
to finance the fixed costs associated with the optimal capacity supply (Mohring and Harwitz, 
1962; Mohring, 1976; Keeler and Small, 1977). In a general traffic equilibrium context, Yang 
and Meng (2000) looked into the profitability and social welfare gain of a single BOT road in 
a network; Yang and Meng (2002) further showed that the self-financing theorem still holds 
for each road individually in a full network and consequently to the network in aggregate, 
provided each link is optimally priced and all capacities are optimized. Recently, Ubbels and 
Verhoef (2004) and Verhoef (2005) analyzed capacity choice and toll setting by private 
investors in a competitive bidding framework organized by the government. They considered 
concessionaire selection based on the various criteria of maximization of capacity or 
patronage, minimization of tolls or minimization of toll revenues, and compared the resulting 
welfare gains (or losses) from each criterion. 
 
The recent worldwide experiences of BOT contracts showed that the fixed-term contract 
suffers certain pitfalls especially when there is uncertainty about future traffic demand: (a) 
the frequent use of government guarantees, thereby reducing incentives to control 
construction costs, and (b) government bailouts for almost every franchise that faces financial 
trouble (Engel et al., 1997). For this reason, flexible-term contract for road franchising has 
been proposed, and it can be implemented with a fairly straightforward mechanism. For 
example in a least-present-value-of-revenue auction, the bidding variable is the present value 
of toll revenues and the lowest bid wins and the franchise ends when the amount has been 
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collected (Engel et al., 2001 and Nombela and de Rus, 2004). In this case the linkage between 
traffic uncertainty and revenue uncertainty is effectively broken; the contract term is 
endogenously determined by the realized level of future demand, so it is shortened in 
condition of high demand, and extended if traffic levels are low. These flexible-term contract 
analyses mainly focus on the concession period and demand uncertainty. A critical 
simplifying assumption is made in that traffic congestion is ignored or the travel time and 
thus traffic demand is independent of the road capacity or initial investment cost for the new 
road (equivalent to assuming that the road capacity was predetermined and large enough). 
 
In contrast to previous researches, in this paper we explicitly regard a BOT contract as a 
combination of all the three fundamental variables: the concession period, the road capacity, 
and the toll charge. By assuming that the government and the private sector both have perfect 
information on the project cost and future traffic demand, we investigate the problem of how 
to set an optimal BOT contract to maximize social welfare, while allowing for an acceptable 
level of profit to the private sector. We shall classify and analyze the full information “first-
best” and “second-best” BOT contracts: the former refers to the case where the social 
welfare-maximizing point is located in the profitable domain of the aforementioned three 
fundamental variables, and thus a socially optimum BOT contract can be formed between the 
government and the private firm; the latter refers to the case where the welfare-maximizing 
point is located in the unprofitable domain of the three fundamental variables, and thus the 
government’s choice for maximizing welfare is subjected to an active profitability constraint. 
For the second-best BOT problem, we show that the government should choose the whole 
life of the road as the concession period in order to maximize social welfare under the 
constraint of a minimum acceptable profit. Moreover, we introduce a two-player sequential 
game model between the government and the private firm in negotiating and reaching a 
feasible BOT contract. A strategy is proposed for the government to obtain a socially optimal 
BOT contract in which the government just needs to set a minimum level of travel demand, 
while leaving the private sector to freely choose a preferable combination of road capacity, 
toll charge and concession period in realizing a travel demand not less than the  minimum 
level. We also examine the conditions under which competitive auctions can lead to optimal 
BOT contracts. 
 
The structure of this paper is as follows. Section 2 introduces the first-best problem in the 
absence of profitability constraint and the BOT problem with explicit consideration of 
concession period. Section 3 systematically examines the properties of an optimal BOT 
contract for both the first-best and second-best cases. Section 4 proposes a strategy for the 
government to obtain an optimal BOT contract in a bilateral negotiation game, and also 
demonstrates that competitive auctions can lead to optimal BOT contracts. Conclusions are 
given in Section 5. 

2 THE FIRST-BEST PROBLEM AND THE BOT PROBLEM 

Assume that a new public road is to be built. Let 0y   be the capacity of the new road, 0q   

be the travel demand and  B q  be the inverse demand function (or the marginal benefit 

function), and  ,t q y  be the travel time function. Note that q  and y  are measured in 

number of vehicles per unit period. The following demand-supply equilibrium condition 
always holds: 
    ,B q p t q y   (1) 
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where p  is the toll charged on each user of the road and   is the value of time (VOT) to 
convert time into equivalent monetary cost (we consider homogeneous users only). Condition 
(1) simply means that travel demand for the new road is determined by the generalized travel 
cost. From eqn. (1), we have the following price function 
      , ,p q y B q t q y   (2) 

where price (toll) p  is viewed as a function of traffic volume q  and road capacity y . Let 

 I y  be the road construction cost function. The following basic assumptions are made on 

the properties of  B q ,  I y  and  ,t q y . 

 
Assumption 1  
(a) The inverse demand function  B q  is a continuously decreasing and differentiable 

function of q  for 0q  . 

(b) The road construction cost function  I y  is a continuously increasing and differentiable 

function of y  for 0y  . 

(c) The travel time function  ,t q y  is a continuously differentiable function of  ,q y  for 

0q   and 0y  ; for any 0q  ,  ,t q y  decreases with y ; for any 0y  ,  ,t q y  is a 

convex and increasing function of q . 
 
Consider that the road has a life of 0T  . Then the first-best problem for this new road 
project is to choose the capacity of the road and set the toll level (and thereby control the 
traffic volume) to maximize the total social welfare throughout the lifetime of the road. 
 
The First-best Problem: 
    

0, 0
max  ,

q y
TS q y I y

 
  (3) 

where 

      
0

, d ,
q

S q y B w w qt q y  . (4) 

 ,S q y  defined by (4) is the social welfare (in monetary unit) obtained per unit period when 

the travel demand and road capacity are q  and y , respectively. Thus the first term in 
objective function (3) is the social welfare obtained during the whole life of the road, and the 
second term is the road construction cost, which is the only cost considered here. For 
simplicity and by convention, we do not consider the maintenance cost related to traffic 
volume. Also, for simplicity of exposition, hereafter, we do not adopt an interest rate to 
discount future revenues to its equivalent present values. It should be mentioned here that, the 
use of a discounting rate does not alter our analysis results as shown in Appendix A1. 
 
Now suppose that the road is to be built through a BOT contract. Let T , such that 0 T T  , 
be the concession period of the BOT contract. That is, the private sector will build the road 
and operate it for a time period T , and after that the government will operate the road for its 

remaining life  T T . Then the profit that the private sector earns during the concession 

period is 
      , , ,P T q y Tqp q y I y   (5) 
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where the price function  ,p q y  is given by (2). In profit function (5), the first term is the 

total revenue collected during the concession period, and the second term is the road 
construction cost, which is assumed to be fully born by the private investor. 
 
Assumption 2. For any given 0y  , the revenue function       , ,qp q y q B q t q y   is a 

strictly concave function of q  for 0q  . 
 
With part (c) of Assumption 1,  ,t q y  is convex and thus  ,qt q y  is strictly convex in q  for 

any given 0y  , which means that the second term of  ,qp q y , i.e.  ,qt q y , is strictly 

concave in q  for any given 0y  . Thus  ,qp q y  is strictly concave if the first term  qB q  

is concave in q . In other words, with Assumption 1, Assumption 2 holds if  qB q  is 

concave. Indeed, in the literature it is common to assume that  qB q  is concave. Thus 

Assumption 2 is not restrictive. 
 
For a BOT road project, the total social welfare during the lifetime of the road is 

        , ,W TS q y T T S q y I y     (6) 

where q  and q  are the travel demands under the operations of the private sector and the 
government, respectively. The first and the second terms of (6) are the social welfares 
obtained respectively during the concession period of operation by the private sector and the 
remaining period of operation by the government; the third term is the road construction cost. 
 
In eqn. (6), there are four variables, i.e. T , y , q  and q . Note that q  and q  can be regarded 
as the indirect control variables by the private firm and the government, respectively, through 
their direct control of road toll charge. Namely, for given road capacity, q  and q  can be 
targeted and achieved by the private firm and the government by choosing their respective 
toll charges. 
 
Since the government aims to maximize social welfare, we can rewrite (6) as 

          , , ,W T q y TS q y T T S y I y     (7) 

where 

        
0

max , max d ,
q

q q
S y S q y B w w qt q y  



 
    . (8) 

Equation (8) states that  S y  is the maximal social welfare obtained per unit period under 

the government operation, which is a function of the road capacity y . An intuitive 

understanding of  S y  is that, after the road is transferred to the government, the 

government will choose an optimal toll (congestion toll) to achieve the socially optimal level 
of traffic demand, and the realized optimal social welfare is solely dependent upon the road 
capacity. 
 
For a BOT road project, (5) and (7) state that the private profit and the social welfare are both 
determined by  , ,T q y , i.e. the concession period, the travel demand within the concession 

period and the road capacity. Hence, a BOT contract between the government and the private 
sector is essentially to negotiate and set the values of the three variables, and we thus use the 
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three variable values to characterize a BOT contract. Namely, a BOT contract  , ,T q y  

represents the values of the concession period, the travel demand within the concession 
period and the road capacity to be set jointly by the government and the private sector. Note 
that, once  , ,T q y  is fixed, the toll p  is uniquely given by the price function (2), i.e. the toll 

level p  should be set according to the price function (2) to realize the travel demand q . 

Therefore, regarding  , ,T q y  as a BOT contract is essentially equivalent to regarding 

 , ,T p y  as a BOT contract, and we shall use  , ,T q y  for convenience of exposition. 

 
For a BOT road project, the government is concerned about how to negotiate an optimal BOT 
contract with the private sector to maximize the social welfare subject to a profitability 
constraint. This is termed as the BOT problem and formulated below. 
 
The BOT problem: 

          max  , , ,W T q y TS q y T T S y I y     (9) 

subject to 
 0 T T  , 0q  , 0y  , (10) 

      , , ,P T q y Tqp q y I y P     (11) 

where 0P   is the minimum profit margin that is acceptable to the private sector. Intuitively, 
constraint (11) means that, to attract private investors, the BOT contract should be profitable 
to some extent. We assume that the feasible region given by constraint (10)-(11) is not empty, 
i.e. there exists a feasible solution to the BOT problem. This guarantees the existence of an 
optimal solution to the BOT problem (an optimal BOT contract). We should mention here 
that the uniqueness of an optimal solution to the BOT or first-best problem is not guaranteed 
because the objective functions (3) and (9) may not be (strongly) concave, especially when 
the road construction function  I y  is concave. 

3 OPTIMAL BOT CONTRACTS 

After introducing the first-best problem and the BOT problem, we now move on to examine 
an optimal BOT contract. We first introduce the first-best and the second-best BOT contracts, 
and then review the classic self-financing problem. After establishing the conditions for the 
existence of a first-best BOT contract, we then look into the more complicated second-best 
one and show that the concession period of a second-best BOT contract should be the whole 
life of the road. A numerical example is provided to illustrate the observations. 

3.1 First-best and second-best BOT contracts 

We first introduce the definition of first-best and second-best BOT contracts. 
 
Definition 1. (First-best and Second-best BOT Contracts) Let  , ,T q y  be an optimal 

solution to the BOT problem (9)-(11),  , ,T q y  is said to be a first-best BOT contract if 

 ,q y  solves the first-best problem (3)-(4). Otherwise  , ,T q y  is said to be a second-best 

BOT contract. 
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By Definition 1 and comparing the first-best problem (3)-(4) and the BOT problem (9)-(11), 
we readily have the following observation. 
 

Observation 1.  A first-best BOT contract exists if and only if there exists a solution  ,q y   

that solves the first-best problem and satisfies 

    ,Tq p q y I y P      . (12) 

Furthermore, if  ,q y   solves the first-best problem and meets (12), then  , ,T q y   is a 

first-best BOT contract for any T T T   where 

 
 
 ,

I y P
T

q p q y



  





 . (13) 

 
Observation 1 is intuitive: if the total congestion toll revenue generated by the first-best 
optimum solution can cover the construction cost and generates an acceptable threshold of 
profit to the private sector, then the first-best optimum solution can be realized through a 
BOT project, and the corresponding BOT contract is a first-best one. Furthermore, if the first-
best optimum toll revenue (congestion toll revenue) generated per unit period is so large that 
the minimum time needed to generate the predetermined threshold of profit is less than the 
lifetime of the road, then the concession period can be any value between the minimum 
required time period and the lifetime of the road, namely T T T   in Observation 1. 
 
From Definition 1 and Observation 1, it is clear that an optimal BOT contract is either a first-
best one or a second-best one, but not both. A first-best BOT contract exists if and only if the 
first-best optimum solution satisfies condition (12). Otherwise we can only obtain a second-
best BOT contract. Therefore, to solve the BOT problem (9)-(11), it is useful to first solve the 
first-best problem (3)-(4) and check whether condition (12) holds for a first-best optimum 

solution  ,q y  . If condition (12) holds, it is unnecessary to consider the BOT problem 

because  , ,T q y   for any T  such that T T T   solves the BOT problem as described in 

Observation 1. In a word, the existence of a first-best BOT contract depends on whether the 
first-best optimum solution is profitable. Thus the question is similar to the classic self-
financing problem, which, as to be seen in next subsection, is about whether the revenue from 
socially optimal pricing on a road can cover the capital cost of the socially optimally selected 
road capacity. 

3.2 The classic self-financing problem 

We briefly review the classic self-financing problem here, which demonstrates the existence 
of first-best or second-best BOT contracts. 
 
If 0q   and 0y   at first-best optimum, then the first-order optimality conditions for the 
first-best problem (3)-(4) are given by 

      ,
, 0

t q y
B q t q y q

q

 
    

, (14) 
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   ,

0
t q y

T q I y
y


  


. (15) 

Combining (14) with the price function (2) yields 

    ,
,

t q y
p q y q

q


 


. (16) 

Equation (16) gives the first-best optimum toll, which is equal to the congestion externality. 
 
One important assumption needed for the self-financing theorem is that the travel time 
function  ,t q y  is homogeneous of degree zero in  ,q y , or  ,t q y  is a function of the 

volume-capacity ratio q y , such as the widely used Bureau of Public Road function. 

Function  ,t q y  being homogeneous of degree zero in  ,q y  means that    , ,t q y t q y    

for any 0  , then taking partial derivative with respect to   on both sides readily gives the 
following equation, which holds for any  ,q y . 

 
   , ,t q y t q y

y q
y q

 
 

 
. (17) 

Applying (17) to a first-best optimum solution, the first-best condition (15) is equivalent to 

 
   , y

I

t q y
Tq q I y E

q

 
   

 (18) 

where 

 
       

d

d
y
I

I y I y y
E I y

y y I y
  . 

y
IE  is the elasticity of cost  I y  with respect to road capacity y . Furthermore, substituting 

the first-best optimum toll (16) into (18) gives 
    , y

ITqp q y I y E . (19) 

Observe that the left-hand side of (19) is the total revenue collected from road user charges 
during the life of the road for the first-best optimum toll and capacity, and the right-hand side 
is closely related to the road construction cost. Thus equation (19) throws light on the 
relationship between the total toll revenue and the road construction cost. If there is a 
constant return to scale in road construction, namely 1y

IE   or  I y ky , then equation (19) 

becomes  Tqp I y , which means that the revenue generated from optimum road user 

charge just covers the road construction cost. Note that road construction can have decreasing 
or increasing returns to scale, depending on the geological conditions and construction 
technologies. If road construction has a decreasing return to scale, then it holds that 1y

IE  , 

and we have  Tqp I y  from (19), namely that the revenue exceeds the capital cost. 

Similarly, with an increasing return to scale, we have 1y
IE   and  Tqp I y , namely that 

the revenue fails to cover the construction cost. 
 
The above self-financing result is in fact an indication of profitability in a BOT project. It is 
clear that, depending on specific situations (the elasticity of  I y  if travel time function is 

homogeneous of degree zero), a first-best optimum solution may or may not exist to meet the 
profitability condition (12). That is to say, an optimal BOT contract for a new road may be 
either a first-best one or a second-best one. As a first-best BOT contract is described in 
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Observation 1 and characterized by the first-best optimum conditions (14)-(16), in the 
following subsection we examine the properties of a second-best BOT contract. 

3.3 The second-best BOT contract 

In this subsection we examine the properties of a second-best BOT contract. In particular, we 
show that a second-best solution to the BOT problem requires the concession period to be the 
lifetime of the road. In other words, the private sector should be allowed to operate the road 
for its whole life. To keep the main text here concise and concentrated, detailed mathematics 
in this subsection is moved to Appendix A2. 
 

Let  , ,T q y    be a second-best solution to the BOT problem (9)-(11). We shall prove that 

T T  . For convenience, we define the following revenue function,  R q , and the unit-

period social welfare function,  S q , as functions of q  for given road capacity y : 

    ,R q qp q y , (20) 

    ,S q S q y . (21) 

Let 1q  be the unique q  that maximizes  R q , and 0q  be the unique q  that maximizes  S q . 

We have that  R q  decreases with q  for 1q q ,  S q  increases with q  for 0q q , and 0q  

corresponds to the congestion toll for given road capacity y . It also holds that 1 00 q q  , 

i.e. the travel demand for profit maximization is smaller than that for social welfare 
maximization. Figure 1 provides a simple graphical illustration for  R q ,  S q , 1q  and 0q  

(detailed mathematical discussions are given in Appendix A2). 
 

Lemma 1. It holds for the second-best solution  , ,T q y    that 

(a) 1 0q q q  . 

(b)    T R q I y P     . 

(c)    0TR q I y P    

 
Proof: See Appendix A2. 
 
Lemma 1 is mainly based on the first-order optimality conditions of the BOT problem, and 
thus is very intuitive. Part (a) of Lemma 1 means that the travel demand of a second-best 
solution should be strictly less than the social welfare maximizing level, and not less than the 
profit maximizing level. That is, the toll of a second-best solution is strictly higher than the 
optimal congestion (marginal-cost pricing) toll, and not higher than the toll level for profit 
maximization. Part (b) is equivalent to 

      , ,P T q y T R q I y P        
 

which simply states that, as expected, the profitability constraint (11) is binding for a second 
best solution. Similarly, Part (c) means that the (unit-period) congestion toll revenue  0R q  

can not generate an acceptable total profit to the private sector even if the concession period 
is the whole life of the road. 
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To prove that T T  , we shall first examine how  , ,W T q y  changes with  ,T q  for 

0 T T  , 1 0q q q  , while  ,T q  satisfying the profitability constraint 

   TR q I y P   . This is not a straightforward task. To see this, we first note that 

          , ,W T q y TS q T T S y I y      . (22) 

Then we can readily observe that  , ,W T q y  decreases with T  due to    **S y S q  and 

increases with q  for 0 T T  , 1 0q q q  . On the other hand, as required by the equation 

   TR q I y P   , q  will decrease so that  R q  increases when T  decreases. The 

intuition is that, in achieving the profitability constraint through a shorter concession period, 
the unit-period revenue has to be higher, which requires a higher toll charge and thus lower 
traffic demand. Thus, we can see that, for given road capacity ,y y  for any  ,T q  such 

that 0 T T  , 1 0q q q   and    TR q I y P   , a shorter T  will have a direct positive 

impact on social welfare as  , ,W T q y  decreases with T , but also induce a lower traffic 

demand and thus have an indirect negative impact on social welfare. Therefore, under the 
profitability constraint, the net effect of changing the concession period T  on the social 
welfare is obscure and requires rigorous further analysis. 
 
To proceed, we rewrite (22) as 

        , ,W T q y TD q TS y I y       (23) 

where 

      D q S y S q  . (24) 

Intuitively,  D q  is the deadweight loss function for given y , because  S q  defined by 

(21) is the unit-period social welfare function, and  S y  by definition (8) is the maximum 

social welfare obtained per unit period. Since 0q  maximizes the unit-period social welfare for 

given y , we have    0S y S q   and thereby  0 0D q  , i.e. 0q  causes no deadweight 

loss for given y . Further define 

    
 

D q
h q

R q
  (25) 

which is the ratio of the deadweight loss to the revenue per unit period. Without difficulty, it 
can be seen that both  D q  and  R q  decrease with q  for 1 0q q q  . In the following 

lemma we shall show that  h q  decreases with q  as well for 1 0q q q  , which is useful to 

prove T T   later. 
 
Lemma 2. The function  h q  defined by (25) decreases with q  for 1 0q q q  . 

 
Proof: See Appendix A2. 
 
Lemma 2 is essential to the following proposition. 
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Proposition 1. The concession period of a second-best BOT contract is equal to the lifetime 

of the road. Specifically, let  , ,T q y    be a second-best solution, then T T  . 

 
Proof: It suffices to prove that, if T T  , there exists a feasible BOT solution that gives rise 

to a social welfare larger than  , ,W T q y   .  

 

For any    , 0,0T q   satisfying    TR q I y P   , we have 

 
 

 
I y P

T
R q

 



. (26) 

Since  R q  decreases with q  for 1q q , (26) implies that T  increases with q  for 1.q q  

Suppose ,T T  then, in view of    T R q I y P      and    0TR q I y P    from 

Lemma 1, there exists a unique q  such that 0q q q    and    TR q I y P   . We only 

need to prove that    , , , ,W T q y W T q y    . 

 
Substituting (26) into (23) gives 

           , ,W T q y h q I y P TS y I y         (27) 

where      h q D q R q  as defined by (25). In the right-hand side of (27), only q  is a 

variable, and from Lemma 2,  h q  decreases with q  for 1 0q q q  . Thus (27) means that 

 , ,W T q y  increases with q  for 1 0q q q   if  ,T q  satisfies     .TR q I y P    Then it 

follows readily from 1 0q q q q    that    , , , ,W T q y W T q y    . This completes 

the proof. 
 
From the above proof, the importance and essence of Lemma 2 is clear: while the social 
welfare decreases with T  and increases with q , Lemma 2 tells us that the joint effect of 
increasing both T  and q  while satisfying the profitability constraint is positive for the social 
welfare. Proposition 1 states that, if the first-best optimum solution is not profitable and thus 
can not be obtained through a BOT project, the government should let the private sector 
operate the road for its whole life and earn a minimum acceptable profit to maximize the 
social welfare. The intuition behind this is that, given a longer concession period, the private 
sector can afford to build a larger road capacity with an acceptable profit margin, which in 
turn results in a lower travel time and a higher travel demand. Although the operation period 
for welfare-maximization by the government after concession period becomes shorter (i.e. 
zero), all factors within and after the concession period together give a larger social welfare 
with a longer concession period. Moreover, under some proper government regulation (to be 
discussed in next section), the private firm is willing to invest in an optimal amount of 
capacity to reduce congestion if it is allowed to operate the whole life of the road, because the 
benefits from reduced congestion accrue over the full lifetime of the road. 
 
Given the requirement that T T  for a second-best BOT solution, we have the following 
first-order optimality conditions for the second-best BOT problem: 
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      ,
, 0

t q y
B q t q y q

q

 
    

, (28) 

        ,
, 0

t q y
B q qB q t q y q

q

 
     

, (29) 

    ,Tqp q y I y P   , (30) 

 
   ,

0
t q y

T q I y
y


  


 (31) 

where conditions (28) and (29) correspond to part (a) of Lemma 1, (30) corresponds to part 
(b) of Lemma 1, and (31) is due to T T . Furthermore, because of T T  for a second-best 
BOT solution, condition (31) is exactly the same as the first-best optimum condition (15), 
both stating that the road capacity should be expanded to the point where the marginal cost of 
an extra unit of capacity is equal to the marginal value of user cost savings brought about by 
that investment. 

3.4 A simple numerical example 

Consider   5 2B q q  ,  , 1
q

t q y
y

  , 1   and 1T  . Then we have 

 , 4 2
q

p q y q
y

   ,  
2

2, 4
q

S q y q q
y

   , and   4

1

y
S y

y



 . The first-best problem is 

  
2

2

0, 0
max  4

q y

q
q q I y

y 
    

For simplicity, let us first consider  I y y . Then, making use of the first-best optimum 

conditions (14)-(16), we obtain the first-best optimum solution of    , 1,1q y    together 

with a first-best toll 1p  , which gives an overall maximum social welfare 1W   . It can be 

easily checked that  , , 0P T q y   , which means that the first-best toll revenue just covers 

the investment for the first-best road capacity. This is consistent with the classic self-
financing theory as  ,t q y  is homogeneous of degree zero and  I y y  has a constant 

return of scale. 
 
Suppose that the minimum acceptable profit level to a private firm is 0.18P  . Then it is 
clear that the first-best optimum solution is unacceptable to a private firm even if it can 
operate the whole life of the road. Thus a first-best BOT contract does not exist, and we have 
to consider the (second-best) BOT problem. 

    
2

2

0 1, 0, 0

4
max  , , 4 1

1T q y

q y
W T q y T q q T y

y y   

 
        

 

subject to 

  , , 4 2 0.18
q

P T q y Tq q y
y

 
     

 
. 

Making use of the second-best conditions (28)-(31), we can obtain the second-best BOT 

contract    , , 1, 0.9, 0.9T q y   , which gives a second-best social welfare 0.99W   . 
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Besides the first-best problem and the BOT problem, here we numerically examine how the 
maximum social welfare changes with the concession period. To do this, we define 
  

 
 max

,
max  , ,

Tq y
W T W T q y


  

where 

     , : 0, 0, , ,T q y q y P T q y P       

Clearly, T  is the feasible set of  ,q y  for given T , and  maxW T  is the maximum social 

welfare for given T  subject to the profitability constraint. Note that T  can be empty if T  is 

too small, i.e. the profitability constraint can not be met with a too short concession period. 
For the numerical example here, T  is empty if 0.64T  , i.e. there does not exist a 

combination of toll level and road capacity that can generate an acceptable profit to the 
private sector if the concession period is less than 64 percent of the lifetime of the road. 
Figure 2 plots how  maxW T  changes with T  for 0.64 1T  . It can be seen clearly that the 

maximum social welfare (subject to a profitability constraint) increases with T  until 1T  . 
 
So far we have constructed a second-best BOT problem by assuming a positive minimum 
acceptable profit 0.18P  . In connection with the self-financing problem discussed in 
Subsection 3.2, we now look at the first-best and second-best BOT solutions by assuming 

0P   and considering three kinds of  I y , with increasing, constant and decreasing return 

to scale, respectively. To do this, we consider   20.5I y y  (decreasing return to scale), 

 I y y  (constant return to scale) and   0.81.25I y y  (increasing return to scale). Similar to 

Figure 2, Figure 3 plots how  maxW T  changes with T  for the three cases, where the value of 

 maxW T  in each case is represented as the percentage of the corresponding first-best welfare 

value (in each case, the y-axis value “100” represents the attainment of the first-best 
optimum)1. As seen from Figure 3, in all three cases, the maximum social welfare (subject to 
a profitability constraint) increases with the concession period T . For the case of decreasing 
return to scale in road construction,   20.5I y y , the first-best optimum is obtained at a 

concession period of less than half lifetime of the road; for the “constant return to scale” case, 
 I y y , the first-best optimum is obtained at a concession period of exactly equal to the 

road lifetime ( 1T  ); for the “increasing return to scale” case,   0.81.25I y y , the first-best 

optimum can not be obtained even if 1T  . These observations are exactly consistent with 
the classic self-financing results discussed in Subsection 3.2. In particular, for the “increasing 
return to scale” case, because the first-best toll revenue can not cover the capital cost of the 
first-best road capacity, i.e. the first-best optimum is not profitable, the maximum welfare 
(subject to a profitability constraint) obtained at 1T   is a  second-best value. 

                                                 
1 Because the three cases have different first-best welfare values, the graphical comparison among them would 

be unclear if Figure 3 uses the absolute value of   
max

W T  as Figure 2 does. 
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4 NEGOTIATING AN OPTIMAL BOT CONTRACT 

So far we have examined the basic properties of an optimal BOT contract for a new road. If 
the first-best optimum solution is not profitable, i.e. there does not exist a first-best optimum 
solution satisfying the profitability condition (12), then a second-best BOT contract has to be 
sought, where the concession period should be the lifetime of the road, and the optimal travel 
demand and road capacity are determined by conditions (28)-(31). If the first-best optimum 
solution is profitable, a first-best BOT contract can be reached, where the socially optimal 
travel demand, road capacity and toll charge are determined by the first-best optimum 
conditions (14)-(16), and the concession period can be any T  such that T T T   as 
described in Observation 1. Keeping these observations in mind, we look into how to reach 
an optimal BOT contract, either through bilateral negotiations between the government and a 
private sector, or through competitive auctions among many private firms. 

4.1 Bilateral negotiation 

In this subsection we look into how to reach an optimal BOT contract through a bilateral 
negotiation between the government and a private sector concessionaire. In particular, we are 
interested in what negotiation regime and what government strategy should be adopted to 
reach an optimal BOT contract. 
 
We treat the bilateral negotiation of a BOT contract as a sequential game in which the 
government is the regulator and leader and the private sector is the follower. In this sequential 
game, the government first sets (or at least puts restrictions on) the values of several 
regulation variables, while taking account of the responses of the private sector, and then the 
private sector freely chooses the values of the other decision variables. Specifically, the 
government first sets the values of one or two of the three variables T , y  and q , and then 

the private sector determines the remaining ones, and finally a combination  , ,T q y , i.e. a 

BOT contract, is obtained. With this setting, there are several different games because 
multiple combinations of regulation and response variables exist. We prove that an optimal 
BOT contract will be obtained if travel demand is a government regulation variable and the 
government requires travel demand to be not less than the socially optimal level (either first-
best or second-best). To this end, we first give the following lemma. 
 

Lemma 3. Let  , ,T q y   be an optimal BOT contract (either first-best or second-best). Then 

   *, , , ,P T q y P T q y  for any q q , 0y  . 

 
Proof: See Appendix A3. 
 
In the sequential game negotiation, the private sector is, as usual, assumed to be a profit-
maximizer. Once the government sets (or puts restrictions on) the values of the regulation 
variables, the private sector will choose the values of the other variables to maximize its 
profit. Thus, if the government does not control the concession period, i.e. T  is not a 
regulation variable, then the response of the private sector is always to choose T T  for 

making more profit. Furthermore, let  , ,T q y   be an optimal BOT contract, then if the 

government requires q q , the private sector will choose q q  because any q q  gives a 
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profit less than  , ,P T q y   according to Lemma 3. This means that the privately selected 

travel demand level will not deviate from the socially optimal level under the government 
regulation q q . In other words, q q  is equivalent to q q  as a government regulation. 
In the following proposition we prove that the privately selected road capacity is also socially 
optimal under the regulation q q , and thus an optimal BOT contract is obtained through 
this regulation. 
 

Proposition 2. Let  , ,T q y    be an optimal BOT contract (either first-best or second-best). 

Then, if the government let the private sector choose  , ,T q y  such that q q , an optimal 

BOT contract will be obtained. 
 

Proof: Given that  , ,T q y    is an optimal BOT contract, we have that  , ,T q y   is an 

optimal BOT contract: if  , ,T q y    is a second-best solution, Proposition 1 states that 

T T  ; if  , ,T q y    is a first-best solution, then  , ,T q y   is also a first-best solution 

from Observation 1. Since the government does not control T , the private sector will choose 
T T . Also, from Lemma 3, the private sector will choose q q  under the government 

regulation q q . Then, with    , ,T q T q , the private sector will solve the following 

problem to determine y . 

      
0

max  , , ,
y

P T q y Tq p q y I y  


   (32) 

In view of the price function      , ,p q y B q t q y    , and that q  is predetermined by 

the government, problem (32) is equivalent to 

    
0

min  ,
y

Tq t q y I y 


   (33) 

Let ŷ  be the choice of the private sector, then ŷ  solves problem (33), and the resulting BOT 

contract is  ˆ, ,T q y . We need to prove that  ˆ, ,T q y  is an optimal solution to the BOT 

problem. For given  ,T q , we have 

        
0

, , ,
q

W T q y T B w dw q t q y I y



  
 
   
 
 
   

       
0

,
q

T B w dw Tq t q y I y



      (34) 

Note that the second term of (34) is equivalent to the objective function (33), thus y  solves 

problem (33), otherwise  , ,T q y   can not be an optimal solution. Since ŷ  solves problem 

(33), it follows readily that    ˆ, , , ,W T q y W T q y    and thus  ˆ, ,T q y  is an optimal BOT 

contract. This completes the proof. 
 
Proposition 2 shows an appealing negotiation regime in which the government only needs to 
set a minimum level of travel demand, while leaving the private sector to freely choose a 
preferable combination of road capacity, toll charge and concession period to maximize its 
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profit. The key point in the above proof is that “the second term of (34) is equivalent to the 
objective function (33)”, which is not a coincidence. Let T T , we have 

         
0

, , ,
q

W T q y T B w dw Tqt q y I y     (35) 

         , , ,P T q y TqB q Tqt q y I y     (36) 

(35) and (36) have the same second term,     ,Tqt q y I y  , which can be viewed as the 

total system cost with  ,Tqt q y  being the total travel cost and  I y  being the construction 

cost. This system cost involves the road capacity y  as the only variable if the travel demand 
q  is predetermined, and the objective functions (35) and (36)  states that both the social 
welfare maximizer (the government) and the profit maximizer (the private sector) would like 
to set the value of y  to minimize this total cost. Simply speaking, Proposition 2 holds 
because the public and the private sectors share the same interest regarding the road capacity 
choice when T T  and the travel demand is predetermined. In contrast, the two sectors 
generally do not share the same interest regarding travel demand and/or toll level choice for 
any predetermined road capacity. Also, it can be readily verified that, if T T , the two 
sectors will also have different interest regarding road capacity choice. Thus the first-best 
solutions with T T , if they exist, generally can not be obtained through a simple sequential 
game bilateral negotiation. 
 
Proposition 2 provides a negotiation regime and a strategy for the government to obtain an 
optimal BOT contract, which uses only one regulation variable. It can be easily verified that 
adding one more regulation variable by the government will not improve the outcome. For 

example, let  , ,T q y   be an optimal BOT contract, then if the government sets 

   , ,T q T q  or sets    , ,q y q y  , the response of the private sector will result in an 

optimal solution as when the government sets *q q  alone. In both cases, q  must enter as a 
regulation variable to guarantee an optimal BOT contract. Otherwise, the optimality cannot 

be guaranteed even if the government sets the other two regulation variables    , ,T y T y . 

If the government sets    , ,T y T y , then the private sector will typically target a q q 2 

by setting a higher toll level to maximize the profit, and thus the outcome will generally not 
be socially optimal. 
 
It should be mentioned here that, in a sequential bilateral negotiation, choosing target travel 
demand as a regulation variable gives rise to an outcome that is different from choosing toll 
level as a regulation variable. To see this, we still consider the optimal BOT contract 

 , ,T q y  . The corresponding optimal toll is    ,p B q t q y     . If the government 

only sets p p , the private sector will choose T T , and then solve the following problem 

to determine  ,q y . 

  
0, 0

max  
q y

Tqp I y

 
  (37) 

                                                 
2 The private sector will target a q q  only when q  “happens” to be the profit maximizing travel demand 

level for given road capacity y y , which is a sort of knife-edge case. 
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subject to 
  ,p q y p  (38) 

To see that the response of the private sector to the government strategy p p  is different 

from the response to q q , rewrite the profit objective functions (32) for given q q  and 

(37) for given p p  as 

      1 ,P y Tq p q y I y    (39) 

      2P y Tp q y I y   (40) 

where  q y  regards the travel demand q  as a function of the road capacity y  for given toll 

p , and is determined by (38). About  q y , taking derivatives with respect to y  on both 

sides of (38) gives 

 
   

 
,

,

dq y p q y y

dy p q y q

 
 

 
 (41) 

From Proposition 2, we know that y y  maximizes  1P y , and we shall show that y y  

generally does not maximize  2P y . To do so, we evaluate the derivatives of  1P y  and 

 2P y  at y y . From (39)-(40), also in view of  q y q   and (41), we have 

 
     1 ,dP y p q y

Tq I y
dy y

  
 


 


 (42) 

 
 

 
   2 ,dP y p q yp

T I y
dy yp q

  





 


 (43) 

where    ,p q p q y q      . With Assumption 2,  ,qp q y  is a strictly concave function 

of q , and since  , ,T q y   is an optimal solution to the BOT problem, the slope of  ,qp q y  

at q q  is non-positive, namely 

    , 0p q y q p q      (44) 

Note that  , 0p q y q    and  , 0p q y y   , (44) is equivalent to 

 
 

p
q

p q








 (45) 

From (45) and comparing the first terms of (42) and (43), we have 

 
   2 1dP y dP y

dy dy

 

  (46) 

where “=” holds if and only if (44) takes equality, which is not a general case. Actually, 
inequality (44) taking equality means that q  “happens” to be the profit maximizing travel 

demand for y y . For the general cases that (44) and thus (46) take strict inequality, i.e. 

   2 1dP y dy dP y dy  , since y y  maximizes  1P y  and  1 0dP y dy  , we have 

 2 0dP y dy  , which means that reducing y  will increase  2P y . Therefore, for the 

optimal BOT contract  , ,T q y  , if the government only sets the toll level to be p p , the 

private sector will typically choose a road capacity y y , and thus the outcome will 
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generally not be socially optimal. The intuition is that, because the optimal toll is below the 
profit maximizing toll, it gives the private sector inadequate incentive to expand the road 
capacity to the optimal level. 

4.2 Competitive auction 

The last subsection shows that the road capacity and the toll level are not effective regulation 
variables for achieving an optimal BOT contract in a sequential game bilateral negotiation. 
This subsection will demonstrate that the two are effective if the road is franchised through 
competitive auctions among a sufficiently large number of private firms. 
 
We first consider the case that the first-best optimum solution is not profitable and thus the 
optimal BOT contract is a second-best solution. Then the optimal concession period is the 
whole life of the road, and the government is only concerned about how to reach the optimal 
toll and road capacity. We consider two types of auctions: the government fixes the road 
capacity, and the road is awarded to the private sector that bids the lowest toll; alternatively, 
the government fixes the toll level, and the winner is the one that bids the largest road 
capacity. We assume that there are a sufficiently large number of private firms bidding for the 
project, and thus the bidding result gives rise to the minimum acceptable profit.  
 

Let  , ,T q y   be a second-best BOT contract with the corresponding toll level 

   ,p B q t q y     . To reach this optimal BOT contract, one auction mechanism is 

that the government fixes the concession period and the road capacity to be    , ,T y T y  

and lets the private firms bid for the lowest toll level p , which is equivalent to bidding for 
the highest travel demand q . Under this auction, with a sufficiently large number of bidders, 
the bidding result will be the lowest toll level (the highest travel demand) that satisfies the 
minimum profit constraint (11). Then it can be easily verified that p p  ( q q ) will be 

bidding result, and thus the optimal BOT contract  , ,T q y   is obtained. 

 
Another auction mechanism is that the government fixes the concession period and the toll 

level to be    , ,T p T p  and lets the private firms bid for the largest road capacity. Note 

that in this case, the government fixing the toll level is different from fixing the target travel 
demand as shown in last subsection. Under this auction, with a sufficiently large number of 
bidders, the bidding result will be the largest road capacity that satisfies the minimum profit 

constraint (11). For fixed    , ,T p T p , rewrite the profit function as 

      P y Tp q y I y   (47) 

where  q y  is indirectly given by 

    ,B q t q y p   (48) 

Then a necessary condition for y  to be the bidding result is that the minimum profit 

constraint (11) is binding, i.e.  P y P  , and that the profit decreases with the road capacity, 

i.e.   0dP y dy  . Note that  P y  defined by (47)-(48) here is exactly the same as  2P y  

defined by (40) in last section, thus we know about  P y  from the analysis on  2P y  in last 
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section that  P y P    and   0dP y dy  . Hence y y  satisfies the necessary condition 

for being the bidding result, and we can call y y  a “local” bidding result. To guarantee 

that y y  is a “global” bidding result, we need that  P y  defined by (47)-(48) is strictly 

pseudoconcave in y . With Assumption 1, pseudoconcavity of  P y  means that  P y  first 

increases and then decreases with y , which is intuitively reasonable and holds easily even if 

 I y  is concave (note that  P y  typically can not be concave when  I y  is concave, and 

pseudoconcavity is a much weaker requirement than concavity). With the pseudoconcavity 

assumption on  P y , since   0dP y dy  , any y y  will give    P y P y , and since 

 P y P   , it is clear that y y  is the largest road capacity that meets the minimum profit 

constraint (11). Therefore, y y  will be the bidding result and the optimal BOT contract 

 , ,T q y   is obtained. 

 
From the above analyses, a second-best BOT contract can be obtained through competitive 
auctions because competitive auctions among a sufficiently large number of private firms 
drive the bid winner to earn only the minimum acceptable profit, which is a major distinction 
from the bilateral negotiation in which the private sector tries to earn as much profit as 
possible. Nevertheless, this causes a problem for the first-best solutions for which the 
profitability constraint (11) is not binding, because a distorted result will be obtained when 
competitive auctions drive the bid winner to earn the minimum acceptable profit. 
Specifically, for a first-best solution that gives the private sector more profit than the 
minimum acceptable one, bidding for the lowest toll level will force the bidders to set a toll 
lower than the congestion toll, which is obviously not optimal, and bidding for the largest 
road capacity will force them to choose a road capacity larger than the optimal one. This 
problem is essentially caused by the property that the profitability constraint (11) is not 

binding. However, for the particular first-best solution  , ,T q y  , which, like a second-best 

solution, just gives the minimum acceptable profit to the private sector as described in 
Observation 1, it can be obtained through the aforementioned two competitive auctions. 

5 CONCLUSION 

Three variables are essential to a BOT road project, namely the concession period, the road 
capacity and the toll charge, while previous researches typically neglected either the 
concession period or the road capacity. Motivated by this, we explicitly regarded a BOT 
contract as a combination of the three variables, and examined how a BOT contract should be 
designed to maximize the social welfare, while allowing for an acceptable level of profit to 
the private sector. We classified and investigated the optimal BOT contract as either a first-
best or a second-best one, depending on whether the first-best optimum toll and capacity are 
profitable. In particular, we proved that, if the first-best optimum solution is not profitable 
and thus a second-best BOT contract has to be considered, the whole life of the road should 
be selected to be the concession period. This “lifetime concession period” result seems to be 
realistic because several BOT contracts around the world have been awarded for 99 years, 
including Highway 407 in Toronto, the Chicago Skyway and the Pocahontas Parkway 
(Virginia Route 495) in Richmond, Virginia. 
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With the properties of optimal BOT contracts well established, we provided a strategy for the 
government to ensure the achievement of an optimal BOT contract in the bilateral negotiation 
with a private sector firm. Specifically, by regarding the bilateral negotiation as a sequential 
game where the government is the leader and the private sector is the follower, an optimal 
BOT contract will be obtained if the government requires the travel demand to be not less 
than the optimal level (either first-best or second-best) and lets the private sector freely 
choose the other variables such as road capacity, toll charge and concession period. A 
practical interpretation of this result is that, when awarding a BOT contract for a new road, 
the government only needs to set a minimum service level for the road (i.e. the road should 
serve a traffic volume not less than certain level), and then let the private sector freely 
determine the rest. 
 
We also briefly examined two widely used auction mechanisms for road franchising, i.e. 
bidding for the largest road capacity and bidding for the lowest toll. Under the assumption 
that the number of bidders is large enough, it is demonstrated that both these competitive 
auctions can lead to optimal BOT contracts especially for the second-best case. 
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APPENDIX 

A1. Impact of a discounting rate on the results 

Assume time is continuous and  I y  is born by the private sector at 0t  . Let r  be an 

interest rate of reference used for discounting all monetary units to equivalent values at 0t  . 
Then the first-best optimum objective function (3) should be written as 

        
0

1
, ,

T rT
rt e

S q y e dt I y S q y I y
r


 

   . (49) 

Similarly, the profit formulation (5) should be written as 

    1
,

rTe
P qp q y I y

r


   (50) 

and the social welfare formulation (6) be written as 

      1 1 1
, ,

rT rT rTe e e
W S q y S q y I y

r r r

     
    

 
 . (51) 

 

Denote 
1 rTe

L
r


  and 

1 rTe
L

r


 , then (49), (50) and (51) become 

    ,LS q y I y , (52) 
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      , , ,P L q y Lqp q y I y  , (53) 

          , , , ,W L q y LS q y L L S q y I y    . (54) 

 
Comparing (52), (53) and (54) with (3), (5) and (6), respectively, it is then clear that the 
adoption of a discounting rate only requires T  and T  be rewritten as L  and L  (or T  and T  
are re-scaled), respectively. Thus it is clear that our major results remain valid. 

A2. Mathematical Analysis in Subsection 3.3 

For further analysis, we first calculate the partial derivatives of  , ,W T q y  and  , ,P T q y . 

From the social welfare function  , ,W T q y  given by (7), we have 

 
         , , ,W T q y t q y

T q I y T T S y
y y

  
         

, (55) 

 
       , , ,

,
W T q y t q y

T B q t q y q
q q

  
     

, (56) 

 
       

0

, ,
,

qW T q y
B w dw qt q y S y

T

 
      
  . (57) 

 
From the profit function given by (5), we have 

 
     , , ,P T q y t q y

T q I y
y y

  
      

, (58) 

 
         , , ,

,
P T q y t q y

T B q qB q t q y q
q q

  
      

, (59) 

 
   , ,

, 0
P T q y

qp q y
T


 


. (60) 

 

Let  , ,T q y    be a second-best solution. We shall prove that T T  . For simplicity of 

exposition, define  R q  and  S q  as functions of q  for given y  

    ,R q qp q y , (61) 

    ,S q S q y . (62) 

 R q  and  S q  are the revenue function and the unit-period social welfare function, 

respectively, for given road capacity y .  R q  is strictly concave in q  according to 

Assumption 2. With Assumption 1, it is obvious that  S q  is also strictly concave in q . With 

 R q  and  S q , we can rewrite several formulations for given y  as follows. 

          , ,W T q y TS q T T S y I y      , (63) 

      , ,P T q y TR q I y   , (64) 

 
   

, ,W T q y
TS q

q





, (65) 
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     

, ,W T q y
S q S y

T





 


 , (66) 

 
   

, ,P T q y
TR q

q





. (67) 

 
Let 1q  maximize the revenue function  R q . Then  1 0R q  ; i.e. 

        1

1 1 1 1 1

,
, 0

t q y
B q q B q t q y q

q





   


. (68) 

Let 0q  maximize the unit-period social welfare function  S q . Then  0 0S q  ; i.e. 

      0

0 0 0

,
, 0

t q y
B q t q y q

q





  


. (69) 

By definition (8), 0q  maximizing  S q  for given y  simply means that    0S y S q  . 

 
With Assumption 1, there exist unique 0q  and 1q  satisfying (68) and (69), respectively. By 

comparing (68) and (69), we can observe that 1 0q q . It is also readily determined that 0q  

corresponds to the congestion toll for given road capacity y . 
 

Lemma 1. It holds for the second-best solution  , ,T q y    that 

(a) 1 0q q q  . 

(b)    T R q I y P     . 

(c)    0TR q I y P    

 
Proof:  
(a) Comparing (56) with (59), we have    , , , ,W T q y q P T q y q      for any feasible 

 , ,T q y  in view of   0B q  . In particular, for the second-best solution  , ,T q y   , 

 , ,W T q y q     and  , ,P T q y q     can not be positive or negative simultaneously, 

otherwise increasing or decreasing q  will increase both   , ,W T q y  and  , ,P T q y , which 

contradicts that  , ,T q y    is a second-best solution. Thus it holds that 

 , , 0W T q y q      and  , , 0P T q y q     , and from (65) and (67), we simply have 

  0S q  and   0R q  . Then it follows readily that 1 0q q q   in view of  0 0S q  , 

 1 0R q  , and that  S q and  R q  are strictly concave. 

 
We still need to prove 0.q q   Suppose 0 ,q q   then we have 

     0, , 0W T q y q TS q TS q         from (65). Also, with      0S q S q S y    , 

we have    , , , ,W T q y W T q y      from (63). Then, since  , ,T q y    is a second-

best solution,  , ,T q y   is also a second-best solution. Comparing (55) with (58), we have 
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   , , , ,W T q y y P T q y y      in view of T T . In particular, for the second-best solution 

 , ,T q y  , it holds that    , , , , 0.W T q y y P T q y y          Otherwise increasing 

or decreasing y  will increase both   , ,W T q y  and  , ,P T q y , which contradicts that 

 , ,T q y   is a second-best solution. In summary, if 0q q   and  , ,T q y   is a second-

best solution, then  , , 0W T q y q     and  , , 0W T q y y    , which means that 

 ,q y   meets the first-best optimum conditions (14)-(15). Then the second-best solution 

 , ,T q y   becomes a first-best one, which is a contradiction. Thus it is proved that 

0q q  . 

 

(b) 0q q   gives      0S q S q S y    , then we have  , , 0W T q y T     from (66), 

which means that  , ,W T q y   always decreases with T  for given  ,q y  . Therefore, the 

profitability constraint (11) is binding for the second-best solution  , ,T q y   , i.e. 

   T R q I y P     , otherwise T  can be decreased to increase  , ,W T q y . 

 

(c) Suppose    0TR q I y P   , then  0, ,T q y  is a feasible solution and it is readily seen 

that    0, , , ,W T q y W T q y    , which contradicts that  , ,T q y    is a second-best 

solution. This completes the proof. 
 
Lemma 2. The function  h q  defined by (25) decreases with q  for 1 0q q q  . 

 
Proof: It suffices to prove that   0h q   for 1 0q q q  . We have 

          
  2

D q R q D q R q
h q

R q

 
   

Thus it suffices to prove that        D q R q D q R q   for 1 0q q q  . Since  S q  is 

strictly concave and increasing in q  for 1 0q q q  ,      D q S y S q   is strictly convex 

and decreasing in q  for 1 0q q q  . And in view of  0 0D q  , we have 

          0 0D q D q D q D q q q     , for 1 0q q q   (70) 

With Assumption 2,  R q  is strictly concave and decreasing in q  for 1 0q q q  . And in 

view of  0 0R q   (congestion toll is positive), we have 

          0 0R q R q R q R q q q     , for 1 0q q q   (71) 

Given    0D q   and    0R q  , combining (70) and (71) leads to 

          D q R q D q R q    , for 1 0q q q   

which is simply        D q R q D q R q   for 1 0q q q  . This completes the proof. 
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A3. Proof of Lemma 3 

Lemma 3. Let  , ,T q y   be an optimal BOT contract (either first-best or second-best). Then 

   *, , , ,P T q y P T q y  for any q q , 0y  . 

 

Proof: Suppose there exist q q , 0y   such that    *, , , ,P T q y P T q y , then  , ,T q y  

is a feasible BOT contract, and it suffices to prove that    *, , , ,W T q y W T q y , which 

contradicts that  , ,T q y   is an optimal BOT contract. To this end, we prove that 

        * *, , , , , , , , 0W T q y W T q y P T q y P T q y      (72) 

where the second inequality follows from    *, , , ,P T q y P T q y , and the first inequality is 

equivalent to 

        * *, , , , , , , ,W T q y P T q y W T q y P T q y     (73) 

From the welfare function  , ,W T q y  given by (7) and the profit function  , ,P T q y  given 

by (5),  we can see that (73) is equivalent to 

        
0 0

q q

B w dw qB q B w dw q B q



      (74) 

which in turn is equivalent to 

      
q

q

B w dw qB q q B q


    (75) 

In view of q q  and that  B q  decreases with q , (75) holds readily as below: 

          
q

q

B w dw q q B q qB q q B q


       

This completes the proof. 
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CAPTIONS 

 

Figure 1. Graphical illustration for  R q ,  S q , 1q  and 0q  

 

Figure 2. Maximum welfare as a function of concession period 

 

Figure 3. Maximum welfare function (as percentage of first-best welfare) for three cases 
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