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User Heterogeneity and Bi-criteria System Optimum 
 

Xiaolei Guo and Hai Yang* 

 

Department of Civil Engineering, The Hong Kong University of Science & Technology 

Clear Water Bay, Kowloon, Hong Kong, P.R. China 

 

 

Abstract 

 

For a traffic network with fixed demand of heterogeneous users in terms of their different 

values of time (VOT), the system performance can be measured either in time unit by the 

total system travel time (in short, system time), or in monetary unit by the total system travel 

cost (in short, system cost). Thus we have two different objectives for network optimization, 

i.e. to minimize system time and to minimize system cost, which naturally gives rise to a 

bi-objective minimization problem. A Pareto optimum of this bi-objective optimization 

problem represents a bi-criteria system optimum for network optimization in the sense that, at 

each Pareto optimum, neither system time nor system cost can be further reduced without 

increasing the other one. In this paper we prove that any Pareto optimum can be decentralized 

into multi-class user equilibrium by positive anonymous link tolls. We then bound the system 

performance gap when optimized by the two different criteria. Specifically, we provide 

answers to the following questions: When system time is minimized, how far could the 

corresponding system cost deviate from its minimum value? Conversely, when system cost is 

minimized, how far could the corresponding system time deviate from its minimum value? 

More generally, how far can the system time and system cost at a given bi-criteria Pareto 

optimum deviate from their respective single-criterion based system optimum? 

 

Keywords: User heterogeneity, system optimum, Pareto optimum, traffic equilibrium, 

networks  
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1. Introduction 

 

The concept of value of time (VOT) plays a pivot role in road pricing analysis as it describes 

how users make tradeoffs between money and time in response to road toll charges. 

Conventional network user equilibrium (UE) model typically assumes that users’ VOT are 

identical, i.e. homogeneous users. With homogeneous users, the first-best congestion pricing 

theory, namely the theory of marginal cost pricing is well established in general networks for 

fixed and elastic travel demand. However, it is well known that travelers may value travel 

time differently, depending on their income levels or travel purposes, and thus heterogeneous 

users with different VOT have to be considered. In the presence of user heterogeneity, various 

network equilibrium models are developed by assuming either a discrete set of VOT for 

several distinct user classes or a continuously distributed VOT across the whole population 

(e.g. Leurent, 1993; Marcotte and Zhu, 2000; Mayet and Hansen, 2000; Nagurney, 2000a). 

Also, the optimal pricing problems for heterogeneous users with discrete or continuous VOT 

distributions are investigated extensively (e.g. Dial, 1999a,b; Yang and Zhang, 2002; Yang 

and Huang, 2004). 

 

In traffic networks with users having different VOT, the system performance can be measured 

either in time unit or in cost (monetary) unit, and the two measures are in general mutually 

inconsistent with each other. In particular, for the case of fixed travel demand, the system 

performance can be measured either in time unit by the total system travel time (in short, 

system time), or in monetary unit by the total system travel cost (in short, system cost). From 

an economic viewpoint, system cost is a more appropriate system disutility measure when 

users value travel time differently. Nonetheless, system time is a traditional measure of 

system performance in transportation engineering context, and in the presence of multiple 

user classes, system time is still a proper measure of the environmental effect of traffic, i.e. 

the total system travel time roughly determines the total gas emission of vehicles (in this 

respect, one has to acknowledge the paradox demonstrated by Nagurney (2000b) and Yin and 

Lawphongpanich (2006) that an improvement in travel time might paradoxically increase 

traffic emission). Thus both system time and system cost are meaningful criteria for 

evaluating system performance. Yang and Huang (2004) examined the multi-class 
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multi-criteria (cost versus time) network equilibrium and system optimum problem in a 

network with a discrete VOT distribution and fixed travel demand. They studied the 

cost-based and the time-based system optimization (SO) problems separately. That is, they 

studied the minimization of system cost without consideration of system time, and then 

studied the minimization of system time but ignored system cost. 

 

In this paper, we propose to consider the two criteria for system optimization simultaneously. 

Specifically, we adopt a discrete VOT distribution model with fixed travel demand, and 

introduce a bi-objective minimization problem of system time and system cost. Using the 

theories of multi-objective optimization, we identify a Pareto optimal solution set and the 

corresponding objective value set (the Pareto optimal frontier) in our bi-objective 

optimization problem. Each point on the Pareto optimal frontier is a Pareto optimum where a 

bi-criteria system optimum is established in the sense that neither system time nor system 

cost can be further reduced without increasing the other one. After establishing the bi-criteria 

Pareto optimum, we then examine the question of whether or not we can always find positive 

anonymous link tolls (the same amount of toll levied on each link for all user classes) to 

decentralize a Pareto system optimum. We provide a positive answer to this question by 

rigorous analysis. Note that, in our study context we have to consider a pricing scheme with 

anonymous link tolls, because users differ from one another in VOT only, which is 

observationally indistinguishable, and thus toll differentiation across user classes is 

unrealistic and difficult to implement in reality. 

 

Our subsequent concern in this paper is the system performance discrepancy between the 

time-based and the cost-based SO cases. System time and system cost are both weighted 

summations of the travel times of all user classes, and thus differ from each other only to a 

bounded extent. We explore the extent to which the system performance measures differ 

between the time-based and the cost-based SO cases. Specifically, we answer the following 

questions. When system time is minimized at the time-based SO, how far could the 

corresponding system cost deviate from its minimum value achieved at the cost-based SO? 

Conversely, when system cost is minimized at the cost-based SO, how far could the 

corresponding system time deviate from its minimum value achieved at the time-based SO? 
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More generally, how far can the system time and system cost at a given bi-criteria Pareto 

optimum deviate from their respective single-criterion based system optimum? We show that 

the Pareto optimal system time and cost achieve their maximum deviations from optimum 

when the other objective is optimized. We also establish a meaningful upper bound of the 

product of the two maximum deviations, which can be solely determined by users’ VOT 

distribution.  

 

The paper is organized as follows. Section 2 provides preliminaries on the multi-class 

network optimization and pricing problems. Section 3 introduces the bi-criteria Pareto 

optimum concept, and proves that any Pareto optimum can be supported as multi-class UE by 

positive anonymous link tolls. Section 4 bounds the system performance discrepancy between 

the time-based and the cost-based SO cases. Finally, some concluding remarks are offered in 

Section 5. 

 

 

2. Preliminaries on multi-class network optimization and pricing problems 

 

Let  ,G N A  denote a transportation network, with a set of nodes N  and a set of links A , 

together with a set of origin-destination (OD) pairs .W  We consider separable link travel 

time function   ,  a at v a A , i.e. travel time on a link depends on the flow on that link only. 

The link travel time function  a at v , a A , is assumed to be monotonically increasing with 

av . We consider a discrete set of user classes corresponding to the groups of users with 

different socio-economic characteristics, such as income level. Let M  denote the set of such 

user classes, and m  0m  , be the average VOT for users of class .m M  Let m
wd .  

0m
wd  , be the travel demand of user class m M  between OD pair ,w W  wR  the set of 

all simple paths connecting OD pair w W , and m
rwf  the flow of user class m  on path 

.wr R  The flow m
av  by user class m M  and the total aggregate flow av  on link a A  
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can be expressed in terms of path flows as follows: 

,  ,  
w

m m
a rw ar

w W r R

v f a A m M
 

      (1) 

m
a a

m M

v v


  , a A  (2) 

where 1ar   if route r  uses link a  and 0 otherwise. For simplicity, we denote vectors as 

 , , ,m
rw wf r R w W m M   f , ( , )av a A v , and ( , , )m

av a A m M  Mv . 

 

In the presence of multiple user classes with different VOT, the system travel disutility can be 

measured either in time unit (time-based disutility or total system travel time) by 

 ( ) ( ) m
a a a a a a

a A a A m M

T t v v t v v
  

     (3) 

or in cost or monetary unit (cost-based disutility or total system monetary cost) by 

 β ( ) m
m a a a

a A m M

C t v v
 

    (4) 

Clearly, both the time-based and the cost-based system disutilities can be regarded as 

weighted sums of the travel times of all user classes in the network. The former has a uniform 

weighting factor equal to unity, while the latter has non-uniform weighting factors equal to 

the VOT of respective user classes. As said earlier, system cost C  is more meaningful for 

economists and system time T  is usually used by engineers; both T  and C  are 

meaningful criteria for network optimization. 

 

For simplicity, let   be the feasible set of path flows defined as 

 : ;  0; ,  
w

m m m
rw w rw

r R

f d f w W m M


        
  

f  (5) 

With the definition of T  and C , the time-based SO problem is formulated as 

    min  = a a a
a A

T t v v





f
f  (6) 

and the cost-based SO problem is formulated as 

    min  m
m a a a

a A m M

C v t v


 

 
f

f  (7) 

The system optimal flows given by the above SO problems are generally different from the 
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equilibrium flows in the absence of toll pricing, because each user tries to minimize her own 

travel time. Thus congestion pricing has to be introduced to decentralize an SO or other 

second-best target flow pattern into (or support it as) a multi-class UE flow pattern. That is, a 

tolling system can alter the generalized travel disutility of links and paths faced by each class 

of users, and thereby induce new multi-class UE flow patterns, which are exactly the target 

(SO or other second-best) flow patterns. 

 

Let au  denote the toll charged on link a A  for all user classes and  ,au a A u  be the 

vector of all link toll charges. With a toll scheme u  implemented, the generalized travel 

time ,tm
rwc  for a user of class m  traveling along route wr R  between OD pair ,w W  is 

defined as (money is converted into equivalent travel time according to the user class-specific 

VOT, and the superscript ‘t’ stands for time): 

  ,t ,  ,  ,  m a
rw a a ar w

a A m

u
c t v r R w W m M



 
       
  (8) 

The corresponding generalized travel cost ,cm
rwc  is defined as (time is converted into money, 

and the superscript ‘c’ stands for cost): 

   ,c ,  ,  ,  m
rw m a a a ar w

a A

c t v u r R w W m M


        (9) 

With a toll scheme u  implemented, the time-based UE conditions can be written (in time 

unit) as 

   ,tma
a a ar ar w

a A a A m

u
t v

 

    
  , if  0,m

rwf   ,  ,  wr R w W m M    (10) 

   ,tma
a a ar ar w

a A a A m

u
t v

 

    
  , if  0,m

rwf   ,  ,  wr R w W m M    (11) 

and the cost-based UE conditions are (in monetary unit) 

   ,cm
m a a ar a ar w

a A a A

t v u
 

       , if  0,  ,  ,  m

rw wf r R w W m M     (12) 

   ,cm
m a a ar a ar w

a A a A

t v u
 

       , if  0,  ,  ,  m

rw wf r R w W m M     (13) 

where ,tm
w  and ,cm

w  are the minimum travel disutility in time and monetary units, 
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respectively, between OD pair w W  by users of class ,m M  i.e.,  ,t ,tmin
w

m m
w r R rwc  , 

 ,c ,cmin
w

m m
w r R rwc  , and ,c ,tm m

w m w    . Clearly, the disutility unit used (time or cost) does 

not affect the UE conditions or the equilibrium flows, i.e. the time-based and the cost-based 

UE conditions are equivalent to each other. 

 

It is well known (e.g. Yang and Huang, 2004) that the multi-class UE problem can be 

formulated as the following equivalent minimization problem: 

  
0

1
min d

av
m

a a a
a A a A m M m

t v u


  

 
 f

 (14) 

Observe that objective function (14) is strictly convex in aggregate link flow v  for 

monotonically increasing link travel time function  a at v , but linear in class-specific link 

flow Mv . Thus, under a given tolling system u , the equilibrium link flow by user class Mv  

is generally not unique (neither is the UE path flow f ), while the aggregate UE link flow v  

is unique. Since v  is unique, the system time T  at equilibrium given by (3) is unique. The 

uniqueness of system cost C  at equilibrium is not obvious but can be shown below. 

 

Multiplying both sides of (12) and (13) by equilibrium path flow m
rwf  and summing over all 

,  ,  ,wr R w W m M    we have 

   ,cm m m
m a a a w w

a A m M w W m M

t v v d
   

        

or equivalently 

   ,cm m m
m a a a w w

a A m M w W m M

C t v v d
   

        (15) 

where a aa A
u v


   is the unique (due to unique ,  av a A ) total toll revenue generated 

from all classes of user in the network, and the minimum travel cost ,cm
w  for each class 

between each OD pair is also unique. Since ,cm
w  and   are unique at equilibrium, (15) 

means that system cost C  is unique. 
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In summary, we have the following lemma. 

 

Lemma 1. At traffic equilibrium under a toll scheme u , the path flow f  and the 

class-specific link flow Mv  are generally not unique, while the aggregate link flow v  and 

the system disutilities, T  and C , are all unique. 

 

 

Figure 1. Pareto optimal frontier of nonconvex bi-objective problem (16) 

 

 

3. Bi-criteria Pareto system optimum and Pareto optimal link toll 

 

As mentioned before, both system time T  and system cost C  are meaningful measure of 

system performance. Nevertheless, previous researches on network pricing optimization 

typically consider only minimization of either T  or C  (Yang and Huang, 2004). Here we 

shall consider minimization of T  and C  simultaneously. Thus we have the following 

bi-objective minimization problem, which combines the two SO problems (6) and (7). 
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 
 

 

 
min  

β

a a a
a A

m
m a a a

a A m M

t v v
T

C t v v




 

 
      
   

 


f

f

f
  (16) 

Instead of seeking for optimal flow patterns of minimizing T  or C , this bi-objective 

problem (16) is to seek for a Pareto optimal solution set, which determines a Pareto optimal 

frontier of the two objective values. As an illustration, Figure 1 plots a typical Pareto optimal 

frontier (also referred to as “efficient frontier”) for problem (16) in the  ,T C  

two-dimensional space. It should be mentioned that the feasible region of the objective value 

 ,T C  is generally nonconvex due to the nonconvexity of  C f  (Yang and Huang, 2005; 

Engelson and Lindberg, 2006). 

 

As seen in Figure 1, the Pareto optimal frontier of problem (16) is the left-lower part of the 

boundary of the feasible region of  ,T C , with the time-based SO and the cost-based SO 

being the two endpoints of the frontier. At each point on the Pareto optimal frontier (including 

the two SO points), neither T  nor C  can be further reduced without increasing the other 

one. Thus each point on the Pareto optimal frontier represents a bi-criteria system optimum, 

and is referred to as a Pareto system optimum (or shortly, Pareto optimum). A feasible flow 

pattern that gives a Pareto optimum is said to be a Pareto optimal flow pattern, and its 

mathematical definition is given as follows. 

 

Definition 1. A flow pattern P f  is said to be Pareto optimal if there does not exist 

another flow pattern f  such that    PT Tf f ,    PC Cf f , and at least one of 

   PT Tf f  and    PC Cf f  holds. 

 

The simplest way to solve bi-objective problem (16) is the so called weighted sum method, 

i.e. to solve a single objective problem as follows. 

    1 2min  T C


  
f

f f   (17) 
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With different nonnegative weights 1  and 2 , problem (17) leads to different Pareto 

optima. Nonetheless, it is well known (e.g. Miettinen, 1999) that the weighted sum method 

may not be able to solve for every Pareto optimum when the multi-objective problem is 

nonconvex, as is the case of our bi-objective problem (16). As illustrated in Figure 2, the 

objective contour lines of the weighted-sum problem (17) are straight lines in the  ,T C  

two-dimensional space. Setting different values to 1  and 2  only changes the slope of the 

contour line. Whatever combination of  1 2,   or whatever slope of contour line is adopted, 

some points on the Pareto optimal frontier (the concave part, as shown in Figure 2) can never 

be optimal to the weighted-sum minimization problem (17). This means that some Pareto 

optima can never be obtained by the weighted sum method. 

 

 

Figure 2. Weighted sum method for nonconvex bi-objective problem (16) 

 

For a nonconvex multi-objective problem, several methods are available for finding every 

Pareto optimum (Miettinen, 1999). Here we shall use the so called  -constraint method to 

solve our nonconvex bi-objective minimization problem (16). In this method, one objective 

function is selected to be optimized and the other objective function is converted into a 

constraint by setting an upper bound. Specifically, we shall solve the following problem. 
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  min  C
f

f   (18) 

subject to 

   TT  f   (19) 

where T  is a predefined upper bound of the system time. As illustrated in Figure 3, by 

setting different values to T , each point on the Pareto optimal frontier can be obtained. 

 

 

Figure 3.  -constraint method for nonconvex bi-objective problem (16) 

 

After introducing the bi-criteria Pareto system optimum, we are now interested in the 

following question: can we always find positive anonymous link tolls to induce a Pareto 

system optimum? For the two special cases of Pareto optimum, i.e. the respective time-based 

SO and cost-based SO, the answer is positive as shown in Yang and Huang (2004). In 

particular, Yang and Huang (2004) constructed a primal-dual pair of linear programming 

problems to obtain the set of nonnegative anonymous link toll patterns which can induce the 

time-based SO. In this section we first generalize their method of “primal-dual LP” to any 

feasible target link flow pattern and then apply the method to our Pareto system optimum. 

 

3.1 Decentralization of a given feasible target link flow pattern 
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For a given feasible target link flow ( , )av a A v , we consider the following linear 

programming (LP) problem: 

  min  m
m a a a

a A m M

t v v


 

 
f

  (20) 

subject to 

 
w

m
rw ar a

w W r R m M

f v
  

    , a A   (21) 

In words, constraint (21) means that the aggregate link flow should be v . Thus LP (20)-(21) 

is to minimize the system cost with respect to class-specific path and link flows subject to the 

aggregate link flow being equal to v . 

 

In view of the constraint set f  defined in (5), the dual formulation of LP (20)-(21) is: 

 
,

max  m m
a a w w

a A w W m M

v d
  

    
λ μ

  (22) 

subject to 

   ,  ,  ,  m
w a ar m a a ar w

a A a A
t v r R w W m M

 
            (23) 

where the dual variables  ,a a A  λ  and  , ,m
w w W m M   μ  are associated with 

the equality constraints (21) and the OD flow conservation constraint in (5), respectively, and 

a  and m
w  are unrestricted in sign. Note that the set of feasible solutions to LP (20)-(21) is 

not empty because v  is a feasible link flow pattern. Thus both the primal and dual LP have 

solutions. 

 

Let au  replace ( )a , a A  and rewrite (23) as 

    ,  ,  ,  m
m a a a ar w w

a A

t v u r R w W m M


         (24) 

According to the duality theory, at the optimal points of the primal and dual LP, the following 

complementary slackness conditions hold: 

    0,  ,  ,  m m
m a a a ar w rw w

a A

t v u f r R w W m M


         
 
  (25) 
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    0,  ,  ,  m
m a a a ar w w

a A

t v u r R w W m M


         (26) 

Observe that the optimality conditions (25)-(26) are simply the cost-based UE conditions (12)

-(13), with m
w  rewritten as ,m c

w . This equivalence between the LP optimality conditions 

and the UE conditions immediately leads to the following theorem. 

 

Theorem 1. Any feasible target link flow pattern can be supported as a multi-class UE link 

flow pattern by anonymous link tolls which can be positive or negative. 

 

Proof: For any feasible link flow ( , )av a A v , we can construct the primal-dual pair of LP 

(20)-(21) and (22)-(23), both having solutions and thus having optimal solutions. Consider a 

pair of primal-dual optimal solutions f  and  ,λ μ , and let  u λ  be a toll scheme. Then 

f , u  and μ  satisfy the optimality conditions (25)-(26), which are just the UE conditions 

under toll scheme  u λ , thus f  is a UE path flow and v  is the UE link flow under toll 

scheme  u λ . Therefore, v  is supported as a UE link flow by toll scheme  u λ . 

Because a  is unrestricted in sign, toll scheme  u λ  can have positive and negative link 

tolls. This completes the proof.     ♦ 

 

Theorem 1 requires that link tolls can be “positive or negative”. Yang and Huang (2004) 

showed the existence of positive link tolls to decentralize a cost or time-based SO link flow 

pattern into a multi-class UE, but this conclusion can not be generalized to any feasible link 

flow pattern that may have to resort to negative link tolls. Even in the case of homogeneous 

users, negative link toll is sometimes necessary to induce a feasible link flow pattern, as 

shown in Bai et al. (2006) by a simple example. 

 

Once an aggregate link flow pattern is given, the system time is uniquely determined, 

nevertheless, the system cost is undetermined but dependent on the class-specific link flows 

that constitute the given aggregate link flows. Fortunately, if an anonymous tolling scheme is 

implemented to support a target link flow v  as a multi-class UE flow, the resulting UE 

class-specific flow f  solves LP (20)-(21) for given v  (as the UE conditions are equivalent 
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to the LP optimality conditions), which means that f  minimizes the system cost under v . 

To sum up, we have 

 

Lemma 2. Under any anonymous link toll scheme that decentralizes a given feasible 

aggregate link flow pattern, the resulting class-specific UE flows minimize the system cost 

associated with the given aggregate link flow pattern. 

 

The intuition behind this lemma is that, under any anonymous link toll scheme, users with 

higher VOT tend to choose routes with lower travel times by paying higher toll charges, thus 

the system cost, C , which is exclusive of toll charge and given as the sum of the travel times 

of all user classes weighted by their VOT, is naturally minimized. The implication of the 

lemma is that, when analyzing congestion charge in the presence of user heterogeneity, we 

shall concentrate on the aggregate link flow rather than the class-specific flow, because the 

latter is self-optimized by the anonymous link tolls. 

 

3.2 Existence of nonnegative anonymous link tolls for a given Pareto system optimum 

 

After establishing Theorem 1 for decentralizing any feasible target link flow pattern with 

anonymous positive or negative link tolls, we now turn our attention to a Pareto optimum of 

the bi-objective system optimization problem. First note that, although applied for any 

feasible target link flow pattern, Theorem 1 can not be simply said to be valid for a Pareto 

system optimum, because the solution to bi-objective minimization problem (16) is defined 

and determined by the class-specific path and link flow rather than the aggregate link flow 

only. Thus we are left with the following question: when we use anonymous link tolls to 

decentralize the aggregate link flow of a Pareto system optimum, whether the class-specific 

UE path and link flow under the given toll scheme is Pareto optimal. The answer is positive 

as stated in the following lemma. 

 

Lemma 3. A Pareto system optimum is supported as a multi-class UE by an anonymous link 

toll scheme if the toll scheme induces the aggregate link flow of the Pareto system optimum. 
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Proof: Consider a Pareto optimal flow f  and the corresponding aggregate link flow v . Let 

u  be an anonymous link toll scheme under which the aggregate UE link flow is v . It 

suffices to prove that the class-specific UE path flow f  (generally non-unique) under toll 

scheme u  gives    T Tf f  and    C Cf f . Since both f  and f  have the same 

aggregate link flow v , we have    T Tf f . Because f  is a UE flow,  C f  is the 

minimum system cost under link flow v  from Lemma 2, thus we have    C Cf f , 

which simply means    C Cf f , because    C Cf f  contradicts that f  is Pareto 

optimal. This completes the proof.     ♦ 

 

Note that Theorem 1 and Lemma 3 already ensure the existence of anonymous link tolls to 

induce a Pareto system optimum. We now further prove the existence of nonnegative 

anonymous link tolls. This is meaningful because negative tolls (subsidies) on road networks 

are difficult and seldom implemented by policy makers in reality. 

 

Theorem 2. A Pareto system optimum can be supported as a multi-class UE by 

nonnegative anonymous link tolls. 

 

Proof: Consider a Pareto optimal flow f , and let v  be the corresponding aggregate link 

flow. With Lemma 3, it suffices to prove that there exists a nonnegative anonymous link toll 

scheme u  under which the UE link flow is v . To do this, for the given link flow v , we 

construct a modified version of the primal LP (20)-(21) with the equality constraint (21) 

replaced by the following inequality constraint 

 
w

m
rw ar a

w W r R m M

f v
  

    , a A   (27) 

Because constraint (27) is a simple relaxation of constraint (21) and other constraints remain 

unchanged, the feasible region of the new LP is expanded and hence nonempty. This means 

that the new LP and its dual LP have solutions. The new dual formulation is given by (22)

-(23) adding an additional constraint 

 0a  , a A   (28) 
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where  ,a a A  λ  is associated with the inequality constraint (27). Let f  and  ,λ μ  

be a pair of primal-dual optimal solutions to this new pair of primal-dual LP. Then  u λ  is 

a nonnegative link toll scheme because of constraint (28), and it still holds that f , u  and μ  

satisfy the optimality conditions (25)-(26). We only need to prove that the optimality 

conditions (25)-(26) are still equivalent to the UE conditions under toll scheme  u λ . It 

suffices to prove that the aggregate link flow of f  is v , i.e. constraint (27) is binding at the 

optimum solution f . 

 

Suppose constraint (27) is not binding at the optimum solution f , i.e. the aggregate link flow 

of f  is v  such that v v  and b bv v  for some b A . Then by the monotonicity of the 

link cost function we have    b b b bt v t v ,    m m
b b b b b bt v v t v v  for  m M , and 

   b b b b b bt v v t v v . Then we have 

    a a a a a a
a A a A

t v v t v v
 

    (29) 

    m m
m a a a m a a a

a A m M a A m M

t v v t v v
   

      (30) 

Note that (29) is simply    T Tf f . Also, because f  solves the new primal LP with 

objective function (20) subject to constraint (27), and f  is within the feasible region of this 

new LP, it holds readily that the objective value of f  is not larger than that of f , namely 

    m m
m a a a m a a a

a A m M a A m M

t v v t v v
   

     (31) 

Combining (30) and (31) yields    m m
m a a a m a a aa A m M a A m M
t v v t v v

   
      , which is 

   C Cf f . Thus we have both    T Tf f  and    C Cf f , which contradicts that 

f  is Pareto optimal. This completes the proof.     ♦ 

 

 

4. Bounding system performance deviation 
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In this section we shall explore the maximum extent to which the system performances vary 

when alternative Pareto system optimum is considered. Specifically, let Pf  denote a Pareto 

optimal flow, and Tf  and Cf  be the time-based and the cost-based SO flows, respectively. 

Further, let minT  and minC  denote the minimum possible system time and system cost that 

are realized, respectively, at time-based and cost-based SO, i.e.  min TT T f  and 

 min CC C f . For a given Pareto optimal flow Pf , we are interested in knowing how far the 

system disutilities  PC f  and  PT f  could be deviated from their minima, minC  and minT , 

respectively. 

 

To measure the deviation, we define the following two ratios, called system performance 

deviation factors: 

      
 min

T
T

T T

T T
  

f f
f

f
,      

 min
C

C

C C

C C
  

f f
f

f
 (32) 

Clearly,   1T f  and   1C f  for any feasible f . Particularly, let *
T  and *

C  

denote the values of the two factors when Cf f  and Tf f , respectively: 

 
   

 
*

min

C C
T

T

T T

T T
  

f f

f
, 

   
 

*

min

T T
C

C

C C

C C
  

f f

f
 (33) 

*
T  measures the deviation of the system time at a cost-based SO from its minimum achieved 

at a time-based SO; conversely, *
C  measures the deviation of the system cost at a 

time-based SO from its minimum achieved at a cost-based SO. Furthermore, *
T  and *

C  

are the upper bounds of  T P f  and  C P f  for any Pareto optimal flow Pf , as given in 

the following lemma. 

 

Lemma 4. For any Pareto optimal flow Pf , we have  T P T
  f  and  C P C

  f . 
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Proof: By definitions (32)-(33),  T P T
  f  is equivalent to    P CT Tf f , which holds 

for a simple reason: if    P CT Tf f , then we have    C PT Tf f  and    C PC Cf f , 

which contradicts that Pf  is Pareto optimal. Similarly,  C P C
  f  holds.     ♦ 

 

For illustration of the two factors *
T  and *

C , Figure 4 plots the Pareto optimal frontier in 

the rescaled  ,T C  two-dimensional space, where the x-axis value is minT T T   and the 

y-axis value is minC C C  . The origin of this rescaled  ,T C  space is set to point  1,1 , 

which represents the ideal case that both T  and C  are minimized simultaneously. The 

ideal case can be realized when users are homogeneous. In this rescaled  ,T C  space, each 

Pareto optimum     ,P PT Cf f  is represented by the point     ,T P C P f f , and in 

particular, the two points  *1, C  and  * ,1T  represent the time-based and the cost-based 

SO, respectively. From Lemma 4, each Pareto optimum is upper bounded by point  * *,T C  , 

thus the Pareto optimal frontier as a whole is upper bounded by point  * *,T C   and confined 

within a rectangular, as shown in Figure 4. 

 

Now we move on to look into the bound properties of the two factors *
T  and *

C . We first 

define the following terms and introduce a lemma. 

  min min ,m m M    , the minimum VOT among all user classes; 

 m m
w m w wm M m M

d d
 

    , the average VOT of all users between OD pair w W ; 

  max max ,w w W    , the maximum OD-average VOT among all OD pairs; 

  max max ,m m M    , the minimum VOT among all user classes. 
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Evidently, min max max     . 

 

 

Figure 4. Pareto optimal frontier in rescaled  ,T C  space 

 

Lemma 5. Let f  be a UE flow under an anonymous link toll scheme, then it holds 

      min maxT C T   f f f  (34) 

 

Proof: Because    minT C f f  holds trivially, here we only prove    maxC T f f . Let 

f  be a UE flow under anonymous link toll scheme u , then the UE conditions hold, and it 

follows from the cost-based UE conditions (12)-(13) that 

  ,cm
w a ar m a a ar

a A a A

u t v
 

       , wr R , w W , m M  (35) 

Multiplying both sides of (35) by equilibrium path flow m
rw rwm M

f f


  aggregated over all 

user classes and summing over all wr R , we have 

  ,c

w w w

m
w rw a rw ar m a a rw ar

r R a A r R a A r R

f u f t v f
    

          , w W , m M  (36) 
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Denote 
w

m
w rw wr R m M

d f d
 

    and ,
w

a w rw arr R
v f


  , then (36) becomes 

  ,c
, ,

m
w w a a w m a a a w

a A a A

d u v t v v
 

     , w W , m M  (37) 

Multiplying both sides of (37) by m
w wd d  and summing over all m M , we have 

  ,c
, ,

m m
w w a a w w a a a w

m M a A a A

d u v t v v
  

      , w W  (38) 

Since  max max ,w w W    , (38) can be relaxed to 

  ,c
, max ,

m m
w w a a w a a a w

m M a A a A

d u v t v v
  

      , w W  (39) 

Taking summation of (39) over all w W , we obtain 

  ,c
max

m m
w w a a a a a

w W m M a A a A

d u v t v v
   

         

which is simply 

  ,c
max

m m
w w

w W m M

d T
 

     f   (40) 

The left-hand side of (40) is equal to  C f  as mentioned in (15), thus we have 

   maxC T f f . This completes the proof.     ♦ 

 

The following theorem gives an upper bound of the product of the two factors *
T  and *

C . 

 

Theorem 3. It holds that 

 * * max max

min min
T C

 
   

 
  (41) 

 

Proof: The second inequality follows from the definitions of max  and max . By definition 

(33), we have 

 
 
 

 
 

 
 

 
 

* * C CT T
T C

T C C T

T TC C

T C C T

  
      

 

f ff f

f f f f
 (42) 
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Lemma 5 applies to Tf  and Cf , respectively, because there exist anonymous link toll 

schemes that can support the time-based and the cost-based SO as UE. Then, by applying 

Lemma 5 to Cf , we have    min C CT C f f , which gives 

 
 
  min

1C

C

T

C



f

f
  (43) 

Apply Lemma 5 to Tf , we have    maxT TC T f f , which gives 

 
 
  max

T

T

C

T
 

f

f
  (44) 

Substituting (43) and (44) into (42) gives (41).    ♦ 

 

 

Figure 5. Graphical representation of Theorem 3 in rescaled  ,T C  space 
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In view of 1T
   and 1C

  , Theorem 3 gives rise to max minT
    , max minC

     

and   max minmin ,T C
      . Thus max min   or max min   can be regarded as an 

upper bound on the system performance discrepancy when optimization is based on different 

(time vs cost) criteria. Figure 5 gives a graphical representation of Theorem 3 in the rescaled 

 ,T C  two-dimensional space. The bold line ( max minT C     ) together with the two axes 

constitutes a bounding region of point  ,T C
   , which in turn gives a bounding rectangular 

of the Pareto optimal frontier (see Figure 4). 

 

The bound information on the two factors *
T  and *

C  given in Theorem 3 is independent 

of network topology and link travel time functions, but solely dependent upon VOT 

distribution, or more specifically, on max min  , the ratio of the highest OD-average VOT 

among all OD pairs to the lowest VOT among all user classes. Here two remarks are ready. 

We can use the above tighter upper bounds if the information of the average VOT of users 

between each OD pair is available, otherwise we can replace max  with max . Second, when 

users are homogeneous, we readily have max max min     , then Theorem 3 gives the 

expected result of 1T C
     , which means that the time-based and the cost-based system 

optimizations coincide with each other (independent of the unit for system performance 

measure). 

 

Here, we give a numerical example to show the Pareto optimal frontier and demonstrate the 

difference between the time-based and the cost-based SO cases. Consider a simple network 

consisting of 4 nodes and 5 links, as illustrated in Figure 6. The link travel time functions are 

given in the figure: link 3 4  has an increasing travel time function, and the other 4 links 

have constant link travel times for simplicity. There are two OD pairs: 

 OD pair 1 4 , demand 1 2.6d   with VOT 1 1  ; 
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 OD pair 2 4 , demand 2 2.0d   with VOT 2 4  . 

 

 

41 0.15x  

1 

1 

25 

40 

1 

2 

3 4 

 
 

Figure 6. Network of numerical example 

 

Let 1f  and 2f  be the flows on link 1 3  and link 2 3 , respectively. Then, due to 

simplicity of the network, vector  1 2,f ff  effectively represents a class-specific traffic 

assignment, and the feasible flow set is  1 1 2 2: 0 ,0f d f d     f . Solving the 

time-based SO problem gives 

    1,0 2.6,0T d f , with min 73.0T   and   223.0TC f  

Solving the cost-based SO problem gives 

    20, 0, 2C d f , with min 139.2C   and   112.8CT f  

Thus we have 

 
112.8

1.55
73.0T

    and 
223.0

1.60
139.2C

    

Furthermore, solving the  -constraint problem (18)-(19) with the T  value increasing from 

min 73.0T   to   112.8CT f , we can solve for every Pareto optimum and thereby obtain the 

Pareto optimal frontier. Figure 7 plots the Pareto optimal frontier in the rescaled  ,T C  
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two-dimensional space. The point    , 1.55,1.60T C
     and its theoretical bounding curve 

( 2 1 4.0T C      ) based on Theorem 3 are also displayed in Figure 7 for comparison. 

 

 

Figure 7. Numerical example results in rescaled  ,T C  space 

 

 

5. Conclusions 

 

For a traffic network with heterogeneous users and fixed demand, system time and system 

cost are two meaningful measures of system performance. Thus, there are two objectives of 

network optimization, i.e. to minimize system time and to minimize system cost. This paper 

considered these two objectives simultaneously by introducing a bi-objective minimization 

problem and exploring bi-criteria Pareto optimum. We proved that a bi-criteria Pareto 

optimum can always be supported as a multi-class UE by positive anonymous link tolls. We 

also observe that: when dealing with pricing optimization with heterogeneous users, it 
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suffices to concentrate on the aggregate link flows rather than the class-specific path or link 

flows, because the latter will be automatically optimized by the anonymous link toll schemes. 

 

In an attempt to understand how system cost and system time vary with alternative Pareto 

system optimum including the time-based and the cost-based SO cases, we introduced two 

system performance deviation factors and established a meaningful upper bound of their 

product. The upper bound is solely determined by users’ VOT distribution, i.e. the ratio of the 

highest to the lowest VOT among all user classes. It should be mentioned that these results 

are independent of network topology and travel time functions. 
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