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Xiaozheng He, Xiaolei Guo and Henry X. Liu 

 

Department of Civil Engineering 
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Abstract: Existing day-to-day traffic assignment models are all built upon path flow 

variables. This paper demonstrates two essential shortcomings of these path-based 

models. One is that their application requires a given initial path flow pattern, which is 

typically unidentifiable, i.e. mathematically nonunique and practically unobservable. In 

particular, we show that, for the path-based models, different initial path flow patterns 

constituting the same link flow pattern generally gives different day-to-day link flow 

evolutions. The other shortcoming of the path-based models is the path overlapping 

problem. That is, the path-based models ignore the interdependence among paths and 

thus can give very unreasonable results for networks with paths overlapping with each 

other. These two path-based problems exist for most (if not all) deterministic day-to-day 

dynamics whose fixed points are the classic Wardrop user equilibrium. To avoid the two 

path-based problems, we propose a day-to-day traffic assignment model that directly 

deals with link flow variables. Our link-based model captures travelers’ cost-

minimization behavior in their path finding as well as their inertia. The fixed point of our 

link-based dynamical system is the classic Wardrop user equilibrium.  

 

Key Words: Day-to-day traffic assignment model, link-based, Wardrop user equilibrium. 

 

1. Introduction 

  

Day-to-day (or inter-periodic) traffic modeling methods are believed to be most 

appropriate for analyzing traffic equilibration processes. With increasing applications of 

Intelligent Transport Systems (including traveler information and control systems), these 

day-to-day models aim to capture  day-to-day traffic fluctuations and focus more on the 

evolution process itself, rather than the final (static) equilibrium state, which is the center 

point of traditional (deterministic and stochastic) static traffic assignment models. As 

mentioned by Watling and Hazelton (2003), the most appealing feature to researchers and 

practitioners is the great flexibility of day-to-day approaches, which allows a wide range 
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of behavior rules, levels of aggregation, and traffic modes to be synthesized into a 

uniform framework. This equilibration paradigm helps transportation planning and 

management in modeling evolution of traffic states and the trajectories of evolution. 

 

Day-to-day traffic dynamics can be established on continuous temporal spaces when time 

steps are “sufficiently” small. Existing continuous time day-to-day dynamics employ 

differential equations to describe traffic evolution. In this category, Smith (1984), Friesz 

et al. (1994), and Zhang and Nagurney (1996) proposed three dynamical systems. These 

three systems adopted the assumption of perfect perception of travel cost and developed 

deterministic traffic assignment processes over a continuous temporal dimension. 

Specifically, Smith (1984) assumed that travelers on higher travel cost routes will 

proportionally switch to those routes with lower travel costs. Friesz et al. (1994) proposed 

a day-to-day model that captures both the dynamics of route flows and origin-destination 

demands. Zhang and Nagurney (1996) modeled a projected dynamical system, which 

adjusts day-to-day route flows with a minimum norm projection operator, rather than the 

proportional switching in Smith’s work.  

 

Although continuous time approaches have good mathematical properties in traffic 

evolution, Watling and Hazelton (2003) summarized two major limitations suffered by 

continuous day-to-day approaches: (1) continuous-time trip adjustment is not plausible in 

reality; (2) homogeneous population assumptions in these approaches require additional 

dispersion modules. Therefore, discrete versions of day-to-day traffic equilibration 

models are more suited to day-to-day fluctuation. In discrete time day-to-day traffic 

dynamical systems, travelers’ route choice behavior is assumed to be repeated daily, in 

accordance with daily changes in traffic flows. Specifically, Friesz et al. (1994) employed 

a projection-type discretization algorithm, given by Bertsekas and Gafni (1982), to 

approximate the continuous traffic trajectories in the dynamical system developed therein. 

Nagurney and Zhang (1997) specified their continuous model in a discrete temporal 

space with fixed demand and applied Euler’s method to solve the projected dynamical 

system. 

 

Due to the random nature of transportation systems, stochasticity has been introduced 

into day-to-day approaches. Most existing stochastic day-to-day assignment models 

follow Markov processes; examples include models proposed in Cascetta (1989) and 

Hazelton and Watling (2004), where the computation of transition matrices depends only 

on the previous traffic state. The transition probability matrix could be specified and 

leads to approximations of system mean dynamics, as shown by Daganzo and Sheffi 
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(1977), Davis and Nihan (1993) and Yang and Liu (2007). Other stochastic approaches, 

e.g., Horowitz (1984), Canterella and Cascetta (1995), Watling (1999), adopted the 

assumption of memory length, assuming that route choice probabilities depend on 

weighted averages of experienced travel times. To solve these models, Davis and Nihan 

(1993) provided a particular Gaussian multivariate autoregressive process and Hazelton 

et al. (1996) proposed a Markov Chain Monte Carlo method. 

 

Existing day-to-day traffic models are all built upon path-based variables, many of which 

have two essential shortcomings, as to be demonstrated in this paper. One shortcoming is 

that their application requires a given initial path flow pattern, which is typically 

unidentifiable, i.e. mathematically nonunique and practically unobservable (exceptions 

include some logit assignment based models and the stochastic models which focus on 

the probability distribution of flow states and/or the expected flow state rather than the 

day-to-day flow evolution trajectory, as to be discussed later). In particular, we show that, 

for the path-based models, different initial path flow patterns constituting the same link 

flow pattern generally gives different day-to-day link flow evolutions. Thus the difficulty 

of identifying the initial path flow pattern is indeed a problem for the path-based models. 

The other shortcoming of the path-based models is the path overlapping problem. That is, 

the path-based models ignore the interdependence among paths and thus can give very 

unreasonable results for networks with paths overlapping with each other. To avoid the 

two path-based problems, we propose a day-to-day traffic assignment model that directly 

deals with link flow variables. Our link-based model captures travelers’ cost-

minimization behavior as well as their inertia. The fixed point of our link-based 

dynamical system is the classic user equilibrium (UE) flow. 

 

The remainder of the paper is organized as follows. Section 2 gives the preliminaries of 

day-to-day traffic assignment models. In Section 3, we demonstrate two shortcomings of 

many existing path-based day-to-day dynamics and provide detailed discussions. A link-

based day-to-day model is proposed in Section 4, which effectively avoids the two path-

based problems. Section 5 applies the proposed link-based model to a small test network 

and provides discussions on the model parameters based on the numerical results. 

Concluding remarks are given in Section 6. 

 

2. Preliminaries of day-to-day traffic dynamics 

 

Let a transportation network be a fully-connected directed graph denoted as  ,G N L , 

consisting of a set of nodes N  and a set of links L . Let W  be the set of OD pairs, wd  be 
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the fixed travel demand between OD pair w W , wP  be the set of paths connecting OD 

pair w W , t
pwf  be the path flow on path wp P  at day t , t

ax  be the link flow on link 

a L  at day t . Denote demand, path flow and link flow vectors as d , tf , and tx , 

respectively. Let A  be the link-path incidence matrix, then t tx Af . Let Φ  be the OD-

path incidence matrix, then td Φf . Let  ac x  be the link cost function of link a L , 

then  t
ac x  is the link cost of link a L  at day t , and we denote  tc x  as the 

corresponding link cost vector. Let tF  denote the path cost vector at day t , with 

individual path cost t
pwF , then it holds    t t t  F A c x A c Af , where A  is the 

transpose of A . 

 

The above notations are sufficient for describing discrete-time day-to-day traffic 

dynamics. For continuous-time versions, we denote the day-to-day path flow dynamic as 

f , which is the derivative of path flow with respect to time, and denote the day-to-day 

link flow dynamic as x . It holds readily x Af . 

 

As summarized by Yang and Zhang (2009), there are five major categories of 

deterministic day-to-day dynamical systems. They are the simplex gravity flow dynamics 

(Smith, 1983), the proportional-switch adjustment process (e.g., Smith, 1984; Smith and 

Wisten, 1995; Huang and Lam, 2002; Peeta and Yang, 2003), the network tatonnement 

process (e.g., Friesz et al., 1994), the projected dynamical system (e.g., Zhang and 

Nagurney, 1996; Nagurney and Zhang, 1997), and the evolutionary traffic dynamics (e.g., 

Sandholm, 2001; Yang, 2005). All these day-to-day dynamics are path-based models, i.e. 

they all explicitly use path flow variables and give explicit path flow evolution 

trajectories. A common property of these models is that the stationary point or fixed point 

is the classic UE flow pattern. There are also some deterministic day-to-day dynamics 

that do not have UE as the fixed point, e.g. the logit assignment based model of Watling 

(1999) has the logit-based stochastic user equilibrium (SUE) as its fixed point. Besides, 

there are stochastic day-to-day traffic assignment models which focus on the probability 

distribution of flow states and/or the expected flow state (e.g. Cascetta 1989) rather than 

the flow evolution trajectory. Our discussions in next section on the shortcomings of 

existing day-to-day traffic models are mainly related to the deterministic models with UE 

as the fixed point, i.e., those summarized by Yang and Zhang (2009). Nevertheless, 

comments are provided regarding other models wherever necessary. 
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Here, as an illustration and also for later reference, we give the formulation of the 

proportional-switch adjustment process (PAP) according to Smith (1984). The 

continuous-time version of PAP is 

  
w

pw qw qw pw pw pw qw
q P

f f F F f F F
 



           (1) 

where    is a projection operator defined as    max ,0x x

 .  

 

The discrete-time version of PAP is 

  1 1 1 1 1 1 11

w

t t t t t t t t
pw pw qw qw pw pw pw qw

q Pw

f f f F F f F F
T

      

 


            (2) 

where 

 , 1 , 1

w w

w w
w p t q t

p P q P

T F F M  
 

       

wT  can be regarded as a step size to discretize the continuous-time version, and 0M   is 

a reluctance parameter, i.e. more travelers prefer maintaining previous choices when a 

larger M  appears. 

 

 

3. Two shortcomings of the path-based day-to-day traffic dynamics 

 

In this section we demonstrate two essential shortcomings of the path-based day-to-day 

traffic dynamics. The two shortcomings become most manifest when the models are 

applied (rather than just theoretically discussed), thus we shall apply a path-based 

dynamic to a simple yet illustrative network. We adopt a discrete-time approach in this 

section because it suits real application better than the continuous-time approach does.  

 

Consider a simple network shown in Figure 1, consisting of 4 nodes and 5 links with 

shown node and link numbers. There is one OD pair from Node O to Node D connected 

by four paths numbered as below: 

 

 

Path 1, link sequence 1 3 4  , 

Path 2, link sequence 1 3 5  , 

Path 3, link sequence 2 3 4  , 

Path 4, link sequence 2 3 5  . 
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Figure 1. A network to demonstrate the shortcomings of path-based dynamics 

 

Consider that the network flow in Figure 1 is initially at UE and a capacity reduction on 

Link 4 takes place at day 0. Let x  be the initial UE link flow pattern, and consider that 

0x , i.e. each link initially has some flow. Let F  be the initial UE travel cost, i.e. all 4 

paths have the same travel cost F  before the capacity reduction takes place. When the 

capacity reduction happens at day 0, the link flow pattern is still x , and thus it is clear 

that the path costs of Path 2 and Path 4 do not change (Link 4 not included in these paths), 

while the path costs of Path 1 and Path 3 increase to the same level (due to the same cost 

increase of Link 4) denoted as 0F  such that 0F F  . 

 

3.1 The path-flow-nonuniqueness problem 

 

Now we have an observation of the network condition at day 0: link flow pattern 0 x x , 

which gives link cost vector  c x  and path cost vector  0 0 0, , ,F F F F F   . Suppose we 

have at hand a well-established day-to-day traffic assignment model, then we should be 

able to predict the day-to-day traffic equilibration process after day 0. However, to apply 

any path-based model, we need a given initial path flow 0f . Without further assumptions, 

all that we know about 0f is that 

 0 0Af x  (3) 

and it is clear that 0f  satisfying (3) is not unique for the example here. 

 

It should be mentioned that the path flow pattern corresponding to a given link flow 

pattern is generally nonunique and unobservable. In particular, the nonuniqueness of the 

UE path flow pattern is well known and is typically not considered as a problem of the 

UE solution because the UE link flow and thus the UE system performance are unique 

(under mild technical conditions). In the same spirit, neither should the nonuniqueness of 
0f  be regarded as a problem of the path-based day-to-day dynamics if different 0f

(constituting the same 0x ) can give the same day-to-day evolution of the link flow 

pattern. Unfortunately, it generally does not hold such an ideal property, and thus the 

3

1 

2 

4

5

O 1 D 2
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nonuniqueness of 0f  is indeed a problem of the path-based day-to-day dynamics. We 

shall demonstrate this by our small example as well as some general derivations. 

 

To show that different 0f  will give different link flow evolution, it suffices to calculate 

the link flow pattern at day 1, i.e. to show that 1x  takes different values for different 0f . 

Applying the discrete-time PAP dynamic (2) to our small example, we obtain 1f  as 

follows 

 

 

 

1 0
1 1
1 0 0

1 2 2 4
1 0

3 3
1 0 0

4 4 4

1

0.5

1

0.5

f f

f f x

f f

f f x







   
   

       
         

f  

where   is a coefficient given by 

 
 

 
0

0

2

4

F F

F F M





 



  

Then, from 1 1x Af  we have 

 

 

1 0 0 0
1 1 4 1
1 0 0 0
2 2 4 3

1 1 0
3 3
1 0
4 4
1 0 0
5 5 4

0.5

0.5

1

x x x f

x x x f

x x

x x

x x x

 
 




    
   

    
    
   

   
      

x  (4) 

 

It can be seen clearly from (4) that different 0f  will give different 1x , which means that 

the link flow day-to-day evolution depends on the (nonunique and unobservable) initial 

path flow pattern. This problem actually exists generally for many path-based day-to-day 

dynamics, not just for the PAP dynamic applied to our small example. To see this, we 

look into the general case. 

 

For a general network, assuming an observed initial link flow pattern 0x , then the initial 

path flow pattern 0f  solves the linear equation system (3). Let Pn  be the number of paths, 

when  pn rank A , the 0f  solution has a degree of freedom  pDF n rank  A  and 

can be written in form of 

 0  f Zθ f  (5) 
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where Z  is a constant  pn DF  matrix with full column rank satisfying 0AZ , f  is a 

constant vector, and θ  is an indeterminate  1DF   vector. It is clear that different 

values of θ  represent different 0f . Observe that 0AZ  guarantees that 0 0x Af  does 

not depend on θ , i.e. different 0f  constitute the same 0x . 

 

Consider a path-based day-to-day dynamic such that the path flow at day 1 is given by 

 1 0   f Uf UZθ Uf  (6) 

where U  is the path flow updating matrix determined by the specific day-to-day dynamic. 

Then the link flow at day 1 is given by 

 1 1   x Af AUZθ AUf  (7) 

Note that it generally holds 0AUZ , because U  is essentially given by the day-to-day 

dynamic, typically related to cost and flow, not determined by the link-path incidence 

matrix A . Then it can be seem from (7) that 1x  depends on θ , which simply means that 
1x  depends on 0f . Thus it is demonstrated that different initial path flow patterns 

generally give different link flow evolutions. 

 

To sum up, we formally give the following observation. 

 

Observation 1. For a path-based day-to-day dynamic, different initial path flow patterns 

constituting the same initial link flow pattern generally lead to different link flow day-to-

day evolutions. 

 

From Observation 1, if a path-based day-to-day dynamic is to be applied, it is important 

to first identify the initial path flow pattern, which, however, is typically nonunique and 

unobservable. This shortcoming of many path-based models is referred to as the path- 

flow-nonuniqueness problem in this paper. 

 

Here several comments are ready for the path-flow-nonuniqueness problem. First, a 

possible solution to this problem is to use some kind of estimation method to obtain an 

estimation of the initial path flow pattern. For example, the most likely path flow 

estimation method (e.g. Larsson et al. 1998; Bar-Gera 2006) could be adopted. In this 

paper we limit our attention on this direction because there is another problem associated 

with the path-based day-to-day dynamics which could not be solved by estimation 

methodologies, as we will discuss in the next section. Second, because the path-flow-

nonuniqueness problem is actually caused by the difficulty of identifying the initial path 

flow pattern, arguably it is not a theoretical shortcoming of the path-based models. That 
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is to say, if the initial path flow pattern can be somehow identified, then the path-based 

models can be simply applied. Indeed, it is theoretically possible to identify the path flow 

pattern of a network if all vehicle paths can be traced practically. In this sense, the path-

flow-nonuniqueness problem could be viewed as a technology or cost problem rather 

than a modeling problem. 

 

Last but not least, although existing day-to-day traffic assignment models are all built 

upon path flow variables, not all of them have this path-flow-nonuniqueness problem. For 

example, the models that essentially conduct a logit SUE assignment for each day (e.g. 

Watling, 1999) do not have this problem, because under the SUE setting, path flow 

pattern is uniquely determined once path costs are given. Also, for the stochastic models 

that focus on the probability distribution of flow states and/or the expected flow state (e.g. 

Cascetta 1989), the specific flow evolution trajectory is not a concern (as the trajectory is 

essentially a realization of a stochastic process). Such models can initialize their 

simulation processes by drawing a random flow pattern from the stationary distribution, 

and thus the nonuniqueness of path flow is irrelevant. In general, the path-flow-

nonuniqueness problem exists for most (if not all) existing deterministic day-to-day 

dynamics whose fixed points are the classic Wardrop UE, i.e., those summarized by 

Yang and Zhang (2009).  

 

3.2 The path-overlapping problem 

 

While the path-flow-nonuniqueness problem is in some sense not a modeling problem but 

only a cost or technology problem for the path-based day-to-day dynamics, there does 

exist another problem which is rooted inherently in the path-based methodology. To see 

this problem, let us revisit the small example we have presented. By examining the 

network shown in Figure 1, we can see that the network is “separable”: the subnetwork 

from Node O to Node 1 and the subnetwork from Node 2 to Node D are totally 

independent of each other. As a result, a capacity reduction on Link 4, as we have studied 

in the example, should not affect the flow split between Link 1 and Link 2. More 

rigorously, it could be stated as below: 

 

For the network shown in Figure 1, assuming a fixed travel demand and separable link 

cost functions (i.e. no spillback effect), and consider that the network flow is originally at 

stable equilibrium, then, if a capacity reduction on Link 4 takes place, the flow split 

between Link 1 and Link 2 should remain stable and unchanged. 
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The above statement is a reasonable and logical “expectation” about the network shown 

in Figure 1, and a model that violates this expectation is at least not amenable to this 

small network. Unfortunately, many existing path-based day-to-day dynamics violate this 

expectation, i.e. they unreasonably predict a flow fluctuation between Link 1 and Link 2 

consequential to a capacity reduction on Link 4. As an illustration, equation (4) shows 

that the PAP dynamic generally gives 1 0
1 1x x  and 1 0

2 2x x , i.e. there is a change of the 

flow split between Link 1 and Link 2 when a capacity reduction on Link 4 happens. One 

may argue that if we set a particular value for 0f , i.e. let 0 0 0
1 3 40.5f f x  , then we have 

1 0
1 1x x  and 1 0

2 2x x . However, 0 0 0
1 3 40.5f f x   could easily be infeasible, not to mention 

how arbitrary it is to set such a value. For example, if  0
1 1x   and 0

4 3x  , then 

0 0 0
1 3 40.5f f x   would give 0 0

1 11.5f x  , which is obviously infeasible. 

 

The path-based day-to-day dynamics do not apply to the small network shown in Figure 1 

because these models do not consider path interdependence. That is, users of Path 1 are 

modeled to be indifferent to Path 2 and Path 4 when they consider route switching, 

because Path 2 and Path 4 have equal path costs. In reality, however, users of Path 1 

probably prefer Path 2 to Path 4 because Path 2 overlaps more with their current path. 

Such a path overlapping effect is not taken into consideration by the existing path-based 

models, in which path cost is considered as the only driving factor of day-to-day traffic 

evolution. As shown by our small example, a path-based day-to-day dynamic ignoring 

the path-overlapping effect could give very unreasonable predictions on day-to-day 

traffic equilibration. This shortcoming of the path-based models is referred to as the path-

overlapping problem in this paper. 

 

It should be mentioned that our small example here is just a convenient demonstration of 

the path-overlapping problem, while the problem itself could be much more general. That 

is, even if a particular path-based day-to-day traffic model does not violate the intuition 

of our small network, it may still have the path-overlapping problem. In general, as long 

as a model (implicitly) assumes that users are indifferent to two paths with the same cost, 

then the path-overlapping problem is likely to exist, especially for deterministic models 

which provide explicit flow evolution trajectories. For the stochastic models dealing with 

the probability distribution of flow states and/or the expected flow state rather than the 

flow evolution trajectory, the path-overlapping effect may also exist, and may be related 

to the assumptions the models make regarding the randomness of the system. To keep 

this paper more focused, we limit our attention to the deterministic models. 
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The path-overlapping problem is actually a common problem for all path-based models 

dealing with travelers’ route choice behaviors. One well known example is the logit-

based SUE model in the context of static traffic assignment. In the literature many studies 

(e.g. Cascetta et al., 1996; Vovsha and Bekhor, 1998; Ben-Akiva and Bierlaire 1999; 

Frejinger and Bierlaire, 2007) have been devoted to overcoming the path-overlapping 

problem of the logit SUE model, typically by introducing some measure of path overlap 

or capturing the nested hierarchy of networks. Here, for the path-based day-to-day 

dynamics, it is possible to solve (or alleviate) the path-overlapping problem using similar 

methods. In this paper we do not take this effort because we have two problems with the 

path-based day-to-day dynamics, the path-flow-nonuniqueness problem and the path-

overlapping problem. Although we have suggested possible solutions to each of the two 

problems, we conjecture that to handle the two problems simultaneously within the path-

based methodology would be difficult and might end up with a rather complicated model. 

Therefore, we shall resort to a different approach, the link-based methodology. 

 

 

4. A link-based day-to-day traffic model 

 

In this section we propose a day-to-day traffic assignment model that directly deals with 

link flow variables. Such a link-based model effectively avoids the two path-based 

problems mentioned in last section. 

 

The general form of our link-based day-to-day dynamic in continuous time is 

   x y x  (8) 

where   is a positive constant parameter determining the flow changing rate, and 

 y x  provides a flow changing direction. In other words, dynamic (8) means that, at 

any day, the (link) flow pattern tends to move from the current flow pattern x  towards a 

“target” flow pattern y  based on the current day situation. Thus the model is essentially 

determined by how the “target” flow pattern y  is defined. In this paper we let y  solve the 

following problem given current link flow x : 

      min 1 ,D 


  
y

c x y x y  (9) 

where  : , , 0    x x Af d Φf f  is the feasible link flow set,   is a positive scalar 

such that 0 1   (note that we do not allow 0   or 1  ), and  ,D x y  is a  

measure of the distance between the target flow y  and the current flow x . For example, 
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 ,D x y  could take the form of the Euclidean distance      ,D x y x - y x - y . We 

shall discuss the specification of  ,D x y  later. 

 

It is clear that problem (9) is a weighted summation of two problems, namely the linear 

programming (LP) problem 

  min



y

c x y  (10) 

and the following minimization problem 

  min ,D
y

x y  (11) 

 

We shall look into LP (10) and problem (11) to obtain a better understanding of the 

proposed day-to-day dynamic (8)-(9). LP (10) is to optimize the link flow pattern y  in 

terms of cost minimization under a given fixed link cost vector  c x . Because link cost 

vector  c x  is given and fixed, LP (10) is essentially to find the shortest path for each 

OD pair. That is, the optimal solution to LP (10) corresponds to an all-or-nothing traffic 

assignment, i.e. all the travel demand will be assigned to the shortest path for each OD 

pair. Therefore, if we let the target flow y  in dynamic (8) solve LP (10), then the 

dynamic would mean that, at any day-to-day time, travelers tend to switch to the current 

shortest path. This behavioral implication is reasonable: like most day-to-day dynamics, 

it just in some way captures travelers’ cost-minimization behaviors.  

 

However, the optimal solution to LP (10) is generally not unique, which means that 

simply letting y  solve LP (10) would make dynamic (8) indeterminate. This problem 

exists because there are generally multiple shortest paths between each OD pair. To see 

this problem, let us first revisit the example studied in last section. When a capacity 

reduction on Link 4 happens to the network shown in Figure 1, there are two equally 

shortest paths, namely Path 2 and Path 4. Then, any arbitrary demand split between Path 

2 and Path 4 will give an optimal solution to LP (10) for the given current flow x x . To 

see a more general example, which does not rely on specific network topology, let us 

consider that the current flow is at UE, i.e. x  is the UE link flow. In this case, it is 

obvious that the UE shortest path between each OD pair is typically not unique, and 

neither is the optimal solution to LP (10). Observe that, in this case, y x  is one of the 

optimal solutions to LP (10). 

 



13 

The fact that LP (10) has multiple optimal solutions implies that we need to pick one 

from its optimal solution set to be the target flow y  in dynamic (8).  For the example of 

Figure 1, we should pick the one such that the flow split between Link 1 and Link 2 

remains unchanged, as we have discussed in last section. For the example that the current 

flow is at UE, obviously we should simply pick y x , i.e. the UE flow pattern should not 

change. For both examples, we have picked a target flow y  that is closest to the current 

flow x , which, in behavioral sense, captures travelers’ inertia or reluctance to change, 

i.e. travelers do not make unnecessary changes when they seek to minimize their travel 

costs based on the current situation. In the example of Figure 1, a change between Link 1 

and Link 2 would be “unnecessary” because it would not reduce a traveler’s travel cost 

based on the current day situation. In the same spirit, any change would be “unnecessary” 

when the current flow is already at UE. Mathematically, this inertia effect is best captured 

by problem (11), which is simply to minimize the distance  ,D x y  between the target 

flow y  and the current flow x . 

 

Finally, we obtain problem (9) by combining LP (10) and problem (11), and the 

behavioral explanation of the proposed day-to-day dynamic (8)-(9) is clear, namely that 

the first term of (9) captures travelers’ cost-minimization behaviors, and the second term 

reflects travelers’ inertia.  

 

Now we move on to look into the specification of the distance measure  ,D x y . The 

most natural specification of  ,D x y  is, as we mentioned earlier, the (square) Euclidean 

distance, i.e.,      ,D x y x - y x - y . With this specification, the objective function of 

problem (9) is a convex combination of a linear term and a quadratic term, and thus 

problem (9) is readily a strictly convex problem. This guarantees that the solution of 

problem (9) y  is unique for any given x , and thus the dynamic is well-defined. 

 

Despite its perfect mathematical property and good intuition, the Euclidean distance 

specification of  ,D x y  has one deficiency that it is not robust to irrelevant changes to 

the network. To see this deficiency, let us consider a simple two-link network as shown 

in Figure 2(a), and then consider that a dummy node is added so that we obtain the 

network shown in Figure 2(b). The two networks are essentially the same network with 

link cost functions shown in the figure, because adding a dummy node is an irrelevant 

change to the network. A robust model should be independent of this kind of “dummy 
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node” effect. Unfortunately, the Euclidean distance formulation      ,D x y x - y x - y  

is not robust in this respect: for the network of Figure 2(a) consisting of two links, we 

have 

      2 2

1 1 2 2,D x y x y   x y  

while for the network of Figure 2(b) consisting of three links, we have 

 
       

   

2 2 2

1 1 2 2 2 2

2 2

1 1 2 2

,

2

D x y x y x y

x y x y

     

   

x y
 

Clearly, adding a dummy node to link 2 makes the flow (change) on link 2 have more 

impact in the Euclidean distance formulation, which is a very undesirable property as the 

two networks are actually the same one. 

 

 

 

 

 

 

 

(a) Two-link network                         (b) A dummy node added 

Figure 2. The “dummy node” effect 

 

Another natural specification of  ,D x y  would be            ,D x y c x - c y c x - c y , 

which is the (square) Euclidean distance between the link cost vectors. It can be easily 

verified that this specification also has good mathematical properties (e.g. strictly 

convex), but, again, the formulation is not robust to the “dummy node” effect: for the 

network of Figure 2(a) consisting of two links, we have 

            2 2

1 1 1 1 2 2 2 2,D c x c y c x c y   x y  

while for the network of Figure 2(b) consisting of three links, we have 

 
                

         

2 2 2

1 1 1 1 2 2 2 2 2 2 2 2

2 2

1 1 1 1 2 2 2 2

, 0.5 0.5 0.5 0.5

0.5

D c x c y c x c y c x c y

c x c y c x c y

     

   

x y
 

Clearly, adding a dummy node to link 2 makes the flow (change) on link 2 have less 

impact in the formulation, which means that this specification of  ,D x y  is not robust to 

the “dummy node” effect. 

1 1( )c x

O D

2 2( )c x

1 1( )c x

2 20.5 ( )c x

O D 

2 20.5 ( )c x1
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Although the above two most natural specifications of  ,D x y  both have the same 

deficiency, i.e., not independent of irrelevant changes to the network, it is not difficult to 

construct other specifications of  ,D x y  such that our link-based model is robust to 

irrelevant network changes (or, more specifically, robust to the “dummy node” effect). 

For example, it can be easily verified that         , a a a a a aa L
D c x c y x y


  x y  

and      , a a a aa L
D c x c y


 x y   both measure the distance between y  and x (i.e., 

their values increase as ay  moves away from ax  for each link), and are both robust to the 

“dummy node” effect. However, they are generally not strictly convex and thus do not 

guarantee the uniqueness of the solution to problem (9), which means that our day-to-day 

dynamic may be not well defined with these specifications of  ,D x y . 

 

Finally, in this paper, we propose the following specification of  ,D x y  

       ,
a

a

y

a a ax
a L

D c w c x dw


 x y  (12) 

and make some widely adopted assumptions on link cost functions as below. 

 

Assumption 1. The link cost functions are separable, i.e.,    a a ac c xx , a L , 

continuously differentiable and monotonically increasing. 

 

Intuitively,  ,D x y  given by (12) is a reasonable measure of the distance between the 

target flow y  and the current flow x , i.e. its value increases as ay  moves away from ax  

for each link. With Assumption 1, formulation (12) is a strictly convex function of y  for 

any given x , and it can be easily verified that this formulation is robust to the “dummy 

node” effect. Thus, we finally have a “good” specification of the distance measure 

 ,D x y . It should be mentioned here that, more complicated “good” specifications of 

 ,D x y  certainly exist. For example, we can always change the specific formulation 

within the integral. From a more general viewpoint, how we specify  ,D x y  actually 

reflects how we are modeling travelers’ route switching behaviors (e.g., inertia, habitude, 

consideration of the network hierarchy). At this stage, without further empirical evidence, 

we shall just use formulation (12) in this paper. Also note that, if the “dummy node” 

effect is not a big concern for some networks, then the Euclidean distance formulations 
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are actually “good” specifications of  ,D x y , and they provide more direct intuitions 

than the formulation proposed here. 

 

Finally, a specific version of our link-based day-to-day traffic model is given by (8)-(9) 

with the distance measure  ,D x y  specified as (12). Now we shall revisit the two path-

based problems mentioned in last section and see how well they are addressed by our 

link-based model. It is obvious that the path-flow-nonuniqueness problem does not exist 

any more because the application of our link-based model only needs an initial link flow 

pattern, which is practically observable and mathematically unique (under mild technical 

conditions). 

 

The path-overlapping problem is a bit more complicated. In the general sense, the path-

overlapping problem implies that a perfect day-to-day dynamic model needs to capture 

how travelers take into consideration network hierarchy when making their route 

switching decisions. We can not claim that our model (8)-(9) achieves this goal without 

further empirical study. Nevertheless, in the narrow sense, how paths overlap with each 

other is an irrelevant question to our link-based model, and thus we do not have to make 

assumptions related to path overlapping. That is, unlike the path-based models, our link-

based model does not have to (implicitly) assume that travelers are indifferent to two 

paths with equal costs. In this sense, the path-overlapping problem is indeed solved or 

avoided by our link-based model. This is best illustrated by the small network shown in 

Figure 1, which our model is amenable to while many existing path-based models are not. 

More specifically, applying our model to the network shown in Figure 1, the second term 

of problem (9) ensures that a capacity reduction on Link 4 will not cause flow fluctuation 

between Link 1 and Link 2, while many existing path-based models violate this 

reasonable and intuitive prediction, as discussed in last section. 

 

In the following we will prove that the fixed point of the day-to-day dynamic (8)-(9) with 

 ,D x y  specified as (12) is the UE link flow. We shall start with several lemmas. 

 

Lemma 1. A link flow pattern y  solves LP (10) for given x  if and only if y  assigns all 

travel demand to the shortest paths determined by link cost vector  c x . 

 

Lemma 1 is self-evident, and directly leads to the following lemma. 
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Lemma 2. A link flow pattern x  is the UE link flow if and only if y x  solves LP (10) 

for given x . 

 

By the definition of UE, a link flow pattern x  is the UE link flow if and only if x  assigns 

all travel demand to the shortest paths determined by link cost vector  c x . Then we 

simply have Lemma 2 from Lemma 1. 

 

Lemma 3. Let  ,D x y  have formulation (12), and suppose Assumption 1 holds, then, 

for a given link flow pattern x , y x  solves problem (9) if and only if y x  solves LP 

(10). 

 

Proof: It is readily seen that y x  always minimizes the second term of problem (9). 

When y x  solves LP (10), it also minimizes the first term of problem (9). Thus, if y x  

solves LP (10), then y x  minimizes both terms of problem (9) and thus solves problem 

(9). This completes the proof of the “if” part. 

 

To prove the “only if” part, let us rewrite the objective function of problem (9) to be 

        1 21Z Z Z   y y y  

where 0 1  ,    1Z y c x y , and         2 ,
a

a

y

a a aa L x
Z D c w c x dw


   y x y . 

Suppose that y x  solves problem (9) but does not solve LP (10), then there is a feasible 

direction z  at y x  such that 

  1 0Z  y z  (13) 

where  1Z y  is the gradient of   1Z y  at y x . On the other hand, it holds readily 

 2 0Z y  at y x , and thus we have 

  2 0Z  y z  (14) 

Combining (13) and (14) gives   0Z  y z  at y x , which contradicts that y x  

solves problem (9). This completes the proof.   

 

The fixed point of dynamic (8)-(9), i.e. the link flow x  gives 0x , is clearly the x  such 

that y x  solves problem (9). Then, combining Lemma 2 and Lemma 3 immediately 

gives the following theorem. 
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Theorem 1. Let  ,D x y  have formulation (12), and suppose Assumption 1 holds, then, a 

link flow pattern x  is the fixed point of dynamic (8)-(9) if and only if x  is the UE link 

flow. 

 

At the end of this section, we give the discrete-time version of dynamic (8)-(9) as below  

  1t t t t   x x y x  (15) 

where 0 1   represents the step-size of this discrete-time version, and ty  solves 

problem (9) for given current link flow tx . 

 

 

5. Numerical Example 

 

In this section we apply our link-based day-to-day traffic assignment model to a test 

network, and provide some discussions on the model parameters based on the numerical 

results.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Test network of numerical example 

 

The test network is a 3×3 grid network with 9 nodes, 12 links and 6 routes connecting 

one OD pair from Node 1 to Node 9. Node and link numbers are shown in Figure 3. The 

total OD demand is 2000. The link cost function is of BPR type 
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where 0c  is the free flow travel time, and aC  is the nominal link capacity. All 12 links 

have the same free flow travel time 0 1500c   and nominal capacity 1000aC  . Consider 

that the initial network condition is at UE with the (unique) UE link flow 

  1000, 500, 1000, 500, 500, 500, 500, 500, 500, 1000, 500, 1000 x  

Observe that the UE path flow constituting x  is not unique in this example, which means 

that the path-flow-nonuniqueness problem exists for the path-based models. 

 

The testing scenario is that a 50% capacity reduction on Link 1 takes place at day 0.  

Applying the discrete version of our link-based model, we have two parameters, the step-

size   in (15) and the weight parameter   in problem (9). We first set constant 0.7   

and 0.7   to show an application of the model. Figure 4 shows the flow evolutions of 

five links (Links 1-3 and Links 10 and 12) for the testing scenario. To facilitate 

illustration, the day-to-day link flow of each link is normalized by its initial UE link flow, 

and thus all link flow evolutions start with value 1.  

 

 
Figure 4. Link flow evolution after 50% capacity reduction on Link 1 

 

As shown in Figure 4, all links have some flow fluctuations for the first several days after 

the capacity reduction happens, and finally the link flow pattern converges to a fixed 

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Day

N
or

m
al

iz
e

d 
lin

k 
flo

w

Link 1
Link 2
Link 3
Link 10
Link 12



20 

point, which, as we have proved in last section, is the new UE link flow. It can also be 

seen that Links 1-3 have stronger flow fluctuations (larger percentage changes) and 

slower convergence rates as compared with Links 10 and12.  This is consistent with our 

intuition about a gird network: Links 10 and12 are far from Link 1 and thus should be 

impacted to a less degree by an accident on Link 1, while Link 2 and 3 are adjacent to 

Link 1 and thus should be more severely affected. 

 

 
         1  , 0.4            0.2  , 0.7   

 
         1  , 0.6            0.65  , 0.7   

 
         1  , 0.65            0.81  , 0.7   

Figure 5. Flow evolution of Link 1 with different parameter values 

 

Now we set different values to the two parameters   and   to see their impacts on the 

day-to-day traffic pattern. For graph simplicity, we only show the flow evolution of Link 

1. In each subfigure of Figure 5, the x-axis value is the time “day”, and the y-axis value is 

the flow on Link 1. Thus each subfigure of Figure 5 gives a day-to-day flow evolution of 

Link 1 with specific   and   values.  

 

0 5 10 15 20
600

700

800

900

1000

0 5 10 15 20
600

700

800

900

1000

0 5 10 15 20
200

400

600

800

1000

0 5 10 15 20
200

400

600

800

1000

0 5 10 15 20
0

200

400

600

800

1000

0 5 10 15 20
0

200

400

600

800

1000



21 

To see the impact of parameter  , we fix 1   and increase the value of   from 0.4 to 

0.6 and 0.65. The corresponding day-to-day dynamics are shown by the three subfigures 

in the left column of Figure 5. It can be seen that, as   increases, the fluctuation of the 

day-to-day flow evolution increases. This is consistent with the physical meaning of  : 

the larger   is, the less weight is put on the inertia term of problem (9), which means 

that travelers tend to change routes more drastically from day to day. Similarly, to see the 

impact of the step-size parameter  , we fix 0.7   and change the value of  , as 

shown by the three subfigures in the right column of Figure 5. We can see clearly that the 

fluctuation of the day-to-day dynamic increases with step-size  . This is an expected 

result because step-size naturally reflects how drastically travelers change their routes. 

 

To sum up, we have observed that the two parameters   and  both represent travelers’ 

inertia (larger parameter value means less inertia) and thus impact the fluctuation and 

convergence of the day-to-day dynamic in a similar manner. As a result, there may be 

some redundancy in the parameter pair   and  , i.e. we can fix one and just vary the 

other to obtain a range of system dynamics. Indeed, comparing the subfigures in the left 

and the right columns of Figure 5, we can see that fixing either one of   and   at a 

relatively large value ( 1   and 0.7   are both large values within their respective 

feasible regions) and changing the other parameter alone can generate a range of link 

flow evolution patterns, from very smooth patterns (the first row of Figure 5) to very 

fluctuated ones (the third row of Figure 5). This observation gives an implication on 

model calibration. That is, it may be unnecessary to calibrate the two parameters 

simultaneously, because calibrating one parameter only (with the other predetermined) 

may give a model that works as well. This conjecture needs to be verified by future 

empirical studies. 

 

Note that if one of   and   is set to be a very small value, then the value of the other 

does not matter much, and the flow evolution is going to be in a smooth pattern. 

Mathematically, if the step-size is very small (  very small), then the distance between 

the target flow and the current flow is not important (   not important) because a 

bounded distance multiplied by a small step-size is always small; reversely, if the target 

flow is very close to the current flow (   very small), then the step-size   is not 

important because even if the step-size is one the flow change (a full step) is still small. 

In both cases, the flow change from day to day is going to be very small and the flow 

evolution will be smooth. This explains why the two subfigures in the first row of Figure 

5 have very smooth flow evolutions despite each has one large-valued parameter (with 

1   and 0.7   respectively). It is simply because the other parameter is chosen to be 
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small (with 0.4   and 0.2   respectively). This observation implies that, if we are 

calibrating one parameter with the other predetermined, then the predetermined 

parameter value should not be too small, otherwise the to-be-calibrated parameter does 

not play an important role in the model. The observation also indicates that, only when 

both   and   are large enough can the flow evolution be fluctuated, as shown by the 

two subfigures in the third row of Figure 5. Actually, when both parameters are large 

valued, the day-to-day dynamic may not converge, as shown in Figure 6. 

 

 
Figure 6. Flow evolution without convergence when 0.95  , 0.7   

 

 

6. Conclusions 

 

In this paper we have demonstrated two shortcomings of many existing path-based day-

to-day traffic dynamics, namely the path-flow-nonuniqueness problem and the path-

overlapping problem. The first problem exists because the application of the path-based 

models need a given initial path flow pattern, which is typically unidentifiable and thus 

make their application problematic. The second problem arises because the path-based 

models ignore the interdependence among paths and thus can provide very unreasonable 

results for networks with paths overlapping with each other. 

 

In view of the difficulty of solving the two problems within the path-based methodology, 

we proposed a link-based day-to-day traffic assignment model. Our link-based model 

captures travelers’ cost-minimization behavior as well as their inertia, and has the classic 

UE link flow as the fixed point. The two path-based problems are effectively avoided by 

our link-based model. We also provided discussions on the model parameters based on 

some preliminary numerical results. 
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Because our link-based day-to-day dynamic is a relatively new model, there are many 

possible future researches, including both theoretical and empirical ones. Perhaps 

empirical studies or real applications are of more urgency, because so far no day-to-day 

dynamics have been applied in real networks. 
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