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Abstract
The leading relativistic and QED corrections to the ground-state energy of
the three-body system e−e+e− are calculated numerically using a Hylleraas
correlated basis set. The accuracy of the nonrelativistic variational ground
state is discussed with respect to the convergence of the energy with increasing
size of the basis set, and also with respect to the variance of the Hamiltonian.
The corrections to this energy include the lowest order Breit interaction, the
vacuum polarization potential, one and two photon exchange contributions, the
annihilation interaction and spin–spin contact terms. The relativistic effects
and the residual interactions considered here decrease the one-electron binding
energy from the nonrelativistic value of 0.012 005 070 232 980 107 69(28) au
to 0.011 981 051 246(2) au (78 831 530 ± 5 MHz).

1. Introduction

The positronium negative ion (Ps−) is the simplest system composed of three equal mass
fermions, e−e+e−, bound only by electromagnetic interactions. Similar examples of three-body
systems, bound by increasingly complex interactions, are provided by three-quark systems
such as the proton and the neutron, and three-nucleon systems, such as the 3H, 3He nuclei. The
existence of a bound ground state in the e−e+e− system was predicted by Wheeler [1] and was
observed by Mills [2] by passing a positron beam through a thin carbon film in vacuum. The
measured Ps− → (2γ ) e− decay rate λ(Ps−,2γ ) = 2.09(9) ns−1 [2] corresponds to a Ps− lifetime
of 0.478 ns, intermediate between that of para (singlet) Ps (0.125 ns) and ortho (triplet) Ps
(140 ns) [3].

The main difficulty encountered in a theoretical description of three-body systems is that in
general the nonrelativistic problem is not integrable in either classical or quantum mechanics1.
In a nonrelativistic approach, accurate numerical approximations to the bound eigenstates of

1 A simple classical solution for systems like e−e+e− presumes all particles aligned, in uniform rotation around the
positive charge, located at the centre of mass.
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three quantum particles interacting by Coulomb forces can be obtained by the Rayleigh–Ritz
variational method. A suitable set of coordinates and basis states for the three-body problem
was proposed by Hylleraas [4] during the early days of quantum mechanics, and it was used
to calculate the ground-state energy of the helium atom. With respect to this set, the matrix
elements of various two-body operators can be expressed in analytical form [5], and extensive
high-precision calculations become feasible [6, 7].

The relativistic quantum many-body problem can be approached either from the field
theory, or by using a Schrödinger equation with an ‘action at a distance’-type Hamiltonian,
defined by quantizing the classical relativistic system [8]. The field theory approach to the
bound state problem leads to a relativistically invariant Bethe–Salpeter equation [9]. In the
case of two relativistic electrons, approximate Lorentz invariance is established by introducing
the Breit interaction, which can be seen as the quantum correspondent to the Darwin term in
classical electromagnetism [10].

In the helium atom, the two electrons move in the Coulomb field created by a composite,
heavy nucleus, which to a first approximation can be considered as centre of mass (CM). The
case of Ps− is different, because all three particles are elementary, have the same mass and
can move to the same degree with respect to the CM.

Numerical calculations for the nonrelativistic ground-state properties of Ps− are presented
in [11–15]. The autodetaching states have been studied in [16, 17], while several low-lying
resonances have been predicted recently [18], by using a combination of the stochastic
variational method (SVM) with correlated Gaussians and the complex scaling method.
The photodetachment cross sections have been calculated by Igarashi et al [19] using the
hyperspherical close-coupling method.

The accuracy of the Ps− ground-state wavefunctions, given by SVM in a Gaussian basis,
was studied by comparison with the direct solution of the Schrödinger equation in [14]. It was
shown that despite the fact that in SVM the convergence properties of the expectation values
for most operators are better, the wavefunction is less accurate.

The purpose of this work is to present detailed calculations of the lowest order relativistic
and quantum electrodynamic corrections to the binding energy of Ps−, relative to Ps. A
partial calculation of the relativistic corrections has been published previously [20], but their
work needs to be extended and updated. In this work, the accuracy of the Ps− nonrelativistic
variational ground state is discussed, considering besides the convergence properties of the
energy with the basis size, also the variance of the Hamiltonian. It is shown that in agreement
with [14], the variance is larger than the accuracy resulting from convergence. Estimates of the
leading relativistic and QED corrections are presented in sections 3 and 4. Tables containing
the expectation values of some singular operators appearing in the correction terms, such as
p4 and delta functions, and the p4 terms are given in appendix A. The main results and the
concluding remarks are summarized in section 4.

2. The nonrelativistic quantum three-body problem

In an arbitrary inertial frame, the intrinsic part of the nonrelativistic Hamiltonian for the
quantum three-body system e−e+e− (or e+e−e+) is

H0 =
(

−1

2
∇2

13 − 1

2
∇2

23 − 1

2
∇13 · ∇23 − 1

r13
− 1

r23
+

1

r12

)
f au, (1)

where f = µ/m,µ = m/2 is the reduced mass, ∇ij ≡ ∂/∂�rij , �rij ≡ �Rij/aµ, �Rij ≡ �Ri − �Rj

while �Ri denote the position vectors of the two electrons (i = 1, 2), and of the positron
(i = 3). The variables rij = |�rij | are the relative distances in units of aµ = a0/f , where
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a0 = h̄2/(me2) = 5.291 772 49(24) nm is the Bohr radius. By this choice, the Hamiltonian
is naturally expressed in reduced atomic units of energy f au (=13.605 6981(40) eV =
1 Ry for f = 0.5), where 1 au = e2/a0 = α2mc2 is the atomic unit of energy and
α = e2/(h̄c) = 1/137.035 999 11(46) is the fine structure constant.

Approximate eigenfunctions of this Hamiltonian are obtained by using the variational
method. The trial function is a finite linear combination

�(�r13, �r23; �s1, �s2, �s3) =
a+b+c��∑

a,b,c

3∑
p=1

l1+l2=L∑
l1,l2

q
l1l2
abc,p�

abc,p

l1l2LM(�r13, �r23)χS12m12µ3(�s1, �s2, �s3)

− exchange(1 � 2) (2)

of Nb basis elements �
abc,p

l1l2LMχS12m12µ3 . The spacial component �
abc,p

l1l2LM is expressed in terms
of the correlated Hylleraas coordinates [4]

�
abc,p

l1l2LM(�r13, �r23) = ra
13r

b
23r

c
12 exp(−αpr13 − βpr23)Y l1l2

LM(r̂13, r̂23) (3)

involving products of integral powers a, b, c of all relative distances, and the vector-coupled
eigenstates

Y l1l2
LM(r̂13, r̂23) =

∑
m1+m2=M

C
l1l2L
m1m2M

Yl1m1(r̂13)Yl2m2(r̂23) (4)

of �L2 and Lz. Here r̂ij = �rij /rij are unit vectors, while �L = −i(�r13 × ∇13 + �r23 × ∇23) is
the operator of the intrinsic orbital angular momentum. For the ground state of Ps−, only the
basis elements with l1 = l2 = L = 0 contribute. The parameter p labels three distinct values
of the nonlinear parameters αp and βp with p = 1, 2, 3. Since each combination of powers
a, b, c is thus included three times with different values of αp and βp, the result is called a
‘triple’ basis set in Hylleraas coordinates, as described in [13].

The spin function

χS12m12µ3 =
∑

µ1+µ2=m12

C
1
2

1
2 S12

µ1µ2m12

∣∣∣∣12µ1

〉 ∣∣∣∣12µ2

〉 ∣∣∣∣12µ3

〉
(5)

corresponds to the antisymmetric singlet (S12 = 0) or symmetric triplet (S12 = 1)

configurations of the two electrons. By construction, the orbital part then has the opposite
exchange symmetry such that the total wavefunction in equation (2) is antisymmetric with
respect to the two electrons.

The linear variational coefficients q
l1l2
abc,p are found as usual by matrix diagonalization, and

the nonlinear parameters αp, βp(p = 1, 2, 3) determined by a separate minimization of the
energy over the six-dimensional energy surface, as described previously [13]. The action of
the operator −∇2

13

/
2 on the Hylleraas basis functions is given by

∇2
13� =

[
1

r2
13

∂

∂r13
r2

13
∂

∂r13
+

1

r2
12

∂

∂r12
r2

12
∂

∂r12
−

�l2
13

r2
13

+
2(r13 − r23r̂13 · r̂23)

r12

∂2

∂r13∂r12
− 2

r13r12
�r23 · ∇Y

13
∂

∂r12

]
�, (6)

where �l13 = −i�r13 ×∇13 and ∇Y
13 = −ir̂13 ×�l13. A similar expression, obtained by permuting

the indices 1 and 2, yields ∇2
23�. A simple formula in Hermitian form for an arbitrary matrix

element of the Hamiltonian is given by Drake [7].
The accuracy of the wavefunction depends on the dimension Nb of the basis set, as

controlled by � = a + b + c. As Nb increases, the expectation value of the Hamiltonian
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Table 1. The ground-state expectation values Eg = 〈H0〉, 〈H 2
0 〉 and σ 2 = 〈H 2

0 〉−E2
g as a function

of the basis dimension Nb.

Nb Eg (Ry)
〈
H 2

0

〉
(Ry2) σ 2 × 1016 (Ry2)

324 −0.524 010 140 413 399 000 28 0.274 586 632 449 596 5194.
411 −0.524 010 140 455 551 566 88 0.274 586 628 565 868 1266.
512 −0.524 010 140 464 139 040 54 0.274 586 627 626 769 318.
630 −0.524 010 140 465 665 621 87 0.274 586 627 375 932 65.1
764 −0.524 010 140 465 918 375 12 0.274 586 627 323 102 12.0
918 −0.524 010 140 465 954 391 13 0.274 586 627 313 704 2.55

1089 −0.524 010 140 465 959 038 66 0.274 586 627 311 885 0.73
1283 −0.524 010 140 465 960 002 45 0.274 586 627 311 421 0.266
1495 −0.524 010 140 465 960 160 85 0.274 586 627 311 222 0.067
1733 −0.524 010 140 465 960 203 19 0.274 586 627 311 175 0.020
1990 −0.524 010 140 465 960 212 96 0.274 586 627 311 165 0.0096
2276 −0.524 010 140 465 960 214 82 0.274 586 627 311 160 0.0047
2528 −0.524 010 140 465 960 215 25 0.274 586 627 311 158 0.0031
Extrap. −0.524 010 140 465 960 215 39(3) 0.274 586 627 311 156(4) 0.0023(23)

Table 2. Comparison of variational results for the ground-state nonrelativistic energy of Ps−.

Method Reference Nb Energy (Ry)

Triple Hylleraas Drake et al [13] Extrap. −0.524 010 140 465 960 215 39(3)
Triple Hylleraas Drake et al [13] 2528 −0.524 010 140 465 960 215 25
Stochastic Frolov [15] Extrap. −0.524 010 140 465 956(8)
Stochastic Frolov [15] 1600 −0.524 010 140 465 951
Double Hylleraas Ho [21] 744 −0.524 010 140 465 7
Hyperspherical Krivec et al [14] 676 −0.524 010 139 0

〈H0〉(Nb) = 〈�|H0|�〉 decreases, and in principle, in the limit Nb → ∞ the series 〈H0〉(Nb)

approaches the exact ground-state energy. An upper limit on the error is provided by the

variance σ =
√〈

H 2
0

〉
(Nb)

− 〈H0〉2
(Nb)

. The variational ground-state energy Eg = 〈H0〉(Nb)

[13] and the present results obtained for σ 2 are given in table 1. The extrapolated energy is
E∞

g = −0.524 010 140 465 960 215 39(3) Ry. Because of the variational stability of 〈H0〉(Nb)

relative to
〈
H 2

0

〉2
(Nb)

, the convergence of 〈H0〉(Nb) is much better than the variance would indicate.
Previous estimates of Eg in Ps− by the correlation-function hyperspherical-harmonic method
[14], the stochastic variational method [15] and an earlier version of the present method using
a double basis set in Hylleraas coordinates [21] are compared in table 2. The accuracy and
efficiency of the triple basis set is evident.

3. Relativistic corrections

The quantum description of a relativistic charged fermion is based on the Dirac equation
ih̄∂t |�D〉 = (�α · �pc + βmc2 + V ( �R))|�D〉, �p = −ih̄∂ �R . This equation admits two spin- 1

2
solutions �+ and �− corresponding to the retarded and advanced waves, respectively. A
reduction to Schrödinger dynamics in the nonrelativistic Hilbert space makes sense only to
the extent that |�D〉 can be expressed as a product �b ⊗ |b〉τ between a ‘Pauli-spin-orbit’
component �b( �R, �s), and a ‘Dirac-spin” component |b〉τ , β|b〉τ = b|b〉τ , b = ±. For a free
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particle (V = 0) this factorization is obtained after a Foldy–Wouthuysen (FW) transformation
[22]

U0(�α · �pc + βmc2)U−1
0 = βH, (7)

with

U0(p) = mc2 + H + βα · pc√
2H(mc2 + H)

, (8)

and

H =
√

p2c2 + m2c4, p = | �p|. (9)

The relativistic corrections for the case of a bound system of three interacting fermions
were first discussed by Stone [23], and the various terms calculated in detail by Drake [6] in
connection with the isotope shift for helium. An FW transformation of the Hamiltonian

HD =
3∑

i=1

�αi · �pic + βimic
2 + V ( �R1, �R2, �R3) (10)

can be used to identify the equivalent nonrelativistic operators whose expectation values give
the lowest order relativistic corrections to the low-lying energy levels. Consider the change of
representation provided by the unitary operator

U = �3
i=1U0(pi ). (11)

An evaluation of H ′
D = UHDU−1 as a power series up to the fourth order in v/c yields

H ′
D ≈ Hα + Hβ + HV , where

Hα =
3∑

i=1

βiαi

2mic
·

[pi , V ] +

∑
j>i

βj

2mjc
[αj · pj , [pi , V ]]


 , (12)

Hβ =
3∑

i=1

βi

(
mic

2 + p2
i

/
2mi − p4

i

/
8m3

i c
2
)
, (13)

HV = V −
3∑

i=1

1

8m2
i c

2

{
[pi ·, [pi , V ]] − 4h̄si ·

(
∂V

∂Ri

× pi

)}
. (14)

Moreover, at the (v/c)4 level of accuracy the residual term Hα of order (v/c)3 can be neglected,
because the contributions of the part linear in αi from H ′

D to the energy levels of Hβ + HV

are second order ((v/c)6), or higher in the perturbation series. With these assumptions, the
general solution of the eigenvalue equation

H ′
D|�D〉 = ED|�D〉 (15)

is

|�D〉 = �b1b2b3(
�R1�s1, �R2�s2, �R3�s3)|b1b2b3〉τ , bi = ±. (16)

The e−e+e− system has a rest mass ∼3m, so that we should take the physical ground state of
the form |�D〉 = �(1, 2, 3)|+++〉τ . This corresponds to the energy ED = 3mc2 + E, where E
is the eigenvalue of the equation H� = E� for the Hamiltonian H = H 0

CM + H0 + H1 + H2,
in which H0 is the intrinsic term given by equation (1),

H1 = − 1

8m3c2

(
p4

1 + p4
2 + p4

3

)
(17)
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takes into account the variation in the mass of the constituents with the intrinsic velocity
(v ∼ αc) and

H2 = − 1

8m2c2

3∑
i=1

[ �pi ·, [ �pi, V ]]. (18)

The term H 0
CM = P 2

0

/
6m, �P 0 = −ih̄∂ �R0

, �R0 = ∑3
i=1

�Ri/3, represents the ‘free’ CM kinetic
energy, and V = e2

(
R−1

12 − R−1
13 − R−1

23

) ≡ Ṽ f au.
The magnetic current–current interaction plus the retardation correction corresponding to

the lowest order Breit interaction are described by the additional term

M2 = − e2

2m2c2

{
R−1

12 [ �p1 · �p2 + r̂12 · (r̂12 · �p1) �p2]

− R−1
13 [ �p1 · �p3 + r̂13 · (r̂13 · �p1) �p3] − R−1

23 [ �p2 · �p3 + r̂23 · (r̂23 · �p2) �p3]
}

(19)

so that the effective Hamiltonian for Ps− which includes the first relativistic corrections is
H = H 0

CM + H0 + H1 + H2 + M2.
The operators ∇k = aµ∂ �Rk

, k = 1, 2, 3, can be expressed in terms of ∇0 = aµ∂ �R0
,∇13

and ∇23 by using the relations

∇1 = ∇0/3 + ∇13, (20)

∇2 = ∇0/3 + ∇23, (21)

∇3 = ∇0/3 − ∇13 − ∇23. (22)

Therefore, the term H1 + H2 + M2 can be decomposed in a collective, �P 0-dependent
part, an intrinsic part and a mixed part, containing both the total momentum �P 0 and the
intrinsic variables. The mixed terms appear because the internal forces affect the inertial
parameter of the whole system, and an exact treatment would provide ED as a function

ED =
√

(3mc2 + Eg∗)2 + 〈 �P 0〉2c2, where Eg∗ is the ground-state energy given by the pair
of equations H� = Eg∗� and �P 0|�〉 = 0. Thus, even if H cannot be separated in a sum
of intrinsic and collective (CM) terms, the translation invariance allows a reduction to the
‘dynamical CM frame’, described by states in which 〈 �P 0〉 = 0. The choice of the Hylleraas
basis ensures that �P 0� = 0 for any variational wavefunction �, so that in the expectation
values we may take advantage of the reduction simply by changing notation according to the
rules:

∇1 → ∇13, (23)

∇2 → ∇23, (24)

∇3 → −∇13 − ∇23. (25)

The term H1 is negative, and can make the energy arbitrarily low with increasing momenta.
Therefore, at this level of approximation the system is unstable against collapse around the
CM, so that H has no real ground state. In addition, the ground state of Ps− is in fact not stable
because of e+e− annihilation. However, it is possible to define a physical metastable ground
state, considering all the correction terms as perturbations with respect to the well-defined,
nonrelativistic ground state of H0.

The expectation value 〈H1〉 = −(1/64)
〈∇4

1 + ∇4
2 + ∇4

3

〉
α2f au can be calculated either

directly, or by assuming that in the ground state 〈H0Op〉 = 〈OpH0〉 = Eg〈Op〉 for any operator
Op, and using the equalities

∇2
13 + ∇2

23 = 2(H̃ 0 − Ṽ + ∇13 · ∇23/2) (26)
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Table 3. Direct (〈∗〉) and Eg-dependent (〈∗〉E) expectation values of the singular operators ∇4
1

and ∇4
3 as a function of the basis dimension Nb.

Nb
〈∇4

1

〉 〈∇4
1

〉
E

〈∇4
3

〉
E

324 2.532 445 719 29 2.532 451 004 442 6 5.255 396 862 891
411 2.532 451 697 56 2.532 451 050 420 6 5.255 397 122 254
512 2.532 450 741 84 2.532 451 056 877 0 5.255 397 117 353
630 2.532 449 964 61 2.532 451 009 132 0 5.255 397 051 034
764 2.532 450 992 21 2.532 451 018 719 1 5.255 397 086 467
918 2.532 451 056 52 2.532 451 022 453 6 5.255 397 094 127

1089 2.532 451 023 43 2.532 451 021 529 7 5.255 397 091 672
1283 2.532 451 019 49 2.532 451 020 589 3 5.255 397 091 024
1495 2.532 451 022 17 2.532 451 020 595 0 5.255 397 090 993
1733 2.532 451 020 24 2.532 451 020 587 2 5.255 397 090 958
1990 2.532 451 019 92 2.532 451 020 559 2 5.255 397 090 940
2276 2.532 451 020 43 2.532 451 020 559 6 5.255 397 090 949
2528 2.532 451 020 42 2.532 451 020 560 0 5.255 397 090 945
Extrap. 2.532 451 02,2(2) 2.532 451 020 559 6(3) 5.255 397 090 945(4)

with H̃ 0 = H0/(f au), and

∇4
13 + ∇4

23 = 4(H̃ 0 − Ṽ + ∇13 · ∇23/2)2 − 2∇2
13∇2

23, (27)〈∇4
3

〉 = 〈∇4
13 + ∇4

23 + 4(∇13 · ∇23)
2〉 +

〈
2∇2

13∇2
23 + 4

(∇2
13 + ∇2

23

)∇13 · ∇23
〉
. (28)

Although formally the same, within a finite basis the two evaluations (direct and energy
dependent) give slightly different results (〈∇4〉, 〈∇4〉E) as shown in table 3, and further
discussed in appendix A. To estimate 〈H1〉 we have used only 〈∇4〉E , because of its more rapid
convergence and higher accuracy in the extrapolated value.

The term H2 contains the singular operators ∇2
1 Ṽ = −4π [δ(�r12) − δ(�r13)],∇2

2 Ṽ =
−4π [δ(�r12) − δ(�r23)] and ∇2

3 Ṽ = 4π [δ(�r13) + δ(�r23)], which yield

〈H2〉 = α2π〈δ(�r13) + δ(�r23) − δ(�r12)〉f 3 au. (29)

Previous estimates of 〈δ( �R13)〉
(= a−3

µ 〈δ(�r13)〉
)

in Ps− by using the correlation-
function hyperspherical-harmonic method and the stochastic variational method are
0.020 733 14(6)a−3

0 , respectively 0.020 731 048 976 a−3
0 [14]. The same methods give for

〈δ( �R12)〉 the values 0.000 170 997(2)a−3
0 and 0.000 171 112 600 741 a−3

0 , respectively [14].
The results of the present calculation, in the same units

(
a−3

0

)
, are listed in table 4, as a

function of the dimension Nb of the basis set. The error estimates for all the results due to the
convergence of the basis set are discussed in appendix B.

The expectation values which appear in the calculation of 〈M2〉, obtained when Nb = 324
are

uee = 〈
r−1

12 ∇1 · ∇2
〉 = −0.008 267 646 67, (30)

vee = 〈
r−1

12 r̂12 · (r̂12 · ∇1)∇2
〉 = 0.019 610 925 35 (31)

and for i = 1, 2

uep = 〈
r−1
i3 ∇i · ∇3

〉 = 1.535 434 049 31 (32)

vep = 〈
r−1
i3 r̂i3 · (r̂i3 · ∇3)∇i

〉 = −0.555 009 821 912. (33)
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Table 4. Ground-state expectation values of the singular distributions δ( �R13) and δ( �R12) as a
function of the basis dimension Nb.

Nb 〈δ( �R13)〉
[
a−3

0

] 〈δ( �R12)〉
[
a−3

0

]
324 0.020 733 174 230 2 0.000 171 000 000 8
411 0.020 733 203 838 1 0.000 170 999 383 2
512 0.020 733 199 804 5 0.000 170 999 967 2
630 0.020 733 193 292 2 0.000 170 997 306 7
764 0.020 733 197 986 7 0.000 170 996 885 4
918 0.020 733 198 238 9 0.000 170 996 811 0

1089 0.020 733 198 094 3 0.000 170 996 832 4
1283 0.020 733 197 999 5 0.000 170 996 756 0
1495 0.020 733 198 024 3 0.000 170 996 767 3
1733 0.020 733 198 007 4 0.000 170 996 760 1
1990 0.020 733 198 003 4 0.000 170 996 757 7
2276 0.020 733 198 005 3 0.000 170 996 757 1
2528 0.020 733 198 005 0 0.000 170 996 756 8
Extrap. 0.020 733 198 004 6(8) 0.000 170 996 756 7(4)

(The sum uep + vep = 0.980 424 227 corresponds to the quantity 1 − J , where J is the
contribution to the Ps− binding energy tabulated by Bhatia and Drachman [20].) In terms of
these variables, 〈M2〉= 0.5α2wf 3 au with w = uee + vee − 2uep − 2vep = −1.949 505 176 125.
For the 2528-dimensional basis set w = −1.949 505 250 368. The average of the last three
consecutive values, obtained for Nb = 1990, 2276 and 2528, gives the matrix element
w = −1.949 505 250 368(1).

The sum of the spin-independent relativistic corrections 〈H1〉 + 〈H2〉 + 〈M2〉 is
−0.145 476 184 397(8)α2f au, which decreases the Ps− ground-state energy to

Eg∗ = 〈H 〉 = Eg − 0.145 476 184 397(8)α2f au. (34)

For comparison, the same calculations yield for the corrected ground-state energy E0
g∗ of

neutral positronium E0
g∗ = −(0.5+5α2/32)f au. This result can also be obtained by using the

expansion E(1,1/2,1) ≈ −(0.5 + 5α2/32)f au of the energy E(n,j,Z) provided by the one-body
Dirac equation [24]

E(n,j,Z) = 1

α2

[
η − 1 − µ

2(m + m3)
(η − 1)2

]
f au, (35)

where η = 1/
√

1 + (Zα)2/(n − ν)2, ν = j + 1/2 −
√

(j + 1/2)2 − (Zα)2. The numerical
values presented in this section can be compared with the previous results available in the
literature [20]. Thus, the term 〈H1〉 of table 6 is close to the value −0.161 249 46α2 Ry
obtained in [20], but for the other two terms we have found significant differences.

4. QED corrections

Within QED the constituents of the three-body system e−e+e− cease to be ‘elementary’,
because they are subject not only to the mutual two-body Coulomb–Breit interaction, but are
also coupled to the vacuum fluctuations of the electromagnetic field �A [25]. The interaction
terms accounting for this coupling are represented by an infinite series of increasingly
complicated Feynman diagrams with closed photon lines. However, the complexity increases
recursively, by taking into account at each order three basic processes, represented by the



Positronium binding energy 3385

anomalous magnetic moment (vertex) corrections, electron self-mass and vacuum polarization
diagrams.

Although formally complicated, the main effect of the coupling to the field degrees of
freedom is simply a change in the charge and mass parameters e and m of the theory. This
contribution has already been taken into account, because it is included in the measured
values of e and m used to define the atomic unit of energy. Though, the QED corrections in
the interacting three-body system e−e+e− are not the same as for the free particles, and the
differences still need to be considered.

The vacuum polarization properties have been studied first by Heisenberg [26] and
Uehling [27], showing that a given charge density ρ( �R) induces a polarization charge
δρ( �R) = −(α/15π)λ2

0�Rρ( �R), where λ0 = h̄/mc is the Compton wavelength of the electron
and �R ≡ ∂2

�R . The induced charge leads to deviations from the standard Coulomb interaction.
Thus, the vacuum behaves as an inhomogeneous dielectric, in which the mutual potential
energy between two point-like charges Z1 and Z2 is [27]

V (R) = Z1Z2e
2

R

[
1 − α

π
RU(R)

]
, (36)

where U(R) denotes the Uehling potential. This potential is singular at R = 0, falls of
exponentially for R > 0 and satisfies the integral condition

∫
d3RU(R) = −4πλ2

0

/
15.

Therefore, it can be well approximated by a delta function, U(R) = −4π
(
λ2

0

/
15
)
δ( �R). In

the case of Ps−, the correction introduced by this potential is

〈Hvp〉 = 4

15
α3〈δ(�r12) − δ(�r13) − δ(�r23)〉f 3au. (37)

Using the expectation values given in table 4, the contribution of the vacuum polarization to
the Ps− ground-state energy is 〈Hvp〉 = −0.022 024 212 9346(7)α3f au. It is important to
remark that this value takes into account the positron recoil (the ‘mass polarization’ term)
because the wavefunctions are obtained by minimizing the full nonrelativistic Hamiltonian.
In neutral positronium 〈δ( �R13)〉Ps = 1

/(
πa3

µ

) = 1
/(

8πa3
0

)
, and the vacuum polarization

correction is −1/(15π)α3f au.
As was shown early by the Lamb shift measurements [28], the main QED correction

comes from the coupling to the vacuum fluctuations of the field rather than from the vacuum
polarization ([25] p 59). For a free electron the relativistic ground state energy is given by its
rest mass m = mb + δm, consisting of the uncoupled value mb and the positive renormalization
constant δm = (3αmb/2π) ln(�/mb) due to the electromagnetic self-energy, where � is a
large (formally infinite) cut-off mass.

Similarly, the coupling to the field modes also affects the intrinsic excitations of a many-
body system. In a bound N-particle system, the shift �En in the energy En = 〈n|H0|n〉
of the level |n〉 due to the exchange of a transverse photon can be obtained by using the
time-independent second-order perturbation expression

�En = −〈n, 0f |Hc( �A)
1

H0 + HA − En

Hc( �A)|n, 0f 〉. (38)

Here Hc( �A) = ∑N
i=1 hi( �A) is the sum over all particles of the one-body coupling terms

hi( �A) = −ei �pi · �A( �Ri)

/
mic, where

�A(�r) =
√

h̄c

2π

∫
d3k√

k

∑
λ=1,2

�ελ

(
â
†
kλ e−i�k·�r + âkλ ei�k·�r) (39)
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is the quantized transverse vector potential of the photon
(�ελ · �k = 0, �ε2

λ = 1
)
, HA =∫

d3k
∑

λ=1,2 h̄cka
†
kλakλ is the free field Hamiltonian and |0f 〉 denotes the photon vacuum.

This shift has the form �En = ∑N
i=1 Xn

i +
∑

i<j Y n
ij , where

Xn
i = −〈n, 0f |hi( �A)

1

H0 + HA − En

hi( �A)|n, 0f 〉 (40)

and

Yn
ij = −2 Re

[
〈n, 0f |hi( �A)

1

H0 + HA − En

hj ( �A)|n, 0f 〉
]

. (41)

It is important to remark that the interaction with the vacuum field fluctuations may
affect not only the intrinsic dynamics, but also the centre of mass. In a classical two-body
system coupled to the field, Hc can be written in terms of the canonical pairs ( �R12, �p12) ≡
( �R1 − �R2, µ �p1/m1 − µ �p2/m2) and ( �R0, �P 0) ≡ (µ �R1/m2 + µ �R2/m1, �p1 + �p2) of intrinsic
and, respectively, CM variables as

�p12 ·
[

e2

m2

�A(R2) − e1

m1

�A(R1)

]
− µ

m1m2

�P 0 · [e1 �A(R1) + e2 �A(R2)

]
.

This expression shows that in a neutral two-body system (such as Ps), the CM energy is
not affected by the field only if �A(R1) = �A(R2), or when the size of the system is negligible
compared to the photon wavelength (dipole approximation).

In a quantum N-body system it is convenient to take advantage of the finite size effects
by writing �A as an incoherent sum of long and short wavelength components, �AL and �AS,
obtained by decomposing

∫
d3k as

∫
|�k|�kL

d3k +
∫
kL<|�k|<kM

d3k, where kL and kM are cut-off
parameters. Each domain brings its own contribution to the matrix elements, which can be
similarly decomposed as

Xn
i = XLn

i + XSn
i , Y n

ij = YLn
ij + Y Sn

ij . (42)

At the end of the calculation kL should disappear, while kM → ∞.
If H0 consists of the kinetic energy term plus a local potential V , then a nonrelativistic

calculation within the dipole approximation yields

XLn
i = − α

3πm2c2

[
2h̄ckL〈n|p2

i |n〉 + 〈n|[ �pi ·, [ �pi, V ]]|n〉 ln
kL

kR

− 2Bn
ii

]
, (43)

where kR = RM/h̄c, RM is a dimensional constant with units of energy and Bn
ii are the diagonal

elements of the matrix
[
Bn

ij

]
defined by

Bn
ij =

∑
m

(En − Em)Re(〈n| �pi |m〉 · 〈m| �pj |n〉) ln
|En − Em|

RM

. (44)

The first term in equation (43) depends only on the kinetic energy, and it can be written as
−δmL

〈
p2

i

〉
n

/
2m2, δmL = 4mrekL/3π , where re = αh̄/mc denotes the classical radius of the

electron. It contributes also to the energy of a free particle (V = 0) and has the structure of
a first-order perturbation shift induced by a variation δmL of the nonrelativistic mass. Thus,
such terms can be taken into account simply by a redefinition of the cut-off mass �.

A relativistic calculation of the one-body QED correction arising from the exchange of a
transverse hard photon at a Coulomb vertex [29, 25] p 177, yields

XSn
i = αh̄2

3πm2c2

(
ln

mc

2h̄kL

+
5

6

)
〈n|�Ri

V |n〉, (45)
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(5/6 = 11/24 + 3/8) so that

Xn
i = −δmL

2m2

〈
p2

i

〉
n

+
α

3πm2c2

[
h̄2

(
ln

mc

2h̄kR

+
5

6

) 〈
�Ri

V
〉
n

+ 2Bn
ii

]
. (46)

The quantity YLn
ij can be expressed as

YLn
ij = −δmL

m2

eiej

e2
〈 �pi · �pj 〉n − 2α

3πm2c2

eiej

e2

{
〈[ �pi ·, [ �pj , V ]]〉n ln

kL

kR

− 2Bn
ij

}
. (47)

In the case of Ps− there are three matrix elements Xn
i , two for the electrons (i = 1, 2) and

one for the positron (i = 3), and three YLn
ij , i < j . The contribution to �En arising from the

part linear in δmL of X and YL is δ0En = −δmL〈( �p1 + �p2 − �p3)
2〉n/2m2. In the dynamical

CM frame, this energy shift can be accounted, for example, by an effective variation 3δmL

in the total mass of the electron–electron pair and δmL in the mass of the positron, or by a
variation of 4δmL in only one of them.

The definition of the Bethe logarithm βn ≡ 2Bn
33

/〈[ �p3, ·[ �p3,H0]]〉n, and the identity
m2 ∑

i,j eiejB
n
ij

/
(mimj ) = e2Bn

33(1 + m/m3)
2 (valid if m1 = m2 = m and 〈n| �P 0|n′〉 = 0 for

any n, n′) show that
∑

i X
n
i +

∑
i<j Y Ln

ij = δ0En + δ1En + δ2LEn, where

δ1En = αh̄2

3πm2c2

[
−4βn

〈
�R3V

〉
n

+

(
ln

mc

2h̄kR

+
5

6

) 3∑
i=1

〈
�Ri

V
〉
n

]

= 4α3

3

[
−4βn〈δ(�r13) + δ(�r23)〉n + 2

(
ln

mc

2h̄kR

+
5

6

)
〈δ(�r13) + δ(�r23) − δ(�r12)〉n

]
f 3 au

(48)

and δ2LEn ≡ ∑
i<j

〈
WL

ij

〉
n

is given by the expectation value of the potential

WL
ij (kL) = 8α3

3
ln

kL

kR

δ(�rij )f
3 au. (49)

The element Y Sn
ij due to the exchange of a short wavelength (hard) transverse photon

between different particles will be decomposed as Y Sn
ij = Y S2n

ij + Y S3n
ij , according to the

expansion 1/(H0 + HA − En) ≈ 1/HA − (H0 − En)/(HA)2. The contribution from 1/HA is

Y S2n
ij = −2〈n, 0f |hi( �AS)H

−1
A hj ( �AS)|n, 0f 〉. (50)

In the limit kL → 0, kM → ∞, the integral over k in this matrix element can be evaluated by
using the identity∫

d3k

k2
ei�k·�r ( �A · �B − k̂ · �Ak̂ · �B) = π

r
( �A · �B + r̂ · �Ar̂ · �B),

showing that the sum
∑

i<j Y S2n
ij becomes the two-body correction 〈M2〉n of order α2 Ry,

already taken into account. Thus, only the next term brings a new contribution,

Y S3n
ij = 2 Re

[
〈n, 0f |hi( �AS)

H0 − En

H 2
A

hj ( �AS)|n, 0f 〉
]

(51)

which is the expectation value of the two-body potential

WS
ij (kL, kM) = 2α3

3π

[
3

2
F(kL, kM, rij ) + 4πδ(�rij ) ln

kM

kL

]
f 3 au. (52)

Here F(kL, kM, r) = 2[j0(kMr) + j2(kMr) − j0(kLr) − j2(kLr)]/(3r3) is the function
introduced by Araki [30], written in terms of the spherical Bessel functions j0, j2. When
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kL → 0, kM → ∞, F (0,∞, r) = −2/(3r3), but the logarithmic factor in the second term of
WS

ij is divergent at both limits. However, the divergence in kL is cancelled by the low-energy
term, and the sum Wij (kM) = WL

ij (kL) + WS
ij (kL, kM),

Wij (kM) = 2α3

3π

[
3

2
F(0, kM, rij ) +

δ(rij )

r2
ij

ln
kM

kR

]
f 3 au, (53)

is independent of kL. The divergent factor containing kM contributes only when |n〉 is an S
state, but in this case the expectation value 〈1/r3〉n is also logarithmically divergent. It is,
however, possible to define a limit for the sum of these infinite quantities in the sense of the
principal value. Let

D(a, r) = θ(r − a)

r3
− δ(r)

r2
ln

aµ

a
(54)

be a distribution depending on the positive radius parameter a = η/kM , where η is a positive
scale factor. Because r2∂aD(a, r) = [δ(r) − δ(r − a)]/a, when kM → ∞ the expectation
value 〈D(a, r)〉n is finite. In terms of this distribution we can define the principal value

P
[

3

2
F(0, kM, r) +

δ(r)

r2
ln

kM

kR

]∣∣∣∣
kM→∞

= 4πδ(�r) ln
η

aµkR

− lima→0D(a, r). (55)

The choice of a scale factor η = e
4
3 −γ , where γ is the Euler’s constant, leads to the formula

used by Araki [30]

〈Wij 〉n = −2α3

3π

[
Qn

ij + 4π〈δ(�rij )〉n
(

ln aµkR − 4

3

)]
f 3 au, (56)

where Qn
ij = lima→0〈D(a, r) + 4πγ δ(�rij )〉n. In Ps− this gives for the effective two-body

contribution δ2En = δ2LEn +
∑

i<j

〈
WS

ij

〉
n

= ∑
i<j 〈Wij 〉n the expression

δ2En = −2α3

3π

[
Qn

12 + Qn
13 + Qn

23 + 4π

(
ln aµkR − 4

3

)
〈n|δ(�r13) + δ(�r23) + δ(�r12)|n〉

]
f 3 au.

(57)

According to these partial results, the effective QED contribution of order α3 to the energy
level En of Ps− due to the exchange of a transverse photon is δ1pEn = δ1En + δ2En.
This sum is independent of the arbitrary energy unit RM , as it should be, but to simplify
the numerical calculations we choose RM = f Ry. With this choice, aµkR = α/2, and
mc/(2h̄kR) = 1/(f α2).

The corrections in neutral positronium can be obtained from the expressions given above
simply by neglecting all the expectation values containing the variables r23 and r12, involving
the second electron. For the Ps ground state Q

g0
13 = −4 ln 2, while β0

g is the same as the
Bethe logarithm for hydrogen, βH

g = 2.984 128 555 765 497 611(4), each logarithm being
calculated using the corresponding reduced Rydberg constant [31]. In the case of Ps− the
numerical values Q

g

13 and Q
g

12 used in the present estimates are listed in table 5, while
βg = 3.005 030(2) [31] (including the finite mass correction).

To the same order we should also consider the contribution δ2pEn [30, 32] of the two-
photon exchange term (including the Coulomb part),

δ2pEn = − α3

2π

[
Qn

12 + Qn
13 + Qn

23 − 4π

(
ln f α − 4

3
ln 2 +

13

6

)

×〈n|δ(�r13) + δ(�r23) + δ(�r12)|n〉
]

f 3 au, (58)

and the energy shift associated with two-photon decay.



Positronium binding energy 3389

Table 5. The ground-state expectation values Q
g

1k = lima→0〈θ(r1k − a)/r3
1k + 4π [γ +

ln(a/aµ)]δ(�r1k)〉 as a function of the basis dimension Nb.

Nb Q
g

13

[
a−3

µ

]
Q

g

12

[
a−3

µ

]
324 −2.776 563 2953 0.095 757 780 75
411 −2.776 588 3435 0.095 757 975 79
512 −2.776 583 8294 0.095 757 804 27
630 −2.776 578 6875 0.095 758 749 78
764 −2.776 582 8102 0.095 758 904 03
918 −2.776 582 8944 0.095 758 930 40

1089 −2.776 582 7757 0.095 758 918 40
1283 −2.776 582 6945 0.095 758 949 78
1495 −2.776 582 7219 0.095 758 944 76
1733 −2.776 582 7034 0.095 758 947 86
1990 −2.776 582 7003 0.095 758 949 04
2276 −2.776 582 7022 0.095 758 949 31
2528 −2.776 582 7019 0.095 758 949 43
Extrap. −2.776 582 702(1) 0.095 758 949 4(1)

A useful check that we obtain the known QED correction for helium (or anti-helium) in
the limit where the mass of the positive charge becomes large is discussed in appendix C.

In general, any coupling which makes the levels unstable produces a complex energy
shift δcEn − i�n

c

/
2, where δcEn is a correction to the level centroid, λn

c = �n
c

/
h̄ is the

decay rate and c denotes the decay channel. Neutral positronium normally decays by
spontaneous e+e− annihilation into two photons if the total spin S13 = 0, (�Sij = �si + �sj ),
and in three photons if S13 = 1 [33]. The corresponding decay rates are so that
�n

(Ps,3γ ) ∼ α�n
(Ps,2γ ), and the first correction arises from the two-photon annihilation. In

this channel δ2γ En/�n
(Ps,2γ ) = −(1 − ln 2)/π [34], where

�n
(Ps,2γ ) = 2πα3

〈(
2 − �S2

13

)
δ(�r13)

〉
n
f 3 au. (59)

For the Ps ground state (S13 = 0) this gives a decay rate λ(Ps,2γ ) = α3 Ry/h̄ = 8.04 ns−1,
close to the experimental result 7.99(11) ns−1 [35].

In the Ps− ground state the electron spins are coupled to 0, and the two-photon annihilation
can take place between the positron and either of the two electrons. The total rate depends on〈�S2

13 + �S2
23

〉 = 3, and can be expressed in the form

�(Ps−,2γ ) = 2πα3〈δ(�r13)〉f 3 au. (60)

The ground-state expectation value 〈δ( �R13/a0)〉 given in table 4 yields λ(Ps−,2γ ) =
2.092 797(1) ns−1, in good agreement with the previous estimates [12] and the experimental
result 2.09(9) ns−1 [2]. Assuming the same ratio δ2γ E/�2γ as in the case of positronium, the
corresponding level shift is δ2γ Eg = −2α3(1 − ln 2)〈δ(�r13)〉f 3 au.

Summarizing the results of the present calculations, the effective ground-state expectation
values of the first relativistic and QED correction terms for Ps and Ps− are collected
in table 6.

In Ps− the nonrelativistic one-electron binding energy B1e = −1/2 Ry − Eg =
0.024 010 140 465 960 215 38(56) Ry is practically the same as in [15], and close to the
older estimate of 0.024 010 113 Ry [12]. The effect of the corrections discussed above is to
slightly decrease this energy to

B ′
1e = [0.024 010 140 465 960 215 38(56) − 0.010 773 815 602(8)α2

− 0.385 5457(9)α3] Ry = 0.024 009 416 924 85(6) Ry. (61)
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Table 6. Summary of relativistic and QED contributions to the binding energies of Ps and Ps−.
Units are in Ry.

Term EPs EPs− EPs − EPs−

〈H1〉/α2 −5/32 −0.161 254 673 938 50(6) 0.005 004 673 938 50(6)
〈H2〉/α2 1/4 0.259 466 645 837(8) −0.009 466 645 837(8)
〈M2〉/α2 −1/4 −0.243 688 156 296 0(1) −0.006 311 843 704 0(1)
〈Hvp〉/α3 −1/(15π) −0.022 024 212 934 6(7) 0.000 803 553 855 7(7)
δ1pEg/α

3 2.766 873 00(3) 3.006 491 9(9) −0.239 618 9(9)
δ2pEg/α

3 −0.585 335 778(7) −0.510 831 605(7) −0.074 504 17(1)
δ2γ Eg/α

3 −(1 − ln 2)/π −0.025 448 161 055(1) −0.072 226 124 976(1)

Worth noting, the observed ground-state splitting of positronium, sometimes called the
hyperfine splitting [34] of 1.160 963(9)α2 Ry between the otherwise degenerate components
S13 = 0 and 1, is due to an additional spin–spin contact interaction, which produces a level
shift [34]

δep
s E0

n = 2πα2

〈
δ(�r13)

{
4

3
�s1 · �s3

(
1 − α

2π

)
+

1

2
�S2

13

[
1 −

(
26

9
+ ln 4

)
α

π

]}〉
n

f 3 au. (62)

This means a change in the energy of the singlet by δ
ep
s E0

g = −2α2(1 − α/2π)f 3 au =
−0.265 947 576(23) × 10−4 Ry. In Ps− the corresponding variation of the ground-state level
has two parts,

δee
s Eg = −8π

3
α2

(
1 +

5

2π
α

)
〈�s1 · �s2δ(�r12)〉f 3 au, (63)

arising from the electron–electron coupling [30], and

δ2ep
s Eg = πα2

〈
δ(�r13)

(�S2
13 + �S2

23

) [
1 −

(
26

9
+ ln 4

)
α

π

]〉
f 3 au (64)

due to the two electron–positron terms. Together they add an energy shift δsEg =
δee
s Eg + δ

2ep
s Eg = 0.207 196 744(18) × 10−4 Ry, and change B1e by δ

ep
s E0

g − δsEg =
−0.473 144 32(3)× 10−4 Ry. Including the spin–spin contact terms, the one-electron binding
energy becomes

B ′′
1e = B ′

1e + δep
s E0

g − δsEg = 0.023 962 102 492(3) Ry. (65)

The uncertainty due to terms of order α4 Ry and higher not included in the calculation is
estimated to be ±0.5α4 Ry.

5. Summary and conclusions

The calculation of the relativistic and QED corrections to the energy levels of a quantum three-
body system represents a challenging problem, of fundamental importance in the atomic, and
nuclear physics. Difficulties appear both at conceptual and computational levels, because
there is no satisfactory relativistic many-body quantum theory, and the nonrelativistic problem
is not integrable.

A quantum three-body system thoroughly investigated since the early days of quantum
mechanics is the helium atom. In this case a major simplification occurs, because the reduced
electron mass µ is smaller than the mass of the positive charge by a factor 1.3707×10−4, and to
a first approximation the motion of the nucleus in the centre-of-mass frame can be neglected.
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The relativistic invariance is partly restored by the Breit interaction, and highly accurate
nonrelativistic wavefunctions can be obtained numerically, from variational calculations.
Within this framework, a perturbative treatment of the relativistic and QED correction terms
gives energy levels in remarkable agreement with experiment [6, 7].

The same procedure was applied in this work to the negative positronium ion. However,
by contrast to helium, all three particles have equal mass, and a perturbative treatment of the
positron motion becomes inappropriate.

The accuracy of the nonrelativistic energy and ground-state wavefunction was discussed in
section 2. The extrapolated value Eg obtained here is −0.262 005 070 232 980 107 69(28) au,
the same as in [15, 13] and close within 10−8 to the estimates obtained by other methods [14].
The variance of the Hamiltonian for the largest (2528-dimensional) basis set is 2.78×10−8 au,
smaller than the level width �(Ps−,2γ ) = h̄λ(Ps−,2γ ) = 5.06 × 10−8 au due to the (2γ ) e− decay.
To calculate the expectation values of complicated operators such as H 2

0 , we have used a
new procedure based on a decomposition into elementary functions suitable for automatic
processing [36].

The calculation of the first relativistic and QED corrections has been presented in
sections 3 and 4. Some of the most important matrix elements are given in tables 3 and 5.
The final results indicate that the first spin-independent relativistic terms contribute to
the Ps− ground-state energy by −0.072 738 092 198(4)α2 au and the lowest order QED
corrections by 1.224 094 00(44)α3 au. These terms decrease both the ground-state energy,
to Eg∗ = −0.262 008 467 959 9(4) au, and the one-electron binding energy from the
nonrelativistic value B1e = −1/4 au − Eg to 0.012 004 708 462 43(3) au. A much larger
contribution appears however from the spin-dependent contact terms, which raise the ground-
state energy to Eg∗ = −0.261 998 108 122(1) au, and further decrease the binding energy to
0.011 981 051 246(2) au. Including the uncertainty due to terms of order α4 Ry and higher,
the final result for the binding energy is 0.011 981 051(1) au, or 78831 530 ± 5 MHz. The
calculated rate of spontaneous decay by two-photon emission is 2.092 797(1) ns−1, close to
the previous theoretical results and to the measured value [2].

It would of course be very interesting to have a measurement of the binding energy of
Ps− to provide a direct test of the quantum theory used to describe loosely bound three-body
systems.
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Appendix A. Expectation values of p4

The expectation values
〈∇4

1

〉 = 〈∇4
2

〉
for the electrons in the Ps− ground state can be

calculated numerically either by direct differentiation, or as
〈∇4

1

〉
E

= 〈∇4
1 + ∇4

2

〉
E

/
2 =〈(∇2

1 + ∇2
2

)2〉
E

/
2 − 〈∇2

1∇2
2

〉
, where the first term is expressed in the form

1
2

〈(∇2
1 + ∇2

2

)2〉
E

= 2
〈(
Ẽg − Ṽ + 1

2∇13 · ∇23
)2〉

= 2
[
Ẽ2

g − 2Ẽg
〈
Ṽ − 1

2∇13 · ∇23
〉
+
〈(
Ṽ − 1

2∇13 · ∇23
)2〉]

(A.1)

(Ẽg ≡ Eg/f au) by assuming that the variational ground state is practically eigenstate of H0.
Although in the limit Nb → ∞ should be the same, at finite Nb the numerical values obtained



3392 G W F Drake and M Grigorescu

for
〈∇4

1

〉
and

〈∇4
1

〉
E

are slightly different. These estimates are given as a function of the basis
size Nb in the first two columns of table 3. The third column contains the corresponding
expectation value for the positron,〈∇4

3

〉
E

= 〈(∇13 + ∇23)
4〉E = 2

〈∇4
13

〉
E

+ 2
〈∇2

13∇2
23

〉 − 8〈(Ẽg − Ṽ )∇13 · ∇23〉. (A.2)

Appendix B. Error estimates

The series of numerical values presented in tables 1 and 3 to 5 appear to be convergent,
but for comparison with experiment, it is useful to also provide a single extrapolated value,
representing the expected result of the calculation when Nb → ∞. The procedure adopted
here to define this value depends on the manner of convergence. In the case of a sequence
{fn} convergent as an alternating series, the extrapolated value fextp. ± σf , given in the
last row, was defined as the arithmetic average of its last three consecutive terms, by fextp. =(
fnx

+fny
+fnz

)/
3, nx < ny < nz, and σ 2

f = [(
fnx

−fextp.

)2
+
(
fny

−fextp.

)2
+
(
fnz

−fextp.

)2]/
3.

If {fn} approaches the limit by monotonous increase or decrease, then we assume that the series
can be extended to infinity by the function F(n) = fextp. + A e−γ n. The matching equations
F(nx) = fnx

, F (ny) = fny
, F (nz) = fnz

between F(n) and the last three calculated numerical
values yield the parameter fextp. in the form [13]

fextp. = fny
+

fny
− fnx

R − 1
. (B.1)

Here R ≡ eγ (ny−nx) is the solution of the equation R − 1 = Ry[1 − R(ny−nz)/(ny−nx)], where

Ry = fny
− fnx

fnz
− fny

. (B.2)

The error is measured by

σf = ∣∣fny
− fextp.

∣∣ =
∣∣∣∣fny

− fnx

R − 1

∣∣∣∣ . (B.3)

If ny − nx = nz − ny , then R = Ry . When n is simply Nb, then ny − nx = 286 is larger, but
close to nz − ny = 252, and R = Ry still provides a reasonable estimate.

Appendix C. QED corrections of order α3 in the limit m3 → ∞

When m3 → ∞ (f = 1) the vacuum polarization contribution and the part ∼α3 in δee
s En of

equation (63), δee
s En|α3 = −20〈�s1 · �s2δ(�r12)〉nα3/3 au, remain the same, but Xn

3 = 0, Y n
i3 = 0

and δ1pEn becomes

δ1pE∞
n = α3

[
4

3

(
ln

mc

2h̄kR

+
5

6
− βn

)
〈δ(�r13) + δ(�r23)〉n

− 8

3

(
ln

mc

2h̄kR

− 1

2
+ ln aµkR

)
〈δ(�r12)〉n − 2

3π
Qn

12

]
au. (C.1)

The two-photon exchange contribution reduces to

δ2pE∞
n = α3

[
−Qn

12

2π
+ 2

(
ln α − 4

3
ln 2 +

13

6

)
〈δ(�r12)〉n

]
au, (C.2)
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and the total correction δE∞
n = δ1pE∞

n + δ2pE∞
n + δee

s En|α3 + 〈Hvp〉n is

δE∞
n = α3

[
4

3

(
19

30
− ln α2 − βn

)
〈δ(�r13) + δ(�r23)〉n

+

(
14

3
ln α +

164

15

)
〈δ(�r12)〉n − 7

6π
Qn

12

]
au. (C.3)
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