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Abstract 10 

This article proposes a framework to handle multiattribute group decision making 11 

problems with incomplete pairwise comparison preference over decision alternatives 12 

where qualitative and quantitative attribute values are furnished as linguistic variables 13 

and crisp numbers, respectively. Attribute assessments are then converted to interval-14 

valued intuitionistic fuzzy numbers (IVIFNs) to characterize fuzziness and uncertainty in 15 

the evaluation process. Group consistency and inconsistency indices are introduced for 16 

incomplete pairwise comparison preference relations on alternatives provided by the 17 

decision-makers (DMs). By minimizing the group inconsistency index under certain 18 

constraints, an auxiliary linear programming model is developed to obtain unified 19 

attribute weights and an interval-valued intuitionistic fuzzy positive ideal solution 20 

(IVIFPIS). Attribute weights are subsequently employed to calculate distances between 21 

alternatives and the IVIFPIS for ranking alternatives. An illustrative example is provided 22 

to demonstrate the applicability and effectiveness of this method. 23 

Keywords: Multi-attribute group decision making (MAGDM), interval-valued 24 

intuitionistic fuzzy numbers (IVIFNs), linear programming, group consistency and 25 

inconsistency 26 

1. Introduction   27 

When facing a decision situation, a decision-maker (DM) often has to evaluate a 28 

                                                 
1 Corresponding author, Telephone: +1 519 2533000 ext. 3456; fax: +1 519 9737073.  
Email: kwli@uwindsor.ca (K.W. Li), wangzj@xmu.edu.cn (Z.J. Wang). 
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finite set of alternatives against multiple attributes. This process can be conveniently 29 

modeled as a multiattribute decision making (MADM) problem. Several formal 30 

procedures have been proposed to deal with MADM such as the Technique for Order 31 

Preference by Similarity to Ideal Solution (TOPSIS) (Hwang & Yoon, 1981) and the 32 

Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP) 33 

(Srinivasan & Shocker, 1973). The LINMAP proves to be a practical and useful 34 

technique for determining attribute weights and a positive-ideal solution based on a DM’s 35 

pairwise comparisons of alternatives. In the traditional LINMAP, performance ratings are 36 

known precisely and given as crisp values. Under many practical decision situations, it is 37 

hard, if not impossible, to obtain exact assessment values due to inherent vagueness and 38 

uncertainty in human judgment. As such, Zadeh (1965) puts forward a powerful 39 

paradigm, fuzzy set theory, to handle ambiguity information that often arises in human 40 

decision processes. The LINMAP has subsequently been extended to handle MADM 41 

with fuzzy judgment data (Li & Yang, 2004). 42 

In Zadeh’s fuzzy set, an element’s membership to a particular set is defined as a real 43 

value   between 0 and 1 and its nonmembership is implied to be 1  . This extension 44 

of traditional binary logic provides a powerful framework to characterize vagueness and 45 

uncertainty. The treatment of nonmembership as a complement of membership 46 

essentially omits a DM’s hesitation in the decision making process. To facilitate further 47 

characterization of uncertainty and vagueness, Atanassov (1986) introduces intuitionistic 48 

fuzzy sets (IFSs), depicted by real-valued membership, nonmembership, and hesitancy 49 

functions. Due to its capability of accommodating hesitation in human decision processes, 50 

IFSs have been widely recognized as flexible and practical tools for tackling imprecise 51 

and uncertain decision information (Xu & Cai, 2010) and have been widely applied to the 52 

field of decision modeling. For instance, Li (2005) proposes a linear programming 53 

method to handle MADM using IFSs; Wei (2010) develops an intuitionistic fuzzy 54 

weighted geometric operator-based approach to solve multi-attribute group decision 55 

making (MAGDM) problems; Li et al. (2010) extend the LINMAP method to solve 56 

MAGDM with intuitionistic fuzzy information. 57 

An IFS is characterized by real-valued membership and nonmembership functions 58 

defined on [0, 1], and the hesitancy function can be easily derived based on the aforesaid 59 
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two functions. In some decision situations with highly uncertain and imprecise judgment, 60 

it could pose a significant challenge to require that membership and nonmembership be 61 

identified as exact values. To address this issue, IFSs are further extended to interval-62 

valued intuitionistic fuzzy sets (IVIFSs) (Atanassov and Gargov, 1989) where 63 

membership and nonmembership are represented as interval-valued functions. Since its 64 

inception, significant research has been conducted to develop and enrich the IVIFS theory, 65 

such as investigations on the correlation and correlation coefficients of IVIFSs (Bustince 66 

& Burillo 1995; Hong, 1998; Hung & Wu, 2002), fuzzy cross entropy of IVIFSs (Ye, 67 

2011), relationships between IFSs, L-fuzzy sets, interval-valued fuzzy sets and IVIFSs 68 

(Deschrijver, 2007; Deschrijver, 2008; Deschrijver & Kerre, 2007), similarity measures 69 

of IVIFSs (Wei, Wang, &  Zhang, 2011; Xu & Chen, 2008), and comparison of the 70 

interval-valued intuitionistic numbers (IVIFNs) (Li & Wang, 2010; Wang, Li, & Wang, 71 

2009; Xu, 2007). Thanks to their advantage in coping with uncertain decision data, 72 

IVIFSs have been widely applied to decision models with multiple attributes (Li, 2010a, 73 

b; Wang, Li & Wang, 2009; Park et al., 2011; Li, 2011; Wang, Li, & Xu, 2011; Wei, 74 

2010, 2011; Xu, 2007; Xu & Yager, 2007, 2008; Xu et al., 2011). Recently, researchers 75 

started to address MAGDM problems involving IVIFS decision data. For instance, Park 76 

et al. (2009) investigate group decision problems based on correlation coefficients of 77 

IVIFSs. Xu (2010) introduces certain IVIFN relations and operations and proposes a 78 

distance-based method for group decisions. Ye (2010) develops a MAGDM method with 79 

IVIFNs to solve the partner selection problem of a virtual enterprise under incomplete 80 

information. Yue (2011) puts forward an approach to aggregate interval numbers into 81 

IVIFNs for group decisions. Chen et al. (2011) propose a framework to tackle MAGDM 82 

problem based on interval-valued intuitionistic fuzzy preference relations and interval-83 

valued intuitionistic fuzzy decision matrices.  84 

To the authors’ knowledge, little research has been carried out to handle MAGDM 85 

problems in which attribute values are converted to IVIFNs with unknown attribute 86 

weights and incomplete pairwise comparison preference relations on alternatives. In this 87 

research, the focus is to further extend the LINMAP method and develop a new approach 88 

to MAGDM problems with IVIFN decision data. In this paradigm, it is assumed that raw 89 

decision data are furnished as linguistic variables (for qualitative attributes) and 90 
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numerical values (for quantitative attributes), then IVIFNs are constructed to reflect 91 

fuzziness and uncertainty contained in attribute assessment values and DMs’ subjective 92 

judgment. Group consistency and inconsistency indices are defined for pairwise 93 

comparison preference relations on alternatives. A linear program is proposed for 94 

deriving the interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS) and 95 

attribute weights. The distances of alternatives to the IVIFPIS are calculated to determine 96 

their ranking orders for individual DMs. Finally, a group ranking order can be generated 97 

using the Borda function (Hwang & Yoon, 1981). An earlier version of this paper was 98 

presented at a conference and published in the proceedings [Wang, Wang & Li, 2011]. 99 

This manuscript has significantly expanded the research reported therein by refining the 100 

modeling process, addressing certain technical deficiency, and furnishing two theorems 101 

to reveal useful properties of the proposed framework. 102 

The remainder of the paper is organized as follows. Section 2 provides preliminaries 103 

on IVIFSs and Euclidean distance between IVIFNs. Section 3 formulates the MAGDM 104 

problem with IVIFNs and defines group consistency and inconsistency indices. Section 4 105 

proposes an approach to handle MAGDM problems with IVIFNs, and a linear program is 106 

established to estimate the IVIFPIS and attribute weights. Section 5 presents a numerical 107 

example to demonstrate how to apply the proposed approach, followed by some 108 

concluding remarks in Section 6. 109 

2. Preliminaries 110 

Let Z be a fixed nonempty universe set, an IFS A in Z is an object in the following 111 

form (Atanassov, 1986): 112 

{ , ( ), ( ) | }A AA z z z z Z     , 113 

where : [0,1]A Z   and : [0,1]A Z  ,  satisfying 0 ( ) ( ) 1A Az z    , .z Z   114 

( )A z  and ( )A z  denote, respectively, the degree of membership and 115 

nonmembership of element z to set A. In addition, for each IFS A in Z , 116 

( ) 1 ( ) ( )A A Az z z      is often referred to as its intuitionistic fuzzy index, representing 117 

the degree of indeterminacy of z to A. Obviously, 0 ( ) 1A z   for every .z Z  118 

Given that the degrees of membership and nonmembership are sometimes difficult to 119 

be derived with exact values, Atanassov and Gargov (1989) extend IFSs to interval-120 
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valued intuitionistic fuzzy sets (IVIFSs) that allow membership and nonmembership 121 

functions to assume interval values. 122 

Let ([0,1])D  be the set of all closed subintervals of the unit interval [0, 1], an IVIFS 123 

A over Z  is defined as 124 

{ , ( ), ( ) | }
A A

A z z z z Z     
  , 125 

where : ([0,1])
A

Z D  , : ([0,1])
A

Z D  , and 0 sup( ( ))
A

z   sup( ( )) 1
A

z   for 126 

any z Z . 127 

The intervals ( )
A

z   and ( )
A

z   define, respectively, the degree of membership and 128 

nonmembership of z  to A. Thus for each z Z , the difference from an IFS is that ( )
A

z   129 

and ( )
A

z   are closed intervals, and their lower and upper bounds are denoted by 130 

( ), ( ), ( )L U L
A A A

z z z       and ( )U
A

z  , respectively. Therefore, the IVIFS A  can be 131 

equivalently expressed as 132 

            { ,[ ( ), ( )],[ ( ), ( )] | }L U L U
A A A A

A z z z z z z Z         
    , 133 

where ( ) ( ) 1,0 ( ) ( ) 1,0 ( ) ( ) 1U U L U L U
A A A A A A

z z z z z z                      . 134 

Similar to IFSs, an interval intuitionistic fuzzy index of an element z Z  is expressed 135 

as 136 

         ( ) [ ( ), ( )] [1 ( ) ( ),1 ( ) ( )]L U U U L L
A A A A A A A

z z z z z z z                       , 137 

which gives the range of hesitancy degree of element z  to set A . 138 

If each of the intervals ( )
A

z   and ( )
A

z   contains only a single value, i.e., for every 139 

z Z , ( ) ( )L U
A A

z z     and ( ) ( )L U
A A

z z    , then the given IVIFS A  is reduced to a 140 

regular IFS.  141 

For an IVIFS A and a given z, the pair ( ( ), ( ))
A A

z z    is called an interval-valued 142 

intuitionistic fuzzy number (IVIFN) (Wang, Li, & Wang, 2009; Wang, Li, & Xu, 2011; 143 

Xu, 2007; Xu & Yager, 2008). For convenience, we denote an IVIFN by ([ , ],[ , ])a b c d , 144 

where [ , ] ([0,1])a b D , [ , ] ([0,1])c d D  and 1b d  . 145 

Xu and Yager (2009) introduce the normalized Hamming distance considering 146 

interval intuitionistic fuzzy index between IVIFSs. Here, a normalized Euclidean distance 147 
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is introduced to facilitate the discussion in Section 3. 148 

Let 1 1 1 1 1([ , ],[ , ])a b c d   and 2 2 2 2 2([ , ],[ , ])a b c d   be any two IVIFNs, then a 149 

normalized Euclidean distance between 1  and 2  can be defined as: 150 

                       

1 2 1 2

2 2 2 2
1 2 1 2 1 2 1 2 1 2

2 2 1/2

1
( , ) ( (( ) ( ) ( ) ( )

4

( ) ( ) ))l l u u

d a a b b c c d d

   

 

   

        

     

 
               (2.1) 151 

where 
1 1 2 21 1 1 1 2 2 2 21 , 1 , 1 , 1l u l ub d a c b d a c                     . 152 

3. An MAGDM problem and group consistency measurement 153 

This section presents an MAGDM problem with IVIFNs and defines group 154 

consistency and inconsistency indices. 155 

3.1 An MAGDM framework with IVIFN decision data 156 

Given n feasible decision alternatives xi (i =1, 2, …, n) and m qualitative or 157 

quantitative attributes aj (j = 1, 2, …, m). Denote the alternative set by X = {x1, x2, …, xn} 158 

and the attribute set by A = {a1, a2, …, am}. The attribute set A can be divided into two 159 

mutually exclusive and collectively exhaustive subsets: A1 and A2, representing the subset 160 

of qualitative and quantitative attributes, respectively. It is natural that 1 2A A A   and 161 

1 2A A  , where   is the empty set. Depending on the decision purpose, an MAGDM 162 

problem could be defined as finding the best alternative(s) from all feasible choices or 163 

obtaining a ranking for all alternatives based on the information provided by a group of 164 

DMs D = {d1, d2, …, dq}.  165 

Assume that DM pd D  assesses each alternative ix X  on each qualitative attribute 166 

1ja A  as a linguistic variable. These linguistic assessments are then converted into 167 

IVIFNs, r p
ij
 ([a

ij
1p ,b

ij
1p ],[c

ij
1p ,d

ij
1p ])  (i = 1, 2, …, n, p = 1, 2, …, q). The intervals 1 1[ , ]p p

ij ija b  168 

and 1 1[ , ]p p
ij ijc d

 
are the degree of satisfaction (or membership) and the degree of non-169 

satisfaction (or nonmembership) of xi on the qualitative attribute aj with respect to a fuzzy 170 

concept “excellence”, and satisfy the following conditions: 1 1[ , ] ([0,1])p p
ij ija b D , 171 
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1 1[ , ] ([0,1])p p
ij ijc d D  and 1 1 1p p

ij ijb d  . Table 1 furnishes a conversion table between 172 

linguistic variables and their corresponding IVIFNs used in the case study in Section 5. 173 

            174 

For each quantitative attribute 2ja A , it is assumed that each alternative ix X  is 175 

assessed as a numerical value, denoted by .p
ijf  Generally speaking, numerical 176 

assessments on different attributes often assume different units (e.g., kilograms for 177 

weight and kilometers for distance).  In addition, for the same numerical value p
ijf , 178 

different DMs may have different degrees of satisfaction (or membership) and non-179 

satisfaction (or nonmembership) assessment. As such, it is desirable to convert a 180 

numerical value p
ijf  to dimensionless relative degrees of satisfaction and non-satisfaction, 181 

reflecting both objective measurement and DM dp’s subjective assessment.  182 

Quantitative attributes are often classified into two types: benefit and cost attributes. 183 

Denote the benefit attribute set by 2
bA  and the cost attribute set by 2

cA . One way to define 184 

the relative degree of satisfaction interval 2 2[ , ]p p
ij ija b   for a numerical value p

ijf  is given as 185 

follows:  186 

2 min max min

22 min max min

2 max max min

22 max max min

( ) /( )
,

( ) /( )

( ) /( )
,

( ) /( )

p pl p
ij j ij jp jp jp b

jp pu p
ij j ij jp jp jp

p pl p
ij j jp ij jp jp c

jp pu p
ij j jp ij jp jp

a f f f f
if a A

b f f f f

a f f f f
if a A

b f f f f









    
  

    
  

                     (3.1) 187 

where max max{ | 1, 2, , }p

jp ijf f i n   , min min{ | 1, 2, , }p

jp ijf f i n    and the parameter 188 

[ , ] ([0,1])p pl pu
j j j D     is given by DM dp (p = 1, 2, …, q) according to its expected 189 

goals and needs in the decision situation, reflecting the DM’s relative degree of 190 

Table 1.  A conversion table between linguistic variables and IVIFNs 
Linguistic terms IVIFNs 

Very Good (VG) ([0.90,0.95],[0.02,0.05]) 
Good (G) ([0.70,0.75],[0.20,0.25])
Fair (F) ([0.50,0.55],[0.40,0.45]) 
Poor (P) ([0.20,0.25],[0.70,0.75]) 
Very Poor (VP) ([0.02,0.05],[0.90,0.95]) 
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satisfaction (or membership) for the best assessment on attribute 2ja A  (maximum for a 191 

benefit attribute or minimum for a cost attribute).  192 

 It is obvious that 2 2[ , ] ([0,1])p p
ij ija b D  and the larger the relative degree interval 193 

2 2[ , ]p p
ij ija b , the more satisfying alternative ix  is with respect to attribute ja . 194 

For a numerical value p
ijf

 
(i =1, 2, …, n, 2ja A ), let 195 

' ,p p p p
ij j ij jf f                                                            (3.2) 196 

where 0p
j   and p

j  are constants given by the DM dp (p =1, 2, …, q). The purpose of 197 

introducing this linear transformation formula is to accommodate the case that DM dp 198 

may adopt a different rating system for a quantitative attribute 2ja A . Next, Theorem 3.1 199 

establishes that the relative degree of satisfaction interval for a numerical value p
ijf  200 

remains the same for its converted value f
ij
' p

 
under the transformation relation (3.2). 201 

Theorem 3.1 For a numerical assessment p
ijf  and its converted value f

ij
' p  based on Eq. 202 

(3.2), denote their relative degree of satisfaction intervals by 2 2[ , ]p p
ij ija b  and [a '

ij
2 p ,b '

ij
2 p ], 203 

then a
ij
2 p  a '

ij
2 p  and b

ij
2 p  b '

ij
2 p . 204 

  Proof.  Since 205 

               

'max

max

max{ | 1, 2, , }

max{ | 1, 2, , }

p p p
jp j ij j

p p p
j ij j

p p
j jp j

f f i n

f i n

f

 

 

 

  

  

 



  206 

and 207 

'min

min

min{ | 1, 2, , }

min{ | 1, 2, , }

p p p
jp j ij j

p p p
j ij j

p p
j jp j

f f i n

f i n

f

 

 

 

  

  

 



  208 

Then, 209 
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'2 'min 'max 'min

min max min

min max min 2

'2 ' min 'max 'min

( ' ) /( )

( ( )) /(( ) ( ))

( ) /( )

( ) /( )

p pl p
ij j ij jp jp jp

pl p p p p p p p p p
j j ij j j jp j j jp j j jp j

pl p p
j ij jp jp jp ij

p pu p
ij j ij jp jp jp

pu
j

a f f f f

f f f f

f f f f a

b f f f f



        







  

      

   

  



2

min max min

min max min 2

,

( ( )) /(( ) ( ))

( ) /( )

b
j

p p p p p p p p p
j ij j j jp j j jp j j jp j

pu p p
j ij jp jp jp ij

if a A

f f f f

f f f f b

       











      
    

 210 

'2 'max ' 'max 'min

max max min

max max min 2

'2 'max ' 'max 'min

( ) /( )

( ( )) /(( ) ( ))

( ) /( )

( ) /( )

p pl p
ij j jp ij jp jp

pl p p p p p p p p p
j j jp j j ij j j jp j j jp j

pl p p
j jp ij jp jp ij

p pu p
ij j jp ij jp jp

p
j

a f f f f

f f f f

f f f f a

b f f f f



        







  

      

   

  



2

max max min

max max min 2

,

( ( )) /(( ) ( ))

( ) /( )

c
j

u p p p p p p p p p
j jp j j ij j j jp j j jp j

pu p p
j jp ij jp jp ij

if a A

f f f f

f f f f b

       











      
    

 211 

The proof of Theorem 3.1 is thus completed.               ■  212 

Theorem 3.1 guarantees that Eq. (3.1) always yields the same relative degree of 213 

satisfaction interval for a numerical assessment even if it is converted to a different rating 214 

system as long as the conversion process follows the linear relationship in Eq. (3.2). 215 

Similarly, assume that DM dp (p =1, 2, …, q) gives its relative degree of non-216 

satisfaction interval as 2 2ˆˆ[ , ]p p
j jc d  for the best assessment on attribute 2ja A  (maximum 217 

value max

jpf  for a benefit attribute or minimum value min

jpf  for a cost attribute), where 218 

2ˆ 1p pu
j jd    for all 2ja A . 219 

Let 220 

2

2

1
1

0 1

1
1

0 1

p
j pu

jpupl
jj

pu
j

p
j pu

jpupu
jj

pu
j

c

d














 
 



 

 




                                                (3.3) 221 



 10

Obviously, pl pu
j j   and [ , ] ([0,1])pl pu

j j D   . Denote [ , ]p pl pu
j j j   , then DM dp’s  222 

relative degree of non-satisfaction interval 2 2[ , ]p p
ij ijc d  for the numerical value p

ijf  can be 223 

computed by the following formula: 224 

2 2 2 2 2[ , ] (1 ) [ (1 ), (1 )]p p p p pl p pu p
ij ij ij j j ij j ijc d b b b                                     (3.4) 225 

As 20 1 and 0 1,pu p
j ijb     it follows that 2 2 2 20 (1 ) 1 1p pu p p p

ij j ij ij ijb b b b       , we 226 

have 2 20 1p p

ij ijb d   . Therefore, Eqs. (3.1) and (3.4) ensure that a numerical assessment 227 

p
ijf  is transformed into an IVIFN, 2 2 2 2([ , ],[ , ])p p p p

ij ij ij ija b c d . 228 

    Let  229 

1 1 1 1
1

2 2 2 2
2

([ , ],[ , ]) if 
([ , ],[ , ])

([ , ],[ , ]) if 

p p p p
ij ij ij ij jp p p p p

ij ij ij ij ij p p p p
ij ij ij ij j

a b c d a A
r a b c d

a b c d a A

    
         (3.5) 230 

where i = 1,2, …, n and j = 1, 2, …, m. Thus, an MAGDM problem with IVIFNs can be 231 

concisely expressed in an IVIFN matrix format as follows: 232 

 ( ) ([ , ],[ , ])p p p p p p
ij n m ij ij ij ij n m

R r a b c d 
   ，(p = 1, 2, …, q)                          (3.6) 233 

 234 

3.2   Group consistency and inconsistency 235 

In an MAGDM problem, different attribute weights reflect their varying importance in 236 

selecting the final alternative. Let 1 2( , , , )T
m      be the unknown attribute weight 237 

vector, where 0j  , 1,2, ,j m  , and the weights are often normalized to one, i.e. 238 

1
1

m

jj



 . Denote the unknown interval-valued intuitionistic fuzzy positive ideal 239 

solution (IVIFPIS) by * * * *
1 2( , , , )T

mx r r r    , where * * * * *([ , ],[ , ]) ( 1, 2, , )j j j j jr a b c d j m    240 

are IVIFNs. Then the weighted average of squared Euclidean distance between DM dp’s 241 

assessment vector 1 2( , ,..., )p p p p
i i i imx r r r     and the IVIFPIS * * * *

1 2( , , , )T
mx r r r     can be 242 

defined as follows: 243 

* 2

1

[ ( , )]
m

p p
i j ij j

j

S d r r


                                                         (3.7) 244 

By (2.1), p
iS  can be expanded as: 245 



 11

* 2 * 2 * 2 * 2

1

* 2 * 2

1
[( ) ( ) ( ) ( )

4

( ) ( ) ]

m
p p p p p

i j ij j ij j ij j ij j
j

pl l pu u
ij j ij j

S a a b b c c d d

   


        

  


                    (3.8) 246 

where 1 ,pl p p
ij ij ijb d    1pu p p

ij ij ija c    , * * *1l
j j jb d     and * * *1u

j j ja c    . 247 

Let 248 

2 2 2 2 2 21
[( ) ( ) ( ) ( ) ( ) ( ) 2 2 ],

4
1 1

( ), ( ),
2 2
1 1

( ), ( )
2 2

p p p p p pl pu pl pu
ij ij ij ij ij ij ij ij ij

p p pu p p pl
ij ij ij ij ij ij

p p pu p p pl
ij ij ij ij ij ij

F a b c d

C a G b

H c T d

   

 

 

       

     

     

      (3.9) 249 

and  250 

* * * *ˆ ˆˆ ˆ, , ,j j j j j j j j j j j ja a b b c c d d                                               (3.10) 251 

for each i =1, 2, …, n, j =1, 2, …, m. Then p
iS  can be written as: 252 

1 1 1 1 1

* 2 * 2 * 2 * 2 * 2 * 2

1

ˆ ˆˆ ˆ

1
[( ) ( ) ( ) ( ) ( ) ( ) ]

4

m m m m m
p p p p p p

i j ij j ij j ij j ij j ij
j j j j j

m
l u

j j j j j j j
j

S F a C b G c H d T

a b c d



  

    



     

    

    


                         (3.11) 253 

If the weight vector   and the IVIFPIS *x  are given by the DMs, then p
iS  (i = 1, 254 

2, …, n) can be calculated by using (3.11). A ranking of alternatives can thus be 255 

conveniently obtained for DM dp based on p
iS . However, in this paper, it is conceived 256 

that the weight vector   and the IVIFPIS *x  are not provided by the DMs. Instead, based 257 

on incomplete pairwise comparisons of alternatives, a model is proposed to generate a 258 

best compromise alternative as the solution that has the shortest distance to the IVIFPIS. 259 

To accomplish this goal, consistency and inconsistency indices are introduced based on 260 

p
iS  and incomplete pairwise preference relations on alternatives furnished by the DMs. 261 

Assume that DM pd D  (p =1, 2, …, q) provides its comparison preference relations 262 

on alternatives as {( , ) | , , {1, 2, , }}p
k p tk t x x k t n   


, where k p tx x


 indicates that 263 

DM dp prefers xk to xt or is indifferent between xk and xt.  264 



 12

By (3.7), p p
t kS S  means that alternative kx  is closer to the IVIFPIS *x  compared to 265 

alternative tx . In this case, the ranking order of alternatives kx  and tx  implied by the 266 

normalized Euclidean distance is k p tx x


. If DM dp furnishes the same pairwise 267 

comparison result for these two alternatives, i.e., ( , ) pk t  , the ranking is called 268 

consistent.  Otherwise, if the computed distance reveals p p
t kS S ,  but the ranking order 269 

furnished by the DM is k p tx x


, this ranking is referred to as inconsistent. This 270 

inconsistency indicates that the weights and IVIFPIS *x  are not chosen properly. Next, 271 

the consistency index of DM pd  is introduced as follows: 272 

                                         
( , )

max{0, }
p

p p p
t k

k t

E S S


                                          (3.12) 273 

and the group consistency index is thus calculated as: 274 

                                    
1 1 ( , )

max{0, }
p

q q
p p p

t k
p p k t

E E S S
  

                                   (3.13) 275 

Similarly, the inconsistency index of DM pd  is defined as: 276 

                                           
( , )

max{0, }
p

p p p
k t

k t

B S S


                                          (3.14) 277 

and the group inconsistency index is determined as: 278 

1 1 ( , )

max{0, }
p

q q
p p p

k t
p p k t

B B S S
  

                                    (3.15) 279 

Let 280 

, , , ,p p p p p p p p p p p p p p p
ijs ij sj ijs ij sj ijs ij sj ijs ij sj ijs ij sjF F F C C C G G G H H H T T T              (3.16) 281 

for each i, s =1, 2, …, n, j =1, 2, …, m. Then it follows from (3.11) that   282 

1 1 1 1 1

max{0, } max{0, }

ˆ ˆˆ ˆ

p p p p p p
i s s i i s

m m m m m
p p p p p

j ijs j ijs j ijs j ijs j ijs
j j j j j

S S S S S S

F a C b G c H d T
    

    

        
                       (3.17) 283 

for each i, s =1, 2, …, n. From (3.13), (3.15) and (3.17), one can obtain that 284 
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1 ( , )

1 ( , )

1 1 1 1 1 1( , ) ( , ) ( , )

1 ( , )

(max{0, } max{0, })

( )

ˆˆ

ˆ

p

p

p p p

q
p p p p

t k k t
p k t

q
p p

t k
p k t

q q qm m m
p p p

j tjk j tjk j tjk
j p j p j pk t k t k t

m
p

j tjk
j k t

E B S S S S

S S

F a C b G

c H



 

 

       

 

    

 

     
             

     

 

 

        


1 1 1 ( , )

ˆ .
p p

q qm
p

j tjk
p j p k t

d T
   

   
      

   
    

            (3.18) 285 

Denote 286 

1 1 1 1 1( , ) ( , ) ( , ) ( , ) ( , )

, , , ,
p p p p p

q q q q q
p p p p p

j tjk j tjk j tjk j tjk j tjk
p p p p pk t k t k t k t k t

F F C C G G H H T T
        

                  (3.19) 287 

Then, Eq. (3.18) can be simply rewritten as follows: 288 

1 1 1 1 1

ˆ ˆˆ ˆ
m m m m m

j j j j j j j j j j
j j j j j

E B F a C b G c H d T
    

                               (3.20) 289 

4   A linear programming approach to the MAGDM problem 290 

As the group inconsistency index B reflects the overall inconsistency between the 291 

derived Euclidean distance and the DMs’ judgment, the smaller the B, the better the 292 

model characterizes the DMs’ decision rationales. Therefore, a sensible attribute weight 293 

vector 1 2( , , , )T
m      and IVIFPIS *x  is to minimize the group inconsistency index B 294 

(Li et al. (2010) apply the similar treatment to handle multiattribute group decision 295 

making with intuitionistic fuzzy sets).  Based on this consideration, the following 296 

optimization model is established to determine   and *x : 297 

* * * * * *

* * * *

min{ }

. .

1, , ( 1, 2, , )

0, 0, 0, 0 ( 1, 2, , )

0 ( 1, 2, , ).

j j j j j j

j j j j

j

B

s t E B h

b d a b c d j m

a b c d j m

j m

 

    

    

 






                                    (4.1) 298 

where h is a positive number that is expected to reflect by how much the consistency 299 

index should exceed the inconsistency index for the group of DMs. 300 

Utilizing (3.15) and (3.20), model (4.1) can be converted to the following 301 

mathematical programming model: 302 
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1 ( , )

1 1 1 1 1

* * * * * *

* * * *

min{ max{0, }}

ˆ ˆˆ ˆ.

1, , ( 1,2, , )

0, 0, 0, 0 ( 1,2, , )

0 ( 1,2, , ).

p

q
p p

k t
p k t

m m m m m

j j j j j j j j j j
j j j j j

j j j j j j

j j j j

j

S S

s t F a C b G c H d T h

b d a b c d j m

a b c d j m

j m





 

    



    

    

    

 

 

    





                             (4.2) 303 

For each pair of alternatives ( , ) pk t  , let  max 0,p p p
kt k tS S  , then 304 

( ),p p p
kt t kS S     i.e., ( ) 0p p p

t k ktS S    . It follows from (3.17) that 305 

1 1 1 1 1

ˆ ˆˆ ˆ 0
m m m m m

p p p p p
j tjk j tjk j tjk j tjk j t

p
ktjk

j j j j j

F a C b G c H d T 
    

                               (4.3) 306 

As * * * *ˆ ˆˆ ˆ, , ,j j j j j j j j j j j ja a b b c c d d       （j = 1, 2, …, m）, one can confirm 307 

that ˆ ˆˆ ˆ,j j j ja b c d   since * * * *,j j j ja b c d  , and ˆ ˆ
j j jb d    due to * * 1j jb d   for  j = 1, 308 

2, …, m. By incorporating (4.3) as a constraint, the nonlinear model (4.2) is transformed 309 

to the following linear program by treating p
kt  as free decision variables: 310 

1 ( , )

1 1 1 1 1

1 1 1 1 1

0

min{ }

ˆ ˆˆ ˆ. .

ˆ ˆˆ ˆ

( , ) ; 1,2, ,

( , ) ; 1 ,

)

,2

(

0 (

p

q

p k t

m m m m m

j j j j j j j j j j
j j j j j

m m m m m
p p p p p

j tjk j tjk j tjk j tjk j t

p
kt

p
kjk

j j
t

p
kt

j j j

p

p

s t F a C b G c H d T h

F a C b G c H d T

k t p q

k t p







 

 

    

    

    

     



 

 

 

    

    


,

ˆ ˆ ˆ ˆˆ ˆ, , ( 1,2, , )

ˆ ˆˆ ˆ0, 0, 0, 0 ( 1,2, , )

0 ( 1,2, , ).

)

j j j j j j j

j j j j

j

q

b d a b c d j m

a b c d j m

j m





    

    

 






                 (4.4) 311 

It is apparent that the optimal solution of (4.4) depends on the parameter h. Denote 312 

the optimal solution by 0 0 0
1 2( ( ), ( ),..., ( ))mh h h   ， 0 0 0

1 2ˆ ˆ ˆ( ( ), ( ),..., ( ))ma h a h a h ，313 

0 0 0
1 2
ˆ ˆ ˆ( ( ), ( ),..., ( ))mb h b h b h ， 0 0 0

1 2ˆ ˆ ˆ( ( ), ( ),..., ( ))mc h c h c h ， 0 0 0
1 2

ˆ ˆ ˆ( ( ), ( ),..., ( ))md h d h d h , and 314 
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0

( , )
(( ( )) )p

p
kt k t

h


 (p =1, 2, …, q) , respectively.  315 

Given the constraints ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , 0, 0, 0, 0j j j j j j j j j j jb d a b c d a b c d         316 

( j 1,2,  …, m) in (4.4), it follows that ˆ ˆˆ ˆ0, 0, 0, 0j j j ja b c d     if 0j   , and 317 

ˆ ˆ
1j j

j j

b d

 
   if 0j  . Therefore, the optimal values of a

j
*,b

j
*c

j
*,d

j
*  (j = 1, 2, …, m), 318 

denoted by *0 *0 *0 *0( ), ( ), ( ), ( )j j j ja h b h c h d h , can be computed using (3.10)  as follows: 319 

0 0
0 0

0*0 *0 0

0 0

0 0
0 0

0*0 *0 0

0 0

ˆˆ ( ) ( )
if ( ) 0 if ( ) 0

( )( ) , ( ) ,( )

0 if ( ) 0 0 if ( ) 0

ˆˆ ( ) ( )
if ( ) 0 if ( ) 0

( )( ) , ( ) ( )

0 if ( ) 0 0 if ( ) 0

j j
j j

jj j j

j j

j j
j j

jj j j

j j

a h b h
h h

ha h b h h

h h

c h d h
h h

hc h d h h

h h

 
 

 

 
 

 


 

  
   


 

  
   

                (4.5) 320 

It is clear that 0 ( ) 0j h    corresponds to the case that attribute ja

  

does not contribute 321 

to the distance p
iS  between alternative ix  and the IVIFPIS. In this case, ja  is irrelevant 322 

in determining DM dp’s preference.  323 

It is easy to verify that *0 *0 *0 *0[ ( ), ( )] ([0,1]),[ ( ), ( )] ([0,1])j j j ja h b h D c h d h D   and 324 

*0 *0( ) ( ) 1j jb h d h  . Let *0 *0 *0 *0 *0( ) ([ ( ), ( )],[ ( ), ( )])j j j j jr h a h b h c h d h (j = 1 ,2,…, m). Thus, an 325 

optimal IVIFPIS, denoted by *0 *0 *0 *0
1 2( ) ( ( ), ( ), , ( ))T

mx h r h r h r h    , is determined.  326 

As linear program (4.4) does not include a weight normalization condition, the 327 

optimal weight vector 0 0 0
1 2( ( ), ( ),..., ( ))T

mh h h    should then be normalized as  328 

0 0 0 0 0 0
1 2

1 1 1

( ( ) / ( ), ( ) / ( ),..., ( ) / ( ))
m m m

T
j j m j

j j j

h h h h h h     
  
                         (4.6) 329 

Once the optimal weights and the IVIFPIS are obtained from (4.5) and (4.6), the 330 

distance between each alternative and the IVIFPIS can be calculated for each DM dp as 331 

p
iS  based on (3.8), from which a ranking of all alternatives can be derived accordingly 332 

for DM pd  (p = 1, 2, …, q).  333 

Linear program (4.4) possesses a fine property that makes it convenient to apply the 334 
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proposed method. 335 

Theorem 4.1 If h in the first constraint of the linear program (4.4) is changed to a 336 

different positive number, the optimal IVIFPIS determined by (4.5) and the normalized 337 

weight vector calculated by (4.6) remain optimal.  338 

Proof.  Let ˆ 0h   and ĥ h  . Multiplying the objective function and both sides of the 339 

constraints in (4.4) by 
ĥ

h

 

 yields the following linear program: 340 

1 ( , )

1 1 1 1 1

1 1 1 1 1

ˆ
min{ }

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ. .

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆˆ 0

(

ˆ

p

q

p k t

m m m m m

j j j j j j j j j j
j j j j j

m m m m m
p p p p p

j tjk j tjk j tjk j tjk j tj

p
k

k
j j j j

t

p
kt

j

h

h

h h h h h h
s t F a C b G c H d T h h

h h h h h h

h h h h h h
F a C b G c H d T

h h h h h h





 

 

    

    

 

     

   

 

    

    
( , ) ; 1,2, ,

ˆ
( , ) ; 1,2, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ, , ( 1,2, , )

ˆ ˆ ˆ ˆ
ˆ ˆˆ

)

0 ( )

ˆ0, 0, 0, 0 ( 1,2, , )

ˆ
0 ( 1,2, , ).

p

p

j j j j j j j

j j j j

j

p
kt

k t p q

h
k t p q

h

h h h h h h h
b d a b c d j m

h h h h h h h

h h h h
a b c d j m

h h h h

h
j m

h







 

 

    

    















     341 

Let ' ' ' ' ''
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , ,  and ,j j j j j
p p

kt kt j j j j j

h h h h h h
a a b b c c d d

h h h h h h
         it is apparent that 342 

the aforesaid linear program is identical to (4.4) except for the relabeled decision 343 

variables and the right-hand value of the first constraint. Then '0 0
ˆ

ˆ( ) ( )j j

h
h h

h
  ,    344 

'0 0
ˆ

ˆˆ ˆ( ) ( )j j

h
a h a h

h
 , '0 0

ˆ
ˆ ˆ ˆ( ) ( )j j

h
b h b h

h
 , '0 0

ˆ
ˆˆ ˆ( ) ( )j j

h
c h c h

h
 , and 

'0 0
ˆ

ˆ ˆ ˆ( ) ( )j j

h
d h d h

h
  (j =1 ,2 ,… ,m). 345 

Therefore, we have 346 

 
0 0 0 0 0 0 0 0

'*0 *0
0 0 0 00 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ( ) ([ , ],[ , ]) ([ , ],[ , ]) ( )
ˆ ˆ ˆ ˆ ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

j j j j j j j j
j j

j j j jj j j j

a h b h c h d h a h b h c h d h
r h r h

h h h hh h h h       
     347 
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and '0 '0 0 0 0 0

1 1 1

ˆ ˆ
ˆ ˆ( ) / ( ) ( ( )) / ( ) ( ) / ( )

m m m

j j j j j j
j j j

h h
h h h h h h

h h
     

  

     (j= 1, 2, …, m).         ■          348 

    Theorem 4.1 indicates that the parameter value h in the linear program (4.4) is 349 

irrelevant in determining the optimal IVIFPIS and normalized weight vector. The 350 

implication is that an analyst can select any positive h value to calibrate the model.  351 

    Based on the aforesaid analyses, we are now in a position to formulate an interval-352 

valued intuitionistic fuzzy approach to MAGDM as described in the following steps. 353 

      Step 1. Convert linguistic assessments on alternative ix X  to appropriate IVIFNs for 354 

qualitative attributes 1ja A . 355 

      Step 2. Calculate corresponding IVIFNs for numerical assessments on alternative 356 

ix X  for quantitative attributes 2ja A  as per (3.1) and (3.4). 357 

     Step 3. Construct the IVIFN decision matrix  ( ) ([ , ],[ , ])p p p p p p
ij n m ij ij ij ij n m

R r a b c d 
  

 
358 

for DM pd  (p=1, 2, …, q). 359 

Step 4. Establish the linear programming model (4.4) based on the incomplete pairwise 360 

comparison preference relations furnished by the DMs. 361 

Step 5. Obtain the optimal values 0 ( )j h , 0ˆ ( )ja h , 0ˆ ( )jb h , 0ˆ ( )jc h  and 0ˆ ( )jd h  (j=1, 2, …, 362 

m) by solving (4.4) with any given parameter h > 0. 363 

Step 6.  Calculate the optimal normalized weight vector as per (4.6). 364 

Step 7. Determine the optimal IVIFPIS 
*0 *0 *0 *0

1 2( ) ( ( ), ( ), , ( ))T
mx h r h r h r h     as per (4.5). 365 

Step 8. Compute the weighted average of squared Euclidean distances p
iS  between 366 

alternatives ix  and the IVIFPIS *0 ( )x h  as per (3.8) (i = 1, 2, …, n, p = 1, 2, …, q). 367 

Step 9. Rank all alternatives for DM pd  (p = 1, 2, …, q) according to an increasing 368 

order of their distances p
iS  (i =1, 2, …, n). 369 

Step 10. Rank all alternatives for the group using the Borda function (Hwang & Yoon, 370 

1981) and the best alternative is the one with the smallest Borda scores. 371 

5   An illustrative example 372 
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This section presents an MAGDM problem about recommending undergraduate 373 

students for graduate admission to demonstrate how to apply the proposed approach. 374 

Without loss of generality, assume that there are three committee members (i.e., DMs) 375 

d1, d2, and d3, and four students x1, x2, x3, and x4 as the finalists after preliminary 376 

screening. All DMs agree to evaluate these candidates against four attributes, academic 377 

records (a1), college English test Band 6 score (a2), teamwork skills (a3), and research 378 

potentials (a4). a1 is assessed based the cumulative grade point average (GPA), and a2 is 379 

assessed out of 710 points with a minimum qualifying level of 425 points. a1 and a2 are 380 

both benefit quantitative attributes. a3 and a4 can be well characterized as qualitative 381 

attributes and their ratings can be easily expressed as linguistic variables. This example 382 

assumes that the group has agreed to assess qualitative attributes on five linguistic terms 383 

as given in Table 1, which also provides a conversion table between linguistic terms and 384 

IVIFNs. Assume that the three committee members have furnished their assessments of 385 

the four candidates on the four attributes as shown in Table 2.  386 

Table 2. Raw decision data furnished by the DMs 387 
 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

Assume further that the DMs provide their incomplete pariwise comparison preference 399 

relations on the four candidates as follows: 400 

1 {(1,2), (3,1), (2,4), (4,3)},  2 {(2,1), (4,3), (1,3)},  3 {(3,1), (2,3), (4,1)}  . 401 

From Table 2, one can easily verify that max

1 96pf  , min

1 88pf  , max

2 580pf  , min

2 500pf   402 

(p = 1, 2, 3). For this particular example, the assessment values on the two quantitative 403 

Experts Students 
Attributes 

a1 a2 a3 a4 
d1 x1 88 550 F VG 

x2 96 520 P F 
x3 92 580 G G 
x4 90 500 F F 

d2        x1 88 550 G G 
x2 96 520 P F 
x3 92 580 F VG 
x4 90 500 F F 

d3        x1 88 550 F VG 
x2 96 520 P F 
x3 92 580 F F 
x4 90 500 G F 
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attributes are common for the three DMs given that they are simply taken from the four 404 

candidates’ historical records. However, it is worth noting that the proposed model in this 405 

paper is able to handle the case where each DM provides different assessments for 406 

quantitative attributes.  407 

For the same quantitative assessment, it is understandable that different DMs may 408 

have different opinions on how well it satisfies a particular attribute. For instance, what 409 

percentage grade can be converted to a letter grade of A? The answer to this question 410 

depends on what grade conversion scale is adopted by an instructor. Therefore, it is 411 

sensible that each DM may have different degrees of satisfaction and non-satisfaction for 412 

the same quantitative assessment. It is assumed that DM dp, p = 1, 2, 3, provide their 413 

degrees of satisfaction for max
1 96pf   as 1 1 1

1 1 1, [0.90,0.95]l u      , 2 2 2
1 1 1,l u       

414 

[0.85,0.90], and 3 3 3
1 1 1, [0.86,0.92]l u      ; degrees of non-satisfaction as 21 21

1 1
ˆˆ ,c d 

   415 

 0.02,0.03 ,  22 22
1 1

ˆˆ , 0.05,0.08c d    , and  23 23
1 1

ˆˆ , 0.05,0.07c d    , respectively. 416 

Similarly, assume that DM dp, p = 1, 2, 3, furnish their degree of satisfaction for 417 

max
2 580pf   as 1 1 1

2 2 2, [0.88,0.92]l u      , 2 2 2
2 2 2, [0.9,0.92]l u      , and 3

2   418 

3 3
2 2,l u     [0.85,0.90] , and  21 21

2 2
ˆˆ , 0.03,0.06c d    , 22 22

2 2
ˆˆ ,c d      0.03,0.05 , and 419 

23 23
2 2

ˆˆ ,c d      0.05,0.07 , respectively.  420 

Based on (3.1), one can derive each DM’s degrees of satisfaction for the four 421 

candidates against the two quantitative attributes as the first intervals in every cell of the 422 

first two columns in Tables 3, 4, and 5.  423 

By using (3.3), one can determine: 1
1 [0.40,0.60], 

 
2

1 [0.50,0.80], 
 

3
1   424 

[0.625,0.875] , 1
2 [0.375,0.75], 

 
2

2 [0.375,0.625], 
 

3
2 [0.50,0.70]  . According to 425 

(3.4), each DM’s degrees of nonsatisfaction for all candidates for the two quantitative 426 

attributes are derived as the second intervals in every cell of the first two columns in 427 

Tables 3, 4, and 5.  428 

As per Table 1, the linguistic assessments on the two qualitative attributes can be 429 

converted to interval-valued intuitionistic fuzzy data. The result is shown in the last two 430 

columns of the decision matrices for DM dp (p = 1 ,2 ,3) in Tables 3, 4, and 5: 431 
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Table 3. Interval-valued intuitionistic fuzzy decision matrix for DM d1 
1R  432 

1 2 3 4             a a a a

 
433 

1

2

3

4

([0.0000,0.0000],[0.4000,0.6000]) ([0.5500,0.5750],[0.1594,0.3188]) ([0.50,0.55],[0.40,0.45]) ([0.90,0.95],[0.02,0.05])

([0.9000,0.9500],[0.0200,0.0300]) ([0.2200,0.2300],[0.2888,0.5775]) ([0.20,0.2

x

x

x

x

5],[0.70,0.75]) ([0.50,0.55],[0.40,0.45])

([0.4500,0.4750],[0.2100,0.3150]) ([0.8800,0.9200],[0.0300,0.0600]) ([0.70,0.75],[0.20,0.25]) ([0.70,0.75],[0.20,0.25])

([0.2250,0.2375],[0.3050,0.4575]) ([0.0000,0.0000],[0.3750,0.7500]) ([0.50,0.55],[0.40,0.45]) ([0.50,0.55],[0.40,0.45])

434 

 435 

Table 4. Interval-valued intuitionistic fuzzy decision matrix for DM d2 
2R  436 

1 2 3 4                   a a a a

 
437 

1

2

3

4

([0.0000,0.0000],[0.5000,0.8000]) ([0.5625,0.5750],[0.1594,0.2656]) ([0.70,0.75],[0.20,0.25]) ([0.70,0.75],[0.20,0.25]))

([0.8500,0.9000],[0.0500,0.0800]) ([0.2250,0.2300],[0.2888,0.4813]) ([0.20,0.

x

x

x

x

25],[0.70,0.75]) ([0.50,0.55],[0.40,0.45])

([0.4250,0.4500],[0.2750,0.4400]) ([0.9000,0.9200],[0.0300,0.0500]) ([0.50,0.55],[0.40,0.45]) ([0.90,0.95],[0.02,0.05])

([0.2125,0.2250],[0.3875,0.6200]) ([0.0000,0.0000],[0.3750,0.6250]) ([0.50,0.55],[0.40,0.45]) ([0.50,0.55],[0.40,0.45])

438 

 439 

Table 5. Interval-valued intuitionistic fuzzy decision matrix for DM d3 
3R  440 

1 2 3 4                   a a a a

 
441 

1

2

3

4

([0.0000,0.0000],[0.6250,0.8750]) ([0.5313,0.5625],[0.2188,0.3063]) ([0.50,0.55],[0.40,0.45]) ([0.90,0.95],[0.02,0.05])

([0.8600,0.9200],[0.0500,0.0700]) ([0.2125,0.2250],[0.3875,0.5425]) ([0.20,0.2

x

x

x

x

5],[0.70,0.75]) ([0.50,0.55],[0.40,0.45])

([0.4300,0.4600],[0.3375,0.4725]) ([0.8500,0.9000],[0.0500,0.0700]) ([0.50,0.55],[0.40,0.45]) ([0.50,0.55],[0.40,0.45])

([0.2150,0.2300],[0.4813,0.6783]) ([0.0000,0.0000],[0.5000,0.7000]) ([0.70,0.75],[0.20,0.25]) ([0.50,0.55],[0.40,0.45])

442 

 443 

It can be seen from the interval-valued intuitionistic fuzzy decision matrix 1R  that 444 

DM 1'sd  degrees of satisfaction and non-satisfaction for 2x  on 1a  are computed as 445 

[0.9000,0.9500]  and [0.0200,0.0300]  rather than [1,1] and [0,0] although 2x  reaches the 446 

maximum max

11 96f  . This conversion process presumably reflects that DM 1d  is not 447 

completely satisfied with candidate a1’s cumulative GPA max

11 96f   although this student 448 

achieves the highest GPA among the four candidates. Similarly, 1
31r  indicates that DM 449 

1'sd  degrees of satisfaction and non-satisfaction for 3x on 1a  are [0.45, 0.475] and [0.21, 450 

0.315], respectively. This converted IVIFN assessment points to a hesitancy degree of 451 

[0.21, 0.34] for DM d1. 452 
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As per Theorem 4.1, the parameter h in (4.4) can be arbitrarily selected without 453 

affecting the optimal normalized weights and IVIFPIS. By setting 1,h   solving model 454 

(4.4) yields the following optimal solution: 455 

0 0 0 0
1 2 3 4( , , , ) (701.5739,1030.2918,394.9273,485.3135)T T     , 456 

0 0 0 0
1 2 3 4ˆ ˆ ˆ ˆ( , , , ) (290.1888,343.5678,129.3340,166.3520)T Ta a a a  ， 457 

0 0 0 0
1 2 3 4
ˆ ˆ ˆ ˆ( , , , ) (393.3232,494.7810,208.7332,267.7018)T Tb b b b  ， 458 

0 0 0 0
1 2 3 4ˆ ˆ ˆ ˆ( , , , ) (45.5403,167.0847,47.5738,47.6016)T Tc c c c  ， 459 

0 0 0 0
1 2 3 4

ˆ ˆ ˆ ˆ( , , , ) (104.4404,230.7817,110.3714,120.8024)T Td d d d  . 460 

By using (4.6), one can obtain the optimal normalized weight vector as 461 

(0.2686,0.3944,0.1512,0.1858)T . 462 

As per (4.5), the optimal IVIFPIS is determined as  463 

*0 (([0.4136,0.5606],[0.0649,0.1489]), ([0.3335,0.4802],[0.1622,0.2240]),

([0.3275,0.5284],[0.1205,0.2795]), ([0.3428,0.5516],[0.0981,0.2489]))T

x 
. 464 

According to (3.8), the weighted average of squared Euclidean distances p
iS  (i =1, 465 

2, …, 4, p = 1, 2, 3) between ix  and the IVIFPIS can be calculated as follows: 466 

1 1 1 1
1 2 3 4

2 2 2 2
1 2 3 4

3 3 3 3
1 2 3 4

0.120194, 0.120192, 0.120181, 0.120159,

0.123826, 0.105802, 0.146691, 0.123683,

0.157639, 0.117237, 0.125221, 0.148978.

S S S S

S S S S

S S S S

   

   

   

 467 

Since 1 1 1 1 2 2 2 2 3 3 3 3
1 2 3 4 3 1 4 2 1 4 3 2> > , ,S S S S S S S S S S S S       , then the ranking orders 468 

of the four alternatives for the three DMs are derived as 4 1 3 1 2 1 1,x x x x    469 

2 2 4 2 1 2 3x x x x    and 2 3 3 3 4 3 1x x x x   , respectively, where k p tx x  indicates that 470 

DM dp prefers xk to xt or ranks xk higher than xt.   471 

Using the Borda function (Hwang & Yoon, 1981), Borda scores of the four 472 

candidates can be determined as shown in the last column of Table 6. 473 

The final group ranking of the four alternatives can thus be obtained as 474 

2 4 3 1x x x x   . 475 

476 
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Table 6. Borda scores of the four candidates 477 
 478 

 479 

 480 

 481 

 482 

 483 

 484 

6   CONCLUSIONS 485 

In a typical MAGDM problem, both quantitative and qualitative attributes are often 486 

involved and assessed with imprecise data and subjective judgment. This article first 487 

proposes mechanisms for converting numerical quantitative assessments and linguistic 488 

qualitative values into IVIFN decision data. Based on incomplete pairwise comparison 489 

preference relations furnished by the DMs, group consistency and inconsistency indices 490 

are introduced. The converted IVIFN decision data and group consistency and 491 

inconsistency indices are then employed to establish a linear programming model for 492 

determining unified attribute weights and IVIFPIS. An illustrative numerical example is 493 

developed to demonstrate how to apply the proposed framework.  494 

Current research assumes that qualitative and quantitative attributes are assessed as 495 

linguistic terms and numerical values, respectively. Additional research is needed to 496 

handle the case when the corresponding assessments are expressed as interval linguistic 497 

variables and interval numbers. Moreover, the current linear program (4.4) assumes that 498 

each DM has the same influence over the decision process. It is a worthy topic to address 499 

the situation that different DMs exert distinct weights on choosing the final alternative. 500 
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