
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Physics Publications Department of Physics 

1989 

Eigenvalues and retardation effects in the n=10 states of helium Eigenvalues and retardation effects in the n=10 states of helium 

Gordon W. F. Drake 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/physicspub 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Drake, Gordon W. F.. (1989). Eigenvalues and retardation effects in the n=10 states of helium. Journal of 
Physics B: Atomic, Molecular and Optical Physics, 22 (23), L651-L657. 
https://scholar.uwindsor.ca/physicspub/58 

This Article is brought to you for free and open access by the Department of Physics at Scholarship at UWindsor. It 
has been accepted for inclusion in Physics Publications by an authorized administrator of Scholarship at UWindsor. 
For more information, please contact scholarship@uwindsor.ca. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/physicspub
https://scholar.uwindsor.ca/physics
https://scholar.uwindsor.ca/physicspub?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/physicspub/58?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Eigenvalues and retardation effects in the n=10 states of helium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. B: At. Mol. Opt. Phys. 22 L651

(http://iopscience.iop.org/0953-4075/22/23/001)

Download details:

IP Address: 137.207.184.30

The article was downloaded on 08/05/2013 at 19:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/22/23
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. B: At. Mol. Opt. Phys. 22 (1989) L651-L657. Printed in the UK 

LE’ITER TO THE EDITOR 

Eigenvalues and retardation effects in the n = 10 
states of helium 

G W F Drake 
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 

Received 4 September 1989 

Abstract. High-precision variational eigenvalues are obtained for the 10D, 10F, 10G and 
10H states of helium by the application of multiple basis set methods. The accuracy is 
sufficient to provide the first definitive test of asymptotic expansion methods extensively 
developed by Drachman for Rydberg states of high angular momentum. The results are 
also compared with recent high-precision measurements for the 10G-1OH and IOF-1OG 
transition frequencies, and interpreted in terms of predicted long-range retardation correc- 
tions. Bethe logarithms are calculated and Lamb shift corrections included. Small residual 
discrepancies persist which could be explained by uncalculated radiative shifts. 

The suggestion by Kelsey and Spruch (1978) that Casimir-Polder retardation effects 
might be observable as energy shifts in the Rydberg states of helium has led to a 
concerted effort to observe the shifts (Palfrey et a1 1984, Hessels et a1 1987, 1990), 
particularly in the n = 10 manifold of states. A parallel development of theory (Au et 
a1 1984, Babb and Spruch 1988, Au 1989) provides accurate predictions for the shifts. 
However, retardation effects are revealed only to the extent that all the ordinary 
(non-retarded) effects of comparable size are known and can be subtracted from the 
observations. The most accurate available calculations for the fine-structure splittings 
in the n = 10 states of helium are the asymptotic calculations of Drachman (1982, 1985, 
1988) derived from a core polarisation model. His expansions become increasingly 
accurate with increasing angular momentum L, but contain uncertainties larger than 
the retardation shift for L < 5 where the shift is large enough to be readily observable. 
High-precision calculations are available for low-lying states, but a rapid loss of 
accuracy with increasing n has until now prevented the direct application of variational 
methods to Rydberg states. 

The purpose of this letter is to report on the application of recently developed 
variational techniques (Drake 1987, 1988, Drake and Makowski 1988) to the 10D, 10F, 
10G and 10H states of helium. These are the first variational calculations for any 
Rydberg states as high as n = 10, and the first for G and H states ( L = 4  and 5). 
Convergence of the total non-relativistic energies for the 10H states to a few parts in 
10” makes these the most accurately determined two-electron states. The results allow 
retardation effects to be extracted from the experimental data to the full extent of the 
experimental precision. They also allow a precise assessment of the accuracy of 
asymptotic expansion methods. 

The principal features of the calculation are as follows. The solutions to the 
non-relativistic two-electron Schrodinger equation are expanded in a basis set of 
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Hylleraas-type functions of the form 

a$)kr ;4r t2  exp(-a,rl - prrz)( l \ ' ) ,  l y ) ;  L )  rf exchange (1) 

where rI2 = Ir, - r21, the are linear variational coefficients sild (l\'), l y ) ,  L )  denotes 
a vector-coupled product of solid spherical harmonics with angular momenta 1'1'' and 
l y )  for the two electrons to form a state with total angular momentum L. The values 
of Z\" and l y )  required for completeness of the basis set are 

(2) (l'" / ( f )  
1 9 2 1 = (0, L ) ,  (1, L-11,. * * ([L/21, L-[L/21) 

for t = 1 ,2 , .  . . [L/2]+ 1, where [ ] denotes 'greatest integer in'. The novel features 
of the calculation which lead to a dramatic improvement in accuracy, especially for 
Rydberg states, are (i)  the screened hydrogenic function ls(Z, r , )nL(Z - 1, r2 ) ,  where 
2 is the nuclear charge, is included explicitly in the basis set; (ii) the terms with (0, L )  
angular symmetry are 'doubled' in that each combination of powers i, j ,  k in ( 1 )  is 
included twice with different non-linear parameters a,, p,; and (iii) a complete optimisa- 
tion of all the a,, p, is performed by calculating analytically the derivatives dE/da ,  
and aE/ap , ,  and locating the zeros. One set of (0 ,  L )  terms represents the asymptotic 
behaviour of the wavefunction ( a 1  = 2, p1 = 1/ n ) ,  and the other the inner correlation 
effects. To these are added a further set with the same a , ,  p,  and powers as the 
asymptotic (0, L )  set, but with (1, L-  1) angular symmetry. Without these terms, 
convergence becomes poor for large basis sets when the mass polarisation operator is 
included in the Hamiltonian. To summarise, the basis set contains the terms 

with the first two angular sets having identical non-linear parameters. Except for the 
truncations described below, all combinations of powers are included in (1) such that 
i + j + k S N, and the convergence studied as N is progressively increased. The trunca- 
tions are i s 3  and k ~ 2  in set A, and i + j + k + I i - j l s N  for k 2 2  in sets B to X .  
These were carefully checked to ensure that they did not affect the convergence of the 
eigenvalues to within the final accuracy quoted. The truncation for sets B to X ,  first 
suggested by Kono and Hattori (1986), only alters the order in which terms are added 
as N increases, and so does not disrupt the ultimate completeness of the basis set. 
The largest basis sets contain 790, 732, 733 and 785 terms, corresponding to an N,,,, 
of 12, 11, 10 and 10 for the D, F, G and H states respectively. 

The final non-relativistic eigenvalues, obtained by extrapolating successive 
differences as N increases, are listed in table 1. Since the estimated uncertainties are 
the ehtire amount of the extrap.olation, the variational bound corresponding to the 
largest N,,, basis set can be recovered by adding the uncertainty to the tabulated 
eigenvalue. To obtain mass polarisation corrections, all calculations were repeated 
with the ( p /  M)p,  - p z  mass polarisation operator included explicitly in the Hamiltonian 
and the coefficient E g )  in the expansion 

Eh4 = [ E m + ( P / M ) h  * P 2 ) + ( P / w z w 1 2 R M  (3) 

determined by differencing. Here, RM = (1 - p /  M ) R m  is the reduced mass Rydberg 
and p = Mme/(  M + me) is the reduced mass of the electron. 

A very useful and sensitive test of the accuracy is provided by comparing the 
spin-averaged l?g) = f [E!$( 'L)  + EE)( 'L)]  as obtained above from the variational 
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Table 1. Non-relativistic eigenvalues for the 10D, 10F, 10G and 10H states of4He, expressed 
as a correction P E ,  to the screened hydrogenic energy E,, = -2.005 au. The AE, results 
include the mass polarisation operator in the Hamiltonian H = H,+ (+/ M ) p ,  * p 2  with 
+/ M = 1.370 7456 20 x The last column gives matrix elements of m ? ( r , )  for finite 
nuclear mass. 

State A E ,  ( 1 OW8 au) A E ,  (lo-' au)  .rr( 8 (  r l ) )  - 4 (IO-' au)a 

10'D 

10'F 

10'G 

10'H 

1 0 ) ~  

1 0 ) ~  

1 0 3 c  

1 0 3 ~  

-207.1654245(l)b 
-281.808 022 4(1) 

-41.756 466 9(2) 
-42.168 6604(1) 
-11.276431 780(2) 
-11.277 700278(4) 

-3.921 439451(1) 
-3.921 441 740(1) 

-207.311 309 9(5) 
-281.773 496 5(5) 

-41.776 9603(1) 
-42.188 325 5(1) 
- 11.288 856 644(8) 
-11.290 122 434(6) 

-3.931 901 064(1) 
-3.931 903 346(1) 

-13.87 
-18.58 

-2.846 
-2.882 
-0.7740 
-0.7741 
-0.2697 
-0.2697 

a For large L, .rr(S(r,))  tends asymptotically to ~ - $ ( x - ~ ) + O ( X - ~ )  au. 
Numbers in brackets denote the downward extrapolation contained in the final figure quoted. 

eigenvalues with Ebzd, calculated from the polarisation model of Drachman (1988). 
The values for the 10H state are (in atomic units) 

Ebzd, = - i n p 2  -$a ( x - ~ )  - (4a2 - 15p ,)( x - ~ )  + O( x-') 

= -0.005 000 196 (4) 
and 

E g ) =  -0.005 000 194 

where a L  is the 2L-pole polarisability of the He+( 1s) core, p1 is the leading non-adiabatic 
correction, and the expectation values are with respect to the screened hydrogenic 
wavefunction of the outer electron. The difference ( p / M ) * ( E g ) -  BE),) = 4 x au 
(0.3 Hz) is the same order of magnitude as the estimated uncertainty in the extrapolated 
eigenvalues for the 10H states. 

Of more direct importance is the comparison with Drachman's polarisation results 
in table 2 for the corrections to the screened hydrogenic energy 

E , , = ( - 2 - '  2 n  - *)2R,. (5) 

In his notation, V,  is the contribution to the energy from terms of order x-' in the 
long-range interaction. The quantity tabulated for G and H states corresponds to 
Drachman (1985) V4 + v6 + f ( V, + V,) + A2 f f ( V7 + V8) ,  where A2 is the second-order 
dipole correction. For F states, it is V4 + i v6 + A2 if v6. The spectacularly good agree- 
ment for 10G and 10H is a somewhat fortuitous consequence of including only 

Table 2. Comparison of the spin-averaged variational eigenvalues AB,,, with the corre- 
sponding AB,,, obtained from Drachman's asumptotic expansion (see text). 

State ABvdr (MHz)" A&I (MHz) Difference 

10F -2760.626 -2778.708 k45.042 18.082 
1 OG -741.8936 -741.89561 0.5207 0.0020 
10H -257.9830 -257.9817 ;t 0.0097 -0.0013 

a The value of the Rydberg used is R ,  = 3289391007 MHz. 
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( V7+ V,) in the sum and regarding the remaining (V,+ V,) as the uncertainty. It 
remains to be seen if this prescription works as well in other cases. 

The main point of this letter is to compare the total transition energies with the 
recent high precision measurements of Hessels et a1 (1990). Table 3 summarises the 
contributions to the energy for the 10D, 10F, 10G and 10H states. The entries in the 
table are as follows. AE,, is the correction to the screened hydrogenic energy EsH, 
AEk) and AEE) are the first- and second-order mass polarisation corrections, AE,,, is 
the relativistic correction, AE,,,, is the anomalous magnetic moment correction, AEst 
is the singlet-triplet mixing correction, (PER,), is the relativistic reduced mass correc- 
tion from the mass scaling of the Breit interaction together with the Stone (1963) terms, 
(AERR)X is a second order cross term between the Breit interaction and the mass 
polarisation operator, and and AEL,Z are one- and two-electron Lamb shift 
corrections. Detailed expressions for all of these terms have been given previously 
(Drake and Makowski 1988), and will not be repeated here. All are expressed relative 
to the Het( 1s) state. The one change from our previous work involves the evaluation 
of the two-electron Bethe logarithm in AEL,I, as discussed below. The Bethe logarithms 
needed for the n = 10 states are listed in table 4. These were obtained by a direct 
summation method analogous to that used by Klarsfeld and Maquet (1973). The 
hydrogen 1s value agrees to the figures quoted with the calculation of Haywood and 
Morgan (1985). 

An important conclusion from table 3 is that the (AERR), and (AERR)X terms 
nearly cancel for the higher values of L. It would therefore be better to omit relativistic 
reduced mass corrections altogether (other than the elementary correction from R,,,, ), 
rather than including them only partially in an approximate calculation. 

Table 5 compares the calculated F-G and G-H transition frequencies with the 
measured values. For the G-H transitions, the fine-structure and singlet-triplet splitting 
within each manifold of states is reproduced to within the i 2  kHz accuracy of the 
measurements, but there is a systematic discrepancy of 5 * 2 kHz for all the transitions. 
A similar discrepancy does not appear to be present for the F-G transitions. 

The significance of these results for the theory of retardation corrections is as 
follows. As discussed by Au et a1 (1984) and Au (1988), the retardation terms for 
x =z 137ao are (in atomic units) 

AV=- ; ( 9 4  -- Y T 3  ( 3 3  - +O[CY~(U~/X)* ] .  

The first term above is a long-range approximation to the orbit-orbit (H2) term in the 
Breit interaction, and so is automakically included in AE,,, . The second term is a long 
range approximation to 

with 
AEL.2 = a’(y In a +%)(S(r12) ) - ya3Q (7) 

in which (S(r12)) is neglected and r;; is approximated by xP3. (Here a is the radius 
of a small sphere about r ,*=O which is excluded from the integration.) This term is 
therefore also automatically included in the total energy. For the G-H and F-G 
transitions, the contribution from the two terms in ( 6 )  is -41.49 kHz and -184.1 kHz 
respectively. without these terms, theory and experiment would seriously disagree. 
What is not included in the calculation are the slight differences between ( 6 )  and the 
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Table 4. Two-electron Rethe logarithms for the n = 10 states of helium, as calculated from 
equation (10). The second column gives the corresponding Bethe logarithm for hydrogen, 
correct to the figures quoted. 

State In(k,( I s n l ) / Z 2 R , )  

1 s  
10s 
10P 
10D 
10F 
1 OG 
10H 
101 
10K 
10L 
10M 

2.984 128 555 7655 
2.727 646 938 6595 

-0.047 482 893 3567 
-0.009 132 272 2490 
-0.003 059 094 2789 
-0.001 319 718 0574 
--0.000 656 886 0162 
-0.000 357 298 6495 
-0.000 205 584 9884 
-0.000 122 284 6308 
-0.000 073 724 9786 

2.981 317 715 9832 
2.984 125 588 0847 
2.984 127 984 9985 
2.984 128 364 5721 
2.984 128 473 2831 
2.984 128 5147101 
2.984 128 533 4343 
2.984 128 542 9164 
2.984 128 548 1227 
2.984 I28 551 1577 

Table 5. Comparison of theory and experiment for the 10F-1OG and IOG-1OH transition 
frequencies of 4He (in MHz).  

Transition Experiment” Theory Difference 

201 7.325 (3) 
2037.910(5) 
2043.452( 5) 
2044.984( 4 j 

486.866(2) 
488.672(2) 
495.561(2) 
491.971 (2) 

2017.326 
2037.91 1 
2043.450 
2044.989 
486.8620 
488.6662 
495.5570 
491.9662 

-0.001(3) 
-0.001(3) 

0.002(5) 
-0.005(4) 

0.004(2) 
0.006(2) 
0.004(2) 
0.005(2) 

Hessels et a! (1990). Numbers in brackets denote the experimental uncertainty in the 
final figure quoted. 

fully retarded values calculated by Babb and Spruch (1988). For the G-H transition, 
they obtain 20.486 -62.686 = -42.20 kHz. The -0.71 kHz difference between this and 
the result of (6) is much less than the 5 *2 kHz difference between theory and 
experiment, and so cannot account for the discrepancy. The -0.71 kHz difference 
reflects the part of the long-range Casimir-Polder retardation effect which is not 
included as part of the usual terms evaluated for low-lying states. 

What has apparently not been appreciated before is that the one-electron Lamb 
shift enters at the *20 kHz level of accuracy for the G-H transition. The leading terms 
in the quantity tabulated in table 3 are 

A&,,  = $ Z a 3 ( S ( r , )  + S(r2))[ln(Za)-2- In( k,( Is, nl)/Z2R,) + g + O ( a Z ) }  

- $ Z a ’ ( Z ’ / ~ ) [ l n ( Z a ) - ~  -ln(k,( ls)/Z2R,) + g + O ( a Z ) ] .  (8) 

where the second term subtracts the corresponding He+(ls) Lamb shift. The main 
contributions come from the departure of ( S ( r , )  + S(r , ) )  from the hydrogenic value 
Z 3 /  7~ (see table 1) and the departure of the two-electron Bethe logarithm In[ ko( Is, n l ) ]  
from the hydrogenic value. The two effects act in opposite directions. To lowest order 
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in a 2-' expansion, the two-electron Bethe logarithm i s  (Ermolaev and Swainson 1983, 
Goldman and Drake 1984) 

for 1 # 0, where the k,( n l )  denote hydrogen atom Bethe logarithms. However, for 
Rydberg states, the above should be modified to read 

k,( lsnl, 2)  k,(ls) 1 2 - 1  ko(n1) 
In( Z2R, ) = 1 n ( r ) + 2 ( y )  ln(X) 

corresponding to the physical picture in which one calculates the mean excitation 
energy of the 1s electron for an unscreened nuclear charge of Z, and the nl electron 
for a screened nuclear charge of 2 - 1. without this modification, the discrepancies 
between theory and experiment become 15 kHz and 28 kHz for the G-H and F-G 
transitions respectively, which is several times larger than the experimental uncertainty. 
The extra factor of [ ( 2 - 1 ) / 2 l 4  in (10) strongly suppresses the Bethe logarithm 
correction to the energy relative to He+(ls), so that the AEL,, values listed in table 3 
come primarily from the ( S ( r , )  + 6 ( r , ) )  correction multiplying the large 1s Lamb shift. 
For 1 =0,  the right-hand side of (10) should be divided by l+[ (Z-  l) /ZI4/n3.  

In conclusion, the results of this letter verify that the leading terms in the long-range 
retardation correction are in agreement with experiment to an accuracy of 110% or 
better. The non-relativistic eigenvalues are the most accurate reported for any two- 
electron state. It i s  clear that further improvements in accuracy below the *l kHz 
level will require a more detailed knowledge of radiative corrections for Rydberg states. 

This research was supported in part by the National Sciences and Engineering Research 
Council of Canada and in part by the US Department of Energy Office of Basic Energy 
Sciences under contract W-31-109-ENG-38. The author is grateful to the Argonne 
National Laboratory for its hospitality during the completion of this work, and to Dr 
S R Lundeen for communicating his experimental results in advance of publication. 
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