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Abstract 9 

This article proposes an approach to handle multi-attribute decision making (MADM) 10 

problems under the interval-valued intuitionistic fuzzy environment, in which both 11 

assessments of alternatives on attributes (hereafter, referred to as attribute values) and 12 

attribute weights are provided as interval-valued intuitionistic fuzzy numbers (IVIFNs). 13 

The notion of relative closeness is extended to interval values to accommodate IVIFN 14 

decision data, and fractional programming models are developed based on the Technique 15 

for Order Preference by Similarity to Ideal Solution (TOPSIS) method to determine a 16 

relative closeness interval where attribute weights are independently determined for each 17 

alternative. By employing a series of optimization models, a quadratic program is 18 

established for obtaining a unified attribute weight vector, whereby the individual IVIFN 19 

attribute values are aggregated into relative closeness intervals to the ideal solution for 20 

final ranking. An illustrative supplier selection problem is employed to demonstrate how 21 

to apply the proposed procedure. 22 

Keywords: Multi-attribute decision making (MADM), interval-valued intuitionistic fuzzy 23 

numbers (IVIFNs), fractional programming, quadratic programming 24 

1. Introduction   25 

Multi-attribute decision making (MADM) handles decision situations where a set of 26 

alternatives (usually discrete) has to be assessed against multiple attributes or criteria 27 

before a final choice is selected (Hwang and Yoon, 1981). MADM problems may arise 28 
                                                 
∗ Corresponding author. Telephone: +86 592 2580036; fax: +86 592 2180858.  
Email: wangzj@xmu.edu.cn (Z. Wang), kwli@uwindsor.ca (K.W. Li). 
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from decisions in our daily life as well as complicated decisions in a host of fields such as 29 

economics, management and engineering. For instance, when deciding which car to buy, 30 

a customer may consider a number of cars by assessing their prices, security, driving 31 

experience, quality, and colour. It is understandable that the aforesaid five attributes in 32 

this decision problem are likely to play different roles in reaching a final purchase 33 

decision. These varying roles are typically reflected as different attribute weights in 34 

MADM. Eventually, the customer has to aggregate his/her individual assessments of 35 

different cars against each attribute into an overall evaluation and selects a car that yields 36 

the best overall value. This simple example reveals the three key components in a multi-37 

attribute decision model: attribute values or performance measures, attribute weights, and 38 

a mechanism to aggregate this information into an aggregated value or assessment for 39 

each alternative.  40 

Due to ambiguity and incomplete information in many decision problems, it is often 41 

difficult for a decision-maker (DM) to give his/her assessments on attribute values and 42 

weights in crisp values. Instead, it has become increasingly common that these 43 

assessments are provided as fuzzy numbers (FNs) or intuitionistic fuzzy numbers (IFNs), 44 

leading to a rapidly expanding body of literature on MADM under the fuzzy or 45 

intuitionistic fuzzy framework (Atanassov et al., 2005; Boran et al., 2009; Hong & Choi, 46 

2000; Li, 2005; Li et al., 2009; Liu & Wang, 2007; Szmidt & Kacprzyk, 2002; Szmidt & 47 

Kacprzyk, 2003; Tan & Chen, 2010; Wang et al., 2009; Wang & Qian, 2007; Xu, 2007a; 48 

Xu, 2007b; Xu & Yager, 2008; Zhang et al., 2009). The notion of intuitionistic fuzzy sets 49 

(IFSs) is proposed by Atanassov (1986) to generalize the concept of fuzzy sets. In a fuzzy 50 

set, the membership of an element to a particular set is defined as a continuous value 51 

between 0 and 1, thereby extending the traditional 0-1 crisp logic to fuzzy logic (Karray 52 

& de Silva, 2004). IFSs move one step further by considering not only the membership 53 

but also the nonmembership of an element to a given set.  54 

In an IFS, the membership and nonmembership functions are defined as real values 55 

between 0 and 1. By allowing these real-valued membership and nonmembership 56 

functions to assume interval values, Atanassov and Gargov (1989) extend the notion of 57 

IFSs to interval-valued intuitionistic fuzzy sets (IVIFSs). In recent years, the academic 58 

community has witnessed growing research interests in IVIFSs, such as investigations on 59 
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basic operations and relations of IVIFSs as well as their basic properties (Bustince & 60 

Burillo, 1995; Hong, 1998; Hung & Choi, 2002; Xu & Chen, 2008), topological 61 

properties (Mondal & Samanta, 2001), relationships between IFSs, L-fuzzy sets, interval-62 

valued fuzzy sets and IVIFSs (Deschrijver , 2007; Deschrijver, 2008; Deschrijver & 63 

Kerre, 2007), the entropy and subsethood (Liu, Zheng & Xiong, 2005), and distance 64 

measures and similarity measures of IVIFSs (Xu & Chen, 2008). With this enhanced 65 

understanding of IVIFNs, researchers have turned their attention to decision problems 66 

where some raw decision data are provided as IVIFNs (Xu, 2007b; Xu and Yager 2008; 67 

Wang et al., 2009). In the existing research on MADM with IVIFN assessments, it is 68 

generally assumed that attribute values are given as IVIFNs, but attribute weights are 69 

either provided as crisp values or expressed as a set of linear constraints (Wang et al., 70 

2009). In this research, the focus is to consider MADM situations where both attribute 71 

values and weights are furnished as IVIFNs.    72 

The remainder of this paper is organized as follows. Section 2 provides some 73 

preliminary background on IFSs and IVIFSs. In Section 3, fractional programs and 74 

quadratic programs are derived from TOPSIS and a corresponding approach is designed 75 

to solve MADM problems with interval-valued intuitionistic fuzzy assessments. Section 4 76 

presents a numerical example to demonstrate how to apply the proposed approach, 77 

followed by some concluding remarks in Section 5. 78 

2. Preliminaries 79 

This section reviews some basic concepts on IFSs and IVIFSs to make the article self-80 

contained and facilitate the discussion of the proposed method.  81 

Definition 2.1 (Atanassov, 1986). Let Z  be a fixed nonempty universe set, an 82 

intuitionistic fuzzy set (IFS) A in Z  is defined as 83 

{ , ( ), ( ) | }A AA z z z z Zµ ν= < > ∈  84 

where : [0,1]A Zµ →  and : [0,1]A Zν → ,  satisfying 0 ( ) ( ) 1A Az zµ ν≤ + ≤ , .z Z∀ ∈  85 

( )A zµ  and ( )A zν  are called, respectively, the membership and nonmembership 86 

functions of IFS A. In addition, for each IFS A in Z , ( ) 1 ( ) ( )A A Az z zπ µ ν= − −  is often 87 

referred to as its intuitionistic fuzzy index, representing the degree of indeterminacy or 88 

hesitation of z to A. It is obvious that 0 ( ) 1A zπ≤ ≤  for every .z Z∈  89 
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When the range of the membership and nonmembership functions of an IFS is 90 

extended to interval values rather than exact numbers, IFSs become interval-valued 91 

intuitionistic fuzzy sets (IVIFSs) (Atanassov and Gargov, 1989). 92 

Definition 2.2 (Atanassov and Gargov, 1989). Let Z be a non-empty set of the 93 

universe, and [0,1]D  be the set of all closed subintervals of [0, 1], an interval-valued 94 

intuitionistic fuzzy set (IVIFS) A  over Z  is an object in the following form: 95 

{ , ( ), ( ) | }A AA z z z z Zµ ν= < > ∈
 



  96 

where : [0,1]A Z Dµ →


 , : [0,1]A Z Dν →


 , and 0 sup( ( ))A zµ≤ +


  sup( ( )) 1A zν ≤


  for any 97 

z Z∈ . 98 

The intervals ( )A zµ


  and ( )A zν


  denote, respectively, the degree of membership and 99 

nonmembership of z  to A. For each z Z∈ , ( )A zµ


 and ( )A zν


  are closed intervals and 100 

their lower and upper boundaries are denoted by ( ), ( ), ( )L U L
A A Az z zµ µ ν
  

  and ( )U
A zν


 . 101 

Therefore, another equivalent way to express IVIFS A  is 102 

            { ,[ ( ), ( )],[ ( ), ( )] | }L U L U
A A A AA z z z z z z Zµ µ ν ν= < > ∈
   



   , 103 

where ( ) ( ) 1,0 ( ) ( ) 1,0 ( ) ( ) 1U U L U L U
A A A A A Az z z z z zµ ν µ µ ν ν+ ≤ ≤ ≤ ≤ ≤ ≤ ≤
     

     . 104 

Similar to IFSs, for each element z Z∈ , its hesitation interval relative to A  is given as: 105 

         ( ) [ ( ), ( )] [1 ( ) ( ),1 ( ) ( )]L U U U L L
A A A A A A Az z z z z z zπ π π µ ν µ ν= = − − − −
      

       106 

Especially, for every z Z∈ , if   107 

( ) ( ) ( )L U
A A Az z zµ µ µ= =
  

  , ( ) ( ) ( )L U
A A Av z v z v z= =
  

   108 

then, IVIFS A  reduces to an ordinary IFS.  109 

For an IVIFS A  and a given z, the pair ( ( ), ( ))A Az zµ ν
 

  is called an interval-valued 110 

intuitionistic fuzzy number (IVIFN) [34,38]. For convenience, the pair ( ( ), ( ))A Az zµ ν
 

  is 111 

often denoted by ([ , ],[ , ])a b c d , where [ , ] [0,1]a b D∈ ,[ , ] [0,1]c d D∈  and 1b d+ ≤ . 112 

After the initial decision data in IVIFNs are processed, the proposed model will 113 

generate an aggregated relative closeness interval, expressed as an IVIFN, to the ideal 114 

solution for each alternative. To make a final choice based on the aggregated relative 115 

closeness intervals, it is necessary to examine how to rank IVIFNs. Xu (2007b) 116 
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introduces the score and accuracy functions for IVIFNs and applies them to compare two 117 

IVIFNs. Wang et al. (2009) note that many distinct IVIFNs cannot be differentiated by 118 

these two functions. As such, two new functions, the membership uncertainty index and 119 

the hesitation uncertainty index, are defined therein. Along with the score and accuracy 120 

functions, Wang et al. (2009) devise a unique prioritized IVIFN comparison approach 121 

that is able to distinguish any two distinct IVIFNs. This same comparison approach will 122 

be adopted in this research for ranking alternatives based on IVIFNs. Next, these four 123 

functions are defined.    124 

Definition 2.3 (Xu, 2007b). For an IVIFN ([ , ],[ , ])a b c dα = , its score function is 125 

defined as ( )
2

a b c dS α + − −
= . 126 

Definition 2.4 (Xu, 2007b). For an IVIFN ([ , ],[ , ])a b c dα = , its accuracy function is 127 

defined as ( )
2

a b c dH α + + +
= . 128 

Definition 2.5 (Wang et al., 2009). For an IVIFN ([ , ],[ , ])a b c dα = , its membership 129 

uncertainty index is defined as ( )T b c a dα = + − − . 130 

Definition 2.6 (Wang et al., 2009). For an IVIFN ([ , ],[ , ])a b c dα = , its hesitation 131 

uncertainty index is defined as ( )G b d a cα = + − − . 132 

For a discussion of these four functions and their properties, readers are referred to 133 

(Wang et al., 2009). Based on these functions, a prioritized comparison method is 134 

introduced as follows. 135 

Definition 2.7 (Wang et al., 2009). For any two IVIFNs 1 1 1 1([ , ],[ , ])a b c dα =  and 136 

2 2 2 2([ , ],[ , ])a b c dβ = ,  137 

If  ( ) ( )S Sα β< 

 , then α  is smaller than β , denoted by α β<  ; 138 

If  ( ) ( )S Sα β>  , then α  is greater than β , denoted by α β>  ; 139 

If  ( ) ( )S Sα β= 

 , then 140 

1) If ( ) ( )H Hα β< 

 , then α  is smaller than β , denoted by α β<  ; 141 

2) If ( ) ( )H Hα β> 

 , then α  is greater than β , denoted by α β>  ; 142 

3) If ( ) ( )H Hα β= 

 , then 143 
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i) If ( ) ( )T Tα β> 

 , then α  is smaller than β , denoted by α β<  ; 144 

ii) If ( ) ( )T Tα β< 

 , then α  is greater than β , denoted by α β>  ; 145 

iii) If ( ) ( )T Tα β= 

 , then 146 

a) If ( ) ( )G Gα β> 

 , then α  is smaller than β , denoted by α β<  ; 147 

b) If ( ) ( )G Gα β< 

 , then α  is greater than β , denoted by α β>  ; 148 

c) If ( ) ( )G Gα β= 

 , then α  and β  represent the same information, denoted by 149 

α β=   150 

  For any two IVIFNs,  and α β , denote  iff  or α β α β α β≤ < =  

   . 151 

Definition 2.8 (Wang et al., 2009). Let 1 1 2 2[ , ],[ , ]a b a b  be two interval numbers over 152 

[0, 1]. A relation “≤ ” in [0,1]D  is defined as: 1 1 2 2[ , ] [ , ]a b a b≤  iff 1 2 1 2 and a a b b≤ ≤ .  153 

If ([ , ],[ , ])a b c dα =  is an IVIFN, from Definition 2.2 and 2.8, it may be rewritten as a 154 

pair of closed intervals ([ , ],[1 ,1 ])a b d c− −  over [0, 1] with [ , ] [1 ,1 ]a b d c≤ − −  and 155 

1b d≤ − . Conversely, given a pair of closed intervals ([ , ],[ , ])a a b b− + − + with 156 

[ , ] (0,1)a a D− + ∈ , [ , ] (0,1)b b D− + ∈ , [ , ] [ , ]a a b b− + − +≤  and a b+ −≤ , then it can be 157 

expressed equivalently as an IVIFN ([ , ],[ , ])a b c dα = , where a a−= , b a+= , 158 

1c b+= − and 1d b−= − . In Section 3, a pair of intervals will be adopted to represent the 159 

lower and upper bounds of satisfaction degrees or relative closeness, where the first 160 

interval indicates the lower bound and the second interval specifies the upper bound. The 161 

discussion here establishes the equivalence between an IVIFN and the representation of 162 

satisfaction degrees or relative closeness, and is of help to the development of the 163 

proposed decision model.  164 

3. A mathematical programming approach to multi-attribute decision making 165 

under interval-valued intuitionistic fuzzy environments 166 

This section puts forward a framework for MADM under the interval-valued 167 

intuitionistic environment, where both attribute values and weights are given as IVIFNs 168 

by the DM.  169 
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3.1 Problem formulation 170 

Given a discrete alternative set 1 2{ , , , }nX X X X=  , consisting of n non-inferior 171 

decision alternatives from which the most preferred alternative is to be selected or a 172 

ranking of all alternatives is to be obtained, and an attribute set 1 2( , , )mA A A A=  .  Each 173 

alternative is assessed on each of the m attributes and each assessment is expressed as an 174 

IVIFN, describing the satisfaction and non-satisfaction ranges of the alternative to a fuzzy 175 

concept of “excellence” with respect to a particular attribute. More specifically, assume 176 

that a DM provides an IVIFN assessment ([ , ],[ , ])ij ij ij ij ijr a b c d=  for alternative iX  with 177 

respect to attribute jA , where [ , ]ij ija b  and [ , ]ij ijc d  are the degree of membership (or 178 

satisfaction) and non-membership (or dissatisfaction) intervals relative to the fuzzy 179 

concept “excellence”, respectively, and[ , ] [0,1],ij ija b D∈  [ , ] [0,1],ij ijc d D∈  and 1+ ≤ij ijb d . 180 

Thus an MADM problem with interval-valued intuitionistic fuzzy attribute values can be 181 

expressed concisely in the matrix format as (([ , ],[ , ]))ij ij ij ij n mR a b c d ×= . 182 

It is clear that the lowest satisfaction degree of iX  with respect to jA  is [ , ]ij ija b , as 183 

given in the membership function, and the highest satisfaction degree of iX  with respect 184 

to jA  is [1 ,1 ]− −ij ijd c , when all hesitation is treated as membership or satisfaction. 185 

Therefore, the satisfaction degree interval of alternative iX  with respect to attribute jA , 186 

denoted by [ , ]ij ijξ η , should lie between [ , ]ij ija b  and [1 ,1 ]− −ij ijd c , and the matrix 187 

(([ , ],[ , ]))ij ij ij ij n mR a b c d ×=  can be written in the satisfaction degree interval format as 188 

' (([ , ],[1 ,1 ]))ij ij ij ij n mR a b d c ×= − − . 189 

Similarly, assume that the DM assesses the importance of each attribute as an IVIFN 190 

([ , ],[ , ])a b c d
j j j jω ω ω ω , where [ , ]a b

j jω ω  and [ , ]c d
j jω ω  are the degrees of membership and 191 

nonmembership of attribute jA  as per a fuzzy concept “importance”, respectively, and 192 

[ , ] [0,1]a b
j j Dω ω ∈ , [ , ] [0,1]c d

j j Dω ω ∈  and 1b d
j jω ω+ ≤ . It is obvious that the lowest and 193 

highest weight intervals for attribute jA  are [ , ]a b
j jω ω  and [1 ,1 ]d c

j jω ω− − , respectively. As 194 

such, the weight interval of jA  should lie between [ , ]a b
j jω ω  and [1 ,1 ]d c

j jω ω− − . 195 
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3.2   Mathematical programming models for solving MADM problems 196 

As mentioned in section 3.1, the satisfaction degree interval of alternative iX with 197 

respect to attribute jA , given by[ , ]ij ijξ η , should lie between [ , ]ij ija b  and[1 ,1 ]− −ij ijd c , i.e., 198 

[ , ] [ , ] [1 ,1 ]ij ij ij ij ij ija b d cξ η≤ ≤ − − . According to Definition 2.8, ξij and ηij  should satisfy 199 

1ξ≤ ≤ −ij ij ija d  and 1η≤ ≤ −ij ij ijb c . 200 

As ,≤ij ija b ≤ij ijc d and 1+ ≤ij ijb d , we have 1≤ ≤ −ij ij ija b d 1 ijc≤ − . 201 

In a similar way, the weight interval of attribute jA , denoted by [ , ]j jω ω− + , should lie 202 

between [ , ]a b
j jω ω  and [1 ,1 ]d c

j jω ω− − , i.e., [ , ] [ , ] [1 ,1 ]a b d c
j j j j j jω ω ω ω ω ω− +≤ ≤ − − .  According 203 

to Definition 2.8, jω− and jω+  should satisfy 1a d
j j jω ω ω−≤ ≤ −  and 1b c

j j jω ω ω+≤ ≤ − . 204 

As per Definition 2.7, we know that ([1,1],[0,0])  and ([0,0],[1,1])  are the largest 205 

and smallest IVIFNs, respectively. Therefore, the interval-valued intuitionistic fuzzy 206 

ideal solution X + can be specified as the largest IVIFN ([1,1],[0,0]) , where its 207 

satisfaction and dissatisfaction degrees on attribute jA  are [1,1] and [0,0] , respectively. 208 

This ideal solution can be rewritten in the satisfaction degree interval format as 209 

([1,1],[1,1]) , or equivalently, [1,1].  210 

As [ , ]ij ijξ η  is the satisfaction degree interval of alternative iX with respect to 211 

attribute jA , the normalized Euclidean distance interval of alternative iX  from the ideal 212 

solution X + , denoted by [ , ]i id d+− ++ , can be calculated as follows: 213 

                     
2

1
(1 )m

i j ijj
d ω η+−

=
 = − ∑                                             (3.1) 214 

                      
2

1
(1 )m

i j ijj
d ω ξ++

=
 = − ∑                                            (3.2) 215 

where 1ξ≤ ≤ −ij ij ija d , 1η≤ ≤ −ij ij ijb c , j j jω ω ω− +≤ ≤  and
1

1m
jj

ω
=

=∑  for each 216 

1,2, ,i n=  .   217 

Similarly, the satisfaction and dissatisfaction degree of the anti-ideal solution X −  218 

on attribute jA  are [0,0]  and [1,1] , respectively, which can be written in the 219 

satisfaction degree interval format as ([0,0],[0,0]) , equivalent to [0,0] . The 220 
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separation interval of alternative iX  from the anti-ideal solution X −  is given by 221 

[ , ]i id d−− −+ , where  222 

                               2
1
( )m

i j ijj
d ω ξ−−

=
= ∑                                                    (3.3) 223 

2
1
( )m

i j ijj
d ω η−+

=
= ∑                                                   (3.4) 224 

Equations (3.1)-(3.4) are employed to determine the distance from ideal and anti-ideal 225 

alternatives in interval values. While the individual attribute values are processed, this 226 

proposed approach works with interval values directly and the conversion to crisp values 227 

is delayed until the final aggregation process. This treatment helps to reduce the loss of 228 

information due to early conversion. 229 

TOPSIS is a popular MADM approach proposed by Hwang and Yoon (1981) and has 230 

been widely used to handle diverse MADM problems (Boran et al., 2009; Celik et al., 231 

2009; Chen & Tzeng, 2004; Dağdeviren et al., 2009; Fu, 2008; Shih, 2008; İÇ & 232 

Yurdakul, 2010). Recently, this method has been extended to address decision situations 233 

with fuzzy assessment data (Chen & Lee, 2009; Chen & Tsao, 2008; Li et al., 2009; 234 

Wang & Elhag, 2005; Xu & Yager, 2008). The basic principle is that the selected 235 

alternative should be as close as possible to the ideal solution and as far away as possible 236 

from the anti-ideal solution. Based on the TOPSIS method, a relative closeness interval 237 

for each ∈iX X with respect to X + , denoted by [ , ]L U
i ic c , is defined as follows: 238 

                      
2

1

22
1 1

( )

( ) (1 )

m
j ijjL

i m m
j ij j ijj j

c
ω ξ

ω ξ ω ξ

=

= =

=
 + − 

∑
∑ ∑

                          (3.5) 239 

and 240 

2
1

22
1 1

( )

( ) (1 )

m
j ijjU

i m m
j ij j ijj j

c
ω η

ω η ω η

=

= =

=
 + − 

∑
∑ ∑

.                        (3.6) 241 

where 1ξ≤ ≤ −ij ij ija d , 1η≤ ≤ −ij ij ijb c , j j jω ω ω− +≤ ≤  and
1

1m
jj

ω
=

=∑   for each 242 

1,2, ,i n=  .   243 
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It is obvious that 0 1L
ic≤ ≤  and L

ic  is a function of [ ,1 ]ij ij ija dξ ∈ −  and [ , ]j j jω ω ω− +∈ . 244 

By varying ijξ  and jω  in the intervals [ ,1 ]ij ija d−  and[ , ]j jω ω− + , respectively, L
ic  lies in a 245 

closeness interval, [ , ]LL LU
i ic c . The lower bound LL

ic  and upper bound LU
ic  of  L

ic  can be 246 

obtained by solving the following two fractional programming models: 247 

                            
2

1

22
1 1

( )
min

( ) (1 )

m
j ijjLL

i m m
j ij j ijj j

c
ω ξ

ω ξ ω ξ

=

= =

=
 + − 

∑
∑ ∑

                        (3.7) 248 

1

1 , 1, 2,..., ,

. . , 1, 2,..., ,

1.

ij ij ij

j j j

m
jj

a d j m

s t j m

ξ

ω ω ω

ω

− +

=

 ≤ ≤ − = ≤ ≤ =


=∑
 249 

and 250 

                              
2

1

22
1 1

( )
max

( ) (1 )

m
j ijjLU

i m m
j ij j ijj j

c
ω ξ

ω ξ ω ξ

=

= =

=
 + − 

∑
∑ ∑

                       (3.8) 251 

 

1

1 , 1, 2,..., ,

. . , 1, 2,..., ,

1.

ij ij ij

j j j

m
jj

a d j m

s t j m

ξ

ω ω ω

ω

− +

=

 ≤ ≤ − = ≤ ≤ =


=∑
 252 

for each i=1,2,…,n. 253 
As 254 

2 22 2 2 2
1 1 1 1

2
22

1 1

( ) (1 ) ( ) ( ) (1 ) ( ) (1 )
0

( ) (1 )

m m m m
L j ij j ij j ij j ij j ij j ijj j j ji

m mij
j ij j ijj j

c ω ξ ω ξ ω ξ ω ξ ω ξ ω ξ

ξ
ω ξ ω ξ

= = = =

= =

   − + − −∂    = >
∂   + −   

∑ ∑ ∑ ∑

∑ ∑
255 

for 1,2,...j m= , L
ic  is a monotonically increasing function in ijξ . Hence, L

ic  reaches its 256 
minimum at ija  and arrives at its maximum at 1 ijd− . Therefore, (3.7) and (3.8) can be 257 
converted to the following two fractional programs: 258 

               
2

1

22
1 1

( )
min

( ) (1 )

m
j ijjLL

i m m
j ij j ijj j

a
c

a a

ω

ω ω

=

= =

=
 + − 

∑
∑ ∑

                       (3.9) 259 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 260 

and 261 
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2

1

2 2
1 1

(1 )
max

(1 ) ( )

m
j ijjLU

i m m
j ij j ijj j

d
c

d d

ω

ω ω

=

= =

 − =
 − + 

∑
∑ ∑

                       (3.10) 262 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 263 

for each i=1,2,…,n. 264 

In the similar way, U
ic  is confined to a closeness interval [ , ]UL UU

i ic c  after ijη  and jω  265 

assume all values in the intervals [ ,1 ]ij ijb c−  and [ , ]j jω ω− + , respectively. By following the 266 

same procedure, UL
ic  and UU

ic  can be derived by solving the following two fractional 267 

programming models: 268 

                       
2

1

22
1 1

( )
min

( ) (1 )

m
j ijjUL

i m m
j ij j ijj j

b
c

b b

ω

ω ω

=

= =

⋅
=

 + − 

∑
∑ ∑

                       (3.11) 269 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 270 

and 271 

                           
2

1

2 2
1 1

(1 )
max

(1 ) ( )

m
j ijjUU

i m m
j ij j ijj j

c
c

c c

ω

ω ω

=

= =

 − =
 − + 

∑
∑ ∑

                       (3.12) 272 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 273 

for each i=1,2,…,n. 274 

Models (3.9)-(3.12) can be solved by using an appropriate optimization software 275 

package. Denote their optimal solutions by 1 2( , , , )LL LL LL LL T
i i i imW ω ω ω=

  
 , 276 

1 2( , , , )LU LU LU LU T
i i i imW ω ω ω=

  
 , 1 2( , , , )UL UL UL UL T

i i i imW ω ω ω=

  
 and 1 2( , , , )UU UU UU UU T

i i i imW ω ω ω=

  
  277 

(i = 1, 2, …, n), respectively, and let 278 
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2
1

22
1 1

2

1

2 2
1 1

2
1

22
1 1

( )

( ) (1 )

(1 )

(1 ) ( )

( )

( ) (1 )

m LL
ij ijjLL

i m mLL LL
ij ij ij ijj j

m LU
ij ijjLU

i m mLU LU
ij ij ij ijj j

m UL
ij ijjUL

i m mUL UL
ij ij ij ijj j

a
c

a a

d
c

d d

b
c

b b

c

ω

ω ω

ω

ω ω

ω

ω ω

=

= =

=

= =

=

= =

 + − 

 − 

 − + 

 + − 

∑
∑ ∑

∑
∑ ∑

∑
∑ ∑






 






 






 



2

1

2 2
1 1

(1 )

(1 ) ( )

m UU
ij ijjUU

i m mUU UU
ij ij ij ijj j

c

c c

ω

ω ω

=

= =

 − 

 − + 

∑
∑ ∑





 

                                 (3.13) 279 

for each i=1,2,…,n. Then Theorem 3.1 follows. 280 

Theorem 3.1 For , 1, 2,..., ,iX X i n∈ =  assume that , ,LL LU UL
i i ic c c   , and UU

ic  are defined 281 

by (3.13), then LL UL LU UU
i i i ic c c c≤ ≤ ≤    . 282 

  Proof. Since 1 2( , , , )UL UL UL UL T
i i i imW ω ω ω=

  
  is an optimal solution of (3.11), it is also a 283 

feasible solution of (3.9) as they share the same constraints. Notice that  284 

1 2( , , , )LL LL LL LL T
i i i imW ω ω ω=

  
  is an optimal solution of the minimization problem (3.9), 285 

therefore, 286 

2 2
1 1

2 22 2
1 1 1 1

( ) ( )

( ) (1 ) ( ) (1 )

m mLL UL
ij ij ij ijj jLL

i m m m mLL LL UL UL
ij ij ij ij ij ij ij ijj j j j

a a
c

a a a a

ω ω

ω ω ω ω

= =

= = = =

≤
   + − + −   

∑ ∑
∑ ∑ ∑ ∑

 




   

 287 

  Note that L
ic  is a monotonically increasing function in ijξ  and ij ija b≤ , it follows that 288 

2 2
1 1

2 22 2
1 1 1 1

( ) ( )

( ) (1 ) ( ) (1 )

m mUL UL
ij ij ij ijj j UL

im m m mUL UL UL UL
ij ij ij ij ij ij ij ijj j j j

a b
c

a a b b

ω ω

ω ω ω ω

= =

= = = =

⋅
≤

   + − + −   

∑ ∑
∑ ∑ ∑ ∑

 




   

. 289 

     Thus, we have LL UL
i ic c≤  . 290 

Similarly, from (3.12), one can obtain  291 
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2 2

1 1

2 22 2
1 1 1 1

2

1

2 2
1 1

(1 ) (1 )

(1 ) ( ) (1 ) ( )

(1 )

(1 ) ( )

m mLU LU
ij ij ij ijj jLU

i m m m mLU LU LU LU
ij ij ij ij ij ij ij ijj j j j

m UU
ij ijj

m mUU UU
ij ij ij ijj j

d c
c

d d c c

c

c c

ω ω

ω ω ω ω

ω

ω ω

= =

= = = =

=

= =

   − −   ≤
   − + − +   

 − ≤
 − + 

∑ ∑
∑ ∑ ∑ ∑

∑
∑ ∑

 




   



 

UU
ic

292 

where the first inequality holds true because L
ic  is monotonically increasing in ijξ  and 293 

ij ijc d≤ , or equivalently, 1 1ij ijd c− ≤ − , and the second inequality is due to the fact that UU
ijω  294 

is an optimal solution of the maximization model (3.12) and LU
ijω  is its feasible solution.  295 

Furthermore, since 1+ ≤ij ijb d , or equivalently, 1ij ijb d≤ − , we have 296 

2 2
1 1

2 2 22
1 11 1

2

1

2 2
1 1

( ) [ (1 )]

[ (1 )] ( )( ) (1 )

(1 )

(1 ) ( )

m mUL UL
ij ij ij ijj jUL

i m mm m UL ULUL UL
ij ij ij ijij ij ij ij j jj j

m LU
ij ijj LU

im mLU LU
ij ij ij ijj j

b d
c

d db b

d
c

d d

ω ω

ω ωω ω

ω

ω ω

= =

= == =

=

= =

−
≤

− + + − 

 − ≤
 − + 

∑ ∑
∑ ∑∑ ∑

∑
∑ ∑

 




 

 






 

 297 

Once again, the first inequality is confirmed since U
ic  is a monotonically increasing 298 

function in ijη  and 1ij ijb d≤ − , and the second inequality follows from the fact that LU
ijω  299 

is an optimal solution of the maximization problem in (3.10) and UL
ijω  is its feasible 300 

solution. The proof is thus completed.                                      Q.E.D. 301 

Theorem 3.1 indicates that the optimal relative closeness interval of iX X∈  can be 302 

characterized by a pair of intervals: [ , ]LL UL
i ic c   and [ , ]LU UU

i ic c  . As [ , ] [ , ]LL UL LU UU
i i i ic c c c≤      303 

and UL LU
i ic c≤  , based on the argument in the last paragraph in Section 2, the optimal 304 

relative closeness interval can be expressed as an equivalent IVIFN: 305 
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( )
2 2

1 1

2 22 2
1 1 1 1

2

1

, , 1 ,1

( ) ( )
, ,

( ) (1 ) ( ) (1 )

(1 )
1

(

LL UL UU LU
i i i i i

m mLL UL
ij ij ij ijj j

m m m mLL LL UL UL
ij ij ij ij ij ij ij ijj j j j

m UU
ij ijj

UU
ij

c c c c c

a b

a a b b

c

ω ω

ω ω ω ω

ω

ω

= =

= = = =

=

   = − −   

 
 
 

   + − + −     =
 − 

−

∑ ∑

∑ ∑ ∑ ∑

∑

    

 

   





2

1

2 22 2
1 1 1 1

(1 )
,1

1 ) ( ) (1 ) ( )

m LU
ij ijj

m m m mUU LU LU
ij ij ij ij ij ij ijj j j j

d

c c d d

ω

ω ω ω

=

= = = =

 
 
 
 
 
   −   −  
    − + − +       

∑

∑ ∑ ∑ ∑



  

  (3.14) 306 

As the weight vectors , , ,  and LL LU UL UU
i i i iW W W W     are independently determined by the 307 

four fractional programs (3.9), (3.10), (3.11) and (3.12), they are generally different, i.e., 308 
LL LU UL UU

i i i iW W W W≠ ≠ ≠     for iX X∈ , or LL LU UL UU
ij ij ij ijω ω ω ω≠ ≠ ≠      for i = 1, 2, …, n and j 309 

= 1, 2, …, m. In order to compare the relative closeness intervals across different 310 

alternatives, it is necessary to obtain an integrated common weight vector for all 311 

alternatives. Next, a procedure will be introduced to derive such a weight vector. 312 

As  313 

2
1

2 22 2
1 1 1 1

( ) 1

( ) (1 ) 1 (1 ) / ( )

m
j ijjLL

i m m m m
j ij j ij j ij j ijj j j j

a
c

a a a a

ω

ω ω ω ω

=

= = = =

= =
   + − + −   

∑
∑ ∑ ∑ ∑

 314 

and (3.9) is a minimization fractional programming problem, the objective function of 315 

(3.9) is equivalent to maximize  316 

2 2
1 1

(1 ) / ( )m m
j ij j ijj j

a aω ω
= =
 − ∑ ∑  317 

This maximization problem can then be approximated by the following quadratic 318 

programming model: 319 

    21 2
1 1

max (1 ) ( )m m
i j ij j ijj j

z a aω ω
= =
 = − − ∑ ∑                        (3.15) 320 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 321 

for each i=1,2,…,n. 322 

Similarly, (3.10), (3.11) and (3.12) can be converted to quadratic programming 323 

models with the same constraint conditions as follows: 324 
22 2

1 1
max (1 ) ( )m m

i j ij j ijj j
z d dω ω

= =
 = − − ∑ ∑                                         (3.16) 325 
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23 2
1 1

max (1 ) ( )m m
i j ij j ijj j

z b bω ω
= =
 = − − ⋅ ∑ ∑                                         (3.17) 326 

24 2
1 1

max (1 ) ( )m m
i j ij j ijj j

z c cω ω
= =
 = − − ∑ ∑                                           (3.18) 327 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 328 

for each i=1,2,…,n. 329 

Since (3.15)-(3.18) are all maximization models with the same constraints, we may 330 

combine the four quadratic problems into a single model if the four objectives are equally 331 

weighted: 332 

1 2 3 4 2
1

1max ( ) / 4 (2 )
2

m
i i i i i ij ij ij ij jj

z z z z z a b c d ω
=

= + + + = − − − −∑         (3.19) 333 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 334 

for each i=1,2,…,n. 335 

Since X is a non-inferior alternative set, no alternative dominates or is dominated by 336 

any other alternative. (3.19) considers one alternative at a time. If all n alternatives are 337 

taken into account simultaneously, the contribution from each individual alternative 338 

should be treated with an equal weight of 1/n. Therefore, we have the following 339 

aggregated quadratic programming model. 340 
2

1 1
(2 )

max
2

n m
ij ij ij ij ji j

a b c d
z

n

ω
= =

− − − −
=
∑ ∑                                    (3.20) 341 

1

, 1, 2, , ,

. . 1 , 1 ,

1.

j j j

a d b c
j j j j j j

m
jj

j m

s t

ω ω ω

ω ω ω ω ω ω

ω

− +

− +

=

 ≤ ≤ = ≤ ≤ − ≤ ≤ −


=∑



 342 

(3.20) is a standard quadratic program that can be solved by using an appropriate 343 

optimization package. Denote its optimal solution by 0 0 0 0
1 2( , , , ) ,T

mw ω ω ω=  and use 344 

similar notation as (3.13) to define:  345 
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0 2
10

20 2 0
1 1

20
10

20 0 2
1 1

0 2
10

20 2 0
1 1

20
10

( )

( ) (1 )

(1 )

(1 ) ( )

( )

( ) (1 )

(1 )

m
j ijjLL

i m m
j ij j ijj j

m
j ijjLU

i m m
j ij j ijj j

m
j ijjUL

i m m
j ij j ijj j

m
j ijjUU

i

j

a
c

a a

d
c

d d

b
c

b b

c
c

ω

ω ω

ω

ω ω

ω

ω ω

ω

ω

=

= =

=

= =

=

= =

=

 + − 

 − 

 − + 

 + − 

 − 

∑
∑ ∑

∑
∑ ∑

∑
∑ ∑

∑











20 0 2
1 1

(1 ) ( )m m
ij j ijj j

c cω
= =
 − + ∑ ∑

                  (3.21) 346 

Since L
ic  and U

ic are monotonically increasing in ijξ and ijη , respectively, and 347 

,≤ij ija b ≤ij ijc d  and 1+ ≤ij ijb d , it is easy to verify that 0 0 0 0LL UL LU UU
i i i ic c c c≤ ≤ ≤ . 348 

Therefore, the optimal relative closeness interval of alternative iX  based on the unified 349 

weight vector 0w  can be determined by a pair of closed intervals, 0 0[ , ]LL UL
i ic c  and 350 

0 0[ , ]LU UU
i ic c . Equivalently, this interval can be expressed as an IVIFN:  351 

( )0 0 0 0 0

0 2 0 2
1 1

2 20 2 0 0 2 0
1 1 1 1

20
1

20 0
1

, , 1 ,1

( ) ( )
, ,

( ) (1 ) ( ) (1 )

(1 )
1

(1 ) (

LL UL UU LU
i i i i i

m m
j ij j ijj j

m m m m
j ij j ij j ij j ijj j j j

m
j ijj

m
j ij j ijj

c c c c c

a b

a a b b

c

c c

ω ω

ω ω ω ω

ω

ω ω

= =

= = = =

=

=

   = − −   

 
 
 

   + − + −     =
 − 

−
 − + 

∑ ∑

∑ ∑ ∑ ∑

∑

∑

20
1

22 0 0 2
1 1 1

(1 )
,1

) (1 ) ( )

m
j ijj

m m m
j ij j ijj j j

d

d d

ω

ω ω

=

= = =

 
 
 
 
 
   −   −  
  − +     

∑

∑ ∑ ∑

     (3.22) 352 

for each i = 1, 2, …, n.  353 

Theorem 3.2 Assume that IVIFNs ic  and 0
ic are respectively defined by (3.14) and 354 

(3.22), then for , 1, 2,..., ,iX X i n∈ =  355 

0 0 0 0[ , ] [ , ] [ , ] [ , ]LL UL LL UL LU UU LU UU
i i i i i i i ic c c c c c c c≤ ≤ ≤     356 

Proof. Since 0 0 0 0
1 2( , , , )T

mw ω ω ω=   is an optimal solution of (3.20), it is automatically 357 

a feasible solution of (3.9), (3.10), (3.11) and (3.12) due to the fact that these models all 358 
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have the same constraints. Furthermore, because L
ic  and U

ic are monotonically increasing 359 

in ijξ and ijη , respectively, and 1 2( , , , )LL LL LL LL T
i i i imW ω ω ω=

  
  and 360 

1 2( , , , )LU LU LU LU T
i i i imW ω ω ω=

  
  are, respectively, an optimal solution of (3.9) and (3.10), and 361 

ij ija b≤  and 1ij ijb d+ ≤ , it follows that 362 

2 0 2
1 1 0

2 22 0 2 0
1 1 1 1

20 2 0
1 1

20 2 0 0
1 1

( ) ( )

( ) (1 ) ( ) (1 )

( ) (1 )

( ) (1 ) (1

m mLL
ij ij j ijj jLL LL

i im m m mLL LL
ij ij ij ij j ij j ijj j j j

m m
j ij j ijj j

m m
j ij j ij j ijj j

a a
c c

a a a a

b d

b b d

ω ω

ω ω ω ω

ω ω

ω ω ω

= =

= = = =

= =

= =

≤
   + − + −   

 − ≤ ≤
 + − − 

∑ ∑
∑ ∑ ∑ ∑

∑ ∑
∑ ∑




 

 

0

2 0 2
1 1

2

1

2 2
1 1

) ( )

(1 )

(1 ) ( )

LU
im m

j ijj j

m LU
ij ijj LU

im mLU LU
ij ij ij ijj j

c
d

d
c

d d

ω

ω

ω ω

= =

=

= =

  + 

 − ≤
 − + 

∑ ∑

∑
∑ ∑








 

363 

 364 

Here the first inequality is derived as LL
ijω  is an optimal solution of the minimization 365 

model (3.9) and 0
jω  is its feasible solution. The 2nd and 3rd inequalities hold true because 366 

L
ic  is monotonically increasing in ijξ  and 1ij ij ija b d≤ ≤ − . The last inequality is due to 367 

the fact that a feasible solution 0
jω  always yields an objective function value that is less 368 

than or equal to that of an optimal solution LU
ijω  for the maximization problem (3.10). 369 

Therefore, we have 0 0LL LL LU LU
i i i ic c c c≤ ≤ ≤  .  370 

Similarly, as 1 2( , , , )UL UL UL UL T
i i i imW ω ω ω=

  
  and 1 2( , , , )UU UU UU UU T

i i i imW ω ω ω=

  
  are an 371 

optimal solution of (3.11) and (3.12), respectively, U
ic  is monotonically increasing in ijη , 372 

and ij ijc d≤ and 1ij ijb d+ ≤ , following the same argument, one can have 373 
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2 0 2
1 1 0

2 22 0 2 0
1 1 1 1

2 20 0
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ij ij ij ij j ij j ijj j j j

m m
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b b b b
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ω ω

ω ω ω ω

ω ω

ω ω ω
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≤
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1 1
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1
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ij j ijj j

m UU
ij ijj UU

im mUU UU
ij ij ij ijj j

c
c c

c
c

c c

ω

ω

ω ω

= =

=

= =
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 − ≤
 − + 

∑ ∑

∑
∑ ∑








 

374 

 i.e., 0 0 .UL UL UU UU
i i i ic c c c≤ ≤ ≤   375 

By Definition 2.8, the proof of Theorem 3.2 is completed.                                  Q.E.D. 376 

Theorem 3.2 demonstrates that the relative closeness interval derived from the 377 

aggregated model (3.20) for each alternative iX  is always bounded by that obtained from 378 

individual models (3.9) – (3.12) in the sense of Definition 2.8. 379 

The aforesaid derivation process can be summarized in the following steps to handle 380 

MADM problems where both attribute values and weights are given as IVIFNs.  381 

Step 1. Utilize the model (3.20) to obtain an optimal aggregated weight vector 382 
0 0 0 0

1 2( , , , )T
mw ω ω ω=  . 383 

Step 2. Determine the optimal relative closeness interval 0
ic  for all alternatives 384 

iX X∈ , 1, 2, ,i n=  , by plugging w0 into (3.22). 385 

Step 3. Rank all alternatives according to the decreasing order of their relative 386 

closeness intervals as per Definition 2.7. The best alternative is the one with the largest 387 

relative closeness interval.  388 

4   An illustrative example 389 

This section adapts a global supplier selection problem in (Chan & Kumar, 2007) to 390 

demonstrate how to apply the proposed approach.  391 

Supplier selection is a fundamental issue for an organization. The continuing 392 

globalization has extended the supplier selection to an international arena and makes it a 393 

complex and difficult MADM task. Decisions on choosing appropriate suppliers for a 394 

firm typically have long-term impact on its performance, and poor decisions could cause 395 
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significant damage to a firm’s competitive advantage and profitability. Therefore, the 396 

supplier selection problem has been traditionally treated as one of the most important 397 

activities in the purchase department. To address the selection issue, difficult comparison 398 

and tradeoff among diverse factors have to be considered within the MADM framework. 399 

Due to business confidentiality and other reasons, the evaluation of global suppliers has 400 

to be conducted with uncertainty. As such, it could well be the case that both weights 401 

among different attributes and individual assessments are provided IVIFNs, and the 402 

manager has to make his/her final selection by aggregating these IVIFN data.  403 

In the following example, assume that a manufacturing firm desires to select a 404 

suitable supplier for a key component in producing its new product. After preliminary 405 

screening, five potential global suppliers ( 1 2 3 4 5{ , , , , }X X X X X X= ) remain as viable 406 

choices. The company requires that the purchasing manager come up with a final 407 

recommendation after evaluating each supplier against five attributes: supplier’s 408 

profile 1( )A , overall cost of the component 2( )A , quality of the component 3( )A , service 409 

performance of the supplier 4( )A , as well as the risk factor 5( )A . Assume that the 410 

assessments of each supplier against the five attributes are provided as IVIFNs as shown 411 

in the following interval-valued intuitionistic fuzzy matrix 5 5( )ijR r ×=  . 412 

Table 1. Interval-valued intuitionistic fuzzy matrix R  413 

1 2 3 4 5A A A A A414 
 415 

1

2

3

4

5

([0.40,0.50],[0.32,0.40]) ([0.67,0.78],[0.14,0.20]) ([0.50,0.65],[0.13,0.22]) ([0.45,0.60],[0.30,0.35]) ([0.60,0.65],[0.18,0.30])
([0.52,0.60],[0.10,0.17]) ([0.56,0.68],[0.23,0.28]) ([0.65,0.70],[0

X
X
X
X
X

.20,0.25]) ([0.56,0.62],[0.20,0.28]) ([0.55,0.68],[0.15,0.19])
([0.62,0.72],[0.20,0.25]) ([0.35,0.45],[0.33,0.43]) ([0.55,0.63],[0.28,0.32]) ([0.45,0.62],[0.19,0.30]) ([0.63,0.67],[0.16,0.20])
([0.42,0.48],[0.40,0.50]) ([0.40,0.50],[0.20,0.50]) ([0.50,0.80],[0.10,0.20]) ([0.55,0.75],[0.15,0.25]) ([0.45,0.65],[0.25,0.35])
([0.40,0.50],[0.40,0.50]) ([0.30,0.60],[0.30,0.40]) ([0.60,0.70],[0.05,0.25]) ([0.60,0.70],[0.10,0.30]) ([0.50,0.60],[0.20,0.40])

416 

 417 
 418 

Each cell of the matrix gives the purchasing manager’s IVIFN assessment of an 419 

alternative against an attribute. For instance, the top-left cell, ([0.40, 0.50], [0.32, 0.40]), 420 

reflects the purchasing manager’s belief that alternative 1X  is an excellent supplier from 421 

the supplier’s profile 1( )A  with a margin of 40% to 50% and 1X  is not an excellent 422 

choice given its supplier’s profile 1( )A  with a chance between 32% and 40%.  423 
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Assume further that the purchasing manager provides his/her assessments on 424 

importance degree of the five attributes as the following IVIFNs: 425 

([0.12,0.19],[0.55,0.69]), ([0.09,0.14],[0.62,0.75]), ([0.08,0.15],[0.68,0.78]),
([0.20,0.30],[0.42,0.58]), ([0.13,0.20],[0.60,0.72])

ω
 

=  
 

 426 

Based on the procedure established in Section 3, we first obtain the following 427 

quadratic programming model as per (3.20). 428 
2 2 2 2 2
1 2 3 4 5

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

1.60 1.70 1.72 1.68 1.64max
5

,0.12 0.31,0.19 0.45,

,0.09 0.25,0.14 0.38,

,0.08 0.22,0.15 0.32,
. .

,0.20 0.42,0.30

z

s t

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

− + − +

− + − +

− + − +

− + − +

+ + + +
=

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

5 5 5 5 5

1 2 3 4 5

0.58,

,0.13 0.28,0.20 0.40,
1.

ω ω ω ω ω
ω ω ω ω ω

− + − +







 ≤ ≤ ≤ ≤ ≤ ≤
 + + + + =

                              429 

Solving this quadratic programming, one can get its optimal solution as: 430 
0 0 0 0 0 0

1 2 3 4 5( , , , , ) (0.12,0.23,0.32,0.20,0.13)T Tw ω ω ω ω ω= =   431 

Plugging the weight vector 0w  and individual assessments in the decision matrix R  432 

into (3.22), the optimal relative closeness intervals for the five alternatives are determined. 433 

( )0
1 [0.5310,0.6580],[0.1891,0.2611]c = , 434 

( )0
2 [0.5964,0.6724][0.1989,0.2541]c = , 435 

( )0
3 [0.4962,0.5922],[0.2656,0.3319]c = , 436 

( )0
4 [0.4769,0.6755],[0.1768,0.3230]c = , 437 

( )0
5 [0.5092,0.6539],[0.1833,0.3259]c = . 438 

Next, the score function is calculated for each 0
ic  as 439 

0
1( ) 0.3694S c = , 0

2( ) 0.4080S c = , 0
3( ) 0.2455S c = ,  0

4( )  0.3263S c =  0
5( ) 0.3270S c =  440 

As 0 0 0 0 0
2 1 5 4 3( ) ( ) ( ) ( ) ( )S c S c S c S c S c> > > > , by Definition 2.7 we have a full ranking of 441 

all five alternatives as  442 

2 1 5 4 3X X X X X    . 443 

5   CONCLUSIONS 444 
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In this article, a procedure is proposed to tackle multi-attribute decision making 445 

problems with both attribute weights and attributes values being provided as IVIFNs. 446 

Fractional programming models based on the TOPSIS method are established to obtain a 447 

relative closeness interval where attribute weights are independently determined for each 448 

alternative. The proposed approach employs a series of optimization models to deduce a 449 

quadratic programming model for obtaining a unified attribute weight vector, which is 450 

subsequently used to synthesize individual IVIFN assessments into an optimal relative 451 

closeness interval for each alternative. A global supplier selection problem is adapted to 452 

demonstrate how the proposed procedure can be applied in practice.  453 
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