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Abstract

A hybrid approach of DEA (data envelopment analysis) and TOPSIS (technique for order per-
formance (preference) by similarity to ideal solution) is proposed for multiple criteria decision
analysis. Two DEA-based optimization models are constructed to facilitate identifying param-
eter information regarding criterion weights and quantifying qualitative criteria in TOPSIS.
A numerical example is provided to demonstrate the proposed analysis procedure and carry
out a comparative study. Analytic results show that these two models can provide relatively
consistent results.

Key words: Multiple criteria decision analysis, multiple criteria ranking, DEA, TOPSIS,
distance-based ranking

∗ Corresponding author. E-mail:kwli@uwindsor.ca (K. W. Li).

Preprint submitted to Journal of Systems Science and Systems Engineering18 February 2009



1 Introduction

Multiple criteria decision analysis (MCDA) generally refers to decision aid tools that
help decision-makers (DMs) in complex decision situations involving multiple criteria
(objectives) arising from social, economic and environmental considerations [15, 17, 23,
26, 27]. The main idea of MCDA concentrates on decision analysis within a finite set
of alternatives and offers techniques to assist individual DMs in making decisions by
eliciting and aggregating their preferences. Two unique features of MCDA for handling
decision problems are summarized below:

• Preference-based aggregation: To reach a conclusion, the performances of alternatives
over all criteria have to be aggregated together. To achieve this more effectively, the
aggregation in MCDA is conducted on DMs’ preferences instead of the traditional
cost-benefit analysis in which all criteria are converted to a monetised term as a com-
mon comparison ground. For example, in 1998, the Department of the Environment,
Transport, and the Regions in the United Kingdom revealed an MCDA approach
to appraising transport projects. This framework incorporates non-monetised consid-
erations into the management planning process [11], thereby improving the project
appraisal process.

• Ability to handle both quantitative and qualitative criteria: Both quantitative criteria
that can be measured in numerical values objectively and qualitative criteria that
can only be gauged subjectively are integrated together to generate comprehensive
evaluations for all alternatives.

Roy [26] proposes that three MCDA problématiques (fundamental problems) are avail-
able for evaluating a set of alternatives, A, as per a DM’s specific purpose.

• Choice. Choose the best alternative from A.
• Sorting. Sort the alternatives of A into relatively homogeneous groups, usually ar-

ranged in a preferential order.
• Ranking. Rank the alternatives of A from best to worst.

Among the above three types of decision analysis, ranking provides the most prolific
information with a full preferential order for all alternatives, and the best alternative
(choice) is identified as its by-product. A sorting problem can be addressed based on
the generated ranking results by employing a logic group assignment procedure. For
instance, the traditional ABC analysis, a well-known approach in inventory management
[32], classifies items as per annual dollar usage (ADU) into three groups: the most
important items (10-20% of total items, but usually account for around 80% of ADU)
are placed in group A, demanding the greatest effort and attention from management,
the least important items (40-50% of total items, only account for around 10% of ADU)
fall into group C, where minimal effort is applied; other SKUs belong to the middle group
B. Recent efforts have been committed to this sorting problem to accommodate multiple
criteria [6, 22].
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MCDA approaches are proposed from different schools of thinking, including multiat-
tribute utility theory (MAUT) [23], outranking methods [26] and analytic hierarchy
process (AHP) [27], to name a few. A state-of-the-art review of MCDA is provided
in [15], summarizing many MCDA approaches catered for different decision scenarios.

The TOPSIS (technique for order performance (preference) by similarity to ideal solu-
tion) method was initially proposed in [17] to solve ranking problems. The basic idea
of the TOPSIS is to first measure an alternative’s distances to pre-defined ideal and
anti-ideal points separately and, then, aggregate these two distances into an overall
evaluation. As summarized in [24,30], TOPSIS possesses such attractive features as its
clear and easily understandable geometric meaning, simultaneous considerations from
both best and worst points of view, and convenient calculations and implementations.
Therefore, different methods have been developed to refine the original TOPSIS idea
such as those reported in [1, 2, 4, 5, 19,30,31].

Data envelopment analysis (DEA) is an increasingly popular managerial decision tool
that was initially proposed by Charnes et al. [3]. As a nonparametric method for esti-
mating production frontiers, DEA measures relative performance of a set of producers
or decision making units where the presence of multiple inputs and outputs makes
comparisons difficult. A comprehensive survey of DEA research covering its 30 years of
history (1978-2008) is presented in [14].

During the last thirty years, significant research has been conducted on DEA for both
theoretical extensions and practical applications, including various DEA-based MCDA
approaches. Among the early attempts, [12,28] explored the utilization of cross-efficiency
analysis in DEA for evaluating alternatives in MCDA, and Doyle [13] suggested that
cross efficiency-based DEA analysis could be a “Multiattribute Choice (tool) for the
Lazy Decision Maker: Let the Alternatives Decide!”.

Stewart [33] compared the goals of DEA and MCDA as “DEA arises from situations
where the goal is to determine the productive efficiency of a system by comparing how
well the system converts inputs into outputs, while MCDA models have arisen from the
need to analyze a set of alternatives according to conflicting criteria”. A methodological
connection between MCDA and DEA is that if “all criteria in an MCDA problem can be
classified as either benefit criteria (benefits or output) or cost criteria (costs or inputs),
then DEA is equivalent to MCDA using additive linear value functions” [33].

Recently, several methods have been developed for MCDA by adding more preference
information (constraints) into the DEA-like models. For example, Cook and Kress [10]
proposes a DEA-based MCDA method to handle both cardinal and ordinal criteria;
findings from [29] showed that “a modified DEA approach yields results very similar to
those produced using SMART (simple multiattribute rating technique)”; a DEA-based
index aggregation model has been developed in [7] for aggregating different country
ranking indices; different DEA-based methods [25,34] are proposed for weight deviation
and aggregation in the AHP.
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Following this research direction, this paper puts forward a hybrid approach to MCDA
that capitalizes on the unique features of DEA and TOPSIS as summarized below:

• A convenient way for determining criterion weights in TOPSIS
The identification of weights, the relative importance of criteria, constitutes an

important task in MCDA. Various methods have been proposed for obtaining criteria
weights in the literature. Different approaches have their merits and features. Some
of them are summarized as follows: the AHP method and several other pair-wise
comparison-based methods, such as geometric least squares method [18] have been
widely used for weight deviation [20]. Swing weights [35] provides a convenient way for
direct weighting. Indifference tradeoff weight as suggested by Keeney and Raiffa [23]
is an indirect weighting technique by asking DMs to make tradeoffs and then deriving
the implied weights.

The TOPSIS method did not offer any technique to determine criterion weights as
weights are pre-defined. The proposed DEA-TOPSIS method can integrate the weight
deviation process into the TOPSIS method and automatically calculate the weight
information by utilizing optimization programs under the philosophy of identifying
individual alternatives’ best possible overall performance. Such a process can provide
a fair overall assessment of an alternative by maximizing its possibility of obtaining
the best possible result and “has more of the right connotations of a democratic
process” [12].

• A theoretically sound approach to qualitative criterion quantification in TOPSIS:
Usually there has been more preference uncertainty involving the determination

of exact value for an ordinal criterion. For example, an interval datum may be more
reasonable than an exact datum for representing preference over an ordinal criterion.
Since the TOPSIS method did not provide any relevant process to handle the uncer-
tainty in ordinal criteria, we adapted the method proposed by Cook and Kress [10]
to solve this problem. The DEA-TOPSIS method provides a theoretically sound ap-
proach to quantifying qualitative criteria based on the aforesaid philosophy of indi-
vidual performance optimization.

The remainder of the paper is organized as follows: Overviews of MCDA and TOPSIS
are given in Section 2; Section 3 presents a hybrid method that integrates the DEA
concept into TOPSIS; then, in Section 4, a numerical example adapted from [30] is
used to demonstrate the proposed method, and, finally, some conclusions are given in
Section 5.
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2 MCDA and TOPSIS methods

2.1 An overview of MCDA

Analyzing an MCDA problem consists of three main steps: (1) Problem construction,
where a list of all alternatives, criteria to assess alternatives, and the DM’s objectives
are identified. (2) Preference elicitation and aggregation, in which the DM’s preferences
within and across criteria are modeled and aggregated; (3) Implementation, in which
the constructed preference model is applied to evaluate all alternatives, thereby solving
the ‘problématique’ selected by the DM, as an aid to decision making.

Step (1) formulates a decision problem in the context of MCDA, identifying the set
of alternatives, A = {a1, a2, · · · , an} and the set of criteria, C = {c1, c2, · · · , cq}. Step
(1) also provides a direct physical measurement as the consequence of alternative ai on
criterion cj for every i = 1, . . . , n and j = 1, . . . , q, denoted by mi

j, representing the
(i, j)-entry of an n × q matrix, called the information (or performance) matrix. The
format of this matrix is shown in Figure 1. Note that a consequence does not include
preferential information.

Obviously, for quantitative criteria such as cost in dollars, objective measurements can
be easily identified, while consequences for qualitative criteria such as the product
quality may contain some ambiguity. It is a usual approach to assign a set of linguistic
evaluations as consequences over qualitative criteria. More detailed explanations will
be provided in Section 3.

a1 a2 an

c1

c2

cq

C
rit

er
ia

Alternatives

mi
j

Fig. 1. Performance Matrix in MCDA, adapted from [8]

A DM’s preferences are a significant determinant to solve any MCDA problem. Pref-
erences can be expressed on consequences, called values, and preferences on criteria,
referred to as weights [8]. Values, preferences on consequences, are obtained by pro-
cessing consequences to reflect the DM’s needs or objectives. For instance, a DM’s
preference on the reduction or increase of cost may be linear or non-linear. Generally,
the relationship between consequences and values can be expressed as vj(a

i) = fj(m
i
j),

where vj(a
i) and mi

j are a value and a consequence measurement, respectively; fj(·) is a
real-valued function that maps consequences to values. The DM’s values over all criteria
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for alternative ai are expressed as a value vector, v(ai) = (v1(a
i), v2(a

i), ..., vq(a
i)). Many

consequence normalization processes in current literature can be regarded as maps from
consequences to values. Preferences on criteria are usually expressed as weights, indicat-
ing the relative importance of criteria. Let the weight for criterion cj ∈ C be wj ∈ R

+.
Generally, the DM’s weight vector, w = (w1, w2, ..., wj, ..., wq), is normalized to 1, i.e.

q∑
j=1

wj = 1.

Criteria are often categorized into three groups according to a DM’s preference di-
rections along consequences: benefit and cost criteria are monotonic, and preferences
increase as consequences increase for benefit criteria but opposite for cost criteria. For
non-monotonic criteria, the DM specifies a non-extreme consequence as the most or
least preferred and preferences decrease or increase gradually when consequences move
away from the most preferred or the least preferred consequence. Note that, as values
are refined consequence data reflecting the DM’s preferences, they are always preference
monotonic, i.e. the larger a value, the more preferred or the less preferred, while the
first case is more commonly used.

In summary, the difference between consequence data and preference data (values or
weights) can be outlined as below.

• Consequences are relatively objective and original raw data, while preference data
are subjective refined data to reflect a DM’s preferences.

• Data ranges of consequences may vary significantly: some can be very large, and
others may be very small; preference data are normalized data to a certain range.
For instance, weights are usually set to between 0 and 1.

• In terms of the preference direction, consequences can be either monotonic or non-
monotonic while preferences are always monotonic.

After the problem is structured and preferences are obtained on consequences and an
aggregation model is needed to generate an overall assessment for each alternative,
thereby solve the specified problématique. Mathematically, for ai ∈ A, the evaluation
of alternative ai, V (ai) = F (v(ai),w), is a real-valued mapping from the value vector
v(ai) and the weight vector w to a numerical evaluation of ai, V (ai). A typical example

is the linear additive value function, V (ai) =
q∑

j=1
wj · vj(a

i) [17].

2.2 The TOPSIS method

The TOPSIS method is a distance-based approach, and its general procedure consists
of the following steps [30]:

(1) Construct a performance matrix: An n × q matrix contains the raw consequence
data for all alternatives against all criteria similar to Figure 1.
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(2) Normalize performance matrix: Apply a normalization process, fj(·), to convert
the original consequence data to values. For ∀mi

j ∈ R
+, three widely used normal-

ization functions, mapping mi
j to 0 ≤ vi

j ≤ 1, are listed below [30]:

(a) Vector normalization: vi
j =

mi
j√∑n

i=1(m
i
j)

2
;

(b) Sum-based linear normalization: vi
j =

mi
j∑n

i=1(m
i
j)

.

(c) Min-Max-based normalization: vi
j =

mi
j

maxn
i=1 mi

j

(cj is a benefit criterion) and

vi
j =

minn
i=1 mi

j

mi
j

(cj is a cost criterion);

(3) Define the ideal and anti-ideal point: Set the ideal point, a+, and anti-ideal point,
a−, based on the normalized performance matrix. For a benefit criterion, cj, vj(a

+) =
maxn

i=1 vi
j and vj(a

−) = minn
i=1 vi

j; but for a cost criterion, ck, vj(a
+) = minn

i=1 vi
j

and vj(a
−) = maxn

i=1 vi
j.

(4) Assign weights to criteria: Set wj (wj ∈ R
+ and

∑q
j=1 wj = 1) to represent the

relative importance of criterion cj.
(5) Calculate the distances of ai to the two ideal points, a+ and a−: A commonly used

distance definition is the p-norm distance function. Compute the distances of ai to

a+ and a− using p-norm distance functions, D(ai)+ =

{
q∑

j=1
wj

∣∣∣(vj(a
+) − vj(a

i)
∣∣∣p

}1/p

and D(ai)− =

{
q∑

j=1
wj

∣∣∣(vj(a
i) − vj(a

−)
∣∣∣p

}1/p

, where p is a pre-defined distance

norm, which is usually set as 1 or 2 and |x| represents the absolute value of x.
(6) Obtain an integrated distance ai to these two extreme points: The distances of ai

to the ideal and anti-ideal points have to be integrated to reach a final result. One
way to integrate these two distances into an overall distance of ai, D(ai), can be

expressed as D(ai) =
D(ai)−

D(ai)− + D(ai)+
, where a larger value of D(ai) represents a

better overall performance.

3 A DEA-TOPSIS method

3.1 Flexible settings of a+ and a−

As described in Section 2, the setting of ideal and anti-ideal points in the original
TOPSIS is based upon value data that are normalized consequences reflecting the DM’s
preference directions over different criteria. a+ and a− are set as the combinations of
either maximum or minimum values of vj(a

i) (∀cj ∈ C and ∀ai ∈ A), depending on
whether a criterion is benefit or cost. In practice, a DM may often have ideal or anti-

7



ideal alternatives (points) directly on consequences, rather than on normalized values.
For example, in business analysis, various benchmarks have been identified for company
performance evaluations. To improve the flexibility in setting a+ and a−, the approach
reported in this article allows a DM to define a+ and a− in the consequence space
directly with the following conditions:

(1) ∀ai ∈ A, D(ai)+ ≤ D(a−)+: the normalized distance from a− to a+ should be
larger than that between any alternative ai in A and a+;

(2) ∀ai ∈ A, D(ai)− ≤ D(a+)−: the normalized distance from a+ to a− should be
larger than that between any alternative ai in A and a−.

It is easy to verify that the setting of a+ and a− in the original TOPSIS method satisfies
these two conditions. Therefore, our new approach to setting a+ and a− can be regarded
as a natural extension of the original TOPSIS method.

To describe the distance definitions of different types of criteria more easily, let C =
Cc ∪Co, where C, Cc, and Co represent the whole criteria set, quantitative (cardinal)
criteria set and qualitative (ordinal) criteria set, respectively. Furthermore, let Cc =
{cc

1, ..., c
c
j, ..., c

c
qc
} and Co = {co

1, ..., c
o
j , ..., c

o
qo
}, hence, q = qc + qo, where q, qc and qo

are the size (cardinality) of C, Cc and Co, respectively. Now, the detailed distance
definitions for Cc and Co are given below.

3.2 Distance definitions and aggregation over Cc

Let mc
j(a

i) be the consequence measurement of ai on a quantitative criterion, cc
j. When

ai = a+ or a−, mc
j(a

i) = mc
j(a

+) or mc
j(a

−). For each cc
j ∈ Cc, the distances from ai

to the predefined extreme points, a+ and a−, are denoted as |mc
j(a

+) − mc
j(a

i)| and
|mc

j(a
−)−mc

j(a
i)|, respectively. Then, an appropriate normalization function in Section

2.2 can be chosen to obtain the normalized distances of ai to a+ and a−, denoted by
dc

j(a
i)+ and dc

j(a
i)−, respectively, as detailed below. Note that in order to validate the

two conditions in Section 3.1, the distance between a+ and a−, |mc
j(a

+) − mc
j(a

−)|, is
included in the following normalization process. As a unique feature of the new distance
definitions, the following normalization functions can be applied to any kind of criterion,
benefit, cost, or non-monotonic. A DM does not need to explicitly differentiate these
three types of criteria during a normalization process.

• Vector-based normalization:

First, set ε+
j =

√∑n
i=1

(
mc

j(a
+) − mc

j(a
i)

)2
+

(
(mc

j(a
+) − mc

j(a
−)

)2
as the ideal

normalization factor, and ε−j =

√∑n
i=1

(
mc

j(a
−) − mc

j(a
i)

)2
+

(
(mc

j(a
−) − mc

j(a
+)

)2

as the anti-ideal normalization factor.
Then, the normalized distance between ai ∈ A and a+ over criterion cj is defined
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as: dc
j(a

i)+ =
|mc

j(a
+) − mc

j(a
i)|

ε+
j

, and the normalized distance between ai ∈ A and

a− over criterion cj is dc
j(a

i)− =
|mc

j(a
−) − mc

j(a
i)|

ε−j
. By plugging a− in dc

j(·)+ and a+

in dc
j(·)−, dc

j(a
−)+ =

|mc
j(a

+) − mc
j(a

−)|
ε+

j

, and dc
j(a

+)− =
|mc

j(a
−) − mc

j(a
+)|

ε−j
.

• Sum-based absolute normalization:
Let ε+

j =
∑n

i=1

∣∣∣mc
j(a

+) − mc
j(a

i)
∣∣∣+∣∣∣(mc

j(a
+) − mc

j(a
−)

∣∣∣ and

ε−j =
∑n

i=1

∣∣∣mc
j(a

−) − mc
j(a

i)
∣∣∣+∣∣∣(mc

j(a
−) − mc

j(a
+)

∣∣∣.
The two normalized distances are defined as dc

j(a
i)+ =

|mc
j(a

+) − mc
j(a

i)|
ε+

j

and

dc
j(a

i)− =
|mc

j(a
−) − mc

j(a
i)|

ε−j
, respectively. Similarly, the two extreme distances are

obtained as dc
j(a

−)+ =
|mc

j(a
+) − mc

j(a
−)|

ε+
j

, and dc
j(a

+)− =
|mc

j(a
−) − mc

j(a
+)|

ε−j
,

• Max-based absolute normalization:
First, set ε+

j = max{maxn
i=1 |mc

j(a
+) − mc

j(a
i)|, |mc

j(a
+) − mc

j(a
−)|} and ε−j =

max{maxn
i=1 |mc

j(a
−) − mc

j(a
i)|, |mc

j(a
+) − mc

j(a
−)|}.

We define the two normalized distances as dc
j(a

i)+ =
|mc

j(a
+) − mc

j(a
i)|

ε+
j

and dc
j(a

i)− =

|mc
j(a

−) − mc
j(a

i)|
ε−j

, and their two extreme cases are derived as

dc
j(a

−)+ =
|mc

j(a
+) − mc

j(a
−)|

ε+
j

and dc
j(a

+)− =
|mc

j(a
−) − mc

j(a
+)|

ε−j
,

One can verify that all the aforementioned normalized distances are between 0 and 1,
i.e. ∀ai ∈ A and ∀cc

j ∈ Cc, 0 ≤ {dc
j(a

i)+, dc
j(a

−)+} ≤ 1 and 0 ≤ {dc
j(a

i)−, dc
j(a

+)−} ≤ 1.

3.3 Distance definitions and aggregation over Co

As mentioned in Section 2, linguistic grade evaluations are commonly employed for mea-
suring consequences over qualitative criteria, Co. Formally, let L = {l1, . . . , lr, . . . , lm}
as the linguistic grade set, where l1 represents the best grade, l2 the next best, · · ·,
Lm, the worst grade. Then, mo

j(a
i) = lr means that ai has been assessed at grade lr on

criterion co
j , i.e. as the rth grade. For example, mo

1(a
3) = l2 means that alternative a3 is

considered to be the 2nd best grade on ordinal criterion co
1. (For simplicity, we assume

that all ordinal criteria are assessed on the same linguistic grade set.)

Since the linguistic grade set represents a preference order, obviously, mo
j(a

+) = l1 and
mo

j(a
−) = lm, indicating that the linguistic grade assessment for a+ on criterion co

j should
be the best one, l1, and the assessment of a− should be the worst one, lm. Let do

j(a
i)+
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and do
j(a

i)− represent the distance between ai and a+, and between ai and a− over
the criterion co

j , respectively. Similar to qualitative criterion case where distances are
normalized to between 0 and 1, we have assumed that the distance between a+ and a−

over co
j is 1, i.e., do

j(a
−)+ = do

j(a
+)− = 1. By piecewise linear interpolation , if mo

j(a
i) =

lr, then do
j(a

i)+ satisfies the condition,
r − 1

m
≤ do

j(a
i)+ ≤ r

m
, and do

j(a
i)− satisfies the

condition,
m − r + 1

m
≤ do

j(a
i)− ≤ m − r

m
. Of course, additional qualitative criterion

quantification methods such as the approaches in [9] can be employed to provide more
sophisticated decision analysis.

After determining the normalized distances from each ai to a+ and a−, an aggregated
distance related to the so-called p-norm, where p ≥ 1, is used to integrate the normalized
distances, d+

j (ai) and d−
j (ai), over all criteria. The most widely adopted norms are p = 1

and p = 2.

Let wc = (wc
1, . . . , w

c
j , . . . , w

c
qc

) represent the weight information for Cc and wo =
(wo

1, . . . , w
o
j , . . . , w

o
qo

) denote the weight information for Co. Then, the weighted p-power

distance of ai to a+ over Cc and Co is D(ai)+ =

{
qc∑

j=1
wc

j ·
(
dc

j(a
i)+

)p
+

qo∑
j=1

wo
j ·

(
do

j(a
i)+

)p
}1/p

,

and D(ai)− =

{
qc∑

j=1
wc

j ·
(
dc

j(a
i)−

)p
+

qo∑
j=1

wo
j ·

(
do

j(a
i)−

)p
}1/p

.

Obviously, when ai = a−, D(ai)+ = D(a−)+, and D(ai)− = D(a+)− for ai = a+.

3.4 DEA-based optimization models

The parameters, wc, wo, do
j(a

i)+ and do
j(a

i)−, ∀co
j ∈ Co and ai ∈ A, need to be specified

before a TOPSIS analysis is implemented. Also, the two conditions of setting a+ and
a− in Section 3.1 have to be verified. Here, two DEA-based optimization models are
designed to tackle these tasks simultaneously.

3.4.1 Individual optimization models

Two individual optimization models are designed to identify the required information
from both a+ and a− points of view.

P(ai)+

Minimize: D(ai)+

Subject to:

10



∀ai ∈ A, D(ai)+ ≤ D(a−)+ ≤ 1;

∀ai ∈ A, if mo
j(a

i) = lr, then
r − 1

m
≤ do

j(a
i)+ ≤ r

m
;

∀co
j ∈ Co, do

j(a
−)+ = 1;

qc∑
j=1

wc
j +

qo∑
j=1

wo
j = 1;

∀cc
j ∈ Cc, wc

j ≥ ρ and ∀co
j ∈ Co, wo

j ≥ ρ.

P(ai)−

Maximize: D(ai)−

Subject to:

∀ai ∈ A, D(ai)− ≤ D(a+)− ≤ 1;

∀ai ∈ A, if mo
j(a

i) = lr, then
m − r + 1

m
≤ do

j(a
i)− ≤ m − r

m
;

∀co
j ∈ Co, do

j(a
+)− = 1;

qc∑
j=1

wc
j +

qo∑
j=1

wo
j = 1;

∀cc
j ∈ Cc, wc

j ≥ ρ and ∀co
j ∈ Co, wo

j ≥ ρ.

Note that ρ ∈ R
+ is a pre-defined small positive value to ensure all weights are positive.

For example, if all calculations are rounded to four decimal places, then ρ could be set
as 0.0001 or any meaningful value greater than 0.0001.

Following the final aggregation procedure in the TOPSIS method, the overall distance

performance of ai, D(ai), can be calculated using D(ai) =
D(ai)−

D(ai)− + D(ai)+
.

3.4.2 An integrated optimization model

Next, an optimization model integrating the two distance measurements from both a+

and a− is designed to identify the required information.

P(ai)

Maximize:
D(ai)−

D(ai)− + D(ai)+

11



Subject to:

∀ai ∈ A, D(ai)+ ≤ D(a−)+ ≤ 1;

∀ai ∈ A, D(ai)− ≤ D(a+)− ≤ 1;

∀ai ∈ A, if mo
j(a

i) = lr, then
r − 1

m
≤ do

j(a
i)+ ≤ r

m
and

m − r + 1

m
≤ do

j(a
i)− ≤ m − r

m
;

∀co
j ∈ Co, do

j(a
−)+ = 1;

∀co
j ∈ Co, do

j(a
+)− = 1;

qc∑
j=1

wc
j +

qo∑
j=1

wo
j = 1;

∀cc
j ∈ Cc, wc

j ≥ ρ and ∀co
j ∈ Co, wo

j ≥ ρ.

Note that P(ai)+ provides the estimate of weight and qualitative criterion quantification
from the ideal point perspective by minimizing the distance from ai to a+, and P(ai)−

furnishes similar information from the anti-ideal point perspective by maximizing the
distance from ai to a−, while P(ai) is designed to integrate the two analysis procedures
into an aggregated assessment.

Since the constraints in P(ai)+, P(ai)− and P(ai) define a closed and bounded set.
The objective functions are continuous functions on these sets. Therefore, the extreme
value theorem of advanced calculus [16] implies that the programs attain minimum
or maximum values at least once. Lingo [21] is comprehensive commercial software
designed to solve linear, nonlinear and integer optimization models faster, easier and
more efficient and it is employed for the calculation in the case study.

Both models follow the general philosophy of DEA to identify individual alternatives’
best possible overall performance from both the ideal and anti-ideal points. Since the
information of weights and qualitative criterion quantification is calculated by P(ai)+

and P(ai)− in two separate optimization models, differences may exist. In the meantime,
the integrated optimization model is designed to synthesize the two perspectives from
a+ and a− and provide an overall assessment of the relevant information, furnishing a
middling and, presumably, better choice for employment. Next, a case study adapted
from [30], in which Shih et al. extended the TOPSIS method for group decision making,
is used to demonstrate the proposed method.
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4 A numerical example

4.1 Background information

This example is adapted from Shih et al. [30]. A local chemical company is recruiting
an on-site manager. 17 qualified candidates (treated as alternatives) are short-listed
(labelled as a1-a17). The human resources department provides some standard selection
tests, consisting of three knowledge tests: 1. language test, 2. professional test and 3.
safety rule test as well as two skill tests: 4. professional skills and 5. computer skills. In
addition, two interviews are administered: 6. panel interview and 7. 1-on-1 interview.
Each candidate will be assessed on the seven criteria constituting the criterion set C.
Obviously, the first five criteria are generally measured on a quantitative and objective
basis, while the last two criteria may be conveniently evaluated in a subjective manner.
Here, the first five criteria are treated as quantitative criteria, Cc, and labelled as
cc
1 − cc

5 sequentially, and the last two criteria are regarded as qualitative criteria, Co,
and labelled as co

1 and co
2.

Instead of directly assigning quantitative values for co
1 and co

2 as [30], a linguistic grade
set, L = {l1, l2, l3, l4}, representing four ordinal assessments, is employed to characterize
the DM’s evaluation. Here we take the first DM’s quantitative assessments regarding
co
1 and co

2 in [30] as the basis (as a group decision making problem, there are four
DMs in [30]) and apply the following transformation rules: if 90 ≤ mj(a

i) ≤ 100,
then ai belongs to l1 on criterion cj; if 80 ≤ mj(a

i) < 90, then ai belongs to l2; if
70 ≤ mj(a

i) < 80, then ai belongs to l3; and if mj(a
i) < 70, then ai belongs to l4.

It is further assumed that all quantitative criteria are benefit. Following the ideal and
anti-ideal points setting in [30] (Note Shih et al.’s paper [30] did not provide a+ and
a− in consequence data format explicitly, but this information can be easily traced
under monotonic assumptions.), ∀cc

j ∈ Cc, mc
j(a

+) = max17
i=1 mc

j(a
i) and mc

j(a
−) =

min17
i=1 mc

j(a
i). The basic consequence information of these 17 alternatives, a+ and a−

over the seven criteria is listed in Table 1.

4.2 A DEA-based optimization analysis

It is assumed that all calculations are rounded to four decimal places, and ρ = 0.0001.
Furthermore, let p = 1 and the vector-based normalization explained in Section 3.2 is
used to conduct the analysis. The normalized distances from ai ∈ A to a+ and a− are
listed in Tables 2 and 3, respectively.

Then, P(ai)+ and P(ai)− are employed to calculate the optimal results of D(ai)+ and
D(ai)−, respectively. Subsequently, the generated optimal results of D(ai)+ and D(ai)−

13



Table 1
Basic consequence information

Alternative
Criteria

cc
1 cc

2 cc
3 cc

4 cc
5 co

1 co
2

a1 80 70 87 77 76 l2 l3
a2 85 65 76 80 75 l4 l3
a3 78 90 72 80 85 l1 l2
a4 75 84 69 85 65 l4 l3
a5 84 67 60 75 85 l3 l2
a6 85 78 82 81 79 l2 l2
a7 77 83 74 70 71 l4 l3
a8 78 82 72 80 78 l3 l4
a9 85 90 80 88 90 l2 l2
a10 89 75 79 67 77 l3 l3
a11 65 55 68 62 70 l4 l4
a12 70 64 65 65 60 l4 l4
a13 95 80 70 75 70 l3 l3
a14 70 80 79 80 85 l2 l3
a15 60 78 87 70 66 l4 l4
a16 92 85 88 90 85 l1 l1
a17 86 87 80 70 72 l2 l2

a+ 95 90 88 90 90 l1 l1
a− 60 55 60 62 60 l4 l4

for each alternative are aggregated as per D(ai) =
D(ai)−

D(ai)− + D(ai)+
to produce the

final distance performance. The relevant distances and their associated rankings are
given in Table 4 under the heading “Individual Models”.

Next, the integrated optimization model in Section 3.4.2 is employed to produce the
overall distance performance for each alternative directly. The detailed calculation is
omitted here and the final result of distances and rankings are shown in Table 4 under
the “Integrated Model” heading.

A close examination of Table 4 reveals that the two DEA-based methods, both the
individual optimization models and the integrated optimization model, provide roughly
consistent rankings. For example, only the ranking orders between 10th-12th are different
and other rankings are almost identical. It is also noticed that ties tend to appear in
the individual optimization models, while the integrated model seems to have more
discrimination power to break ties between alternatives.

14



Table 2
Normalized distance information to a+

Alternative
Criteria

cc
1 cc

2 cc
3 cc

4 cc
5 co

1 co
2

a1 0.1836 0.2678 0.0151 0.1829 0.1898 [0.25,0.5] [0.5,0.75]
a2 0.1224 0.3348 0.1817 0.1407 0.2034 [0.75,1] [0.5,0.75]
a3 0.2081 0.0000 0.2423 0.1407 0.0678 [0,0.25] [0.25,0.5]
a4 0.2448 0.0804 0.2877 0.0704 0.3389 [0.75,1] [0.5,0.75]
a5 0.1346 0.3080 0.4240 0.2111 0.0678 [0.5,0.75] [0.25,0.5]
a6 0.1224 0.1607 0.0908 0.1266 0.1491 [0.25,0.5] [0.25,0.5]
a7 0.2203 0.0937 0.2120 0.2814 0.2576 [0.75,1] [0.5,0.75]
a8 0.2081 0.1071 0.2423 0.1407 0.1627 [0.5,0.75] [0.75,1]
a9 0.1224 0.0000 0.1211 0.0281 0.0000 [0.25,0.5] [0.25,0.5]
a10 0.0734 0.2009 0.1363 0.3236 0.1762 [0.5,0.75] [0.5,0.75]
a11 0.3672 0.4687 0.3028 0.3940 0.2711 [0.75,1] [0.75,1]
a12 0.3060 0.3482 0.3482 0.3518 0.4067 [0.75,1] [0.75,1]
a13 0.0000 0.1339 0.2725 0.2111 0.2711 [0.5,0.75] [0.5,0.75]
a14 0.3060 0.1339 0.1363 0.1407 0.0678 [0.25,0.5] [0.5,0.75]
a15 0.4284 0.1607 0.0151 0.2814 0.3254 [0.75,1] [0.75,1]
a16 0.0367 0.0670 0.0000 0.0000 0.0678 [0,0.25] [0,0.25]
a17 0.1102 0.0402 0.1211 0.2814 0.2440 [0.25,0.5] [0.25,0.5]
a− 0.4284 0.4687 0.4240 0.3940 0.4067 1 1

Note that “z ∈ [x, y]” represent “x ≤ z ≤ y”.

5 Conclusions

A hybrid approach of integrating DEA into TOPSIS is designed to capitalize on the
unique features from both methods for improving multicriteria decision analysis. A
numerical example is developed to demonstrate the proposed method and a comparative
study is carried out. The results illustrate the consistency of ranking results from both
individual and integrated optimization models, implying potential applicability of the
proposed approach.
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