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ABSTRACT 

Age-related neurodegenerative diseases are a major problem in industrialized 

nations, and affect millions of people worldwide.  The pro-apoptotic protein Bax plays a 

crucial part in apoptosis.  We screened a library of low molecular weight compounds for 

a potential Bax inhibitor.  One compound that we have discovered (C22) was found to 

block Bax association to the mitochondria and prevent mitochondrial membrane 

destabilization.  In addition, C22 may have the ability to prevent neuronal cell death in an 

in vivo model of stroke 

WS-CoQ10 is a potent anti-oxidant and is known to stabilize the mitochondria.  

The aim of this study was to evaluate the ability of WS-CoQ10 to the induction of stress-

induced premature senescence in presenilin-1 (PS-1) mutated Alzheimer‟s Disease (AD) 

fibroblasts.  It was found that WS-CoQ10 was able to inhibit senescence in these cells as 

well as decreasing the protein levels of senescence-associated proteins.        
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1 

CHAPTER I 

INTRODUCTION 

Part I:  Cell Death and Pro-Death Proteins 

Apoptosis 

Apoptosis, or programmed cell death, is employed to maintain homeostasis within 

the body (Fadeel et al., 2005).  Unlike necrosis which is a passive and unplanned form of 

cell death, cells that undergo apoptosis expend energy towards their own demise.  Cells 

regularly undergo apoptosis as part of the normal developmental process (Adihetty et al., 

2003).  Apoptotic cells display characteristic morphological changes such as membrane 

blebbing, cell shrinkage (Pollack et al., 2001), nuclear condensation (pyknosis) and 

nuclear fragmentation (karyorhexis) (Kroemer et al., 2005).  Biochemical changes such 

as activation of caspases, membrane flipping, collapse of mitochondrial membrane 

potential, and DNA fragmentation are all characteristic of apoptosis (Spencer and Sorger, 

2011; Heit et al., 2011).  Such changes can be brought upon by an increase in oxidative 

stress within the cell, DNA damage, or the activation of various death receptors and 

proteins responsible for initiating cell death (Pollack et al., 2001).  Apoptosis is a 

required process and must be properly regulated.  If there is a lack of apoptosis, 

uncontrolled proliferation of damaged cells can occur resulting in cancer (Krishna et al., 

2011).  However, if inappropriate initiation of apoptosis occurs, various 

neurodegenerative conditions, such as Alzheimer‟s Disease, Parkinson‟s Disease, and 

Huntington‟s Disease could result (Kerr et al., 1972).  There are 2 main pathways, the 

extrinsic and the intrinsic pathways, of apoptosis. 
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1.2 Extrinsic Pathway of Apoptosis 

In the extrinsic pathway of apoptosis, the initiation of cell death results when a 

series of death-inducing ligands, such as tumour necrosis factor-α (TNF-α) or the Fas 

ligand (FasL), bind to their appropriate death receptors (Adihetty et al., 2003).  For 

example, when FasL binds to the Fas receptor, the Fas Associated Death Domain 

(FADD) is recruited to the intracellular domain of the death receptor.  Procaspase-8 then 

binds to the FADD protein resulting in the formation of the death inducing signalling 

complex, otherwise known as DISC (Kroemer et al., 2007).  It is the DISC complex that 

will then proceed to cleave procaspase-8 into its active form (caspase-8) that is then able 

to activate caspase-3 (Hsu et al., 1996).  Once caspase-3 is activated it is able to 

translocate to the nucleus and assist in DNA fragmentation through the use of various 

DNases, while inhibiting the DNA repair mechanisms (Pollack et al., 2001).  The 

extrinsic pathway of apoptosis can be intertwined with the intrinsic pathway via 

activation of Bid and Bax.  Caspase-8 activation can lead to the cleavage of the pro-

apoptotic protein Bid to its truncated form of tBid.  tBid is then able to oligomerize with 

Bax and initiate pore formation in the mitochondrial membrane, subsequently leading to 

mitochondrial permeabilization (Fig. 1.1) (Ghibelli and Diederich, 2011).  Lymphocytes 

commonly undergo apoptosis via the extrinsic pathway as a result of Fas-mediated 

apoptosis activation (Otsuki et al., 2011).   
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1.3 The Intrinsic Apoptotic Pathway 

Mitochondria play an integral role to the functioning of the cell.  They are 

responsible for integral cell processes such as energy production and have been 

implicated in many diseases, such as cancer, Parkinson‟s Disease, Alzheimer‟s Disease, 

and stroke (Kroemer et al., 2007).  Mitochondria also play a large role in the initiation of 

apoptosis via the intrinsic apoptotic pathway. 

    One key aspect of the intrinsic pathway of apoptosis is mitochondrial outer membrane 

permeabilization, or MOMP.  In this case, the mitochondrial outer membrane ruptures 

and releases cytotoxic factors such as cytochrome c or SMAC/DIABLO into the cytosol.  

Subsequent resulting events include loss of inner mitochondrial membrane potential, 

caspase activation, and an increase in oxidative stress (Newmeyer et al., 2003).  MOMP 

can be caused by two mechanisms: the first involving the Bcl-2 family of proteins, and 

the other focusing on the permeability transition pore (PTP) (Bouchier-Hayes et al., 

2005). 

The Bcl-2 family of proteins contains both pro-death and pro-survival proteins 

whose balance affects the potential for the cell to undergo apoptosis.  When the pro-death 

members (such as Bax, Bid, Bak, etc.) associate with the mitochondria, they are believed 

to form a pore spanning the mitochondrial membrane.  When this happens, it allows for 

the release of cytotoxic factors into the cytosol.  In the cytosol, APAF-1 (apoptosis 

protease activating factor-1) exists as a monomer.  In the case of MOMP and the release 
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of cytotoxic factors, APAF-1 complexes with procaspase-9 and cytochrome c and is 

activated with the addition of ATP/dATP (Cain et al., 2002).  This allows for the 

formation of the apoptosome which can cleave procaspase-9 into its active form (caspase-

9) which leads to further activation of caspase-3.  Caspase-3 then acts to cleave ICAD 

(inhibitor of caspase-activated DNase), which then allows for CAD (caspase-activated 

DNase) to enter the nucleus of the cell and initiate DNA fragmentation,   subsequently 

resulting in cell death (Fig. 1.1) (Enari et al., 1998). 

The PTP encompasses both the inner and outer mitochondrial membranes and is 

composed of three main components: the voltage dependent anion channel (VDAC), 

adenine nucleotide translocase (ANT), and cyclophillin D (cyp D) (Zamzani et al., 2001).  

In the case of increased oxidative stress, such as that which is experienced in 

ischemia/reperfusion (Crompton et al., 1999), the PTP becomes saturated with bound 

Ca
2+

.  This saturation results in an unregulated influx and efflux of water and ions into 

and out of the mitochondria, as well as a disruption in the mitochondrial membrane 

potential.  The influx of water causes the mitochondrial membrane to burst, thus, 

releasing cytotoxic factors into the cytosol and initiating the caspase cascade (Bouchier-

Hayes et al., 2005). 
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Figure 1.1:  Extrinsic vs. intrinsic apoptotic pathways.  This schematic representation 

illustrates the differences between the intrinsic and extrinsic pathway of apoptosis.  In the 

extrinsic pathway, apoptosis is induced by the binding of a death ligand to its appropriate 

receptor.  This leads to activation of effector caspases and inevitably cell death.  In the 

intrinsic pathway of apoptosis, some intracellular stimuli (such as ROS) causes the 

migration of pro-apoptotic members of the Bcl-2 family of proteins to the mitochondria.  

This eventually leads to mitochondrial destabilization and the release of cytochrome c 
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into the cytosol where formation and activation of the apoptosome occurs.  Subsequently, 

caspases are activated and cell death occurs.  The extrinsic and intrinsic pathways are not 

entirely separate from one another.  Interconnection between the two can occur when 

tBid (the truncated product of Bid cleavage by caspase-8) oligomerizes with Bax to cause 

pore formation to the mitochondrial membrane.  This link from the extrinsic pathway can 

further propel the events of the intrinsic pathway of apoptosis, such as mitochondrial 

membrane permeabilization.     

 

1.4 The Bcl-2 Family of Proteins 

The Bcl-2 family of proteins contains both pro-apoptotic and anti-apoptotic 

members.  They are composed of various arrangements of the homologous BH1-BH4 

domains, which are independently folded parts of a protein that have their own specific 

function.  Those members that have all 4 BH domains and a C-terminal hydrophobic tail 

used for mitochondrial membrane insertion include the anti-apoptotic Bcl-2 proteins.  

Those proteins that lack only the BH4 domain include the pro-apoptotic members Bax 

and Bak.  BH3 only proteins are also pro-apoptotic and include Bid, Bad, and Puma 

(Hengartner et al., 2000).   

 The balance between the pro-apoptotic and anti-apoptotic members of the Bcl-2 

family is integral to whether apoptosis occurs (Park, 2009).  The BH3 domain is an 

important part of the structure of these proteins, as it allows for the dimerization between 



 

 

 7  

 

 

 

 

pro- and anti-apoptotic members to occur (Bax/Bcl-2), thereby halting apoptosis, or the 

dimerization of pro-apoptotic proteins (Bax/Bax) to occur resulting in apoptosis.    

      In particular, Bax plays a prominent role in the induction of apoptosis by dimerizing 

with itself or forming a heterodimer with other pro-apoptotic proteins.  The resulting 

dimer is able to form a pore in the mitochondrial membrane, thus, causing release of 

cytotoxic factors into the cytosol.   

 Bax exists in 4 different isoforms: γ(5 kDa), β(24 kDa), δ(16 kDa), and α(21 

kDa).  Only the α and β isoforms are known to contain the BH3 domain and the 

hydrophobic C-terminal tail that is required for insertion into the mitochondrial 

membrane, and are thus the most detrimental to cell survival (Oltavai et al., 1993).  The β 

isoform of Bax is the one that will be discussed in this body of work.  One important 

factor in determining the localization of Bax in the cell is the amino acid Ser184.  If this 

serine is mutated to a Val or subjected to complete deletion, Bax becomes permanently 

associated to the mitochondrial membrane, even in healthy cells.  However, if this serine 

is substituted for a His, Glu, Lys, or Asp, Bax becomes permanently located in the 

cytosol (Neuchastan et al., 1999).  

 Bax is composed of 9 alpha helices, with 8 helices arranging themselves around 

one central helix.  Helix 2 (α2) contains the BH3 domain responsible for facilitating the 

binding of Bax to other proteins, while helix 9 (α9) contains the C-terminal hydrophobic 

tail that allows Bax to insert into the mitochondrial membrane (Suzuki et al., 2000).  
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Under normal conditions, the α2 BH3 domain is bound to the α9 C-terminal hydrophobic 

tail and is not able to dimerize nor is it able to insert itself into the mitochondrial 

membrane.  Membrane permeabilization is able to take place when α2 and α9 are able to 

break free from each other to allow for dimerization and mitochondrial pore formation to 

occur (Suzuki et al., 2000).   

 

1.5 Implications of Oxidative Stress in Stroke and Ischemic Related Brain Injury 

In ischemic related brain injuries, one of the main perpetrators of cellular damage 

is oxidative stress.  Ironically, the return of blood flow to the infarcted area of the brain 

causes harm along with its benefits due to the increase in oxygen availability and the 

increase in oxidative stress that reperfusion causes.  In these situations, lactic acid 

accumulates in the affected neurons promoting pro-oxidant effects by increasing the H
+
 

concentration within the cells and generating more ROS (Allen et al., 2009).  The 

primary source of ROS is the superoxide anion radical (O2
-
), which is generated by 

leakage from complex III of the electron transport chain of malfunctioning mitochondria 

(Turrens et al., 1985). 

Oxygen is one of the main forms of oxidative stress but it is not the only one.  

Hydrogen peroxide is converted to the hydroxyl radical (OH
-
), and the nitric oxide (NO) 

species that are produced can have extensive implications in neuronal signalling.  DNA 



 

 

 9  

 

 

 

 

fragmentation and lipid peroxidation can result when the O2
- 
radical reacts with NO to 

produce the highly damaging peroxynitrite (ONOO
-
) molecule (Bergendi et. al., 1999).   

The brain is the perfect environment for damage due to oxidative stress since it 

makes up only 2% of the total body weight but consumes nearly 20% of the total oxygen 

(Clarke et al., 1999). The composition of the brain also makes it a target of oxidative 

damage.  Its high level of polyunsaturated fatty acids and low level of antioxidant 

defence mechanisms makes the brain an excellent candidate for damage due to oxidative 

stress (Saeed et al., 2007). 

Stroke is a leading cause of death and long-term disability in industrialized 

nations (Alexandrova et al., 2005; Moro et al., 2005), and is known to induce impaired 

motor function and cognition, with nearly 40% of patients not expected to make a full 

recovery (Allen et al., 2009).  The production of free radicals and oxidative stress is the 

main culprit of stroke-induced damage.   

Two types of stroke can occur, hemorrhagic stroke, and the more common, 

ischemic stroke.  Hemorrhagic stroke is a result of a rupture of a blood vessel in the brain 

that leads to uncontrolled bleeding.  On the other hand, ischemic stroke is a result of an 

obstructed flow of blood to the brain, usually caused by the formation of a blood clot.  

This deprivation of adequate blood to the brain results in the formation of the ischemic 

core.  In this area, neurons die quickly via necrosis.  The onset of lipolysis, protein 
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degradation, and the breakdown of ion homeostasis are some of the events responsible for 

the rapid death of these cells (Brouns et al., 2009).   

While neurons in the ischemic core die quickly due to necrosis, there is an area 

surrounding the ischemic core known as the penumbra.  Here, these cells still suffer 

damage but they remain viable and are able to be saved.  Neurons in the penumbra die via 

apoptosis and the full effects of this cell death may not be evident for up to a week 

following ischemia (Schaller, 2004).  

The events that occur in the penumbra act as a double-edged sword.  In order to 

survive, the neurons of the penumbra require the oxygenated blood delivered with 

reperfusion.  However, this influx of oxygen does not come without its own problems.  

This large infusion of oxygenated blood brings with it a host of free radicals.  These free 

radicals themselves pose a threat to the brain tissue by generating oxidative stress 

(Facecchia et al., 2011). 

When platelets are exposed to conditions of reperfusion they generate additional 

ROS in the form of O
2-

 and OH
-
.  Furthermore, the ROS that are produced during 

reperfusion are responsible for the activation and transcription of many proteins.  For 

example, ROS stimulate the production of JNK and mitogen-activated protein kinase 

phosphorylation (p38 MAPK) which can regulate transcription and play a role in 

induction of apoptosis.  During reperfusion, activator protein-1 (AP-1) binding is also 

enhanced (Schaller et al., 2004).  The activation of AP-1 is necessary for the induction of 
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apoptosis to occur (Chen et al., 1999) as it controls the transcription of various apoptosis 

related proteins such as FasL and TNF-α (Karamouzis et al., 2007).  This action, along 

with the activation of caspase-3, are several examples of how reperfusion is responsible 

for initiating cell death within the neurons of the penumbra by controlling the expression 

of certain genes.     

Along with their role in effecting the transcription of various proteins, ROS 

generated by reperfusion itself can cause direct cellular stress.  The ramifications 

associated with reperfusion cannot be fully alleviated by the cell‟s normal radical 

scavenging mechanisms such as superoxide dismutase (SOD), glutathione peroxidase and 

catalase.  These systems are overwhelmed and cannot adequately quench the multitude of 

free radicals introduced by reperfusion (Li et al., 2002).  The cells of the penumbra are 

already vulnerable to damage, and the generation of ROS exacerbates the damage that 

may have already occurred to these cells by lipid peroxidation.  Phospholipid membrane 

degradation is one of the major concerns associated with increased oxidative stress levels.  

The larger number of PUFAs that compose the membrane are excellent targets for ROS.  

This leads to membrane instability that causes a disruption of receptor behaviour and ion 

channel activity.  Along with its own deleterious effects, lipid peroxidation is also 

responsible for the inhibition of lipid repair enzymes such as lysophosphatidylcholine 

acyltransferase and fatty acyl CoA-synthase (Schaller et al., 2004).  
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1.6  The Role of Pro-Apoptotic Proteins in Stroke 

As previously mentioned, apoptosis is controlled by a wide range of proteins.  

Oxidative stress can cause the activation of the p53 tumor suppressor gene which in turn 

is responsible for the increased transcription of Bcl-2 associated X protein (Bax) and the 

p53-upregulated modulator of apoptosis (PUMA) (Nakano et al., 2001).  PUMA has been 

shown to be able to interact with the Bcl-2 family of proteins to assist in initiating 

apoptosis.  PUMA has been known to work in conjunction with Bax to facilitate 

mitochondrial membrane permeabilization and the release of cytochrome c (Zinkel et al., 

2010).   

  The Bcl-2 family of proteins play a large role in maintaining the balance between 

life and death in the process of apoptosis.  For example, under normal cell conditions, 

Bax is localized in the cytosol as a 24 kDa monomer.  However, when increased 

oxidative stress is introduced Bax migrates to the mitochondria to initiate pore formation 

and apoptosis (Culmsee et al., 2005) 

Studies have demonstrated that Bax channel activity is necessary for apoptosis to 

occur since cell death was halted with the use of Bax channel blockers (Hetz et al., 2005).  

Since Bax is an essential protein in the regulation of apoptosis, it is an excellent target 

candidate for therapeutic approaches.  Not only does its extensive involvement in the 

process of cell death make Bax a good therapeutic target, its position in the apoptosis 

cascade does as well.  While focusing on anti-oxidants may be a valid point of 
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investigation, bolstering of the anti-oxidant defense machinery still results in the 

permeabilization of the mitochondria.  Blocking the initiation of apoptosis further up the 

chain by inhibiting Bax function may save the mitochondria and further halt the apoptosis 

cascade.    

 

1.7 Therapeutic Approaches for Stroke 

At this time the only known treatment for victims of stroke is the use of 

thrombolytics, such as tissue plasminogen activator.  This is the most widely accepted 

treatment for stroke.  In addition, other methods of treatment are being investigated (del 

Zoppo et al., 1998).  One example is the use of hypothermia as a means to combat stroke.   

It has been found that lowering the body temperature of a stroke victim may improve 

neurological outcome (Yenari et al., 2010). 

An emerging field of study for the treatment of ischemia includes the use of bone 

marrow stromal cells (BMSC).  These cells can differentiate into neural and glial cells, 

both in vivo and in vitro after being transplanted into animal brains following 

neurological insult such as intracerebral hemorrhage (ICH) (Woodbury et al., 2000).  

These neural stem cells localize to the injured section of the brain to regenerate damaged 

brain tissue in the appropriate locations. Recent studies have found that these BMSCs are 

able to generate functional recovery in Wistar rats following ICH (Otero et al., 2011). 
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  Recently, advances in treatments for stoke have been made by the use of low 

molecular weight compounds that inhibit proteins (such as Bax) that are critical in the 

apoptosis cascade.  Bax channel formation is one of the key instigators of mitochondrial 

destabilization and blocking this action could halt apoptosis by preventing the release of 

cytotoxic factors into the cytosol, thus halting the caspase cascade (Hetz et al., 2005).  

These inhibitory compounds were modeled after single domain antibodies that were able 

to bind specifically to Bax (Gueorguieva et al., 2006).  They are small enough to have the 

potential to cross the blood brain barrier and are not susceptible to proteolysis.  Recent 

research completed in our laboratory indicates that these compounds show a high 

specificity towards the pro-apoptotic protein Bax, and are able to block its function and 

save cells in vitro (McGonigal et al., 2009).  These compounds are able to bind to Bax 

even in the presence of single domain antibodies that are specifically structured to bind to 

Bax.  It is our hope that these compounds will be able to interfere with Bax activation and 

prevent its association to the mitochondria, thus preventing the Bax channel formation 

that leads to the leakage of cytotoxic factors into the cytosol (Fig. 1.2).  These low 

molecular weight compounds would not be needed to be administered under such strict 

timeframes as thrombolytics and are not likely to cause the haemorrhaging associated 

with tissue plasminogen activator.  With more investigation it is likely that the use of low 

molecular weight compounds will become valid treatment options for stroke patients.     
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 Figure 1.2: Target of low molecular weight compounds.  A key aspect of apoptosis is 

destabilization of the mitochondrial membrane by the pro-apoptotic protein Bax.  

Mitochondrial pore formation results in release of cytochrome c into the cytosol.  Bax-

inhibiting low molecular weight compounds have the potential to bind to Bax and prevent 

its association to the mitochondrial membrane.  If this can occur, Bax would no longer be 
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able to initiate the release of cytotoxic factors into the cytosol, resulting in the inhibition 

of subsequent apoptotic events. 

1.8 Screening Pharmacophore Libraries for Low Molecular Weight Neuroprotective 

Compounds – Discovery of Compound 22 

 Low molecular weight compounds have the potential to be used as therapeutics in 

many conditions.  They are generally stable, not susceptible to proteolysis, and small 

enough to cross the blood brain barrier.  In 2001, a large library of 16, 320 low molecular 

weight compounds was screened to find compounds that would be able to block the Bcl-

XL/Bak BH3 interaction.  Their intention was to find a compound that was able to disrupt 

the binding of these proteins by interfering with their BH3 domains.  Previous studies in 

our lab have conducted a screen of 34 of these compounds that were found to exhibit 

binding to Bcl-2.  Because Bcl-2 is close to Bax in structure, we hypothesized that a 

compound from this library could block the binding of Bax to other pro-apoptotic 

proteins, thus, neutralizing its role in initiating apoptosis.    We found one compound, 

denoted as compound 22 (C22) that was able to competitively bind to Bax in the presence 

of single domain antibodies (sdAbs) specific to Bax.   

Single domain antibodies differ from conventional antibodies, such as 

immunoglobulin, in the fact that they are derived from species of animals (such as the 

llama and camel) that produce antibodies that are absent of the variable light chain and 

contain only the variable heavy chain.  The elimination of the light chain allows for a 
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more concise isolation of a smaller antigen binding site located on the variable heavy 

chain, known as a sdAb.   These sdAbs are small in size (approximately 13 kDa) and 

consist of only 3 highly specific complementary determining regions that allow it to 

interact with a specific antigen (Tanha et al., 2002).  Since C22 was able to competitively 

bind to Bax in the presence of these sdAbs, it indicates that this compound is highly 

specific towards Bax and may be able to interfere with its apoptotic functions. 

   Previous work performed in our lab has found that C22 is able to lower the 

amount of ROS experienced by the mitochondria and prevented oxidative stress-induced 

apoptosis.  The cells under oxidative stress that were treated with C22 were able to grow 

and divide normally and maintained mitochondrial membrane potential (Unpublished 

data; Katrina McGonigal, 2009).  Compound 22 was studied as a potential 

neuroprotective agent in the hopes that it would be able to block the BH3 domain 

interaction that is essential for Bax dimerization and mitochondrial pore formation. 

 

Part II: Oxidative Stress Induced Senescence  

 

1.9 Senescence 

 Cellular senescence is a state where cells have reached a finite amount of 

replications and can no longer divide (Campisi, 2005).  These cells are still metabolically 

active and are not destined to die via apoptosis, necrosis or any other form of cell death 
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(Campisi et al., 2005). Senescent cells are instead removed from the cell cycle by being 

locked in the G1 phase, and have reached the end of their replicative span, known as the 

“Hayflick Limit” (Dumont et al., 2000).  Senescence is a process induced to ensure that 

cells with defective or shortened telomeres do not enter the cell cycle and continue to 

divide.   

 Senescent cells display a variety of characteristics that distinguish them from their 

normal counterparts.  Senescent cells display a larger, and more flattened morphology, in 

addition to possessing shortened telomeres (Sikora et al., 2011).  Senescent cells are also 

resistant to apoptosis (Guo et al., 2010) and have increased metalloproteinase activity that 

has been shown to degrade the extracellular matrix (Campisi, 1999).     

 Senescence can be caused by a variety of factors.  Due to the shortening of 

telomeres, senescent cells are subject to a higher level of DNA damage.  Double stranded 

DNA breaks, histone deactylase inhibitors, and mitogenic signals can also be a cause of 

senescence (Campisi, 2005).  Because of the increase in DNA damage, senescent cells 

have a higher level of endogenous oxidative stress and ROS production than their normal 

counterparts.  Because of this, senescent cells also display differences in their genetic 

expression patterns and express higher levels of senescent-associated proteins such as 

p21, p16, and pRb (Sikora et al., 2011).   

Senescent cells are relatively resistant to apoptosis and do not die, but instead 

have been found to contribute to the aging process.  An accumulation of the defective 
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senescent cell phenotype has been shown to elicit changes in the tissue 

microenvironment.  The affected tissues have been shown to suffer a loss of function and 

integrity due to the over expression of secreted molecules such as metalloproteinases, 

degrative enzymes, inflammatory cytokines and a variety of growth factors (Campisi et 

al., 1996, Jennings et al., 2000, Leung & Pereira-Smith et al., 2001). 

 

1.10 Mechanisms of Senescence 

 While senescence is a complex process, there are two main pathways involved in 

its initiation: the p53 pathway and the Rb pathway (Bringold and Serrano, 2000).  The 

p53 protein is known to be a tumour suppressor and mediator of DNA damage, while the 

Rb protein is also a potent tumour suppressor and inhibitor of cell cycle progression 

(Wahl and Carr, 2001).  Inactivation of one or both has been shown to increase cell 

replication and decrease the level of senescence (Itahana, 2001). 

Because of shortened telomores, senescent cells are subjected to higher levels of 

DNA damage and oxidative stress, which results in the upregulation of p53 (Itahana, 

2001).  Once telomeric damage is identified, the ataxia telangiectasia mutated (ATM) 

pathway is activated and in turn activates p53 (Suzuki et al., 2008).  The ATM pathway 

is triggered under conditions of double stranded DNA breaks and results in cell cycle 

arrest (Li et al., 2007).  In senescent cells, p53 is also upregulated by the Ras oncogene.  
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In combination with ROS, Ras is able to activate MAPK-p38 kinase which in turn is able 

to upregualte the levels of p53 and the tumour suppressor p16 (Campisi, 2005).   

In addition, p53 has also been shown to induce senescence by increasing the expression 

of other senescent associated proteins.  For example, under conditions of increased 

oxidative stress, p53 has been shown to induce the expression p21 which is an inhibitor 

of the cell cycle (Campisi, 2005).  Weeks after p21expression and senescence has 

occurred, there is a drop in the level of p21 present.  Instead, the protein p16 is seen to 

increase (Campisi, 2005).  p16 is an inhibitor of the cyclin D/Cdk4 and cyclin D/Cdk6 

complex and plays a role in the maintenance of cellular senescence, while p21 and p53 

are thought to be involved in the initiation of senescence (Campisi, 2005). 

In addition to p53, activation of the Rb pathway was also shown to induce senescence.  In 

this case, p16 and p21 are able to keep Rb in a hypophosphorlyated growth inhibiting 

state that prevents the binding of E2F transcription factor to its specific promoters (Chen 

et al., 2006).  This Rb pathway has also been shown to be involved in senescence through 

chromatin disruption and re-organization (Zhang et al., 2006), oncogenic signalling, and 

other stressors that lead to the expression of p16/p21 (Ben-Porath and Weinberg, 2004). 

 

1.11 Stress Induced Premature Senescence (SIPS) 

 When cells encounter an increased, yet sub-lethal, level of ROS they can 

experience a phenomenon known as SIPS.  In this case, the increased levels of ROS 
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cause the cells to withdraw from the cell cycle and remain halted in the G1 phase of the 

cell cycle.  These cells are locked in this phase and held there by various cell cycle 

inhibitors such as p21 and p16.  Research has been conducted to experiment with the 

growth of cells under various levels of oxygen.  It was found that when cells were placed 

in an environment of greater than 10% oxygen, they experienced a reduced lifespan and 

had a limited number of population doublings (Packer et al., 1977).    

Cells that have undergone SIPS were shown to have 30% more 8-oxodeoxyguanosine 

(oxo
8
dG) in their DNA and possessed 4 times the level of free oxo

8
Gua bases (Chen, 

1995). This indicates that the level of oxidative stress associated with SIPS is potent 

enough to induce DNA damage (Chen, 1995).    In addition to poor DNA repair 

mechanisms and low levels of telomere maintenance, oxidative stress has been found to 

be the main contributor to the induction of SIPS (Toussaint, 2000). 

 

1.12 Alzheimer‟s Disease 

 Alzheimer‟s Disease (AD) is a neurodegenerative disease that affects millions of 

people worldwide and is the most common form of dementia (Querfurth et al., 2010).  It 

is an age-related illness and with the average life span increasing, AD is becoming a more 

and more prevalent problem (Hampel et al., 2003).  AD is associated with mutations in 

the genes encoding for presenilin-1, presenilin-2 (PS-1 and PS-2), and amyloid precursor 

proteins (APP) (Cecchi et al., 1999).   
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 Behavioural and symptomatic characteristics of AD include a loss of word 

comprehension (aphasia), the inability to perform complex tasks (apraxia), and the 

inability to use common objects (agnosia) (Castellani et al., 2010).  Characteristics of AD 

on a cellular level include neuronal synaptic degeneration, accumulation of abnormal 

mitochondria, neuronal loss, and glial mediated inflammation (Palop and Mucke, 2011; 

Busciglio et al., 2002; Castellani et al., 2010).   AD is most widely known to be a result 

of the formation of neurofibrillary tangles and plaques that are a result of improper 

processing of APP (Uchida, 2010).  When APP is improperly processed, it results in an 

accumulation of amyloid β (Aβ) molecules that are predisposed to plaque formation (Aβ1-

42), while normal APP processing results in the formation of Aβ products that are not 

predisposed to plaque formation (Aβ1-40) (Castellani et al., 2010).  The accumulation of 

these plaques is detrimental because the Aβ molecules are likely to bind to the NMDA 

receptor and disrupt the proper flux of Ca
2+
, thus decreasing neuronal plasticity.  Aβ can 

also bind to the insulin receptor making the cells energy deficient (Palop and Mucke, 

2010).    

 Another key element in the onset of AD is the hyperphosphorylation of the tau 

protein.  Under normal conditions, the tau protein is responsible for stabilizing 

microtubules.  When tau becomes hyperphosphorylated by either CDK5, ERK2, or 

GSK3β, it results in a self-assembly of straight and helical tangles; this produces an 

insoluble form of tau that forms aggregates in the brain (Ballard et al., 2011).      
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 Tau and Aβ accumulation can be a result of increased levels of ROS, impaired 

protein folding from defects in the endoplasmic reticulum, and the defective clearance of 

damaged proteins from the cell (Bi, 2010).  Increased oxidative stress in AD can be a 

result of abnormal mitochondrial function, defective proteolysis, and activated microglia 

(Zhu et al., 2004).  In addition, AD patients have an increased utilization of oxidative 

energy as oppose to glucose consumption, also increasing the amount of oxidative stress 

present in the brain (Fukuyama et al., 1994). 

 

1.13 Presenilin-1 Mutation 

 Mutations in the presenilin-1 (PS-1) gene are one of the most commonly 

associated mutations to the early onset familial AD, with the gene encoding for PS-

1located on chromosome 14 (Cecchi et al., 1999).  PS-1 is a membrane protein and a 

major component of the atypical aspartyl protease complex that is responsible for the 

processing of APP (DeStrooper et al., 1998).  Abnormalities in the PS-1 component of 

this γ secretase responsible for cleaving APP into its amyloid beta (Aβ) products result in 

the production of plaque forming Aβ molecules (Aβ1-42), as oppose to the non-

aggregating Aβ1-40 molecules.     

 PS-1 mutations can be any one of 170 possible missense mutations (van Tijn et 

al., 2011).  Cells that possess the PS-1 mutation are known to have higher than normal 

levels of endogenous ROS production.  This higher level of ROS makes the cell 
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susceptible to undergoing SIPS, as oxidative stress is a main component of SIPS 

initiation (Toussaint, 2000). 

 In addition to improper APP processing, deletion of PS-1 has also been associated 

with disrupted Ca
2+

 homeostasis in the endoplasmic reticulum, resulting in a release of 

Ca
2+ 

into the cytoplasm of the cell (Cook et al., 2005).  This results in a decrease in 

neuronal plasticity and makes the cells more susceptible to death via oxidative stress and 

metabolic or ischemic insults (Mattson et al., 2003).   

 The effects of the PS-1 mutation is present in all cells, including neurons and 

fibroblasts.  Because brain tissue from AD patients is unavailable to work worth, as 

biopsies of brain tissue of living AD patients is not possible, the effect of the PS-1 

mutation can be studied in fibroblasts.  Since the PS-1 mutation exists in all cells, 

information about this mutation gathered in fibroblasts cells can be extrapolated and 

applied to neurons with the PS-1 mutation. 

 

1.14 Antioxidants 

 An overabundance of reactive oxygen species (ROS) has detrimental affects on 

protein function, stability, cell signaling, lipid peroxidation, and can cause disruptions to 

mitochondrial function.  The brain is especially susceptible to ROS, as it consumes 20% 

of the body‟s oxygen while composing only 2% of the total body weight (Clarke, 1999).  

DNA and RNA are also prone to oxidation via ROS (Nunomura, et al., 1999), making 
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ROS a key player in the onset of neurodegenerative conditions such as stroke and 

Alzheimer‟s Disease. 

 Cells combat ROS with a variety of different mechanisms, one being the use of 

anti-oxidants to quench the free radicals produced.  Common anti-oxidant mechanisms 

employed to quench ROS include Cu/Zn/Mn superoxide dismutase (SOD), glutathione 

peroxidase, alpha-tocopherol, catalase, and ascorbate (Halliwell et al., 1989) as well as 

the GSH and NADP/NADPH pathways (LeBras et al., 2005).  The maintenance of the 

oxidant-antioxidant balance of the cell is crucial to maintaining proper functioning and 

stability. 

 

1.15 Coenzyme Q10 as a Neuroprotective Agent 

 Coenzyme Q10 (CoQ10) is a naturally occurring, hydrophobic molecule that is 

responsible for shuttling electrons from complex I and complex II of the mitochondria to 

complex III.  It is an integral member of the mitochondrial electron transport chain and 

plays an important role in free radical scavenging and the prevention of lipid peroxidation 

(Beal, 2003).  CoQ10 is present in both its reduced and oxidized forms (Figure 1.3) in 

order to optimize its electron transport capabilities.  CoQ10 has been found to be involved 

in disulfide bond formation, redox control, cell signalling, and gene expression (Jeya, et 

al., 2010).  It elicits protective effects to the cells by regulating activity of the PTP, 
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activating mitochondrial uncoupling proteins and preventing the reduction of GSH and 

ATP levels (Jeya, et al., 2010; Beal, 2003; Sandhu et al., 2003).  

 CoQ10 has been tested in clinical trials for the treatment of neurodegenerative 

disorders, such as Parkinson‟s Disease, as well as various mitochondrial disorders (Shults 

et al., 2004).  One drawback to the use of CoQ10 as a therapeutic is the fact that it is 

lipophillic and its use in cell culture is very difficult and limited.  In order to combat this 

problem, a water soluble version of CoQ10 (WS-CoQ10) was developed at the National 

Research Council of Canada (Borowy-Boroski et al., 2004).  This formulation is 

conjugated to α-tocopherol and polyethylene glycol (PEG) to increase in solubility and 

uptake in the cell.  Conjugation to PEG and the addition of a long aliphatic spacer 

(greater than or equal to 8 carbons in length) allowed for the formation of amphiphillic 

nanomicelles that facilitated the solubility of coenzyme Q10 in both water and lipids 

(Borowy-Boroski et al., 2004).  PEG was chosen as the hydrophilic component of this 

formulation while α-tocopherol was chosen as the hydrophobic component.  Both PEG 

and α-tocopherol are commercially available and non-toxic (Borowy-Boroski et al., 

2004).    This formulation has had great success in protecting neuronal cells as it has been 

found to prevent cell death induced by oxidative stress in vitro (McCarthy et al., 2004; 

Somayajulu et al., 2005).  In addition, WS-CoQ10 has been found to prevent Bax-induced 

destabilization of the mitochondrial membrane, making it an attractive candidate for 

treating neurodegenerative diseases (Naderi et al., 2006).  
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Figure 1.3:  Oxidized and reduced forms of CoQ10.  Oxidized CoQ10 (ubiquinone) can 

accept an electron to form the semiubiquinone radical which is capable of accepting 

another electron to form the reduced form of CoQ10 (ubiquinol). 
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1.16 Objectives 

Part I: Use of low molecular weight compounds for neuroprotection in preventing 

neuronal cell death in cases of stroke. 

It has been well established that, in cases of stroke, Bax plays a large role in the 

destabilization of the mitochondrial membrane, eventually leading to apoptosis.  We 

hypothesize that with the use of a low molecular weight compound, we can block and 

inhibit Bax activity and prevent neuronal cell death in stroke.  

Objectives:  

1.) Evaluate the efficacy of the anti-Bax inhibitor, Compound 22, in protecting 

neurons after the incidence of ischemic insult. 

2.) Determine the mechanism of action by which Compound 22 acts in neutralizing 

Bax activity. 

3.) Evaluate the ability of Compound 22 to protect neurons in an in vivo rat model of 

ischemia.         

 

Part II: The use of WS-CoQ10 in Preventing the Induction of Cellular Senescence in PS-1 

Mutated AD Fibroblasts 

Oxidative stress is a major culprit in inducing SIPS in the fibroblasts of AD 

patients.  Fibroblasts from AD patients are widely used to study familial forms of this 
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neurodegenerative disorder, as brain tissue from living patients is inaccessible.  The PS-1 

mutation in these fibroblasts results in an increased level of oxidative stress, making them 

more sensitive to oxidative damage, which may translate to neuronal cell death.   In this 

part of my thesis, I have used PS-1 mutated AD fibroblasts obtained from an AD patient 

to study the effects of WS-CoQ10 in preventing the induction of cellular senescence.    

Objectives: 

1.) Evaluate the ability of WS-CoQ10 to prevent cellular senescence in PS-1 mutated 

AD fibroblasts. 

2.) Preliminary studies into the mechanism of action by which WS-CoQ10 may be 

enacting its protective effects.   
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CHAPTER II 

MATERIALS AND METHODS 

2.1 Chemicals and Supplies 

2.1.1 Chemicals 

Most of the chemicals were purchased from Sigma Aldrich Chemical Company, 

Mississauga, ON, Canada.  These chemicals include:  Bacto yeast extract, Bacto tryptone, 

chloramphenicol, arabinose, IPTG, lysozyme, DNase, imidazole, BSA, CHAPS, HEPES, 

MgCl2, H2O2, HRP, EDTA, EGTA, TRIS-HCl, Triton X-100, PHPA, PMSF succinate, 

trypsin-EDTA, KCl, mannitol, Tween 20, CaCl2, BSA (bovine serum albumin) and horse 

radish peroxidise-conjugated anti-mouse and anti-rabbit antibodies. 

NaH2PO4, Na2HPO4, DMSO, NaOH, NaCl, DTT, NaHCO3, APS (ammonium 

persulfate), SDS (sodium dodecyl sulphate), citric acid, and sucrose were purchased from 

BDH, Toronto Canada.  Protein assay reagent, protein marker, TEMED, and acrylamide 

were obtained from Bio Rad, Ontario Canada.  Glycine was purchased from EM 

Sciences, NJ, USA.  Hoechst 33342 and DCFDA (dichlorofluoroscein diacetate) was 

obtained from Molecular Probes, Eugene OR, USA.    

Hematoxylin stain was obtained from Fischer Scientific and Eosin Stain was 

purchased from Harleco.  Mounting media was purchased from Richard Allan Scientific 

and DAPI and NeuN was obtained from Santa Cruz.    

 

2.1.2 Equipment 

Fluorescence measurements were conducted in the SpectraMan Gemini XS 

multiplate reader (Molecular Devices, Sunnyvale CA USA). Cell culture was performed 
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under sterile conditions in the class-II type A/B3 Biosafety cabinet (Nuaire).  Cells were 

maintained in an incubator with 5% CO2 which used a HEPA filter (Thermo Forma). A 

Dounce homogenizer from Kontes Glass Company (NJ, USA) was used along with, 

freezer vials (VWR) and Eppendorf pipettes (Fisher Scientific).  Phase contrast and 

fluorescent pictures were taken using an inverted stage fluorescent microscope (Leica 

DM IRB, Germany) and another fluorescence microscope (Zeiss Axioskope 2 Mot plus, 

Gottingen, Germany) and fluorescence pictures were taken using a camera (QImaging, 

Gottingen, Germany).  The images were processed using Adobe Photoshop v8.0.  Cell 

culture supplies included culture flasks and dishes, pipettes, freezer vials, and tubes were 

obtained from Sarstedt Inc, Montreal, Quebec, Canada. 

Mini-Protean IV gel electrophoresis apparatus (Biorad Laboratories, Ltd., 

Mississauga Ontario) was used for protein gel electrophoresis.  BioTrace®NT, pure 

nitrocellulose membrane (PALL Corporation, Pensacola, Florida) was used for 

immunoblotting. 

A pH Meter model 8100 and buffer solutions (VWR) and an Adventurer balance 

(OHAUS) were used. Absorbance was measured by the Genesys 10 UV-Vis 

Spectrophotometer (Thermo Scientific, Waltham, MA, USA) and centrifugation was 

done using low speed centrifuge (Jouan) and DESAGA (Sarstedt-Gruppe).  Vortex Jr. 

Mixer (Scientific Industries Inc), a heating block (Gibco BRL, VWR, Canada) and a 

rocking platform (VWR) were all used as well. 
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2.1.3 Antibodies 

The following antibodies were purchases from Sigma (Mississauga, Ontario): anti-p21 

WAF1/Cip1 antibody, anti-MnSOD, anti-p38, anti-actin, anti-mouse HRP, and anti-

rabbit HRP.  Anti-Bax antibody (Santa Cruz), anti-cytochrome c (Abcam), anti-LC3-II 

(Novus Biologicals), donkey-anti-rabbit HRP (Abcam),  and anti-NeuN (Santa Cruz) 

were also used. 

2.2 Methods 

2.2.1 Cell Culture 

SH-SY5Y human neuroblastoma cells were obtained from American Type 

Culture Collection (Manasas, VA) and grown in Dulbelcco‟s Modified Eagle‟s Medium 

with F12 HAM and supplemented with 10% FBS (Sigma, Mississauga), 20 μg/ml L-

glutamine (Invitrogen, Burlington Ontario) and 10 μg/ml Gentamycin (Invitrogen, 

Burlington Ontario) in 5% CO2 and 37   C.  Presenilin-1 mutated Alzheimer‟s Disease 

Fibroblasts (AG09035) were obtained from the Coriell Institute for Medical Research 

(New Jersey, USA) and grown in Dulbelcco‟s Modified Eagle‟s Medium supplemented 

with 15% FBS (Sigma, Mississauga) and 10 μg/ml Gentamycin (Invitrogen, Burlington 

Ontario) in 5% CO2 and 37   C.  Those PS-1 mutated Alzheimer‟s Disease Fibroblasts 

grown with or without 50μg/ml WS-CoQ10 (Zymes) supplemented in their media. 
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2.2.2 H2O2 Treatment of SH-SY5Y Human Neuroblastoma Cells 

 SH-SY5Y cells were grown to 70% confluence and treated with 100 µM H2O2 for 

1 h at 37º C.  Following this, the media was replaced with fresh, complete media without 

H2O2 and the cells were incubated for varying time periods and monitored for apoptotic 

features and protein expression. 

 

2.2.3 Cell Quantification with Trypan Blue Staining 

To quantify the number of viable cells in a sample, Trypan blue staining was 

used.  A 1:1 mixture of cell suspension and 0.4% Trypan blue dye (Sigma Chemical 

Company, Mississauga, Ontario, Canada) was loaded onto a haemocytometer (Hausser 

Scientific, USA) where blue stained cells were counted as non-viable cells while the 

unstained cells were counted as viable cells and expressed as cells/ml. 

 

2.2.4 Preparation of Post-nuclear Cytoplasmic Fraction 

Cells were first grown to 70% confluence and subjected to mechanical dislodging 

by scraping with a cell scraper.  Cells that were mechanically removed were centrifuged 

at 500 g for 5min.  The media was aspirated off and the cells (pellet) were washed three 

times in 1% PB (pH 7.4).  After this, the pellet was resuspended in hypotonic Buffer (10 

mM Tris HCl pH 7.2, 5mM KCl, 1 mM MgCl2, 1 mM EGTA, 1% Triton X-100) and 

incubated on ice for 5min.  The cell suspension was then mechanically homogenized and 
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centrifuged for 5 min at 500xg at 4º C, following which the supernatant was removed and 

kept and the pellet was discarded as it consisted of the nuclear fraction.    

 

2.2.5 Isolation of Mitochondria and Post-mitochondrial Cytosolic Fraction 

  The post-nuclear supernatant that was isolated as described above was centrifuged 

again at13,000 g at 4º C for 20 min.  The pellet obtained consisted of the mitochondrial 

fraction and the supernatant consisted of the post-mitochondrial cytosolic fraction.  The 

crude mitochondrial pellet was resuspended in reaction buffer (250 mM Sucrose, 1 mM 

MgCl2, 10 mM HEPES, 20 mM Succinate) and kept on ice and used within 2 h for 

experimentation. 

 

2.2.6 Protein Estimation 

 Protein concentration in both cellular lysates and mitochondrial fractions were 

determined by combining the sample with BioRad reagent and water.  The samples were 

vortexed and incubated for 10 min at room temperature.  Absorbance was measured at 

595 nm using a UV-Visible Spectrometer and compared to a BSA standard curve. 

 

2.2.7 Measurement of Total Cell ROS 

  

Cells were grown as stated above.  ROS production was measured using 

dichlorofluorescin diacetate (DCFDA) (Sigma, Mississauga) using a modification of a 

previous procedure (Siraki et al., 2002).  At various time points, cells were incubated 
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with DCFDA to a final concentration of 10 μM for 20 min at 37   C and fluorescence (Ex. 

495 nm and Em. 530 nm) was measured using a Spectra Max Gemini XS multi-well plate 

fluorescence reader. 

 

2.2.8 Mitochondrial ROS Measurement 

SH-SY5Y cells were grown to 70% confluence in 10 mL Petri dishes and treated 

with 100 μM H2O2 and 20 μM compound 22 or compound 9 where appropriate, and 

mitochondria were isolated as previously described.  These mitochondria were analyzed 

for their levels of ROS using an Amplex Red assay.  Isolated mitochondrial pellets were 

re-suspended in the Amplex Red reaction buffer (2.5 mM malate, 10 mM succinate), 

Amplex reagent was added to a final concentration of 50 µM, and HRP was added in the 

ratio of 6 U/ 200 µL.  The mixture was incubated at room temperature for 30 min prior to 

reading the fluorescence at 560 nm excitation and 590 nm emission.  

 

2.2.9 Western Blot  

 

 Equal amounts of protein (20 µg) per lane were resolved on a 12% acrylamide 

gel, separating post-nuclear lysate proteins by SDS-PAGE. Separated proteins were 

electro-transferred onto a nitrocellulose membrane. The membrane was blocked with 5% 

non-fat milk under gentle agitation. The membrane was probed with the appropriate 

primary antibodies with an overnight incubation at 4° C. The blots were washed with 1 x 
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TBST (1 mL of Tween 20 (ACP Chemicals) per litre of solution, 1:10 vol. of 10xTBS; 

24.2 g/L Tris base, 80 g/L NaCl, up to 1 L with ddH2O adjusted to pH 7.6. 9:10 vol. of 

ddH2O), exposed to HRP conjugated secondary antibodies (Sigma, Mississauga), and 

developed using a Chemiluminescence Peroxidase Substrate kit (Sigma, Mississauga). 

The membrane was visualized with Alpha Innotech Corporation Imaging System (San 

Leonardo, CA).  Desitometry was performed using Image J Software and 

chemiluminescence levels of the sample were compared to those of the control. 

 

2.2.10 WST-1 Cell Viability Assay 

Cell viability was measured using the WST-1 Assay.  Approximately 12 000 cells 

were plated on a clear bottom 96 well plate and grown to 70% confluence and treated as 

required.  WST-1 dye was then added and incubated for 4 h at 37   C.  Absorbance at 280 

nm was then measured using a Wallac Victor
3
 1420 Multilabel Counter.   

  

2.2.11 Bax Association to the Mitochondria  

 Mitochondria were isolated from SH-SY5Y cells by the methods described above.  

Samples of mitochondria were incubated with 10  g of Bax, and 20  M concentrations 

of compound 22 or non-specific compound 9 when appropriate at 37  C for 20 min.  The 

samples were resolved on a 12% SDS-PAGE and transferred to nitrocellulose for western 

blotting.  The samples were probed with a monoclonal anti-Bax antibody in a 1:2000 

dilution as previously described in section 2.2.9. 
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2.2.12 Evaluation of Cytochrome c Release 

 Cytosolic fractions were isolated from SH-SY5Y cells by the methods described 

above.  The samples were incubated with 10  g of Bax, and 20  M concentrations of 

compound 22 or non-specific compound 9 when appropriate at 37  C for 20 min.  The 

samples were resolved on a 12% SDS-PAGE and transferred to nitrocellulose for western 

blotting.  The samples were probed with an anti-cytochrome c antibody in a 1:2000 

dilution as previously described. 

 

2.2.13 SA-β-galactosidase Stain 

 Treated cells were briefly washed in three times with 1 X PBS solution, fixed for 

3-5 min (room temperature) in 3% formaldehyde, followed by three washes with PBS, 

and incubated at 37°C (no CO2) with fresh senescence associated β-Gal (SA-β-Gal) stain 

solution (stock = 20 mg of dimethylformamide per mL), 40 mM citric acid/sodium 

phosphate, pH 6.0, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, 150 

mM Sodium chloride, 2 mM Magnesium chloride. Staining was maximal in 12-16h.  

 

2.2.14 Monodansylcadaverine (MDC) Stain for Autophagy 

 Cells were plated in a 6 well plate, grown to 70% confluence with or without the 

presence of 50 μg/ml WS-CoQ10.  MDC stain was added along with propidium iodide as 
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a counter stain and allowed to incubate for 20 minutes at 37   C.  The cells were observed 

under a fluorescent microscope (Leica DM IRB) for the presence of autophagic vacuoles.   

  

2.2.15 Tetramethyl Rhodamine Methyl Ester (TMRM) Stain for Mitochondrial Potential 

 Cells were plated in a 6 well plate, grown to 70% and treated as mentioned above.  

TMRM stain was added along with Hoechst 33342 as a counter stain and allowed to 

incubate for 20 min at 37   C.  The cells were observed under a fluorescent microscope 

(Leica DM IRB) for the presence of punctate staining. 

 

2.2.16 Brain Ischemia and Reperfusion Model 

 

 Global forebrain ischemia was induced in Long Evans Hooded rats using the 

bilateral carotid artery occlusion and hypovolemic hypotension (2VO/HT) model of 

Smith et al (1984).  Male Long Evans rats between the weights of 250-300 g were used 

and those in the compound treated therapeutic group were injected intraperitonially (IP) 

with 15 mg/kg of compound 22.  The rats were then anaesthetized using 5% halothane 

and anaesthesia was maintained using 2% halothane with a facemask through the 

duration of the surgery.  Rectal temperature was maintained at 37  /- 0.5   C using a 

homeostatic temperature blanket (Harvard Apparatus) for the first hour of reperfusion.  

Blood gas measurements ensured a pH of 7.4 and pO2 of 80 mm Hg via arterial access.  

Blood was withdrawn into a 10-ml syringe to a MAP of 50 mm Hg, and carotids were 
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clamped by using microaneurysm clips.  Blood was further withdrawn to maintain the 

MAP at 40 mm Hg for the10-min duration of ischemia. After ischemia, blood was re-

infused at a rate of 5 mL/min. All cut down wounds were sutured, and anaesthesia and 

temperature control were maintained for 1 h after surgery. 

 

2.2.17 Brain Tissue and Slide Preparation 

 Harvested brains were placed in 70% ethanol overnight.  They were then 

subjected to the following dehydration solutions:  80% ethanol for 1 h, 95% ethanol for 1 

h, 100% ethanol for 1 h (3X), 40 min of xylene (2X).  The brains were then placed in 

paraffin wax and left to sit overnight in a 60  C water bath.  The brains were then placed 

in metal moulds and covered with paraffin wax and left to cool for approximately 4 hours 

at room temperature.  The moulds were then placed onto the microtome and cut at 10 

micron sections.  These sections were then placed into a 43.5  C water bath and then 

transferred to Superfrost slides and left to dry overnight at room temperature.   

 

2.2.18 Hematoxylin and Eosin Staining 

 Slides containing the sectioned brains were subjected to deparaffinization in 

xylene for 14 min (2X) and then re-hydrated using 100% ethanol for 10 min, 95% ethanol 

for 5 min, 70% ethanol for 5 min, and dH2O for 5 min.  The slides were then placed in 

hematoxylin stain for 3 min and then washed with dH2O for 5 min.  They were then 
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rinsed in an acid alcohol bath (0.2 mL of 12 M HCl in 100 mL of 70% ethanol) twice and 

then rinsed with dH2O.  The slides were placed in eosin for 1 min and then rinsed in 

dH2O and placed in 95% ethanol for 10 min, 100% ethanol for 10 min, and xylene for 10 

min (2X).  The slides were then coverslipped using Cytoseal mounting media. 

 

2.2.19 NeuN Staining 

 Slides of brain sections prepared as described above were immersed in xylene for 

7 min (2X), 95% ethanol for 5 min (2X) dH2O for 5 min, and 50 mM TBS for 5 min.  

Antigen retrieval was performed by placing the slides in 70  C 10 mM sodium citrate 

buffer (pH 6.0) for 15 min.  The slides were allowed to cool for 10 min at room 

temperature then placed in TBS for 5 min.  The sections were incubated with Dako 

universal blocking solution for 30 min in a humid chamber at room temperature.  Excess 

blocking solution was removed and the sections were incubated with NeuN antibody 

(1:100 dilution using Dako antibody dilutent) overnight at 4  C.  The slides were then 

washed with 50 mM TBS for 15 min and dehydrated in 95% ethanol for 5 min (2X) and 

xylene for 10 min before being cover slipped using mounting media containing DAPI and 

sealed with clear fingernail polish.  Slides were stored at -20  C.   
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2.2.20  Expression of Recombinant Bax  

A culture of E.coli transformed with the gene for Bax protein harbouring a His6-

tag was obtained from Bruno Antonsson  and used to inoculate a 100 mL of a 1 L stock 

of L.B. media (10 g NaCl, 10 g  Bacto Tryptone, 5 g  Bacto Yeast Extract, 1 L ddH2O, 

and 30 µg/and additional 900 mL stock L.B. media.  The culture was then placed in the 

37º C shaker for an additional 3-4 h, following which the OD280 was ensured to be 

between 0.40-0.75 using UV/VIS before induction with Arabinose (1 g/L).  This final 

culture was then incubated overnight on the shaker at 37º C before centrifugation at 

12,500 x g for 15 min at 4º C.  The supernatant was discarded and the pellets were stored 

at -20º C overnight for subsequent purification.  

 

    

2.2.21  Purification of Recombinant Bax  

 Prior to purification, the E. coli pellets expressing Bax were re-suspended in a 

lysis/loading buffer (0.02 M phosphate buffer (NaH2PO4, Na2HPO4), 100 µg/mL 

lysozyme, 5µg/mL DNase, 350 µg/mL PMSF, 1% Triton X-100, and 0.05M imidazole) 

and incubated on ice for 45 min.  Following the incubation, the re-supended pellets were 

sonicated at 4º C, centrifuged at 12,500 x g for 15 min at 4º C and the supernatant was 

kept as it contained the protein of interest.  The culture was purified using a Hi-Trap 

nickel chelating affinity column (GE Healthcare, Baie d‟Urfé, QC, Canada).   The 
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column was prepared by running 20 mL of ddH2O, followed by 4 mL of a 0.1 M Nickel 

Sulfate solution, 20 mL of ddH2O, and lastly 30 mL of the loading buffer to equilibrate 

the column.  The supernatant was then loaded onto the column and washed with the 

loading buffer to elute any non-specific proteins that may be bound to the column.  The 

fractions were collected (5 mL/fraction) and the absorbance was determined using 

UV/VIS.  This absorbance was monitored and once the values significantly decreased 

indicating the removal of the loosely-bound non-specific proteins, 10 mL of the elution 

buffer (0.02M Phosphate buffer, 0.5M imidazole) was added.  Fractions were collected in 

1 mL increments and the absorbance was read again to determine the fractions that 

contained the highest amounts of desired protein.  These fractions were placed in dialysis 

tubing (MWCO 6000-8000 Da) overnight followed by lyopholization and re-suspension 

in 5 mL of ddH2O and EDTA to a final concentration of 0.05 mM.  The purity of Bax 

was confirmed via Western Blot (Antonsson et al., 2001). 

 



 

43 

CHAPTER III 

RESULTS 

Part I: Use of low molecular weight compound 22 in preventing cell death in cases of 

stroke 

3.1.1  C22 Blocks Bax Activity In Isolated Mitochondria  

Part of Bax‟s activity is its ability to generate ROS.  We wanted to determine 

whether C22 was able to lower the amount of Bax-induced ROS production.  Purified 

Bax protein has been shown to destabilize isolated mitochondria leading to an increased 

production of ROS (Naderi et al., 2006).  C22‟s ability to inhibit Bax induced production 

of ROS was investigated.  Isolated mitochondria from SH-SY5Y cells were incubated 

with Bax either in the presence or absence of different compounds and the ROS 

generated was measured as described in Material and Methods.  The results shown in 

figure 3.1indicate that Bax addition caused an increase in the production of ROS when 

incubated with isolated mitochondria.    Non-specific compound 9 (C9) did not show any 

significant effect on Bax activity.  C22 on the other hand showed a decrease in the Bax-

induced ROS production from the mitochondria, indicating C22 was able to block Bax 

activity (Figure 3.1).  Since non-specific compound 9, did not show any drastic decrease 

in the amount of ROS production, the inhibitory effect of C22 was due, at least in part, to 

Bax inactivation.  
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Figure 3.1 C22 inhibits Bax activity:  Isolated mitochondria from SH-SY5Y cells were 

incubated with 10 μg of Bax in the presence and absence of 20 μM concentrations of 

Compound 22.  The ROS production was measured using Amplex Red and HRP 

substrate at 560 nm excitation and 590 emission and measured at RFUs/150 μg of 

protein.  Compound 22 was shown to decrease Bax activity by significantly decreasing 

the amount of ROS produced when combined with Bax and isolated mitochondria 

(*p<0.0001 vs. Mitochondria Alone).     
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3.1.2  C22 Prevents Association of Bax to the Mitochondria.  

 As previously shown, C22 is able to block Bax activity by significantly 

decreasing the level of ROS produced. Next we wanted to investigate the mechanism of 

this inhibition.  Functional Bax oligomers can associate with mitochondrial membranes 

upon activation, causing destabilization of the mitochondria.  In these cases, Bax is 

known to form a pore in the mitochondrial membrane and facilitate the release of 

cytotoxic molecules into the cytosol of the cell.  We wanted to know if binding of C22 to 

Bax may inhibit its ability to associate with the mitochondria.   Mitochondria isolated 

from SH-SY5Y cells were incubated with purified Bax for 20 min either with or without 

the presence of C22 and non-specific compound 9.  Using western blot analysis, the 

samples were probed with anti-Bax antibody and it was found that the mitochondria 

combined with C22 resulted in a lower amount of Bax bound to the mitochondrial 

membrane as can be seen by figure 3.2.  This finding indicates that C22 may be playing a 

role in preventing apoptosis by inhibiting Bax from associating to the mitochondrial 

membrane, and thus, preventing pore formation and mitochondrial membrane 

destabilization.     
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Figure 3.2 C22 inhibits Bax association to the mitochondria:  Mitochondria from SH-

SY5Y cells were isolated and combined with 10 μg Bax and 20 μM concentrations of 

C22 and compound 9 for 20 min.  The samples were then resolved using SDS-PAGE and 

then probed with anti-Bax antibody for western blotting.  It was found that C22 was able 

to prevent Bax from associating to the mitochondria.  Non-specific compound 9 did not 

affect the association of Bax to the mitochondria.  Succinate dehydrogenase was used as 

a loading control (*p<0.0001 vs. Bax + Mitochondria). 
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3.1.3 C22 Inhibits Cytochrome c Release From the Mitochondria 

 Since we found that C22 was able to prevent Bax association to the mitochondrial 

membrane we wanted to determine whether or not C22 was able to prevent the release of 

cytotoxic factors from the mitochondria into the cytosol.  One potential factor released 

from the mitochondria is cytochrome c.  Upon entrance into the cytosol of the cell, 

cytochrome c is able to complete the formation of the apoptosome, which subsequently 

leads to caspase activation, and ultimately apoptosis.   Mitochondria isolated from SH-

SY5Y cells were incubated with purified Bax for 20 min either with or without the 

presence of C22 and non-specific compound 9.  Western blot analysis was performed 

with an anti-cytochrome c antibody to detect the amount of cytochrome c present in the 

supernatant.  As can be seen in figure 3.3, C22 was able to lower the amount of 

cytochrome c present in the supernatant fraction.  In fact, C22 was almost able to lower 

the amount of supernatant cytochrome c to levels comparable to the control where no 

additional Bax was added.  This result indicates that C22 is able to prevent the release of 

cytochrome c into the cytosol of the cell, and thus, lowering the potential for apoptosis to 

occur.      
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Figure 3.3 C22 inhibits cytochrome c release from the mitochondria: Mitochondria 

from SH-SY5Y cells were isolated and combined with 10 μg of Bax and 20 μM 

concentrations of C22 and compound 9 for 20 min as described in the methods section.  

The samples were then resolved using SDS-PAGE and then probed with anti-cytochrome 

c antibody.  It was found that C22 was able to prevent cytochrome c from being released 

into the cytosol.  Succinate dehydrogenase was used as a loading control to indicate equal 

loading of the mitochondrial reaction mixture (*p<0.0001 vs. Bax + Mitochondria).   
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3.1.4 C22 Maintains Cell Viability in Cells Undergoing Oxidative Stress 

 We have found that C22 was able to decrease the activity of Bax and prevent the 

release of cytotoxic factors from the mitochondria into the cytosol.  We next wanted to 

investigate whether C22 is able to maintain cell viability after cells are subjected to 

oxidative stress.  To accomplish this, the WST-1 cell viability assay was performed.  In 

this assay, if the cells are viable, WST-1 dye is metabolized by cellular dehydrogenases 

to form formazen which is yellow in colour.  In the case of viable cells, more yellow 

colour is seen as the cells have a greater ability to metabolize the WST-1 dye than those 

cells that are not viable.  SH-SY5Y cells were treated with hydrogen peroxide with or 

without the presence of C22 or non-specific compound 9 as described in the methods.  

After incubation with the WST-1 dye, it was seen that C22 was able to increase the level 

of absorbance observed as compared to the hydrogen peroxide treated samples without 

compound treatment and those cells treated with non-specific compound 9 (figure 3.4).  

This indicates that under conditions of oxidative stress, C22 is able to maintain cell 

viability and preserve the metabolic ability of human neuroblastoma cells.  C22 was also 

shown to increase viability in cells that were not subjected to hydrogen peroxide 

treatment.  This could be due to C22 inhibiting any Bax-induced apoptosis that may be 

naturally occurring in these cells.   
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Figure 3.4 C22 maintains cell viability in cells undergoing oxidative stress: 

Approximately 1.20 x 10
4
 SH-SY5Y cells were plated in a 96 well plate and treated for 

one hour with 150 μM hydrogen peroxide.  Fresh media absent of hydrogen peroxide was 

added after an hour and the cells were allowed to grow for 48 hours.  WST-1 dye was 

then added and allowed to incubate for 4 hours until absorbance was taken at 450 nm.  It 

was found that C22 was able to maintain cell viability while non-specific compound 9 

was not.  The experiment was repeated 3 times, each time in triplicate (*p< 0.002 vs. 

Control). 
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3.1.5 C22 Protects Neurons in an In Vivo Rat Model of Stroke 

 Cell culture work done with C22 indicates that it is able to decrease the amount of 

Bax-induced oxidative stress in human neuroblastoma cells, and stabilize mitochondria to 

prevent the release of cytotoxic factors into the cytosol of these cells.  In addition, C22 

was shown to maintain cell viability in these cells placed under conditions of oxidative 

stress.  Next, we wished to investigate whether C22 had neuroprotective effects in an in 

vivo model of stroke.  In order to do this, Long Evans Hooded rats were subjected to 

global ischemia via the bilateral carotid artery occlusion and hypovolemic hypotension 

(2VO/HT) model.  In this case the carotid arteries of these rats are clamped off for a 

duration of 10 minutes, effectively halting blood flow to the brain.  This simulates the 

onset of stroke induced by a blood clot (please refer to the methods section for a more 

detailed explanation of the surgical procedure).  One group of rats received no treatment, 

while another was administered 15 mg/kg of C22 via IP injection before induction of 

stroke.  After 7 days the rats were sacrificed and their brains were harvested and 

sectioned for neuronal staining. 

 Brain sections of 10 microns were stained with Haematoxylin and Eosin (H&E) 

stain and NeuN stain to evaluate the ability of C22 to offer neuronal protection.  H&E 

stain is a widely used stain to evaluate the damage done to cells (Schmued et al., 1997).  

It distinguishes the nuclei from the cytoplasm by staining the nuclei blue and the 
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cytoplasm pink.  It was found that rats that were administered C22 prior to stroke 

induction had more viable cells in the CA1 region of the hippocampus,  (the area of the 

brain affected during stroke responsible for spatial awareness, memory, and informational 

output to other areas of the brain (Koehl &Abrous, 2011) compared to rats that were not 

administered C22 (figure 3.5).  This indicates that C22 may have a protective effect in an 

in vivo model of stroke.   

 NeuN is a neuronal-specific marker used to detect viable neurons (Mullen et al., 

1992, Xu et al., 2002, Hassen et al., 2004).  NeuN stain was used to specifically detect 

viable neurons in the brain sections after stroke.  It was found that those rats treated with 

C22 prior to stroke showed a more prominent NeuN staining profile, thus confirming the 

presence of viable and intact neurons (figure 3.6).  Those rats without C22 treatment 

showed a prominent decrease in NeuN staining, indicating a decrease in the number of 

viable neurons.  Taken together, the increased levels of cells present in the CA1 region, 

shown by H&E staining, and the amount of viable neurons preserved, as confirmed by 

NeuN staining, indicates that C22 may have the ability to protect neurons in an in vivo 

model of stroke.        
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      Untreated          C22 Treated  

 

Figure 3.5 H&E staining shows that C22 results in neuroprotection in an in vivo 

model of stroke: Brains were harvested from Long Evans Hooded rats that were 
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subjected to the 2VO/HT model of ischemia.  The brains were sectioned into 10 micron 

slices and placed on slides and then underwent H&E staining.  Images were obtained at 

10X, 40X, and 63X magnification of the CA1 region of the hippocampus.   It was found 

that rats that were injected intraperitonially with C22 prior to induction of ischemia 

appeared to have more viable cells than those that did not receive the C22 treatment (3 

rats per group were used in this study; scale bars are 170 microns in length).     
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Figure 3.6 NeuN staining shows that C22 protects neurons in cases of stroke: Brains 

were harvested from Long Evans Hooded rats that were subjected to the 2VO/HT model 

of ischemia.  The brains were sectioned into 10 micron slices and placed on slides and 

then stained with NeuN.  Images were obtained at 10X magnification in the CA1 region 

of the hippocampus.  It was found that those rats that were treated with C22 prior to 

induction of ischemia appeared to  have more viable neurons, as indicated by an increase 

in NeuN stain, than those that did not receive the C22 treatment (3 rats per group were 

used in this study; scale bar is 70 microns).   
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Part II: The use of WS-CoQ10 to prevent cellular senescence in presenilin-1 mutated 

Alzheimer‟s Disease fibroblasts 

 

3.2.1 WS-CoQ10 Decreases ROS Generation in AD Fibroblasts 

In the case of PS-1 mutated AD fibroblasts, the cells have an increased level of 

ROS production which eventually results in them entering a state of premature cellular 

senescence (Toussaint, 2000).  It is not known by what exact mechanism the PS-1 

mutation causes this increase in oxidative stress, but it is this increased level of 

endogenous oxidative stress that causes the AD fibroblasts to undergo SIPS (Toussaint, 

2000).  If this oxidative stress could to be lowered, the PS-1 mutated fibroblasts would 

have a lower probability of being pushed towards a state of cellular senescence and could 

instead continue to divide.  To investigate whether WS-CoQ10 is able to lower the amount 

oxidative stress, the presence of ROS was measured.  Cells grown with and without the 

presence of WS-CoQ10 were measured for ROS generation using DCFDA as described in 

the methods section.  It was found that WS-CoQ10 was able to lower the amount of ROS 

produced in these AD fibroblasts, thus lowering the burden of oxidative stress induced by 

the PS-1 mutation (Fig. 3.7).  This indicates that WS-CoQ10 is able to lower the increased 

levels of oxidative stress. 
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Figure 3.7 WS-CoQ10 decreases ROS levels in PS-1 mutated AD fibroblasts:  PS-1 

mutated AD fibroblasts were grown with and without the presence of WS-CoQ10 and 

ROS production  (RFU = relative fluorescence units) was measured using DCFDA for a 

period of 30 minutes.  It was found that WS-CoQ10 resulted in a decrease in the amount 

of ROS generated by the PS-1 mutated AD fibroblasts (*p<0.0002 vs. –WS-CoQ10).     
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3.2.2  WS-CoQ10 Prevents Senescence in PS-1 Mutated AD Fibroblasts  

Since WS-CoQ10 was able to lower the unusually high level of endogenous ROS 

generated by the PS-1 mutated AD fibroblasts, we wanted to investigate whether WS-

CoQ10 was able to also inhibit SIPS from occurring.  In order to evaluate the ability of 

WS-CoQ10 to prevent PS-1 mutated AD fibroblasts from entering a premature state of 

senescence, senescence-associated β-galactosidase expression was measured using an X-

gal stain; only those cells in a state of senescence will stain blue.  As can be seen in figure 

3.8A, those cells without WS-CoQ10 have more cells stained blue, indicating senescence.  

However, when WS-CoQ10 is added to the PS-1 mutated AD fibroblasts there is a marked 

decrease in the number of cells with positive x-gal stain, indicating that WS-CoQ10 has 

the ability to prevent senescence from occurring.  Senescent cells have a larger, and more 

flattened morphology than their normal counterparts.  WS-CoQ10 was also found to 

decrease the size of the cells and resulted in cells with normal morphology.  This 

indicated that WS-CoQ10 is able to decrease the amount of cells that undergo SIPS (figure 

8B), thus allowing these cells to still maintain their replicative potential. 
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  Figure 3.8 WS-CoQ10 decreases senescence in PS-1 mutated AD fibroblasts:  A) PS-

1 mutated AD fibroblasts were grown with or without the presence of WS-CoQ10 and 

senescence-associated β-galactosidase expression was evaluated using an X-gal stain.  

Images were obtained at 10X magnification (top panel) and 40X magnification (lower 

panel).  It was found that those cells grown in the presence of WS-CoQ10 showed less X-

gal (blue) stain and an absence of a larger morphology characteristic of senescence, 

indicating a decreased level of cellular senescence.  B) Graphical representation of the 

amount of senescent cells observed in cells grown with and without the addition of WS-

CoQ10.  Results were based on 2 separate experiments with 5 views/experiement.  Scale 

bars represent 15 microns.     
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3.2.3 Treatment with WS-CoQ10 Increases Cell Proliferation in PS-1 Mutated AD 

Fibroblasts 

Since we determined that WS-CoQ10 was able to have a significant impact in 

preventing cellular senescence and decreasing ROS production, we next investigated 

whether WS-CoQ10 has a positive effect on cell proliferation in PS-1 mutated AD 

fibroblasts when compared to those cells grown in the absence of 50μg/ml WS-CoQ10.  

Approximately 6.0 x 10
5
 cells were grown with and without the addition of WS-CoQ10.  

Cells counts were performed using Trypan blue after 48 hrs, 72 hrs, and 96 hours.  As can 

be seen in figure 3.9, it was found that the addition of WS-CoQ10 resulted in an increased 

cell proliferation rate as compared to those cells grown in the absence of WS-CoQ10, 

indicating WS-CoQ10 is able to increase the population doubling of PS-1 mutated AD 

fibroblasts and prevent the induction of premature cellular senescence. 
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Figure 3.9 WS-CoQ10 increases population doubling in PS-1 mutated AD 

fibroblasts: PS-1 mutated AD fibroblasts were grown with or without the presence of 

WS-CoQ10.  At 48 hours, 72 hours, and 96 hours, the cells were counted using Trypan 

blue to determine the population doubling potential of these PS-1 mutated AD 

fibroblasts.  It was found that those cells grown in the presence of WS-CoQ10 were able 

to maintain their population doubling potential  

(* p<0.05, ** p<0.01 vs. AD).      
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3.2.4  WS-CoQ10 Maintains Cell Viability in PS-1 Mutated AD Fibroblasts 

 We found that WS-CoQ10 is able to maintain cell proliferation and inhibit 

senescence. What we next wanted to investigate was whether WS-CoQ10 had any positive 

effect on maintaining cell viability.    We used the WST-1 based colorimetric cell 

viability assay, measuring cell viability as a function of cell metabolism, to measure the 

viability of these cells that were grown with and without the presence of WS-CoQ10.  It 

was found that those cells grown in the presence of WS-CoQ10 showed a higher level of 

absorbance than those not exposed to WS-CoQ10.  Since in this assay, absorbance is 

directly related to viability, WS-CoQ10 was found to maintain the metabolic activity of 

the cells and allow them to remain viable (figure 3.10). 
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Figure 3.10 WS-CoQ10 increases cell viability in PS-1 mutated AD fibroblasts:  

Approximately 1.2 x 10
4
 PS-1 mutated AD fibroblasts were plated in a 96 well clear 

bottom plate and grown with or without WS-CoQ10.  WST-1 dye was then added and 

allowed to incubate for 4 hours until absorbance was taken at 450 nm.  It was found that 

WS-CoQ10 was able to maintain cell viability in these PS-1 mutated AD fibroblast.   
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3.2.5  WS-CoQ10 Decreases the Levels of p21 and p38 and Increases the levels of 

MnSOD in AD Fibroblasts 

Since it was evident that WS-CoQ10 was able to inhibit cellular senescence and 

maintain a cellular growth rate higher than those cells grown in the absence of WS-

CoQ10, we investigated the effects that WS-CoQ10 had on the expression of the 

senescence-initiating proteins p21 and p38, and well as the radical quenching molecule 

manganese superoxide dismutase (MnSoD).  In PS-1 mutated fibroblasts there is an 

increased level of oxidative stress that causes these cells to become blocked in the G1 

phase of the cell cycle and experience an increased expression of the cell cycle inhibitor 

CDKI p21
Waf-1

, effectively halting any further replication (Dumont et al., 2000).  In 

addition, MnSOD plays an important role in the replicative ability of these cells by 

quenching the excess oxidative stress produced, thus decreasing the potential for them to 

undergo SIPS.  In order to investigate whether WS-CoQ10 has an effect on the expression 

of these proteins PS-1 mutated AD fibroblasts were grown with or without WS-CoQ10 

and after 24 hours cellular lysates were isolated and the presence of p21, p38, and 

MnSOD were assessed using western blot analysis.  It was found that WS-CoQ10 was 

able to decrease the levels of p21 in both young and old AD fibroblasts (figure 3.11) and 

decrease the level of phosphorylated p38 in young AD fibroblasts (figure 3.12). These 

preliminary results again indicating that WS-CoQ10 was able to play a role in preventing 

senescence from occurring by down regulating the expression of these senescence-
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initiating proteins.  On the other hand, WS-CoQ10 was able to cause an increase in the 

expression of MnSOD in passage 31 (“old”) PS-1 mutated AD fibroblasts, but had no 

significant effect on the levels of MnSOD in passage 16 (“young”) PS-1 mutated AD 

fibroblasts (figure 3.13).   

 

Figure 3.11 WS-CoQ10 decreases levels of p21:  PS-1 mutated AD fibroblasts 

(population doubling 31 (P31) referred to as „old‟ and population doubling 16 (P16) 

referred to as „young‟) were grown both in the presence and absence of WS-CoQ10.  Cell 

lysates were analyzed for the presence of the p21 protein via western blot analysis.  p21 

is up-regulated in cellular senescence.    Actin was used as a loading control (*p<0.01 vs. 

AD P31, #p<0.0001 vs. AD P16).      
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Figure 3.12 WS-CoQ10 decreases the level of p38: PS-1 mutated AD fibroblasts 

(population doubling 18) were grown both in the presence and absence of WS-CoQ10.  

Cell lysates were analyzed for the presence of the phosphorylated p38 protein via western 

blot analysis.  p38 is up-regulated during the occurrence of senescence.  Actin was used 

as a loading control (*p<0.0001 vs. AD). 
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Figure 3.13 WS-CoQ10 increases levels of MnSOD: PS-1 mutated AD fibroblasts 

(population doubling 31 (P31) referred to as „old‟ and population doubling 16 (P16) 

referred to as „young‟) were grown both in the presence and absence of WS-CoQ10.  Cell 

lysates were analyzed for the presence of MnSOD via western blot analysis.   Actin was 

used as a loading control (*p<0.0009 vs AD P31, #p<0.0001 vs. AD P16 ).     
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3.2.6 Mitochondrial Membrane Potential Remains Intact With and Without WS-CoQ10 

Treatment 

 In order to determine whether the mitochondrial membrane remains stable in PS-1 

mutated AD fibroblasts TMRM stain was conducted.  We wished to determine whether 

the PS-1 mutation had any destabilizing effects on the mitochondrial membrane and 

whether or not WS-CoQ10 may be eliciting its protective effects by maintaining the 

mitochondria membrane potential.  TMRM stain accumulates in mitochondria if the 

mitochondrial membrane potential is intact.  Positive staining is seen by red punctate 

stain accumulating within the cells.  We grew PS-1 mutated AD fibroblasts both with and 

without the presence of WS-CoQ10 and subjected them to TMRM stain to assess 

mitochondrial membrane potential.  As can be seen in Figure 3.14, there is no significant 

difference in TMRM staining between the WS-CoQ10 treated group and the untreated 

cells.  This indicates that the PS-1 mutation is not creating a detrimental effect on the 

mitochondrial membrane, as the mitochondrial membrane potential remains intact.  

Hoechst was used as a counter stain to determine if any apoptosis was occurring.  

Hoechst staining confirmed that neither groups of these cells were undergoing apoptosis 

as both groups were absent of brightly stained, condensed nuclei that is indicative of 

apoptosis.   
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Figure 3.14 Mitochondrial membrane potential remains intact with or without WS-

CoQ10 Treatment: PS-1 mutated AD fibroblasts were grown in the presence and absence 

of WS-CoQ10 and then evaluated for mitochondrial membrane potential using TMRM 

stain.  Hoechst was used as a counter stain to detect apoptosis.  The two images (TMRM 

and Hoechst) are merged in the far right panel.  No significant difference in membrane 

potential was observed between those cells grown with WS-CoQ10 and those grown 

without. 
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3.2.7 WS-CoQ10 May Induce Protective Autophagy in PS-1 Mutated AD Fibroblasts 

To gather some insight as to how WS-CoQ10 is protecting these cells against 

senescence and ultimately cell death, the avenue of autophagy was explored.  Autophagy 

can be both detrimental and protective depending on how salvageable the cells are after 

damage has been induced (Dalby et al., 2010).  In order to investigate whether WS-

CoQ10 is able to induce autophagy the cells were cultured with and without the presence 

of WS-CoQ10 (50 μg/ml).  Mondansylcadaverine stain (MDC) was used to detect the 

presence of autophagic vacuoles.  It was found that in the cells treated with WS-CoQ10 

there was a significant amount of punctate MDC staining , indicating the presence of 

autophagic vacuoles.  On the other hand, those cells void of WS-CoQ10 showed no 

accumulation of MDC stain, indicating an absence of autophagic vacuoles and a lack of 

protective autophagy (figure 3.15).  Accompanying lack of positive propidium iodide 

staining indicates that the cells are not dying, thus any autophagy that is occurring is 

protective and not lethal.  Another method to detect autophagy is to discern the presence 

of the autophagic protein LC3-II.  Upon induction of autophagy cytoplasmic LC3-I is 

recruited to autophagosomes where it undergoes lipidation to be converted to LC3-II 

(Fulda et al., 2010).  Thus, the accumulation of LC 3-II can be used as an indicator of 

autophagy.  Cells were grown with and without the presence of WS-CoQ10 and then 
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subjected to western blot analysis to probe for the presence of LC3-II.  It was found that 

WS-CoQ10 was able to induce the conversion of LC3-I of LC3-II (figure 3.16).  Those 

cells that were not grown in the presence of WS-CoQ10 did not show expression of LC3-

II, thus indicating that WS-COQ10 may elicit its protective effects through the induction 

of protective autophagy.    
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Figure 3.15 WS-CoQ10 induces formation of autophagic vaculoes: PS-1 mutated AD 

fibroblasts were grown both in the presence and absence of WS-CoQ10.  The presence of 

autophagic vacuoles was stained for using Monodansylcadaverine (MDC) stain, which 

shows positive autophagy by concise punctate staining.  Cells were also counterstained 

with propidium iodide (PI) to verify if cells were undergoing cell death 
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Figure 3.16 WS-CoQ10 results in increased levels of LC-3 II: PS-1 mutated AD 

fibroblasts were grown both in the presence and absence of WS-CoQ10 and cell lysates 

were analyzed for the presence of the autophagic marker LC-3 II.  Actin was used as a 

loading control (*p<0.0001, vs. AD).  (LC3-I has a molecular weight of 18kDa, LC-3 II 

has a molecular weight of 16 kDa).  
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CHAPTER IV 

DISCUSSION 

4.1 Compound 22 Prevents Bax-Induced Apoptosis 

 There are a limited number of treatment options available to victims of stroke.  To 

date, only the tissue plasminogen activator is an accepted treatment for stroke. The most 

common form of tissue plasiminogen activator administered is Alteplease.  This drug 

enacts its clot-breaking action by binding to the fibrin present in a clot and converting 

plasminogen to plasmin via breaking of the plasminogen Arg/Val bond (Ouriel et al., 

2004).  The downfall to the use of this drug is the fact that it must be administered within 

3 hours of the onset of stroke to be effective.  This is relatively hard to accomplish since 

most stroke victims are not diagnosed with stroke, nor are they transported to hospital 

within this three hour window.   Another downside to thrombolytics is that they have the 

potential to cause hemorhaging in the brain (del Zoppo et al., 1998).  Hypothermia has 

also been studied as a method of stroke treatment.  It was found that lowering the body 

temperature may have a beneficial neurological outcome, however this technique remains 

highly experimental as many variables, such as temperature, duration, and optimal 

method of induction still remain in question (Yenari et al., 2010).   

 In order to find an alternative means of treatment, our lab has investigated the use 

of low molecular weight compounds to inhibit the pro-apoptotic protein Bax.   The 

protein Bax plays a prominent role in the induction of apoptosis (Kroemer et al., 2007).  
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If its function is able to be blocked, levels of apoptosis could be significantly decreased.  

In the present study, we have used an anti-Bax compound (Compound 22) and evaluated 

its ability to prevent Bax-induced apoptosis and mitochondrial destabilization.   

Bax was chosen as a target for this study due to its role in apoptosis.  Bax plays a key role 

in the initiation of apoptosis and is one of the first proteins involved in the apoptosis 

cascade.  Because its role in apoptosis occurs so early in the process, and is heavily 

involved in mitochondrial membrane permeabilization, Bax is an excellent protein to 

target to inhibit apoptosis.  If apoptosis was attempted to be blocked by targeting a 

protein further down the apoptosis cascade, the mitochondria may already be 

permeablized, thus already compromising the viability of the cell.   

   Bax has such capabilities as to form a homodimer and insert itself into the 

mitochondrial membrane forming Bax channels.  Such channels cause mitochondrial 

membrane permeabilization that inevitably leads to the leakage of apoptotic factors such 

as cytochrome c, AIF, and SMAC/DIABLO into the cytosol which in turns causes 

activation of the apoptosis cascade (Kroemer et al., 2007).  Inhibiting this detrimental 

function of Bax can have practical applications in cases of ischemia caused by stroke.  By 

inhibiting the function of Bax, neurons that are subjected to oxidative stress can be 

prevented from undergoing apoptosis when stroke occurs.  Apoptotic cell death has been 

shown to be a major contributor in tissue damage pathology associated with ischemia 

(Grahm and Chen 2001, Gottlieb and Engler, 2005).  Studies regarding the role of Bax in 
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apoptosis have shown that Bax knockout mice are more resistant to ischemia induced 

neuronal death (Gibson et al 2001), indicating Bax‟s critical role in neuronal cell death 

following ischemia. Also, Bax channel inhibiting compounds have been shown to protect 

neurons in a global model of ischemia (Hetz et al., 2005).   

Previous work conducted by our laboratory has identified and characterized six 

Bax-specific single domain antibodies (sdAbs) that were shown to block its activity and 

protect mammalian cells against oxidative stress-induced apoptosis when expressed intra-

cellularly as intrabodies (Gueorguieva et al., 2006).  Despite their specificity for Bax, 

these sdAbs are not appropriate therapeutic agents due to their large size (13 kDa) and 

susceptibility to proteolysis.  In order to overcome this problem, a targeted library of 

small molecular weight compounds was screened to discover a compound that could bind 

to Bax and inhibit its function.  Previous work conducted by Degterev and co-workers 

screened a library of 16000 compounds to discern if any were able to bind to Bcl-2, a 

member of the same protein family as Bax and similar in structure (Degterev et al., 

2001).  It was found 2 compounds showed the ability to bind to the BH3 domain of Bcl-

2.  There were an additional 40 compounds that were similar in structure and could have 

the potential to interact with other members of the Bcl-2 family of proteins.  We screened 

this targeted library of 40 compounds in an effort to determine if any were able to bind to 

Bax .  We found one compound (Compound 22) that was able to competitively bind to 

Bax in the presence of the Bax-specific sdAbs and displace these sdAbs. 
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In order to investigate the mechanism of inhibition of Bax by C22, we looked at 

the association of Bax to isolated mitochondria in the presence of absence of C22.  We 

have found that C22 was able to prevent Bax from being associated to the mitochondria.  

In addition to preventing Bax association to the mitochondria, C22 was also able to 

inhibit the release of cytochrome c into the cytosol.  This finding indicates that C22 is 

able to stabilize the mitochondrial membrane by inhibiting the release of cytotoxic factors 

into the cytoplasm of the cell.  Because mitochondrial membrane permeabilization is a 

critical step in the induction of apoptosis, stabilization of the mitochondrial membrane 

increases the potential to inhibit cell death.  This indicates that C22 has a protective role 

in maintaining mitochondrial stabilization, and plays a role in inhibiting Bax activity.  

Oxidative stress is a contributor to apoptosis as it is one of the factors that initiates 

the migration of Bax to the mitochondria.  It is implicated in many detrimental events 

such as altered protein function, susceptibility to proteolysis, altered cell signalling, lipid 

peroxidation, and DNA/RNA modifications (Davies et al., 1987; Droge et al., 2002; 

Nunomura et al., 1999).  In cases of ischemia, ROS plays a large role in the death of 

neurons.  When blood flow is returned to the brain (reperfusion) there is a large influx of 

oxygenated blood that is taken up by the neurons.  The return of oxygen is accompanied 

by the addition of free radicals to the penumbra region of the brain (Li et al., 2002).  This 

increase in oxidative stress is a contributor to cell death in ischemia, where cells can 

experience apoptosis up to seven days following the initial ischemic attack (Schaller et 
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al., 2004).  The cell death occurring in the penumbra after reperfusion is largely Bax 

dependent (Hetz et al., 2005).  If its activity can be inhibited, subsequent apoptotic events 

triggered by Bax can be halted.   

In this study we have found that when isolated mitochondria were combined with 

Bax there was an increase in the levels of ROS that was generated.  However, when C22 

was added there was a significant decrease in the level of ROS that can lead to cell death.  

This indicates that C22 is able to neutralize Bax activity by inhibiting its ability to cause 

mitochondrial dysfunction, and thus prevent apoptosis from occurring.  This effect of Bax 

inhibition is not widespread amongst similar compounds from this library.  Another 

similar compound, compound 9 (C9), showed no effect in lowering the amount Bax-

induced oxidative stress.    

Oxidative stress is a key component in the disruption of normal cell functions 

(Bergendi et al., 1999).  These events triggered by oxidative stress can have a dire effect 

on the viability of the cell.  If the ROS levels present in the cell can be lowered to 

manageable levels, the cells in the penumbra region of the brain would have an increased 

potential for survival.  Bax plays a critical role in inducing apoptosis in the penumbra.  

The increased levels of oxidative stress are responsible for the dimerization and migration 

of Bax to the mitochondria, which can inevitably result in mitochondrial destabilization.  

Human neuroblastoma cells challenged with hydrogen peroxide treatment showed a 

significant decrease in their viability, as shown by the in the WST-1 assay (figure 3.4).  
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On the other hand, when these same cells were placed under similar conditions of 

oxidative stress with the addition of C22, there was a marked increase in the level of their 

viability.   This indicates that C22 has the ability to maintain the metabolic activity of the 

cell under oxidative stress and protect against oxidative stress-induced apoptosis.  Non-

specific compound 9 did not have a positive effect on maintaining cell viability, once 

again indicating C22‟s specificity towards Bax.   

Cell culture work convincingly showed that C22 was able to prevent Bax-induced 

destabilization of the mitochondria and lower the levels of oxidative stress in human 

neuroblastoma cells.  C22 was able to maintain cell viability and inhibit apoptosis from 

occurring.   

The challenge with any new therapeutic is to create a compound that is not toxic 

to the organism when it is administered.  We found that C22 displayed no characteristics 

of toxicity when it was administered to a Long Evans Hooded rat.  The rats subjected to 

C22 injection did not show any characteristic symptoms of toxicity such as weight loss, 

change in behaviour, or death.  All animal subjects remained healthy after injection with 

C22. 

In order to induce stroke in a Long Evans Hooded rat, a procedure known as the 

bilateral carotid artery occlusion and hypovolemic hypotension (2VO/HT) model, 

originally performed by Smith and co-workers was generously conducted by Dr. Donald 

DeGracia at Wayne State University (Roberts et al., 2007).  In this model, the carotid 
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arteries of the animal are occluded for a period of 10 min to mimic blood loss to the brain 

experienced in cases of ischemia.  Thirty minutes before the induction of stroke, 15 

mg/kg of C22 was administered to the animals via IP injection to determine whether it 

was able to preserve neurons after ischemia has occurred.  

Seven days following the procedure the brains of the rats were analyzed for the 

presence of viable neurons.  Together, hematoxylin and eosin staining along with NeuN 

staining indicated that C22 was able to preserve the number of neurons present in the 

CA1 region of the hippocampus in the brains of the study animals.  Those animals that 

did not receive C22 treatment prior to the induction of stroke had a lower amount of 

neurons present than those that did receive C22 treatment (figure 3.5 and figure 3.6).  

These preliminary results indicate that C22 may have a protective effect on preserving 

neurons in an in vivo model of stroke.  Since C22 did have an effect on neuron number in 

the brain, this shows that C22 was able to cross the blood brain barrier to have a positive 

effect on neuron protection.  In addition, the rats that were used in this study did not 

experience any toxic effects of C22 administration.  The rats did not experience a drop in 

weight or any significant alteration in behaviour or eating habits that would indicate 

exposure to a toxic compound. 

The pore forming activity of Bax has been well established as a central part of 

apoptosis.  Other groups have focused on using Bax channel blockers as a method of 

inhibiting apoptosis and have found that the use of these compounds have had an effect at 
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inhibiting apoptosis (Hetz et al., 2005).  Other Bax-inhibiting compounds have had 

problems with administration and crossing of the blood brain barrier (BBB) due to their 

hydrophobic nature or large size.  Compound 22 combats these issues by being water 

soluble and our preliminary data indicates that C22 is small enough to effectively cross 

the BBB.  

Exactly how C22 is inhibiting the apoptotic activity of Bax is unknown.  Docking 

studies to determine how C22 is ineracting with Bax were performed with this compound 

show that C22 may inhibit the dimerization abilities of Bax by binding to its BH3 domain 

located on α2 (Unpublished data; Katrina McGonigal, 2009).  The BH3 domain has been 

shown to be an essential part of the Bcl-2 family of proteins function, by allowing for 

these proteins to bind to one another or other members of the Bcl-2 family (Suzuki et al., 

2000).  If this binding can be inhibited, Bax would no longer be able to dimerize into its 

active form that is responsible for mitochondrial destabilization.  Size-exclusion 

chromatography would be required to determine if C22 has any effect on the ability of 

Bax to dimerize.  SDS-PAGE gel electrophoresis is not able to discern between the 

dimerized and un-dimerized form of Bax, as Bax is always present in the dimerized form 

when run on a gel due to the reducing conditions of the gel.    

Another characteristic component of Bax that allows for its ability to form pores 

in the mitochondria is the C-terminal domain located on α9.  This domain is responsible 

for anchorage to the mitochondria to allow for pore formation to occur (Suzuki et al., 
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2000).  In order for Bax to anchor to the mitochondria and form a pore, energetic 

conditions must exist to allow for α2 of the BH3 domain and α9 of the C-terminal domain 

to break away from each other partake in their respective events (Suzuki et al., 2000).  

C22 was found to significantly decrease the amount Bax that was able to associate to the 

mitochondria, thereby limiting the possibility of Bax-induced mitochondrial 

destabilization.  C22 may be preventing this action by stabilizing the bond between the 

BH3 and C-terminal domains and inhibiting insertion into the mitochondrial membrane.      

These results indicate that on a cellular level, C22 is able to prevent Bax-induced 

apoptosis by inhibiting the association of Bax to the mitochondria and thus decreasing 

Bax destabilization and the release of cytotoxic factors into the cytosol of the cell.  C22 

also had beneficial effects by decreasing the level of Bax-induced oxidative stress while 

maintaining cell viability.  In addition, preliminary in vivo results indicate that C22 may 

have a protective effect on preserving neurons in a rat model of ischemia, thus making it 

a potential therapeutic to treat ischemia related injuries.       

 

4.2 WS-CoQ10 Protects Cells Against SIPS 

Mutations of the presenilin-1 gene are known to be a cause of familial 

Alzheimer‟s Disease (Cecchi, et al., 1999).  The PS-1 mutation has been shown to 

increase oxidative stress in fibroblasts obtained from subjects expressing this mutation.  

There are over 170 possible autosomal mutations in the PS-1 gene that have been shown 
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to contribute to the onset of familial AD.  The majority of these mutations are missense 

mutations that result in a single amino acid alteration in the PS-1 gene (van Tijn et al., 

2011).  Loss of PS-1 activity in a knockout mouse was shown to result in 

neurodegeneration, synaptic loss, and neural death (Saura et al., 2004).  It was also 

reported that the PS-1 mutation in mice resulted in an increase in ROS production 

(Schuessel et al., 2006).  The PS-1 mutation was also found to increase oxidative damage 

in primary neurons in APP/PS-1 knockout mice (Sompol et al., 2008).  The exact 

mechanism by which PS-1 mutation increases oxidative stress levels is unknown.  One 

hypothesis to this mechanism suggests that it may cause mitochondrial instability since 

presenilin-1 is a membrane protein.  In addition, the PS-1 mutation is thought to 

potentially contribute to apoptosis via Aβ formation and trophic factor withdrawal (Guo 

et al., 1998).   Others have suggested that the PS-1 mutation may enact its detrimental 

effects by inducing a calcium imbalance if it were to associate to the endoplasmic 

reticulum (Mattson, 2011).  In this case, the PS-1protein localized in the ER of neurons 

may cause an increase flux of Ca
2+

 across the ER membrane, resulting in a disruption of 

synaptic signalling (Mattson, 2011).   Cells that express the PS-1 mutation have 

developed an ability to survive in an environment with sub-lethal ROS levels.  Due to 

these increased ROS levels, PS-1 mutated cells are susceptible to undergoing stress 

induced premature senescence (SIPS) which is usually accompanied by senescence-

associated β-galactosidase activity (Dmiri et al., 1995) and shortened telomere length 
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(Bodnar et al., 1998).  For the first time, we have shown that WS-CoQ10 is able to protect 

against SIPS while decreasing oxidative stress levels and increasing population doubling. 

   Previous work conducted in our laboratory found that a variety of AD cells lines 

displayed increased levels of endogenous oxidative stress (Naderi et al., 2006).  This 

increased level of oxidative stress allowed the cells to become pre-conditioned and 

resistant to external sources of oxidative stress.  These AD cells were found to show an 

increase in the expression of p21 and instead of undergoing cell death, they entered a 

state of senescence (Naderi, et al., 2006).  Similarly, when external oxidative stress was 

placed upon these AD cells in a confluent G0 stage, they once again displayed increased 

p21 levels and entered a state of senescence as oppose to undergoing apoptosis 

(Domazet-Damjanov et al., 2009).  Both of these studies indicate that increased levels of 

oxidative stress contribute to the induction of SIPS.   

 The induction of SIPS begins with an increased level of ROS, facilitated by the 

PS-1 mutation.  This increased level of oxidative stress causes DNA damage which elicits 

a response by p53 (Itahana et al., 2001).  This leads to a subsequent activation of p21 

which is responsible for exerting a G1 cell cycle arrest, effectively removing the 

replicative ability of these cells (Waldman et al., 1995).  Manganese superoxide 

dismutase (MnSOD) is essential for neurons to combat against oxidative damage 

(Sompol et al., 2008).  It is a highly important member of the anti-oxidant defence system 

and is responsible for converting the superoxide radical to molecular oxygen and 
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hydrogen peroxide which can then be further metabolized to water and molecular 

oxygen.  The oxidative stress generated in these PS-1 mutated fibroblasts is not enough to 

induce Bax initiated apoptosis, but it is sufficient enough to result in p21 induced 

senescence.  

 We have investigated the possibility of using WS-CoQ10 to reduce oxidative 

stress and inhibit senescence in PS-1 mutated AD fibroblasts.  An oil soluble version 

CoQ10 is currently being tested in clinical trials for the treatment of Parkinson‟s Disease 

(Shults et al., 2004).  Unfortunately this formulation cannot be used in cell culture studies 

due to its lack of solubility in water, thus the water soluble CoQ10 that we used in this 

study could serve as an effective alternative.  Current work being conducted in our lab 

shows that WS-CoQ10 is able to protect dopaminergic neurons in cases of Parkinson‟s 

Disease, and is able to do so with a dosage much lower than those levels being prescribed 

with studies involving the oil soluble version of CoQ10.   

 WS-CoQ10 was found to protect neurons under oxidative stress in a variety of 

instances (Somayajulu et al., 2005; McCarthy et al., 2004).  In these cases, differentiated 

human neuroblastoma cells and human tetracarcinoma cells were protected from 

hydrogen peroxide induced apoptosis by the addition of WS-CoQ10.  WS-CoQ10 was able 

to lower the amount of ROS produced in these cells, as well as decrease the 

mitochondrial ROS generated in differentiated human neuroblastoma cells.  In addition to 

decreasing levels of oxidative stress in these cells, WS-CoQ10 also played a role in 
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decreasing the caspase 3 activity in these cells and preventing the collapse of the 

mitochondrial membrane potential (Somayajulu et al., 2005).  When differentiated 

human neuroblastoma cells were subjected to oxidative stress via paraquat treatment, 

WS-CoQ10 was also able to induce its protective effects and prevent apoptosis from 

occurring (McCarthy et al., 2004).  In addition, it has also been found that WS-CoQ10 was 

able to block Bax disruption of the mitochondria (Naderi et al., 2006) and stabilize the 

permeability transition pore.  By blocking Bax association to the mitochondria and 

preventing the release of cytochrome c into the cytosol, WS-CoQ10 was able to inhibit 

Bax-induced apoptosis as well as the Bax-induced generation of ROS (Naderi et al., 

2006).  CoQ10 is known to be a potent anti-oxidant and able to increase ATP production 

levels through fast electron transport (Sikorska et al., 2003).  Taken together, the myriad 

of protective effects WS-CoQ10 has on neuronal protection and apoptosis prevention 

makes it an excellent candidate to be used as a therapeutic to treat neurodegenerative 

diseases.  More specifically, because of these abilities, WS-CoQ10 could be used as in PS-

1 mutated AD fibroblasts to down regulate PS-1 induced ROS levels and inhibit 

senescence.  To study the effects of WS-CoQ10 on the PS-1 mutation in AD neurons is 

not practical, as brain tissue from living AD patients is not procurable.  Instead PS-1 

mutated fibroblasts are a good substitution as they still display the effects of the PS-1 

mutation, and any data gathered can be extrapolated to be applied to neuronal models.  
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 We have found that WS-CoQ10 was able to lower the unusually high endogenous 

levels of ROS seen in PS-1 mutated AD fibroblasts and decrease the senescence 

associated β-galactosidase activity of PS-1 mutated fibroblasts (figure 3.8).  WS-CoQ10 

was also shown to increase the population doubling of these PS-1 mutated AD 

fibroblasts, indicating they were no longer arrested in the cell cycle (figure 3.7).  The 

dominating characteristic of SIPS is the fact that cells are able to be removed from the 

cell cycle and thus can no longer replicate.  By observing that WS-CoQ10 is able to 

increase the population doubling of PS-1 mutated AD fibroblasts, we can conclude that 

these cells are no longer arrested in the cell cycle and once again have replicative 

abilities.  In addition, we observed that WS-CoQ10 was able to significantly decrease the 

level of p21 expressed in these PS-1 mutated AD fibroblasts, while increasing levels of 

MnSOD present in later passage numbers of these cells.  Taken together, this is the first 

report to indicate that WS-CoQ10 is effectively able to neutralize the detrimental effects 

that the PS-1 mutation has on these AD fibroblasts.  By decreasing the levels of ROS 

production in these cells, WS-CoQ10 is able to significantly lower the levels of p21 which 

leads to an inhibition of senescence, while increasing the radical scavenging potential by 

upregulating the levels of MnSOD.   

 Under normal circumstances, WS-CoQ10 has no effect on the radical scavenging 

ability of MnSOD.  However, in this study we observed that WS-CoQ10 is able to 

increase the level of MnSOD present in later passage PS-1 mutated AD fibroblasts when 
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compared to untreated fibroblasts.  One possible explanation for this finding could be that 

WS-CoQ10 is able to maintain the stability of MnSOD under oxidative stress while 

having no appreciable effects on its anti-oxidant activity.  It was observed that under 

conditions of ischemic/oxidative stress, coenzyme Q10 was able to restore the protein 

levels of MnSOD in gastrocnemius muscle cells to a level comaparable to non-ischemic 

models, but did not appear to have any effect on the activity of MnSOD (Tran et al., 

2011).  This suggests that while coenzyme Q10 does not have an effect on the anti-oxidant 

activity of MnSOD, it may play a role in stabilization of the protein as it is able to affect 

its level of expression under oxidative stress.  

 This indicates that WS-CoQ10 is able to lower the unusually high sub-lethal levels 

of endogenous ROS produced in the cells.  Since this increased level of ROS is one of the 

major factors responsible for the induction of SIPS, the ability of WS-CoQ10 to lower 

these levels allows these PS-1 mutated AD fibroblasts to continue replicating, 

significantly lowering the degree to which senescence occurs.  Since WS-CoQ10 was able 

to neutralize the effect of the PS-1 mutation in a genetic model of Alzheimer‟s Disease, it 

can be reasonably extrapolated that WS-CoQ10 would have the same beneficial effects in 

AD neurons affected by the PS-1 mutation.  As with all potential neuroprotective agents, 

the question of whether the compound is able to be made available to the brain when 

administered through intraperitonial or intravenous injection is always in consideration.  

Another concern for any therapeutic compound is whether or not it will elicit a toxic 
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response from the organism to which it is being administered.  Previous work has shown 

that WS-CoQ10 is able to cross the blood brain barrier and remain non-toxic 

(Unpublished results; Mallika Somayajulu-Nitu, 2009) and thus would be a beneficial 

therapeutic to patients suffering from PD (Somayajulu-Nitu et al., 2009).                   

  We have found that WS-CoQ10 was able to decrease the levels of ROS and 

expression of p21 generated by PS-1 mutated AD fibroblasts, thereby effectively 

inhibiting senescence and increasing the population doubling of these cells.  Because of 

these findings, WS-CoQ10 could be used as a preventative treatment option for AD.  If 

taken before cells have been removed from the cell cycle, WS-CoQ10 could be able to 

prevent SIPS from occurring by lowering the high levels of oxidative stress that is 

responsible for inducing senescence.     
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CHAPTER V 

SUMMARY AND FUTURE PROSPECTS 

5.1 Summary 

 In the first part of the study we reported the use of a novel low molecular weight 

compound to inhibit apoptosis in cells exposed to increased levels of oxidative stress.  

Compound 22 was identified by a novel screening process, where low molecular weight 

compounds were screened against Bax specific sdAbs in order to discover if any had the 

ability to bind to Bax.  We demonstrated that C22 was able to block Bax-induced 

oxidative stress and prevent destabilization of the mitochondrial membrane and the 

release of cytotoxic factors into the cytosol.  A low dose of 20 μM of C22 significantly 

lowered the ROS generated in human neuroblastoma cells and preliminary data suggests 

that C22 may protect neurons in an in vivo rat model of stroke.   

Compound 22 was shown to inactivate Bax and prevent its association to the 

mitochondria and Bax induced apoptosis.  Because of this, it is our hope that C22 could 

be used as a potential neuroprotective agent in stroke.          

C22 was injected intraperitonially into a rat at a dose of 15 mg/kg and no effects 

of toxicity were observed.  Because preliminary results indicated C22 may be able to 

have a protective effect on neurons, it has the potential to be able to cross the blood brain 

barrier.  This compound was also shown to be Bax-specific.  

While the induction of apoptosis is detrimental in neurodegenerative diseases, it is 

an event required to prevent uncontrolled cell proliferation and to remove damaged cells.   

While inhibition of Bax may cause improper regulation of apoptosis in areas other than 

the penumbra, this inhibition would not last long enough to have any detrimental effects.  
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Compound 22 is a temporary treatment and is only required to be administered within a 

short time after stroke has occurred.  Any extraneous apoptosis inhibition would only be 

for a short period of time, and not long enough to cause complications associated with a 

lack of apoptosis, such as cancer. 

   In the second part of the study, we investigated the ability WS-CoQ10 to lower the 

unusually high levels of endogenous oxidative stress generated by PS-1 mutated AD 

fibroblasts and its effect on cellular senescence.  Our laboratory has had success with the 

use of WS-CoQ10 in protecting cells in culture from oxidative stress and in preserving 

neurons in rat models on Parkinson‟s Disease.  In addition to it being a potent anti-

oxidant, we have also found that WS-CoQ10 works to stabilize the protein transition pore 

and block Bax-induced destabilization of the mitochondria.  This is the first study that 

has used WS-CoQ10 to prevent stress-induced premature cellular senescence.           

   It was found that WS-CoQ10 was able to lower the levels oxidative stress 

produced by these cells and inhibit the induction of cellular senescence and increase the 

population doubling potential of PS-1 mutated AD fibroblasts.  It was also found that 

WS-CoQ10 was able to decrease the expression of senescence associated proteins p21 and 

p38, while increasing the expression of the radical scavenging protein MnSOD.  In 

addition, studies into the mechanism of action of WS-CoQ10 indicate that it is able to 

induce the formation of protective autophagic vacuoles and increase the expression of the 

autophagic marker LC-3 II.   
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The protective effects of WS-CoQ10 seen in PS-1 mutated AD fibroblasts can be 

extended to neurons as well.  In fibroblasts with the PS-1 mutation, this increased level of 

endogenous oxidative stress inevitably leads to SIPS.  In the case of neurons, increased 

oxidative stress as a result of the PS-1 mutation results in cell death.  If WS-CoQ10 is able 

to inhibit SIPS from occurring in PS-1 mutated AD fibroblasts, it is our hope that it may 

be able to be used as a neuroprotective agent to prevent cell death in neurons of patients 

that possess the PS-1 mutation and are predisposed to Alzheimer‟s Disease.          

 

5.2 Future Prospects 

We have seen that C22 is able to prevent Bax-induced cell death in cases of stroke 

and preliminary results indicate that C22 may be able to prevent neuronal cell death in an 

in vivo rat model of stroke.  Future work that can be done with this compound is to 

optimize the dosing amount and time of administration that is required to achieve 

maximum neuronal protection following stroke.  Also to be studied is the effect different 

modes of administration (oral, intravenous, intracranial etc.) have on the protective ability 

of C22 and whether multiple dosings would be of benefit. In terms of understanding the 

mechanism of action of C22, it can be radiolabelled and its progress in the cell can be 

tracked to determine where it localizes in the cell.  In addition, studies using size 

exclusion chromatography to determine whether C22 has an effect on Bax dimerization 
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can be conducted as well as protein NMR to determine what effect C22 binding has on 

the overall Bax conformation.   

WS-CoQ10 was found to prevent the induction of cellular senescence and decrease 

the expression of senescence-related proteins in PS-1 mutated fibroblasts.  Future studies 

to be conducted with WS-CoQ10 include investigating whether WS-CoQ10 to prevent the 

toxicity associated with Aβ accumulation.  The ability of WS-CoQ10 to inhibit SIPS in 

other PS-1 mutated cell lines can be investigated.  The mechanism of action of WS-

CoQ10 is still unknown and additional studies regarding the effects of p38 and MnSOD 

on the function of WS-CoQ10 can be investigated using appropriate knockout studies.  

Investigations as to whether or not WS-CoQ10 has a protective effect in an in vivo model 

of AD can be conducted using transgenic mice that possess the PS-1 mutation.   
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