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ABSTRACT 

Anaerobic sulphate reduction method has the potential for being effective and 

economically viable over conventional treatment methods for the treatment of sulphate 

rich wastewater such as acid mine drainage (AMD). However, a major challenge in 

anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards 

methane production. Use of long chain fatty acids (LCFA) as a methanogenic inhibitor to 

enhance sulphate reduction has the potential for being economically attractive since it is 

easily available at low cost. The present study investigated the effect of linoleic acid (LA) 

and COD/SO4
2-

 ratio on anaerobic dissimilatory sulphate reduction in semi continuous 

suspended growth system at 37 
o
C. Without LA, sulphate reduction of 50% was observed 

at a COD/SO4
2- 

ratio of 0.75. Sulphate reduction increased with increasing LA 

concentrations and at 1000 mg/L, almost 100% sulphate reduction was achieved. 
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CHAPTER I 

INTRODUCTION 

1.1  Background 

Sulphate rich wastewaters from a variety of industries, pose a severe threat to the 

environment. Pulp and paper, food processing, metallurgical, petroleum, edible oil, etc. 

are some of the industries that produce this type of wastewater (Lens et al., 1998). 

However, the mining industry is a major producer of acidic sulphate containing 

wastewater from their tailings ponds, which is commonly known as Acid Mine Drainage 

or AMD (Johnson & Hallberg, 2005). High level of heavy metals (iron, zinc, nickel, 

copper, chromium, lead, cadmium etc. and others) are present in the AMD, which run the 

risk of additional contamination to the environment. For example, approximately 19,300 

km of streams and rivers, and 72,000 ha of lakes and reservoirs worldwide were 

estimated in 1989 to be seriously damaged due to AMD (Johnson & Hallberg, 2005). 

Neutralization and chemical precipitation are the most widely used conventional 

treatment methods to treat wastewater with heavy metals and high sulphate 

concentrations (Kaksonen & Puhakka, 2007). These methods are not cost effective as 

they require chemicals for treatment and generate waste that is difficult and expensive to 

dispose of. This has prompted research to look for alternate technologies to remove heavy 

metals and sulphates from sulphate rich wastewater. Major advances in anaerobic 

digestion in the last three decades resulted in widespread adoption of this process due to 

low sludge production and low energy requirement (Ghosh & Pohland, 1974). Sulphate 

reducing bacteria (SRB), in an anaerobic environment, can remove sulphate from 
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sulphate containing wastewaters including AMD by dissimilatory sulphate reduction 

where sulphate can act as terminal electron acceptor. In addition, microbial species 

consume a small portion of sulphur from sulphate for their growth and activity. This 

process is referred as assimilatory sulphate reduction. 

Two major challenges in the dissimilatory sulphate reduction are 1) the low 

organic carbon concentrations in AMD that serve as the electron donor to the SRB and 2) 

co-existence of methanogenic bacteria (MPB) that consume a fraction of organic carbon 

and divert the electron flux towards methane production. This competition between SRB 

and MPB for organic carbon or the by-product such as acetate or hydrogen, make the 

anaerobic digestion process less efficient (Weijma et al., 2002). 

Long chain fatty acids (LCFAs) have the potential to inhibit gram-positive 

bacteria such as methanogens (Kabara et al., 1977). Kramer (1971) reported that 

wastewaters from dairies, food manufacturing and vegetable oil industries contain 

elevated levels of LCFAs. Use of LCFA can be effective as well as more economically 

viable than conventional inhibition processes such as heat treatment (Sung et al., 2002; 

Lay, 2000; Okamoto, 2000) or chemical inhibition (Chen et al., 2008). However, 

knowledge on the effect of LCFA on sulphate reduction is limited. A recent study in 

batch operation (Sharma & Biswas, 2010) has shown that it may be possible to use LCFA 

to selectively inhibit methanogens and divert more electron flux towards sulphate 

reduction. This possibility of the same being true in semi-continuous or continuous 

process applications has not been tested. 
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1.2  Objective 

The overall objective of this study was to examine the effect of linoleic acid and 

COD/SO4
2-

 ratio on anaerobic sulphate reduction in semi-continuous stirred tank reactors 

(SCSTRs). The experiments were conducted in two phases. 

1.2.1 Phase I 

To assess the effect of COD/SO4
2-

 ratio alone on anaerobic sulphate reduction in 

SCSTRs. 

1.2.2 Phase II 

To study the effect of LCFA (linoleic acid) and COD/SO4
2-

 ratio on anaerobic 

sulphate reduction in SCSTRs. 

1.3  Scope 

The scope of the present study was as follows: 

1.3.1 Phase 1 

i. To obtain healthy culture of SRB for subsequent experiments; 

ii. To investigate the effect of COD/SO4
2-

 ratio (4.66, 1.96 and 0.75) alone on 

anaerobic sulphate reduction in 3 sets (duplicate) of semi-continuous 

stirred tank reactors (SCSTRs). 

1.3.2 Phase 2 

i. To investigate the effect of COD/SO4
2-

 ratio (4.66, 1.96 and 0.75) with and 

without LCFA (linoleic acid) on anaerobic sulphate reduction in semi-

continuous stirred tank reactors (SCSTRs). 
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CHAPTER II 

REVIEW OF LITERATURE 

2.1  Overview 

The focus of this chapter is to provide sufficient information regarding anaerobic 

sulphate reduction to treat sulphate rich wastewater especially acid mine drainage. An 

understanding of anaerobic digestion concepts, involvement of various microorganisms at 

different stages, competition between sulphate reducing bacteria and methane producing 

bacteria for organic substrates, and factors affecting this competition such as pH, 

temperature, HRT, COD/SO4
2-

 ratio are discussed in this chapter. 

In anaerobic sulphate reduction, the major challenge is to inhibit methanogens and 

divert reducing equivalents towards sulphate reduction. This chapter discusses the 

conventional technologies of inhibiting methanogens by physical or chemical inhibitors 

and their limitations. A recent batch study (Sharma & Biswas, 2010) has shown that long 

chain fatty acids (LCFAs) have the potential to selectively inhibit methanogens to 

enhance sulphate reduction. This chapter describes the advantage of LCFA, inhibition 

mechanism, and types of toxicity effects due to different LCFAs. 

 

2.2  Concepts of Anaerobic Digestion 

Anaerobic treatment of wastewater has become a practical requirement in many 

full-scale facilities because of its cost effectiveness and energy saving (Lettinga, 1995). 

The conversion of complex organic substrates to either methane or hydrogen sulphide or 

both, is anaerobically mediated by a consortium of different microbial populations, which 

includes hydrolytic microorganisms, acidogens, acetogens, methanogens and sulphate 
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reducers (Bagley & Brodkorb, 1999; Veeken et al., 2000). The four step process includes 

hydrolysis, acidogenesis, acetogenesis, methanogenesis and/or sulphidogenesis (Gujer & 

Zehnder, 1983). In this four-step process (Figure 2.1), by-products from one reaction 

serve as substrate, for other reactions and the major end products along with methane or 

sulphide are biomass, water and carbon dioxide (CO2). However, methane is not the 

terminal product in the presence of alternative terminal electron acceptors such as 

sulphate. 

 

Figure 2.1 Pathway of anaerobic biodegradation (adapted from Gujer & Zehnder, 

1983)  

 

Carbohydrates, Proteins and Lipids

Sugar Amino Acid Long-chain fatty Acids

Intermediates

Propionate, Butyrates, etc.

Acetate
Hydrogen

Methane Sulphide
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2.2.1 Hydrolysis 

Hydrolytic microorganisms are responsible for hydrolysis, the first step of 

anaerobic biodegradation (Gujer and Zehnder, 1983). In this process, hydrolytic 

microorganisms excrete extra cellular enzymes and break down large complex organic 

polymers into simple monomers (Annachhatre, 1996; Veeken et al., 2000). Noike et al. 

(1985) and Eastman & Ferguson (1981) reported this step as the rate limiting step for 

overall hydrolysis process which is a function of pH, temperature, composition, particle 

size of the substrates and high concentrations of intermediate products (Gujer & Zehnder, 

1983; Veeken & Hamelers, 1999). 

 

2.2.2 Acidogenesis 

The second step is acidogenesis where the products of hydrolysis (simple monomers, 

amino acids, long chain fatty acids) are converted to volatile fatty acids (VFAs), some 

intermediate by-products (alcohols), hydrogen and carbon dioxide (Boone, 1985; Veeken 

et al., 2000). Malina & Pohland, (1992) reported that fast growing fermentative bacteria 

such as, Enterobacteraerogenes and Escherichia coli mediate these reactions. Table 2.1 

presents the most significant organic acids (volatile and non-volatile) produced at this 

stage. Volatile acids shown in bold are the most prevalent intermediates found in the 

process. 
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Table 2.1 Organic acids of significance in Acidogenesis (adapted from 

Environmental Biotechnology, Rittman and McCarty, 2001) 

Volatile acids Non-volatile acids 

Formic acid 

Acetic acid 

Propionic acid 

n-Butyric acid 

Iso-Butyric acid 

n-Valeric acid 

Isovaleric acid 

Caproic acid 

Heptanoic acid 

Octanoic acid 

Lactic acid 

Pyruvic acid 

Succinic acid 

 

2.2.3 Acetogenesis 

Acetogenic bacteria are responsible for the third step of anaerobic digestion. 

Higher VFAs and intermediate alcohols are converted into acetate, hydrogen and carbon 

dioxide at relatively low hydrogen partial pressure in this step. The important reactions 

involved in this step are given in Table 2.2. 
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Table 2.2 Reactions involved in anaerobic digestion (Thauer, 1977) 

Example Hydrolytic Reactions  ΔG
o
' (kJ·mole

-1
)  Eq.  

Β - Lactose + H2O → α –D - galactose + α –D -glucose  

β - Maltose + H2O → 2α – D -glucose  

Sucrose + H2O → D -fructose + α - D - glucose  

-106.5  

-45.3  

-43.6  

2.1 

2.2 

2.3  

Example Acidogenic Reactions  

C6H12O6 + 4 H2O → 2 CH3COO
-
+ 2 HCO3

-
+ 4 H2 + 4 H

+
 -206.0  2.4  

C6H12O6 + 5 H2O → CH3CH2COO
-
+ 3 HCO3

-
+ 5H2 + 4H

+
 -177.9  2.5  

C6H12O6 → CH3CH(OH)COO
-
+ 2 H

+
 -198.5  2.6  

C6H12O6 + 2 H2O → CH3(CH2)2COO
-
+ 2 HCO3

-
+ 2 H2 + 3H

+
 -253.8  2.7  

Example Acetogenic Reactions  

CH3CH2COO
-
+ 3 H2O → CH3COO

-
+ HCO3

-
+ H

+
 + 3 H2 357.6  2.8  

CH3CH(OH)COO
-
+ 2 H2O → CH3COO

-
+ HCO3

-
+ H

+
 + 2 H2 277.2  2.9  

CH3(CH2)2COO
-
+ 2 H2O → 2 CH3COO

-
+ H

+
 + 2 H2  48.3  2.10  

CH3CH2OH + H2O → CH3COO
-
+ H

+
 + 2 H2  9.6  2.11  

Example Methanogenic Reactions  

Aceticlastic Methanogenesis:   

CH3COO
-
+ H

+
 → CO2 + CH4 -27.5  2.12  

Hydrogenotrophic Methanogenesis:   

CO2 + 4 H2 → CH4 + 2 H2O  -139.1  2.13  

Example Sulphidogenic Reactions  

Aceticlastic Sulphidogenesis: 

CH3COO
-
+ SO4

2-
→ HS

-
+ 2HCO3

– 

Hydrogenotrophic Sulphidogenesis: 

SO4
2-

+ 4H2 + H
+
 → HS

-
+ 4H2O  

 

- 47.6  

 

-151.9 

 

2.14  

 

2.15  

 

ΔG
o
' is the free energy for the reactor under standard conditions (temperature, 237

o
K; 

pressure, 1.0 atm; pH, 7.0 and products at 1 M) 
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2.2.4 Methanogenesis 

Methanogenesis is the terminal step in the absence of any other electron acceptor 

such as sulphates. A group of strictly anaerobic archaea called methane producing 

bacteria (MPB) carries out this step by converting acetate and hydrogen to methane and 

carbon dioxide. Studies have shown that two major pathways for methane production 

exist in the terminal anaerobic reaction. In one pathway, hydrogen consuming MPB or 

hydrogenotrophic methanogens (HMPB) utilize hydrogen as electron donor and in 

another pathway, aceticlastic MPB (AMPB) use acetate as the carbon source. Compared 

to hydrogenotrophic methanogens, the growth of aceticlastic methanogens is 

approximately 5 to 10 times slower since the free energy of reaction for acetate 

conversion to methane and carbon dioxide is less than that for reduction of carbon 

dioxide to methane and water. Hence, biomass yield of aceticlastic methanogens per unit 

of chemical oxygen demand (COD) substrate is less than that of hydrogenotrophic 

methanogens. Both aceticlastic and hydrogenotrophic methanogens compete for substrate 

in presence of sulphate reducers. 

 

2.2.5 Sulphidogenesis 

Sulphidogenesis can occur simultaneously with methanogenesis when sulphate is 

present with the activity of sulphate reducing bacteria (SRB). Co-existence with 

methanogens causes a competition for various electron donors (McCartney & 

Oleszkiewicz, 1993). The typical reactions involved in this step are shown in Table 2.2. 

SRB can utilize a variety of organic matter as a carbon source in comparison to 

methanogens. The major by-product of sulphidogenesis is sulphide, which is a potent 



 

10 

toxin to both methanogens and sulphate reducers. A proper balance between acid 

production rate (hydrolysis and acidogenesis) and acid consumption rate (acetogenesis, 

methanogenesis and sulphidogenesis) is a major operational challenge in anaerobic 

digestion. Lack of stability in maintaining equilibrium can cause VFA accumulation and 

eventually has the potential for system failure. 

 

2.3  Competition for organic substrate between SRB and MPB 

Sulphate reduction and methane formation can take place simultaneously in 

anaerobic digestion. Both sulphate reducers (SRB) and methane formers (MPB) can use 

hydrogen and acetate produced in the process as electron donor. Therefore, a competition 

for organic substrates such as hydrogen and acetate exists between SRB and MPB (Lens 

et al., 1998). Methane formation is undesirable for dissimilatory sulphate reduction since 

a fraction of reducing equivalents from the substrate is utilized for methane formation 

resulting in low sulphate reduction (Weijma et al., 2002). SRB are much more versatile in 

terms of substrate utilization than MPB (Kaksonen & Puhakka, 2007). Stams et al. (2005) 

reported that compounds such as propionate, butyrate etc. are degraded directly by SRB 

species (Desulfovibrio and Desulfomicrobium) in sulphate rich environments, whereas 

MPB can utilize only hydrogen and acetate. Hence, the competition is mainly for these 

two electron donors - hydrogen and acetate. Several factors determine the outcome of this 

competition. Thermodynamic and kinetic considerations, substrate affinity and 

COD/SO4
2-

 ratio are the main guiding factors to determine the outcome of the 

competition. 
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2.3.1 Competition for Hydrogen 

From thermodynamic, kinetic and substrate affinity considerations, hydrogen 

consuming SRB (HSRB) should effectively out-compete hydrogenotrophic methanogens 

(HMPB) under anaerobic conditions while treating sulphate rich wastewater (Zinder, 

1993; Mulder, 1984; Rinzema et al., 1986 Alphenaar et al., 1993; Bhattacharya et al., 

1996b; Harada et al., 1994; McCartney & Oleszkiewicz, 1993; Rinzema & Lettinga, 

1988; Uberoi & Bhattacharya, 1995; Visser et al., 1993a; Widdel et al., 1988; Colleran et 

al., 1995; O'Flaherty & Colleran, 1999; Omil et al., 1996). As indicated in Table 2.3, 

lower values of ΔG, ΔG
o
’ and Km favour SRB to win the competition for hydrogen over 

MPB, due to their comparative higher values for reactions with the same. SRB have 

higher affinity for hydrogen than MPB. The location of the hydrogenase enzyme in the 

periplasmic space of SRB rather than in the cytoplasm as in MPB is the reason for this 

higher affinity (Tursman and Cork, 1989). Moreover, HSRB function at a lower 

hydrogen threshold concentration than HMPB (Chen et al., 2008; Colleran et al., 1995; 

Elferink et al., 1994; Lovley, 1985).  
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Table 2.3 Free energy, apparent Km and minimum substrate threshold values for 

hydrogenotrophic and aceticlastic methanogens and sulphate reducers. (adapted from 

Colleran et al., 1995) 

Reactions ΔG° 

(kJ/mole) 

ΔG°'  

(kJ/rxn) 

 

Apparent  

Km (µM) 

 

Minimum  

threshold  

(nM) 

 

4H2 + CO2    CH4 + 2H2O - 32.7 - 135 5-13 23-75 

4H2 + HSO4
-
      HS

-
 + 4H2O 

- 38.0 - 152 2 7 

CH3COO
-
 + H2O     CH4 + HCO3

-
 - 28.2 -31 *3-5 x 10

3
 0.5-1.2 × 10

6
 

   **0.5-1 × 10
3
 5-70 × 10

3
 

CH3COO
- 
+ SO4

2-
  HS

-
 + 2HCO3

-
 - 39.5 -47 0.2 x 10

3
 ±1 × 10

3
 

* Methanosarcinasp, ** Methanothrix sp.  

 

2.3.2 Competition for Acetate 

From thermodynamic and kinetic points of view, aceticlastic SRB (ASRB) are 

expected to out-compete acetate-utilizing MPB (AMPB) because of their low Km value 

and free energy values (Table 2.3). ASRB gain more energy from the acetate than AMPB 

and have higher growth rates (Colleran et al., 1995). Elferink et al. (1994) have observed 

that ASRB out-compete AMPB especially at low acetate concentration. Lovley and 

Phillips (1987) confirmed the ability of SRB to out-compete MPB for acetate in 

freshwater sediments at a concentration of 5 µM. However, the outcome of the 

competition for acetate in anaerobic digesters is contradictory (Colleran et al., 1995) and 
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less clear (Stams et al., 2005). Some authors have reported preferential acetate utilization 

by SRB species whereas the majority of them have indicated successful utilization by 

MPB species in the presence of sulphate.  

The type of reactor involved in the investigation may play a crucial role, to some 

extent, in determining the outcome of the competition for acetate (Colleran et al., 1995; 

Lens et al., 1998). Experiments in CSTRs and contact processes showed preferential 

acetate consumption by SRB species (Olthof et al., 1985). On the other hand, the 

outcome of the competition is less predictable in modern high rate reactors with sludge 

immobilization (Lens et al., 1998).  

Several studies have reported complete conversion of acetate into methane via 

methanogenesis indicating preferential consumption of acetate by MPB, even in excess of 

sulphate (Mulder, 1984; Rinzema et al., 1986; Isa et al., 1986a, b; Polprasert & Haas, 

1995; Yoda et al., 1987), while others have reported a predominance of ASRB (Choi & 

Rim, 1991; Omil et al., 1997; Omil et al., 1996; Stucki et al., 1993; Visser et al., 1993a). 

Hence, there is no agreement in the scientific community in terms of acetate utilization 

and factors affecting the competition for acetate.  

Researchers have put forward various theories to explain the apparent competitive 

advantage of AMPB in retained biomass system. Isa et al. (1986 a, b) have reported that 

relatively superior capability of MPB to colonize on support material may attribute to 

successful competition. Yoda et al. (1987) found the predominance of MPB at acetate 

concentrations higher than 8 mg COD/L. Several authors have reported other factors such 

as COD/SO4
2-

 ratio (Bhattacharya et al., 1996b; Choi & Rim, 1991; Isa et al., 1986b), pH 

(Isa et al., 1986b), temperature (Shin et al., 1996), HRT (Isa et al., 1986b; Omil et al., 
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1998), and organic and sulphate loading rates (Yoda et al., 1987) can potentially 

determine the outcome of the competition for acetate. 

 

2.4  Factors affecting the Competition 

2.4.1 Effect of pH 

The literature shows that there are direct and indirect effects of pH on sulphate 

reduction and methane formation. Studies have reported the optimal pH range of 7.3 to 

7.6 and 6.5 to 7.8 for SRB and MPB, respectively (Widdel, 1988; Vogels et al., 1988). 

ASRB can tolerate pH higher than 7.6. Visser et al. (1996) investigated the kinetic 

properties of acetotrophic SRB (ASRB) and acetotrophic MPB (AMPB). Their results 

indicate that ASRB win the competition at a pH levels higher than 7.7. Omil et al. (1997) 

have reported that SRB show higher growth rate than that of MPB at higher pH level. 

Their findings indicate that at pH values greater than ~ 7.7, ASRB will out-compete 

AMPB because under these conditions ASRB have a higher maximal specific growth rate 

and are less inhibited by sulphide than AMPB. The pH up to which the sulphidogenic 

bacteria can survive and grow is 10 whereas it is 8.5 for AMPB (Visser et al., 1996). 

AMPB have advantage over ASRB at a pH level less than 6.9. Both have 

comparable growth rates in the pH range of 6.9 to 7.7. In this pH range, both are equally 

inhibited by sulphide and the outcome of the competition is governed by the sulphate 

concentration in the bulk solution. In addition to the direct pH effect, the outcome of the 

competition is also subjected to an indirect effect due to the pH dependence of sulphide 

toxicity on SRB and MPB. Section 2.4.4 discusses the sulphide toxicity and its pH 

dependence.  
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2.4.2 Effect of Temperature 

Temperature can play a crucial role in determining the outcome of the 

competition. The literature shows that mesophilic ASRB and AMPB have similar 

temperature ranges and optima. Visser et al. (1992) have reported that both ASRB and 

AMPB respond similarly to temperature changes in the range of 10 – 50 
o
C. In general, 

increasing temperature is more favourable to SRB growth compared to methanogens. 

Methanogens were strongly suppressed with a large fraction of electron flow distributed 

to SRB in mixed culture system operating at elevated temperature (Shin et al., 1996). 

Visser et al. (1993b) have reported that SRB are less sensitive to high temperature shocks 

(65 
o
C for 8 - 9 hrs.) compared to methanogens in granular sludge. Shin et al., (1996), 

reported contradictory finding. In their continuous reactors, observed that electron flow 

towards SRB increased from 43% to 80% when the temperature was decreased from 35 

o
C to 25 

o
C. The spore forming ability of few SRB species in adverse conditions may 

attribute to their lesser sensitivity compared to MPB. Hence, temperature shock can be 

instrumental in determining the outcome of the competition. 

 

2.4.3 Effect of HRT 

The competition between SRB and MPB decreases with increasing hydraulic 

retention time (HRT). Apparently, higher HRT is more advantageous to SRB leading to 

increase in sulphate reduction. Polo et al. (2006) has reported a significant decrease in 

effluent sulphide concentration and washout of biomass at retention time lower than 10 

hours. Isa et al. (1986b) worked with acetate in high rate anaerobic reactors and observed 

an increased sulphate reduction by 7.6% when the HRT was increased from 0.5 to 10 
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days. However, it is noteworthy that the SRB population was dominant at start-up. MPB 

out-competed SRB after 7 weeks of re-inoculation with anaerobic liquor. Competition 

between ASRB and AMPB in mesophilic (30 
o
C) UASB reactors fed with two different 

media: VFA mixture (acetate : propionate : butyrate ratio of 5:3:2 on COD basis) and 

acetate as sole substrate was examined by Omil et al. (1998). They concluded that ASRB 

became predominant in prolonged reactor operation with excess sulphate in the influent. 

The amount of acetate used by SRB increased from 50% to 90% in reactors when HRT 

was increased from 250 to 400 days, respectively. These findings were in agreement with 

that of Harada et al. (1994) who have also reported that ASRB became predominant after 

prolonged (more than 100 days) reactor operation. 

 

2.4.4 Sulphide Inhibition 

Sulphide in high concentrations in an anaerobic digester can be toxic to sulphate 

reducers and methane producers. Its accumulation can cause severe inhibition in bacterial 

activities even result in process failure. Sulphide can be present in both unionized (H2S) 

and ionized forms (HS
-
 and S

2-
) in the solution. The unionized H2S dissociates in water 

according to the following equations (Garrels and Christ, 1965): 

H2S ⇌ H
+
 + HS

-
 

     HS
-
 ⇌ H

+
 + S

2-
 

It is presumed that only unionized H2S exhibits inhibitory effects as only neutral 

molecules can permeate the cell membrane (Schlegel, 1981) driven by osmotic gradients 

(McCartney and Oleszkiewicz, 1993), although Khan and Trottier (1978) rated the 

inhibition potential for various sulphur compounds as H2S > total sulphide (TS) > 
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sulphite > thiosulphite > sulphate. The exact mechanism of inhibition due to H2S is not 

yet clear. The H2S crosses the cell wall and affects the intracellular pH. This change in 

pH denatures the native proteins and essential metabolic coenzymes through the 

formation of sulphide and disulphide cross-links between the polypeptide chains (Lens et 

al, 1998). It can also form insoluble FeS that can result in Fe deficiency for the cell 

constituents such as ferrodoxin and cytochrome (Reis et al., 1992). This metal sulphide 

formed can also act as a barrier that prevents the access of essential reactants to the 

enzymes (Utgikar et al., 2002). 

The pH plays a crucial role in sulphide inhibition as the chemical equilibrium of 

different sulphide species is pH dependant (Okabe et al., 1995; Hao et al., 1996).  

Figure 2.2 shows the variation of distribution of sulphide species with pH. At high pH 

level of 8 to 9, all dissolved sulphide is in ionized forms (HS
-
 and S

2-
). At low pH level of 

6 to 7, most of the sulphide remains in unionized form (H2S) which potentially causes 

inhibition. 

Researchers have different opinions regarding the effect of sulphide inhibition. 

Hilton & Oleszkiewicz (1988) have reported that SRB were inhibited in proportion to the 

total sulphide (TS) concentrations and not the hydrogen sulphide concentrations, while 

acetotrophic methanogens were inhibited more by free hydrogen sulphide. As per Visser 

et al. (1996), sulphide inhibition depends on sludge characteristics. They concluded that 

above pH 7, inhibition in granular sludge is caused by total sulphide concentration (TS = 

H2S + HS
-
 + S

2-
), while in suspended sludge, free H2S determines the toxicity. Studies 

have reported 50% inhibition at H2S concentrations ranging from 50 to 130 mg/L in 

suspended sludge (Lens et al., 1998). 
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Figure 2.2 Distribution of sulphide species as a function of pH (adapted from Hao et 

al., 1996) 

 

On the other hand, in sludge granules, 50% inhibition was found at H2S 

concentrations of 250 and 90 mg/L at pH values of 6.4 to 7.2 and 7.8 to 8.0, respectively 

(Table 2.4). The inhibition of MPB is significantly higher at high pH values compared to 

that at lower pH range (Table 2.4). Internal pH gradients in granules (Koster et al., 1986), 

and mass transfer limitation from bulk liquid to bio-film (Overmeire et al., 1994; Visser 

et al., 1996) may explain why higher sulphide concentrations can be tolerated in bio-film 

reactors operating at neutral pH values (Parkin et al., 1991; Maillacheruvu et al., 1993). 

Sensitivity of sulphide also depends on substrate utilized as per Millacheruvu et 

al. (1993). They concluded that lactate and glucose fed system can tolerate higher 
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sulphide level (100 - 150 mg/L as H2S and 200 - 400 mg/L as TS) than acetate or 

propionate fed system. Although, in long term studies, they observed a cyclic pattern of 

variation in H2S and TS levels in acetate, propionate, lactate and glucose system resulting 

in process failure. A complex interaction between SRB and MPB, inhibition, acclimation 

seemed to be potential factors for this cyclic pattern. 

Sulphide inhibition was demonstrated as reversible by many researchers. Parkin et 

al. (1983) have reported that methane production was completely inhibited with a shock 

load of 500 mg/L as TS, but was fully recovered within 10 days when the TS 

concentration was lowered. Methane production recovered even after longer exposure (4 

days) to higher TS concentration (1500 mg/L) in their study. Similar finding was reported 

by Reis et al. (1992) for SRB growth. They observed a complete inhibition of SRB 

growth with 547 mg/L as hydrogen sulphide. But the inhibitory effect was reversible as 

the SRB activity increased with H2S stripping. Another research team also observed 

increased COD removal and sulphate reduction using an H2S-stripped reactor concluding 

reversible sulphide toxicity (Oleszkiewicz & Hilton, 1986; Hilton & Oleszkiewicz, 

1988). Isa et al. (1986b) have indicated a contradictory finding as they didn’t observe any 

significant effect of hydrogen sulphide inhibition to SRB and MPB. Isa et al. (1986b) 

reported a 50% inhibition of methanogenesis at an extraordinary high hydrogen sulphide 

concentration of 1200 mg/L using both acetate and acetate/ethanol as substrate. 

Adaptation of MPB to hydrogen sulphide could be a probable explanation as they 

reported in their attached film reactor. 
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Table 2.4 Unionized Sulphide (H2S) and Total Sulphide (TS) Concentrations (mg/L) causing a 50% Inhibition of Sulphate 

Reduction and Methanogenesis (adapted from Lens et al., 1998) 

Sludge Type Substrate T (
o
C) pH 

H2S 

(mg/L) 

TS  

(mg/L) 

Reference 

Sulphate reduction 

Sludge suspension Lactate/acetate 35 7.2-7.6 NR 83 McCartney and Oleszkiewicz (1991) 

Sludge suspension Lactate 35 

7.0 > 300 NR 

McCartney and Oleszkiewicz (1993) 

8.0 185 2244 

Sludge suspension Propionate 

35 6.5-7.4 100 NR 

Oleszkiewicz et al. (1989) 

 7.7-7.9 60 NR 

Sludge suspension Butyrate 

35 6.5-7.4 235 NR 

Oleszkiewicz et al. (1989) 

 7.7-7.9 >200 NR 

Sludge suspension Lactate 

35 6.5-7.4 320 NR 

Oleszkiewicz et al. (1989) 

 7.7-7.9 390 NR 

Sludge granules Acetate 

30 7.2-7.4 171 615 

Visser et.al. (1996) 

 8.1-8.3 57 1125 
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Sludge Type Substrate T (
o
C) pH 

H2S 

(mg/L) 

TS  

(mg/L) 

Reference 

Sludge granules Propionate 30 7.0-7.5 140 NR Rinzema and Lettinga (1988) 

Methanogenesis 

Sludge suspension Acetate 

35 6.5-7.4 125 NR 

Oleszkiewicz et al. (1989) 

 7.7-7.9 100 NR 

Sludge suspension Lactate/acetate 35 7.2-7.6 NR 240 McCartney and Oleszkiewicz (1991) 

Sludge suspension Lactate 

35 7.0 100 270 

McCartney and Oleszkiewicz (1993) 

 8.0 100 1258 

Sludge granules 

 

Acetate 

 

30 6.4-6.6 246 357 

Koster et al. (1986)  7.0-7.2 252 810 

 7.8-8.0 90 841 

Sludge granules Acetate 

30 7.2-7.4 184 564 

Visser et al. (1996) 

 8.1-8.3 38 590 

Note: NR = Not reported. 
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2.4.5 COD/SO4
2-

 ratio 

Sulphate reduction and methane formation can take place simultaneously during 

anaerobic digestion. Both sulphate reducers (SRB) and methane formers (MPB) can use 

hydrogen and acetate produced in the process as electron donors. Therefore, a 

competition for organic substrate exists between SRB and MPB. This competition is 

strongly dependant on the COD/SO4
2- 

ratio (Isa et al., 1986a,b) in organic substrate. The 

importance of this ratio increases with the decrease of COD/SO4
2- 

ratio in wastewater. 

Each mole of sulphate (96 g) needs 8 moles of electrons to be reduced which can be 

derived from a suitable electron donor such as acetate. Since each mole of electron is 

equivalent to 8 g of COD, the total theoretical COD requirement is 64 g to reduce one 

mole (96 g) of sulphate. Sulphate reduction by SRB follows the reaction below (Lens et 

al., 2002): 

SO4
2-

 + 8e
-
 + 4H2O            S

2-
 + 8OH

-
 

 

In the waste streams with COD/SO4
2-

 ratio of 0.67, there is theoretically enough 

sulphate available for complete removal of organic matter as COD by sulphate reducing 

bacteria only (Rinzema and Lettinga, 1988). If sufficient organic matter in not present in 

the wastewater, addition of extra substrate is required for sulphate reduction (Omil et al., 

1998). 

Choi and Rim (1991) have reported that SRB out-compete MPB at COD/SO4
2- 

ratios less than 1.7 (sulphate rich condition). They observed an active competition 

between them at COD/SO4
2- 

ratios between 1.7 and 2.7. With a COD/SO4
2- 

ratio of more 

than 2.7 (sulphate limiting condition), it was observed that MPB out-competed SRB. This 
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finding was supported by Freese & Stuckey (2004) who have reported a possible shift 

towards sulphate reduction when the COD/SO4
2- 

ratio was decreased from 2 to 1. 

Colleran et al. (1995) have reported the work of Finnegan (1994) stating an increase in 

sulphidogenic activity from 38% to 52% when the COD/SO4
2- 

ratio was decreased from 

1.9 to 1.2. This clearly indicates that partitioning of reducing equivalents via 

sulphidogenic or methanogenic activity is governed mainly by influent COD/SO4
2- 

ratio. 

It is also noteworthy; though the sulphate removal rate or sulphidogenic activity is higher 

with lower COD/SO4
2- 

ratio, the degree of sulphate reduction improves with increasing 

COD/SO4
2- 

ratios (Erdirencelebi et al., 2007). Lopes et al. (2007), Wang et al., (2008) 

also have reported similar findings though the operating conditions were slightly 

different. 

The COD/SO4
2- 

ratio plays a key role in determining the metabolic pathways for sulphate 

reduction. Several studies have reported completely different metabolic pathways for 

sulphate reduction based on different COD/SO4
2- 

ratios (Uberoi and Bhattacharya, 1995; 

Colleran et al., 1995; McCartney and Olesziewicz, 1991). SRB are found to be more 

versatile in terms of their metabolic possibilities than MPB (Elferink et al., 1994). Some 

species of SRB can perform complete oxidation of organic substrate, while some others 

govern incomplete oxidation based on the relative sulphate level (COD/SO4
2- 

ratio) in the 

influent (Lens et.al., 1998). In addition to the competitive interaction with MPB; SRB 

grow much faster than other syntrophic consortia at a relatively high concentration of 

sulphate to organic substrate (Elferink et al., 1994). Table 2.5 and 2.6 illustrates literature 

data on sulphate reduction in batch and continuous/semi- continuous operation. 
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Table 2.5 Sulphate reduction efficiency in batch studies 

Reactor 

Type 

COD/SO4
2-

 

ratio 

Feed 

Organic 

Carbon 

(mg/L) 

Sulphate 

(mg/L) 

Sulphate 

reduction 

(%) 

Sulphate 

reduction 

(mg/L) 

Reference 

COD/SO4
2-

<1.7 

suspended 0.43 Ethylalcohol 3000 18.7 561 Cao et al. (2011) 

suspended 0.6 Acetate 7820 13000 4.5 585 Erdirencelebi et al. (2007) 

suspended 0.63-.69 Propionate 200 500 43 215 

Uberoi & Bhattacharya 

(1995) 

suspended 0.86 Ethylalcohol 1500 38.3 575 (Cao et al., 2011) 

suspended 1.23 Acetate 8300 7500 4 300 Erdirencelebi et al. (2007) 

suspended 1.25 Glucose 1870 1500 24 360 Sharma and Biswas (2010) 

suspended 1.3 Ethylalcohol 1000 69.7 697 Cao et al. (2011) 

suspended 1.7 Ethylalcohol 750 86.6 650 Cao et al. (2011) 
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Reactor 

Type 

COD/SO4
2-

 

ratio 

Feed 

Organic 

Carbon 

(mg/L) 

Sulphate 

(mg/L) 

Sulphate 

reduction 

(%) 

Sulphate 

reduction 

(mg/L) 

Reference 

 

1.7< COD/SO4
2-

< 4       

suspended 2.16 Ethylalcohol 600 94.3 566 Cao et al. (2011) 

suspended 2.6 Ethylalcohol 500 93.2 466 Cao et al. (2011) 

suspended 2.7 Acetate 8455 3560 9 320 Erdirencelebi et al. (2007) 

suspended 3.03 Ethylalcohol 428.6 92.3 396 Cao et al. (2011) 

        
COD/SO4

2-
> 4 

suspended 5.3 Acetate 9425 1775 12 213 Erdirencelebi et al. (2007) 

suspended 18 Acetate 8940 607 36 219 Erdirencelebi et al. (2007) 
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Table 2.6 Sulphate reduction efficiency in semi-continuous/continuous studies 

Reactor 

Type 

COD/SO4
2-

 

ratio 
Feed 

Organic 

Carbon 

(mg/L) 

Sulphate 

(mg/L) 

Sulphate 

reduction 

% 

Sulphate 

reduction 

(mg/L) 

Reference 

 
COD/SO4

2-
<1.7 

suspended 0.66 Propionate 1100 2500 68 1700 Uberoi and Bhattacharya(1995) 

suspended 1.33 Propionate 1100 1250 92 1150 Uberoi and Bhattacharya(1995) 

suspended 0.9 Acetic acid 6500 7278 12 873 Erdirencelebi et al. (2007) 

suspended 1.47 Acetic acid 6900 4697 13 611 Erdirencelebi et al. (2007) 

UASB 0.83 Sucrose 500 600 29-64  174-384 Harada et al. (1994) 

UASB 1.16 Molasses 520 450 70 315 Annachhatre (2001) 

UASB 1 Sucrose 2000 2000 25-35 500-700 Lopes et al. (2007) 

Attached 1.5 Ethanol 4500 3000 99 2970 Sarti et al. (2010) 
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Reactor 

Type 

COD/SO4
2-

 

ratio 
Feed 

Organic 

Carbon 

(mg/L) 

Sulphate 

(mg/L) 

Sulphate 

reduction 

% 

Sulphate 

reduction 

(mg/L) 

Reference 

1.7< COD/SO4
2-

< 4 

suspended 2 Propionate 1100 833 99 825 Uberoi & Bhattacharya (1995) 

suspended 3.32 Propionate 1000 500 99 495 Uberoi & Bhattacharya (1995) 

suspended 3.25 Lactate  2200 1000 87 870 Oyekola et al. (2010) 

suspended 3.25 Lactate  5500 2500 54 1350 Oyekola et al. (2010) 

suspended 3.25 Lactate  11000 5000 58 2900 Oyekola et al. (2010) 

suspended 3.25 Lactate  22200 10000 40 4000 Oyekola et al. (2010) 

Suspended 3.15 Glucose 6945 2198 29 637 Erdirencelebi et al. (2007) 

Suspended 2.7 Glucose 6760 3728 28 1044 Erdirencelebi et al. (2007) 

UASB 3.33 Sucrose 500 150 94 141 Harada et al. (1994) 

UASB 3.2 Glucose 4280 1337 70 936 Erdirencelebi et al. (2007) 

UASB 3.33 

 

3000 900 > 80 > 720 Annachhatre (2001) 

Attached 1.8 Ethanol 5400 3000 99 2970 Sarti et al. (2010) 
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Reactor 

Type 

COD/SO4
2-

 

ratio 
Feed 

Organic 

Carbon 

(mg/L) 

Sulphate 

(mg/L) 

Sulphate 

reduction 

% 

Sulphate 

reduction 

(mg/L) 

Reference 

COD/SO4
2-

> 4 

Suspended 6.7 Glucose 6710 1000 15 150 Erdirencelebi et al. (2007) 

UASB 20 Glucose 6270 305 86 262 Erdirencelebi et al. (2007) 

UASB 13.2 Glucose 4710 357 73 261 Erdirencelebi et al. (2007) 

UASB 10 Glucose 5270 600 80 480 Erdirencelebi et al. (2007) 

UASB 5 Glucose 6670 1275 74 944 Erdirencelebi et al. (2007) 

UASB 4 Glucose 4495 1125 81 911 Erdirencelebi et al. (2007) 

UASB 4 Sucrose 2000 500 65 325 Lopes et al. (2007) 

UASB 16.67 Sucrose 500 30 86 26 Harada et al. (1994) 
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2.5  Methanogenic Inhibition 

Diversion of a fraction of reducing equivalents from the substrate towards 

methane production has been a major challenge for dissimilatory sulphate reduction. This 

has prompted research on finding methanogenic inhibitors to divert the reducing 

equivalents towards sulphate reducers to achieve a higher sulphide yield. Many 

researchers have studied the effect of different inhibitors to inhibit methanogenic 

activities. This section discusses some of the inhibitors, inhibition methods and 

challenges associated to them. 

 

2.5.1 Heat Treatment 

Many researchers have studied the effect of heat treatment on blocking certain 

species of methanogens selectively (Duangmanee et al., 2007; Lay, 2000; Okamoto, 

2000). Heat treatment can inhibit non-spore forming methanogens. However, the high 

cost involved in this physical inhibition method makes it unpopular in full-scale 

application. 

 

2.5.2 Chemical Inhibitors 

Ammonia, produced by the biological degradation of nitrogenous matter, mostly 

in the form of proteins and urea (Kayhanian, 1999) can selectively inhibit methanogens 

among four types of anaerobic microorganisms. Koster and Letttinga (1988) reported a 

56.5% inhibition in methanogenic activities when ammonia concentration was increased 

in the range of 4051 mg/L to 5734 mg/L. Free ammonia (FA) was suggested to be the 

main cause of inhibition since it is freely membrane-permeable (Kroeker et al., 1979; de 
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Baere et al., 1984). Several researchers have studied the problems associated with 

ammonia inhibition like pH (Kroeker et al., 1979; Hashimoto, 1983, 1984; Hansen et al., 

1999; Borja et al., 1996; Zeeman et al., 1985), temperature (Braun et al., 1981), 

antagonistic effects due to the presence of Na
+
, Ca

2+
 and Mg

2+
 (McCarty & McKinney, 

1961; Braun et al., 1981; Hendriksen & Arhing, 1991). In addition, acclimation is another 

major factor associated with ammonia inhibition. Studies have reported methanogens to 

perform actively at high concentrations of ammonia, far exceeding the initial inhibitory 

concentration after adaptation (Kroeker et al., 1979; Parkin & Miller, 1983; Bhattacharya 

& Parkin, 1989; Angelidaki & Arhing, 1993). 

Inhibition to methanogenic activities was shown using 2-bromoethanesulphonate 

or BES (Oremland & Capone, 1988; Scholten et al., 2000). BES is an analogue of a 

cofactor (mercaptoethanesulfonic acid, known as HS
- 

coenzyme M) unique to 

methanogens and is highly effective in blocking methanogens (Gunsalus & Wolfe, 1978). 

The cost of BES and its toxic discharge to the environment are the major disadvantages 

in full-scale application. Organic compounds which have been reported to be toxic to the 

anaerobic processes include alkyl benzenes (Yang & Speece, 1986; Renard et al., 1993), 

halogenated benzenes (van Beelen and van Vlaardingen, 1994), nitro benzenes 

(Bhattacharya et al., 1996a), phenol and alkyl phenols (Sierra-Alvarez & Lettinga, 1991; 

Soto et al., 1991; Fang et al., 1995), halogenated phenols (Shin & Kwon, 1998), 

nitrophenols (Borja et al., 1997; Uberoi & Bhattacharya, 1997; McCue et al., 2003), 

alkanes (Mormile & Suflita, 1996), halogenated aliphatics (Stuckey et al., 1980; 

Boucquey et al., 1995), alcohols (Dimirer & Speece, 1998), halogenated alcohols (Blum 

& Speece, 1991), aldehydes (Gonzales-Gil et al., 2002), ethers (Playne & Smith, 1983; 
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Hayward & Lau, 1989), ketones (Playne & Smith, 1983; Hayward & Lau, 1989), 

acrylates, carboxylic acids, amines, nitriles, amides (Blum & Speece, 1991; Stergar et al., 

2003), pyridine and its derivatives (Liu et al., 1998). Most of the organic inhibitors are 

not specific inhibitors to methanogens and inhibit different microorganisms in anaerobic 

digestion.  

 

2.5.3 Long Chain Fatty Acids (LCFAs) 

Studies have reported LCFAs to be inhibitory for gram-positive microorganisms 

because their cell wall structure typically lacks the outer membrane, which is present in 

the gram-negative bacteria (Kabara et al., 1977). Hence, LCFAs can inhibit methanogens 

that have similar cell wall structure as gram-positive bacteria (Zeikus, 1977). Cherrington 

et al. (1991) have reported that before entering into the cells, LCFAs may exert 

antibacterial effects by disrupting several cell membrane components and inactivating 

many energy-linked reactions. For example, they interfere with K
+
, Na

+
, regular proteins 

and other cell proteins involved in maintaining cell homeostasis (Cherrington et al., 

1991). Demeyer & Henderickx (1967); Rinzema et al. (1994) and Hwu et al. (1998) have 

reported that unsaturated LCFAs adhere to the bacterial cell wall by adsorption and alter 

the permeability of the cell, henceforth, limiting the transport of important nutrients. 

In addition, Rinzema et al. (1989) have reported that flotation of sludge and 

consequent sludge washout may occur due to the sorption of LCFAs to biomass. Later, 

Hwu et al. (1996) supported this stating the dependence of LCFA toxicity was more 

based on physical characteristics of sludge (specific surface are, size distribution) than 
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their biological characteristics. For example, suspended and flocculent sludge having 

higher specific surface area, suffered much greater inhibition than granular sludge. 

The advantages of using LCFA as an inhibitor to methanogens to divert electron 

fluxes towards sulphate reducers are two-fold: i) LCFAs are cost effective, readily 

available and can be derived from lipids and fats, which in turn, are produced from edible 

oil refineries, slaughterhouse and dairy products industries (Kramer, 1971), ii) LCFAs are 

degradable and electron equivalents from the degradation can be used by terminal 

electron acceptors. 

Several researchers have studied the anaerobic degradation of LCFAs (Lalman & 

Bagley, 2002; Lalman & Bagley, 2001; Alves et al., 2001; Weng & Jeris, 1976; Novak & 

Carlson, 1970). Hydrogen producing acetogens can degrade LCFAs to acetate via a 

β-oxidation mechanism: 

CH3(CH2)nCOOH + 2H2O              CH3(CH2)n-2COOH + CH3COOH + 2H2 

 

Biodegradation of LCFA proceeds via several steps including adsorption onto the 

cell wall, movement across the cell membrane and LCFA conversion into a lower 

molecular weight component like acetate. The degradation products from each step are 

acetate, hydrogen and a LCFA with a reduction of two carbons in the alkyl group.  

Many researchers have studied the effect of different LCFAs like linoleic acid - 

LA (C18:2), oleic acid - OA (C18:1), stearic acid – SA (C18:0), palmitic acid (C16:0), 

myristic acid (C14:0) etc. with varying concentrations. Angelidaki & Arhing (1995) have 

concluded that inhibition effect is concentration dependent. Their finding was supported 

by Lalman & Bagley (2001); Hwu et al. (1998); and Koster & Cramer (1987). 
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The extent of inhibition is known to increase with the increase of carbon chain 

length and with the increase in number of carbon double bonds. Lalman & Begley (2001) 

and Lalman & Bagley (2002) have reported that LA and OA bearing carbon double 

bonds are more inhibitory to both aceticlastic and hydrogenotrophic methanogens when 

compared to SA bearing no carbon double bonds. LA reduces the interfacial tension 

between the bacterial membrane and the bulk aqueous phase of growth medium and thus, 

acts as a surfactant. SA bearing no carbon double bond was reported to be a poor 

surfactant when compared to LA (Greenway & Dyke, 1979). Supporting this finding, 

Lalman (2000) has reported that the surfactant property due to the difference in chemical 

structure is responsible for high methanogenic inhibition in LCFAs bearing double bonds 

such as LA when compared to SA. 

Sharma (2008) has studied the effect of LA (C18:2), OA (C18:1) and SA (C18:0) 

in mixed microbial communities in batch operation and concluded that LA diverts more 

than 30% electron fluxes towards sulphate reduction whereas OA contributes more than 

20%. No significant effect due to SA was reported in this study. Sharma & Biswas (2010) 

have reported the potential for LA in inhibiting methanogens and diverting electron 

fluxes toward enhanced sulphate reduction (more than 92%) in batch studies. No study 

has reported the effect of LA in semi-continuous or continuous operations. 

 

2.6  Two-Step Process 

The low pH, high sulphate, and high metal concentrations are inhibitory to SRB 

and hinder the successful implementation of treatment technologies. To address this 

challenge, Al-Ani et al. (1995) proposed a two-step process, separating the SRB activities 

(biological reactor) from metal precipitation (chemical reactor). In the first step, 
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sulphides and alkalinity are produced by SRB that are channelled through the second step 

(chemical reactor) for metal sulphide precipitation from AMD. The metal free, sulphate 

rich effluents from the chemical reactor are added to the biological reactor to provide 

sulphate to SRB. Later on, Prasad & Henry (2009) proposed a three-step process by 

adding an alkaline unit to increase the pH for SRB activities. This system avoids the 

direct exposure of SRB to low pH and high metal concentrations in AMD. Figure 2.3 

illustrates the two-step process for AMD treatment.  

 

 

Figure 2.3 Two-step process for treatment of AMD (adapted from Al-Ani et al., 

1995) 

 

The current study focuses on the first step (biological reactor) of the two-step 

process to enhance sulphate reduction by inhibiting methanogens with linoleic acid.  

 

Alkalinity + H2S

(1) Biological Reactor (2) Chemical Reactor 

(not needed in this study)

Carbon 

Source

Recirculated SO4
2-

Acid Mine Drainage

MS precipitate

1 2
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CHAPTER III 

EXPERIMENTAL DESIGN AND METHODOLOGY 

 

This chapter focuses on the detailed experimental design and methodology adopted 

with an intention to accomplish the objectives of the study. Collection of inoculums, 

enrichment of SRB culture, substrate composition, operational conditions, analytical 

parameters and methods are discussed in this chapter along with experimental set-ups of six 

semi-continuous stirred tank reactors (SCSTRs). 

 

3.1  Inoculums Source and Start-up 

3.1.1 Seed Source 

The seed for bacterial growth (10 L) was collected from anaerobically digested sludge 

from Municipal Wastewater Treatment Plant, Chatham, Ontario. The sludge was greyish 

black in colour and had distinctive odour of H2S. The sludge was transported to University of 

Windsor and used to develop enriched SRB culture in the mother reactors. 

3.1.2 Growth Medium 

Modified Postgate Medium C (Postgate, 1984) was used for microbial growth. In the 

Postgate Medium C, lactate is proposed as a sole organic substrate or electron donor. Glucose 

was used instead of lactate in the current study for economic advantage. Na2SO4 was used for 

the sulphate source as electron acceptor. Table 3.1 shows the composition of modified 

Postgate Medium C. 
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Table 3.1  Composition of growth medium (modified Postgate medium C, adapted from 

Postgate, 1984) 

Name Chemical formula 

Concentration 

(g/L) 

Manufacturer 

Potassium Phosphate KH2PO4 0.5 ACP, Quebec, CA 

Ammonium Chloride NH4Cl 1 ACP, Quebec, CA 

Sodium Sulphate Na2SO4 4.5 ACP, Quebec, CA 

Calcium Chloride CaCl2.6H2O 0.06 Aldrich, USA 

Magnesium Sulphate MgSO4.7H20 0.06 BDH, Toronto, CA 

Glucose C6H12O6 6 ACP, Quebec,CA 

Yeast Extract - 1 Bio Basic, CA 

Ferrous Sulphate FeSO4.7H2O 0.004 BDH, Toronto, CA 

Sodium Citrate Na3C6H5O7.2H2O 0.3 ACP, Quebec, CA 

Ascorbic Acid C6H8O6 0.1 Sigma-Aldrich, CA 

 

3.1.3 Start-up 

Two SCSTRs, each of 4 L capacity, were termed as mother reactor M1 and M2. The 

substrate to sludge ratio was maintained at 2:2 and 1:3 in M1 and M2, respectively. Both 

reactors were operated semi-continuously at hydraulic retention time (HRT) of 40 days, 

replacing 400 ml of contents at an interval of every 4 days. The temperature was not 

controlled and ranged from 20 
o
C to 24 

o
C (ambient temperature). SRB growth was 

monitored by analyzing the samples at interval of 4 days. Data obtained from M1 and M2 are 

presented in Appendix A and B. 
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3.2  Experimental Design 

Three sets of SCSTRs with 600 ml enriched microbial communities (from M1) were 

termed as R1 & R1C, R2 and R2C, R3 and R3C, respectively. Glucose was varied to 

maintain three different COD/SO4
2-

 ratios in the influent. However, the concentration of 

sulphate in influent of all six reactors was maintained constant at 3095 mg/L. During Phase I, 

the effect of varying COD/SO4
2-

 ratios on sulphate reduction was investigated.  

After the end of Phase I, all six reactors were carried through Phase II to investigate 

the effect of linoleic acid (LA). Initially, LA was added to R1, R2, and R3 and its 

concentration in the reactors was maintained at 250 mg/L. The effect of LA on sulphate 

reduction was observed. LA was not added in the remaining three reactors (R1C, R2C and 

R3C). These reactors were used as controls.  The effect of LA was also investigated with two 

higher concentrations of LA (500 mg/L, 1000 mg/L) in reactor with lower COD/SO4
2-

 ratio 

of 0.75. Table 3.2 shows the design matrix of the experiment. 

 

Table 3.2 Design Matrix of Experiments 

Reactor 

Phase I Phase II 

COD/SO4
2-

 ratio Linoleic acid 

R 1 4.66   

R 1C 4.66   

R 2 1.96   

R 2C 1.96   

R 3 0.75   

R 3C 0.75   
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3.3  Experimental Duration 

All six reactors were operated semi-continuously for 90 days during phase I to 

investigate the effect of COD/SO4
2-

 ratios. After the end of phase I, same reactors were 

carried through phase II. Table 3.3 shows the experimental durations for both phases. 

 

Table 3.3 Experiments duration for Phase I and Phase II 

 

 

 

Reactors COD/SO4
2-

 
Operational duration (Days) 

Phase I Phase II 

R1 4.66     
0                                      90 

  
0              40 

R1C 4.66  
 0                                     90 

 
0             40 

R2 1.96  
0                                      90 

 
0                                          100 

 
R2C 

 
1.96 

 

 
0                                      90 

 

 
0                                                                                               215 

R3 0.75  
0                                      90 

 
0                                 70                                  170                  215 

R3C 0.75  
0                                      90 

 

 
0                                                          140   

R3 Prime 0.75  

 

 
                                                           140   170                215 

 

LA: 1000 mg/L 

LA: 250 mg/L 

LA: 250 mg/L 

LA: 500 mg/L LA: 1000 mg/L LA: 250 mg/L 
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3.4  Experimental Set-Up 

Figure 3.1 and Figure 3.2 show the individual and combined reactor 

configurations, respectively. The setups of all six SCSTRs were identical. They were kept 

in a water bath to maintain the temperature at 37 ± 1 
o
C. Each reactor consisted of the 

following components: 

• Sampling tube (sealed) 

• Feeding tube (sealed) 

• Gas collection tube 

• Vent tube (sealed) 

• Magnetic stirrer 

• Gas collection bottles  

 



 

40 

 

 

Figure 3.1 Individual reactor configuration 
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Figure 3. 2 Combined reactor configuration 
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3.5  Operating Procedure 

Reactors were operated semi-continuously at HRT of 40 days. A volume of 75 ml 

of the content was withdrawn every 5
th

 day and was replaced with synthetic substrate.  A 

gas-bag was connected to the vent tube while withdrawing samples as well as while 

feeding to maintain pressure and anaerobic conditions inside the reactor. Separate 

sampling and feeding lines were used to avoid contamination. Temperature was 

maintained at 37 ± 1 
o
C using a water bath for optimal bacterial growth. 

3.6  Analytical Parameters 

Reactor samples were analyzed in duplicate for pH, oxidation-reduction potential 

(ORP), sulphate, total organic carbon (TOC), alkalinity and total volatile fatty acids 

(VFA). All samples were filtered with Glass Micro fibre filters (Whatman 934-AH) prior 

to sulphate, TOC, alkalinity and total VFA analyses. 

3.6.1 pH 

Measurement of pH was used as an indicator of the environmental conditions of 

the reactors as well as their performance. The pH of the samples were measured 

immediately after sampling. A VWR Symphony pH electrode in combination with 

Oaklon pH meter as per the Standard Method (APHA, 1998. The pH meter was 

calibrated with pH buffers, 4 and 7, prior to each day’s measurements. 

3.6.2 Oxidation Reduction Potential 

Oxidation Reduction Potential (ORP) was measured with Orion 9678BNW ORP 

Probe as per the Standard Methods for the Examination of Water and Wastewater (1998). 

The reading was taken after 5 minute of contact time of probe with sample so that the 

probe was at equilibrium. 
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3.6.3 Alkalinity and Total Volatile Fatty Acids 

Alkalinity and total volatile fatty acids (VFA) were determined by the direct 

titration method (DiLallo & Albertson, 1961). These two parameters are indicative of 

biochemical environment of the reactors. Total alkalinity and total VFA were measured 

by titrating to pH 4 with 0.1N H2SO4 and titrating from pH 4 to pH 7 with 0.05N NaOH, 

respectively. NaOH was standardized each time prior to analysis. A sample volume of 10 

mL was used for each analysis. 

3.6.4 Sulphate 

Sulphate was analyzed by the Gravimetric Method with Drying of Residue as per 

Standard Methods: 4500-SO4
2-

 D (APHA, 1998). This method was selected because of its 

flexibility of analyzing samples with high sulphate concentrations (>10 mg/L). The basic 

principle of this method is the precipitation of BaSO4 in acidic medium with BaCl2. 

Sulphate values are determined by weighing BaSO4. In the current study, all the samples 

were analyzed in duplicates. The sulphate values were reported as SO4
2-

. A sample 

volume of 10 mL was used for each analysis. 

3.6.5 Total Organic Carbon 

Total organic carbon (TOC) is a convenient parameter to measure organic carbon 

since it does not measure other organically bound elements like nitrogen, hydrogen and 

other inorganics that can contribute to BOD and COD. TOC was measured with TOC 

analyzer (Shimadzu TOC-VCSH) as per Standard Methods: 5310 B (APHA, 1998).  

Samples were acidified with H2SO4 and the pH values were reduced to less than 2 prior to 

analysis. Calibration curves were prepared for both total carbon (TC) and inorganic 

carbon (IC) with known standards (Appendix D and E). TOC values were obtained by 
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calculating the difference between TC and IC values and multiplying by respective 

dilution factors. A coefficient of variance (CV) of < 2% was accepted in duplicate 

injections. 

3.6.6 Chemical Oxygen Demand (COD) 

Chemical Oxygen Demand (COD) was measured by Closed reflux, Colorimetric 

Method as per Standard Methods: 5220 D (APHA, 1998) using 20 x 150 mm culture 

tubes. A sample volume of 5 mL with digestion solution and acid reagent was digested in 

a Bioscience COD reactor followed by measuring the absorbance at 600 nm using a 

Varian-Cary 50 spectrophotometer. Standard potassium hydrogen phthalate was used to 

prepare a calibration curve in the range of 100 mg/L to 800 mg/L concentrations 

(Appendix F). 

3.6.7 Gas production 

Gas production from each reactor was measured by volume displacement 

technique using calibrated aspirator bottles that were filled with saturated NaCl in water. 
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CHAPTER IV 

ANALYSIS OF RESULTS 

Phase I 

Three sets of reactors with varying COD/SO4
2-

 ratios of 4.66, 1.96 and 0.75 were operated 

semi-continuously with a hydraulic retention time (HRT) of 24 days at a temperature of 37 

o
C. Each set consisted of two identical reactors. The detailed of operating conditions are 

noted in Chapter 3. Comparison in terms of sulphate reduction of the current study with 

respect to batch and semi-continuous or continuous operations in previous studies is 

discussed in this phase.  

 

4.1  Reactor Start-up 

All three sets of reactors were operated with a HRT of 24 days maintaining an 

organic loading rate of 625 mg COD/L/d, 312 mg COD/L/d and 156 mg/L/d for reactors 

with COD/SO4
2-

 ratios of 4.66, 1.96 and 0.75, respectively. The pH was observed to 

gradually drop in all the reactors. After an operational period of 20 days, pH was in the 

range of 5 – 6. The difference in growth rates of acid formers and SRBs/MPBs may cause 

this pH drop. Acid formers are relatively fast growing microorganisms compared to SRB 

or MPB. The slow growing terminal electron acceptors (SRB and MPB) may not have 

been able to consume the VFAs and short chain fatty acids (SCFAs) produced by the acid 

formers causing the pH to drop. To allow the SRB/MPB to recover, the feeding was 

skipped for two consecutive feeding cycles to allow sufficient time for the terminal 

electron acceptors to consume the built up VFAs. The pH was expected to rise up. Instead, 

the pH kept on decreasing to 4.5 ± 0.3 giving indications of reactor upset. The results 
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suggested that the chosen HRT of 24 days might be too short to allow the slow growing 

SRB/MPB to consume the produced VFAs. Hence, it was decided to shut down the 

reactors and start afresh with a longer HRT of 40 days.  

 

4.2  Reactors operation with 40 days of HRT: 

All six reactors of 600 ml were inoculated from reactor M1 (2:2) and were 

operated with similar conditions with a HRT of 40 days. The initial sulphate, TOC and pH 

were 19 mg/L, 70 mg/L and 6.9 respectively. The sulphate loading rate (77 mg SO4
2-

/L/d) 

was kept constant for all reactors. The organic loading rates were maintained as 361, 152 

and 58 mg COD/L/d, in reactors with COD/SO4
2-

 ratios of 4.66, 1.96 and 0.75 

respectively. Data obtained in terms of sulphate reduction and other controlling 

parameters are discussed during Phase I. 

Reactor operation was disrupted due to transfer of the reactor set-up from one 

laboratory to another. The reactors were at ambient temperature (~ 22 C) for Days 74 - 76. 

NaHCO3 at a concentration of 4500 mg/L began to be added with substrate from Day 80 

onwards in both reactors to enhance buffering and maintain identical conditions in all six 

reactors. Both reactors (with same COD/SO4
2-

 ratio) were mixed anaerobically at the end 

of Phase I to allow for the reactors to have a similar starting point during Phase II of the 

experiments. 
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4.2.1 Reactors with COD/SO4
2-

 = 4.66 

The results are presented in Figures 4.1 – 4.4. Though both the reactors were 

started with the same culture in similar conditions, it took almost 3 weeks to reach at a 

steady sulphate reduction. Another group (Sam-soon et al., 1991) worked with the same 

substrate (glucose) in their UASB system and reported the same time duration for steady 

sulphate reduction. Almost complete removal (99%) of influent sulphate (3095 mg/L) was 

observed. TOC showed a significant variability at the beginning, but from Day 35 

onwards, similar TOC levels for both the reactors were observed. Other controlling 

parameters such as pH, VFA (Day 50 onwards) were within a similar range for both 

reactors (pH: 6.7 ± 0.1 and 6.9 ± 0.1; VFA: 706 ± 106 and 723 ± 134 mg/L respectively).  

The previous study of Erdirencelebi et al. (2007) reported 74 - 81% of sulphate 

reduction in a continuous UASB system with an influent sulphate level of 1100 – 1200 

mg/L. Lopes et al. (2007) and Harada et al. (1994) worked with similar substrate (sucrose) 

and reported 65% and 86% sulphate reduction respectively. But the sulphate levels in 

these studies were significantly lower than the current study. Though, limited data is 

available for glucose-fed suspended growth systems, in general, the current study has 

observed a highest sulphate removal than most other previous studies. 

Reactor operation was upset due to transfer of the reactor set-up from Day 70 

onwards. One feeding cycle was skipped to allow the reactors to recover. Despite that, 

significantly higher VFA level was observed in R1 (1438 mg/L) than R1C (909 mg/L) 

which lead R1 to have a pH of 6.1 whereas the pH of R1C was observed as 7.06. NaHCO3 

at a concentration of 4500 mg/L was added with the substrate from Day 80 onwards in 

both the reactors to enhance buffering and prevent reactor upset due to lowering of the pH. 
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Figure 4.1 Sulphate vs. Time in Reactors with COD/SO4
2-

 = 4.66 

 

Figure 4.2 pH vs. Time in Reactors with COD/SO4
2-

 = 4.66 
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Figure 4.3 TOC vs. Time in Reactors with COD/SO4
2-

 = 4.66 

 

 

Figure 4.4 VFA vs. Time in Reactors with COD/SO4
2-

 = 4.66 

 

0

400

800

1200

1600

0 10 20 30 40 50 60 70

T
O

C
 (

m
g

/L
)

Day

R-1   (TOC)

R-1C (TOC)

X = Not fed
A = Alkalinity added

M = Mixed

400

800

1200

1600

2000

50 55 60 65 70 75 80 85 90

V
F

A
 (

m
g

/L
)

Day

R-1   (VFA)
R-1C (VFA)

X = Not fed
A = Alkalinity added

M = Mixed

MAX



 

50 

Despite the identical feeding cycle, the performance of the two reactors was seen to 

diverge. The exact reason for this diversion is not known.  However, maintaining a 

balance between fast growing acid formers and slow growing terminal electron acceptors 

(SRB and MPB) has been shown to be major challenge for steady operation of anaerobic 

sulphidogenesis in suspended cultures, particularly at higher COD/SO4
2-

 ratios. Stability 

of such systems has been shown to increase with lowering COD/SO4
2-

 ratio (Colleran et 

al., 1995). Another potential reason could be because of sulphide, the end product of 

anaerobic sulphate reduction. It is known to be a potential toxin to both SRB and MPB. 

Various studies have reported that toxicity due to the elevated levels of sulphide lead to 

process failure (Karhadkar et al., 1987; Parkin et al., 1983; Rinzema & Lettinga, 1988; 

Speece, 1983). But the exact reason for the unexpected behavior of one of the reactors is 

not quite clear, though both of the reactors were seeded with same culture and operated in 

similar conditions.  

 

4.2.2 Reactors with COD/SO4
2-

 = 1.96 

Results are presented in Figures 4.5 – 4.8. Sulphate levels were seen to increase 

during the first three weeks of reactor operation, subsequent to which they started to 

decline. This suggested acclimation and establishment of SRB in the reactors. Average 

sulphate reduction of 87 ± 3% and 84 ± 4% of influent sulphate concentration of 3095 

mg/L were observed in R2 and R2C respectively during Day 0 - 50. Almost complete 

TOC removal was observed in both reactors. The pH was observed to be similar in both 

reactors (R2: 7.1 ± 0.2 and R2C: 7.3 ± 0.2). VFA level in R2 (290 ± 28 mg/L) was higher 

than in R2C (148 ± 2). This difference in VFA levels in this set of reactors (COD/SO4
2- 

= 
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1.96) didn’t seem to have much impact on sulphate reduction as the VFA levels were 

significantly lower (145 – 318 mg/L) than that observed in R1 and R1C (550 – 800 mg/L) 

during Day 0 – 50. 

Greater stability was observed in reactor operation from Day 50 onwards. Sulphate 

reduction improved slightly, 92 ± 3% and 92 ± 2% in R2 and R2C, respectively. TOC 

removal was also similar in both reactors and comparable with what observed during Day 

0 – 50. Other controlling parameters such as pH, VFA (up to Day 75) were within a 

similar range for both reactors (pH: 7.0 ± 0.1 and 7.3 ± 0.1; VFA: 210 ± 72 and 173 ± 56 

mg/L, respectively). As a result of the disruption of reactor operation, VFA built up of 412 

mg/L was observed in R2 on Day 80. It was observed that sulphate reduction was affected 

when the VFA level increased more than 1600 mg/L in R1 (COD/SO4
2-

 = 4.66) from Day 

70 onwards. More favourable and stable pH and lower VFA levels may be responsible for 

the more stable performance. 
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Figure 4.5 Sulphate vs. Time in Reactors with COD/SO4
2-

 = 1.96 

 

Figure 4.6 pH vs. Time in Reactors with COD/SO4
2-

 = 1.96 
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Figure 4.7 TOC vs. Time in Reactors with COD/SO4
2-

 = 1.96 

 

Figure 4.8 VFA vs. Time in Reactors with COD/SO4
2-

 = 1.96 
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Limited data is available with regard to studies with suspended growth glucose 

systems with similar influent sulphate levels. Erdirencelebi et al. (2007), in their glucose-

fed suspended system, reported a 28% reduction efficiency with 1044 mg/L of actual 

sulphate reduction, which was significantly lower than that observed in the current study. 

Their influent sulphate level (3728 mg/L) was higher than that (3095 mg/L) of the current 

study. Higher sulphate removal efficiency was observed in continuous or semi-continuous 

operations in the studies of Oyekola et al. (2010) and Uberoi & Bhattacharya (1995). 

Uberoi & Bhattacharya (1995) reported 99% sulphate removal efficiency though the 

influent sulphate level in their study ranged between 200 and 500 mg/L. Oyekola et al. 

(2010) worked with comparatively higher sulphate levels and reported a removal 

efficiency of 87%. Though sulphate removal efficiency was observed to be similar with 

that observed in the current study, the influent sulphate level (1000 mg/L) was 

significantly lower in their lactate system (Postgate medium B). They also studied the 

reduction efficiency with increasing influent sulphate levels of 2500, 5000 and 10000 

mg/L and reported sulphate reduction efficiencies of 54%, 58% and 40% respectively. 

Though the sulphate removal efficiency was reported to decrease with increasing sulphate 

levels in the influent, the actual sulphate reduction (1350, 2900, 4000 mg/L respectively) 

increased. Sulphate reduction observed in the current study was significantly higher (2610 

mg/L) than that of comparable studies. 
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4.2.3 Reactors with COD/SO4
2-

 = 0.75 

Results are presented in Figures 4.9 – 4.12. Sulphate level started to increase as the 

starting sulphate level (19 mg/L) was significantly lower in the source culture, which was 

obtained from M1 (COD/SO4
2-

 = 2.15). The increasing trend was more rapid up to Day 20 

and the rate started to decrease gradually from Day 20 onwards, which is indicative of 

reactors reaching to a steady state condition. Almost complete TOC removal (94%) was 

observed in both reactors from an influent TOC concentration of 1000 mg/L. Both 

reactors were identical during this period in terms of pH and VFA levels as well. Average 

pH of 7.2 ± 0.1 and 156 ± 5 mg/L of VFA was observed in both reactors during this 

period. Unlike with other two sets of reactors with COD/SO4
2-

 ratio of 4.66 and 1.96; this 

set of reactors (with COD/SO4
2-

 = 0.75) showed greater stability in their operations. 

Literature data support the fact that reactors with lower COD/SO4
2-

 ratios showed greater 

stability than with high COD/SO4
2-

 ratios (Colleran et al., 1995). 

The increasing trend of sulphate levels in the previous period, stabilized during 

Day 50 onwards. Slightly higher sulphate reduction (47 ± 3%) was observed in R3C than 

in R3 (44 ± 2%) from an influent sulphate level of 3095 mg/L. Almost complete removal 

(95%) of TOC was observed in both reactors. Other controlling parameters such as pH, 

VFA were within a similar range for both reactors (pH: 7.4 ± 0.1 and 7.3 ± 0.1; VFA: 143 

± 13 and 144 ± 13 mg/L respectively. 
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Figure 4.9 Sulphate vs. Time in Reactors with COD/SO4
2-

 = 0.75 

 

Figure 4.10 pH vs. Time in Reactors with COD/SO4
2-

 = 0.75 
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Figure 4.11 TOC vs. Time in Reactors with COD/SO4
2-

 = 0.75 

 

Figure 4.12 VFA vs. Time in Reactors with COD/SO4
2-

 = 0.75 
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Limited data is available with regard to studies with suspended growth glucose 

system in similar influent sulphate levels. Erdirencelebi et al. (2007) reported 13% of 

sulphate reduction in a continuous UASB system with an influent sulphate level of 4697 

mg/L that is higher than that in the current study. Lopes et al. (2007) and Harada et al. 

(1994) worked with similar substrate (sucrose) and reported 25% to 35% and 29% to 64% 

sulphate reduction, respectively. The later study worked with low sulphate level of 600 

mg/L whereas, Lopes et al., (2007) worked with comparatively higher influent sulphate of 

2000 mg/L. Both the sulphate levels in these studies were significantly lower than that 

(3095 mg/L) in the current study. Sarti et al. (2010) worked with sulphate level of 3000 

mg/L, same as the current study, and reported very high sulphate removal efficiency of 

99%. But they worked with attached growth system instead of suspended system. 

However, the current study involved suspended growth system, and therefore, the results 

should be compared with comparable system, such as the study by Uberoi & Bhattacharya 

(1995). They worked with two different sulphate levels, 1250 mg/L and 2500 mg/L, of 

which, the latter is not too different from the current study. In their study, the reduction 

was 92% and 68%, respectively. The current study observed an average sulphate reduction 

of 47-52% at steady state operation with glucose. 
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Phase II 

4.3  Effect of Linoleic Acid (LA) 

In this phase, linoleic acid (LA) was added to R1 (COD/SO4
2-

 = 4.66), R2 (COD/SO4
2-

 = 

1.96) and R3 (COD/SO4
2-

 = 0.75) to maintain a concentration 250 mg/L of LA in the 

reactors. Modified substrate with LA at a concentration of 250 mg/L of the substrate was 

added in the subsequent feedings to maintain the same level in the reactors. The other 

reactors (R1C, R2C and R3C) were not fed with LA and were used as the controls. The 

effect of LA on sulphate reduction was investigated comparing the reactors with LA to 

their respective controls. The effect of LA on sulphate reduction was also tested with two 

higher concentrations of 500 mg/L and 1000 mg/L of LA in R3 (COD/SO4
2-

= 0.75). 

Additional alkalinity continued to be provided to R1/R1C for the entire period of Phase II. 

For the other two sets of reactors additional alkalinity was discontinued from Day 70 

onwards and it was decided to add it whenever needed. 

4.3.1  Reactors with COD/SO4
2-

 = 4.66 

Results are presented in Figures 4.13 – 4.16. LA at a concentration of 250 mg/L 

was added on Day 0 in R1 and R1C was used as control. Sulphate reduction was similar 

(98%) in R1C until Day 20, as before. The TOC and VFA levels rose slightly. The initial 

pH on Day 0 was higher (7.5) than previously observed (6.9 ± 0.1). Addition of NaHCO3 

as buffer may potentially cause this increase in pH. But the average pH (7.1 ± 0.2) didn’t 

seem to change significantly. After the addition of LA, sulphate reduction did not increase 

in R1 during Day 0 to Day 25. Similar sulphate levels of 49 ± 35 mg/L and 47 ± 30 mg/L 

were observed in R1 and R1C (control) respectively, showing 98% sulphate reduction in 

both reactors from Day 0 to Day25. Although, sulphate reduction did not increase in R1, a 
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more significant increase in VFA level was observed in R1 than in R1C due to the LA 

addition. High VFA level (1901 ± 61 mg/L) in R1 than R1C (1157 ± 50 mg/L), is 

indicative of methanogenic inhibition due to LA. Hence, the fraction of organic carbon, 

which was being consumed, previously by MPB resulted in elevated VFA level in R1due 

to the inhibition. Sulphate reduction was expected to increase due to this methanogenic 

inhibition. It did not increase because of sulphate limiting conditions as 98% sulphate was 

already reduced without adding LA. 

The control (R1C) started to deviate from the steady state after Day 25 onwards. 

Decrease in sulphate reduction efficiency from 98% to 86% was clearly indicative of this 

deviation. A similar sulphate level (107 mg/L) was observed in both reactors on Day 25 

and was observed to be first affected on Day 30 showing a level of 268 mg/L. This 

increasing trend continued until Day 40 showing sulphate concentration as high as 415 

mg/L. Hence, it was decided to discontinue the operation R1C. The exact reason for this 

reduction in sulphate reduction efficiency is not quite clear. A possible explanation could 

be the increasing trend of VFA built-up in R1C, resulting slight decrease in pH. However, 

similar pH and even higher VFA level in the other reactor (R1) did not seem to have much 

impact on sulphate reduction, which illustrates that the VFA levels or pH was not the 

reason for this diversion. Maillacheruvu et al. (1993) observed a cyclic pattern of variation 

of hydrogen sulphide, a potential toxin and end product of sulphidogenesis and organic 

carbon consumption in glucose, lactate, acetate and propionate system. Vavilin et al. 

(1994) worked on developing a model based on the study of Parkin et al. (1990) and 

reported a self oscillating coexistence of methanogens and sulphate reducers. 
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Figure 4. 13 Sulphate vs. Time in Reactors with COD/SO4
2-

 = 4.66 and LA at a 

concentration of 250 mg/L 

 

Figure 4.14 pH vs. Time in Reactors with COD/SO4
2-

 = 4.66 and LA at a concentration 

of 250 mg/L 
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Figure 4.15 TOC vs. Time in Reactors with COD/SO4
2-

 = 4.66 and LA at a 

concentration of 250 mg/L 

 

Figure 4.16 VFA vs. Time in Reactors with COD/SO4
2-

 = 4.66 and LA at a 

concentration of 250 mg/L 
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Based on these two findings, it can be interpreted that methanogens became more 

active than sulphate reducers from Day 25 onwards. Hence, poor sulphate reduction 

efficiency was observed in R1C (control), whereas sulphate reduction was not affected in 

R1 with LA which can be due to the methanogenic inhibition. Advanced knowledge of the 

complex interactions of different species of microorganisms, slow growth response of 

SRB, inhibition, acclimation etc. are considered to be key factors which may have been 

responsible for this phenomenon.  

4.3.2 Reactors with COD/SO4
2-

 = 1.96  

Results are presented in Figures 4.17 – 4.20. LA was added to R2 to maintain a 

level of 250 mg/L of LA in the reactor on Day 0 and R2C was used as control without LA. 

Sulphate reduction was affected in the control Day 0 onwards. Sulphate reduction reduced 

gradually from 94% (173 mg/L) to 86% (279 mg/L) during Day 0 to Day30. Other 

operational parameters such as TOC consumption, VFA and pH were at steady levels in 

R2C without LA. TOC consumption was not changed. TOC consumption was observed as 

high as 98%, similar to that observed previously during Phase I. This phenomenon of 

reduced sulphate reduction, while other parameters were almost unchanged; indicates 

enhanced methanogenic activities in the control different than observed previously. 

Increase in methanogenic and sulphidogenic activities and their cyclic pattern was 

observed by Parkin et al. (1990); Vavilin et al. (1994) and is discussed in section 4.6 in the 

extended reactor operations.  
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Figure 4.17 Sulphate vs. Time in Reactors with COD/SO4
2-

 = 1.96 and LA at a 

concentration of 250 mg/L 

 

Figure 4.18 pH vs. Time in Reactors with COD/SO4
2-

 = 1.96 and LA at a concentration 

of 250 mg/L 
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Figure 4.19 TOC vs. Time in Reactors with COD/SO4
2-

 = 1.96 and LA at a 

concentration of 250 mg/L 

 

Figure 4.20 VFA vs. Time in Reactors with COD/SO4
2-

 = 1.96 and LA at a 

concentration of 250 mg/L
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After the addition of LA, the sulphate removal efficiency increased slightly in R2 

compared to the control from 94% to 96%. But the sulphate level started to increase 

similar to R2C (control) from Day 15 onwards. The average pH was similar in both 

reactors (6.7 ± 0.1 and 7.6 ± 0.1 respectively). Though the effect of LA was not observed 

in sulphate reduction, a significant amount of organic carbon was diverted from going 

towards methane production. VFA level in the control was in similar at a level of 136 ± 14 

mg/L, but VFA levels kept on increasing in R2 till Day 60. This high organic carbon could 

have been utilized by the sulphate reducers to reduce more sulphate if enough sulphate 

was available.  

Sulphate reduction in R2C without LA was similar as previously observed during 

Day 0 to Day 30. It gradually started to improve from Day 60 onwards and reached at a 

different steady state showing average sulphate reduction of 96%. The TOC consumption 

and VFA levels remained unchanged during the entire period in control. But R2 with LA 

was showing the unexpected increasing trend of sulphate levels. The pH was observed 

higher in R2C than in R2. Considering the pH difference, alkalinity addition was 

discontinued from Day 75 in the R2C having higher pH, but was continued in R2 with 

LA. 

The sulphate reduction in R2 kept on decreasing as it was observed previously 

during Day 0 to Day 30, which was unexpected. It seems LA had a reverse effect on 

sulphate reducers, as the sulphate reduction efficiency decreased from 85% on Day 30 to 

68% on Day 60. This, reduced sulphate reduction efficiency affected the other parameters 

such as TOC, VFA and pH. TOC removal was reduced up to 47% compared to the 

control. The increasing VFA trend in the treatment observed during Day 0 to Day 30, 
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started to maintain a higher level of 1846 ± 172 mg/L after Day 60 onwards, whereas TOC 

removal and VFA level in R2C (control) was almost constant during the entire period of 

Day 30 to Day 100. Considering the adverse effect of VFA built-up, the R2 was not fed 

for two consecutive feeding cycles to allow the existing organic carbon and sulphate to be 

consumed. As a result of that, the organic carbon level started decreasing from Day 75 

onwards, but didn’t improve the sulphate reduction till Day 100 and even further. So, it 

was decided to discontinue the reactor (R2) operation. The control (R2C) was continued to 

operate further to observe the long term effect that was discussed in section 4.6. 

4.3.3 Reactors with COD/SO4
2-

 = 0.75 

Results are presented in Figures 4.21 – 4.24. LA was added to R3 on Day 0 to 

maintain a LA concentration of 250 mg/L in the reactor and R 3C was used as control 

without LA. Sulphate reduction and other parameters such as TOC consumption, pH, VFA 

etc., in the R3C (control) didn’t change significantly during Day 0 to Day 70. Slightly 

improved sulphate reduction of 53% in R3C (control) was observed during this period 

whereas, 47% was observed previously during Phase I. VFA levels were almost 

unchanged. The effect of LA at a concentration of 250 mg/L was observed immediately on 

next feeding cycle (Day 5) in R3. Sulphate reduction was observed to be 69% in R3 while, 

that in R3C (control) was observed 52%. Eventually, sulphate reduction was observed to 

be 77 ± 3% from Day 10 to Day 55. TOC, VFA levels started to increase indicating 

inhibition to methanogens. During the first 10 days, the increase was not significant. But 

TOC and VFA levels started to increase from Day 10 onwards.VFA level was observed to 

be more than double (362 mg/L) on Day 20 from 169 mg/L on Day 10. And this continued 

till Day 40 and dropped down slightly from Day 40 onwards. On Day 35 NaHCO3 was not  



 

68 

 

 

Figure 4. 21 Sulphate vs. Time in Reactors with COD/SO4
2-

 = 0.75 and LA at a concentration of 250, 500 and 1000 mg/L 
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Figure 4.22 pH vs. Time in Reactors with COD/SO4
2-

 = 0.75 and LA at a concentration of 250, 500 and 1000 mg/L 
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Figure 4.23 TOC vs. Time in Reactors with COD/SO4
2-

 = 0.75 and LA at a concentration of 250, 500 and 1000 mg/L 

 

 

0

200

400

600

800

1000

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210

T
O

C
 (

m
g

/L
)

Day
R-3    (TOC)

R-3C (TOC)

LA2 +A0LA1 LA3

A0 = NaHCO3 additon discontinued

LA2 = LA (500 mg/L)  added, 

LA1 = LA (250 mg/L)  added, 

LA3 = LA (1000 mg/L) added, 



 

71 

 

Figure 4.24 VFA vs. Time in Reactors with COD/SO4
2-

 = 0.75 and LA at a concentration of 250, 500 and 1000 mg/L 
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added, but dosed double on Day 40. VFA levels clearly affected sulphate reduction. 

Sulphate reduction was slightly improved with slight decrease in VFA level during Day 45 

to Day 55. Similarly, sulphate reduction efficiency reduced with the increase in VFA 

levels from Day 60 onwards. Due to addition of LA, a significant amount of organic 

carbon was diverted from going towards methane production. The TOC level in R3C 

(control) was similar, at a level of 29 ± 18 mg/L for this period, but increased in R3 

showing an average TOC level of 385 ± 71 mg/L. 

The concentration of LA was elevated to 500 mg/L in the reactor (R3) on Day 70 

and was maintained further. R 3C was used as control without LA. NaHCO3 addition was 

discontinued in both reactors from Day 70 onwards because of the increasing pH trend 

during the previous period. On Day 70, pH was observed as 8.0 and 7.88 in R3 and R3C 

respectively. In the aftermath, pH started to drop gradually. On Day 140, reactor pH of 7.1 

and 7.5 were observed in R3 and R3C respectively. TOC and VFA levels did not change 

significantly in R3C (control) during Day 70 to Day 140. The lowering of pH affected 

sulphate reduction in the control, as higher pH is favourable for SRB activity (Visser et 

al., 1996). Sulphate reduction dropped down from 59% to 47% at the end of this period 

and average sulphate reduction was observed as 53 ± 4%.The effect of LA at a 

concentration of 500 mg/L was observed in sulphate reduction as well as other parameters 

such as TOC consumption and VFA levels. These parameters varied quite significantly 

during this period though improved sulphate reduction was observed due to the addition of 

LA. On Day 70 before adding LA at a concentration of 500 mg/L, sulphate reduction was 

observed as 71%. That improved during this period showing 92% of removal efficiency 

on Day 135. Sulphate reduction did fluctuate during Day 100 to Day 115. Average steady 
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sulphate reduction was observed 89 ± 2% during Day 120 to Day 135. The increasing 

trend of VFA levels kept on continuing until Day 100 and remained similar afterwards. 

Average VFA level of 659 ± 23 mg/L was observed during Day 100 to Day 140. The 

sulphate reduction and other controlling parameters such as TOC, VFA and pH were 

observed to maintain a similar trend up to Day 150, as before. However, sulphate level 

started to increase from Day 150. On Day 165, 64% sulphate reduction was observed, 

which was 20% less than that (84%) observed on Day 150. A similar trend of increase in 

sulphate level was also observed previously after 70 - 80 days of LA addition. A possible 

reason could be the acclimation of the SRB, indicating reversible or temporary inhibition 

due to LA. This trend continued to until a higher concentration of LA (1000 mg/L) was 

added on Day 170. Another explanation could be the effect of pH. The pH was observed 

as 7.4 on day 160 whereas, a steady pH of 7.1 was observed previously. The increasing 

trend of pH continued up to 7.8 on Day 170, which resulted in reduced sulphate reduction 

efficiency of 67% on Day 170.  

After the addition of LA at a concentration of 1000 mg/L, pH dropped slightly and 

then remained steady at a level of 7.6. Sulphate reduction started to improve significantly 

followed by a sharp increase in TOC and VFA levels. TOC level increased up to 907 

mg/L on Day 180. An average TOC was observed 501 ± 25 mg/L prior to LA addition. 

Similar increasing trend was observed in VFA levels. It started to stabilize from Day 185 

onwards. A comparatively steady VFA level was observed as 1445 ± 85 mg/L during Day 

185 to Day 215. From Day 185 onwards, sulphate reduction was observed as high as 99% 

and this high level of sulphate reduction was achieved till the end of the experiments (Day 

215). 
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4.4  Effect of LA in Slug dose of 1000 mg/L in Semi Continuous Operation 

Results are presented in Figures 4.25 - 4.26. A slug dose of LA at a concentration 

of 1000 mg/L of the reactor volume was added to the control reactor (R3C) on Day 140 

and labelled as R3 Prime. The level of LA in this reactor was not maintained by 

subsequent addition of LA with substrate in every feeding cycle as it was maintained in 

the case of R3. The sulphate reduction immediately improved from 46% to 65% in 5 days 

but started to decrease with decreasing LA concentrations. Another single dose of 1000 

mg/L (same concentration as before) was added to on Day 170 and sulphate reduction 

continued to improve up to 98% until Day 185. From Day 190 onwards, sulphate level 

started to increase showing similar effect as observed after Day 145 onwards; but reached 

in a lower level of 462 ± 8 mg/L with an average sulphate reduction of 85%. Sulphate 

reduction again improved to 97% from Day 205 onwards. Higher pH (Visser et al., 1996) 

of 7.8 ± 0.1and prolonged reactor operation (Omil et al., 1997) may be the possible 

reasons for this improved sulphate reduction. The highest level of sulphate reduction 

(97%) due to slug dose was comparable to that (99%) observed in R3 where LA was 

subsequently added with the substrate in each feeding cycle to maintain a constant level. 

Hence, it can be concluded that high concentration of LA (1000 mg/L) attributed to almost 

complete removal of sulphate in both cases.  
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Figure 4.25 sulphate and TOC vs. Time in Reactor with COD/SO4
2-

 = 0.75 and slug 

dose of LA at a concentration of 1000 mg/L 

 

Figure 4.26 VFA and pH vs. Time in Reactor with COD/SO4
2-

 = 0.75 and slug dose of 

LA at a concentration of 1000 mg/L  
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4.5  Effect of LA in Batch study and Semi-continuous study: 

A recent study by Sharma & Biswas (2010) reported the efficacy of LA in 

selectively inhibiting methanogens to enhance sulphate reduction. Glucose (1870 mg/L as 

COD) was used as the organic carbon source to remove sulphate (1500 mg/L) in batch 

operation with a COD/SO4
2-

 = 1.32. Five different concentrations of LA were added and 

an improved sulphate reduction was observed with increasing LA dosage. Sulphate 

reduction of 62%, 66%, 77%, 84% and 92% (1375 mg/L) was achieved with LA 

concentration of 100, 300, 500, 700 and 1000 mg/L, respectively; while a sulphate 

reduction of 24% was observed in the control without LA.  

 

The present study was carried out in semi-continuous operation with COD/SO4
2-

 

ratio of 0.75 in the influent; but with higher COD (2333 mg/L) and sulphate (3095 mg/L) 

levels. Sulphate reduction of ~ 77% (2380 mg/L), 89% (2750 mg/L) and 99% (3060 

mg/L) were observed with LA concentration of 250, 500 and 1000 mg/L respectively; 

while a sulphate reduction of ~ 50% was observed in the control without LA. Table 4.1 

illustrates the comparative study of the effect of LA between batch and semi-continuous 

study. A higher level of sulphate reduction was achieved in the current semi-continuous 

operation than in batch operation by Sharma & Biswas (2010). 
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Table 4.1: Comparison between Batch and Semi-continuous operation with LA 

Batch Study (Sharma & Biswas, 2010) Semi-continuous Study (Present work) 

COD/

SO4
2-

 

pH 

Organic 

Carbon 

(as COD) 

Sulphate 

(mg/L) 

LA 

(mg/L) 

Sulphate 

removal 

(mg/L) 

Sulphate 

removal 

(%) 

COD/

SO4
2-

 

pH 

Organic 

Carbon 

(as COD) 

Sulphate 

(mg/L) 

LA 

(mg/L) 

Sulphate 

removal 

(mg/L) 

Sulphate 

removal 

(%) 

1.32 

7.0-

7.2 
1870 1500 

500 1155 77 

0.75 

7.4-

7.6 
2333 3095 

500 2750 89 

1000 1375 92 1000 3060 99 
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4.6  Extended Reactor Operation with COD/SO4
2-

 = 1.96 

Results of this phase of the study are presented in Figure 4.27. Two significant 

phenomena were observed during the prolonged operation of the control: 1) oscillating 

pattern of sulphidogenic activity and 2) improved sulphate reduction over time. In the 

former case, five different cycles of sulphidogenic activity of varying amplitude were 

observed. This finding is in line of the results reported by Vavilin et al. (1994), who 

worked on developing a model using data obtained from the study of Parkin et al. (1990), 

who observed a fading oscillation pattern within a period of 40 days. In the current study 

an oscillation pattern was observed within the range of 50 to 70 days.  In their study, it 

was concluded that self-oscillation takes place due to the similarities in the competitive 

abilities of SRB and MPB and their complex interactions under hydrogen sulphide 

toxicity. Self buffering capacity of the system, variation in pH, different VFA profiles 

and adoption of different metabolic pathways in the presence of different microbial 

species may also play major roles in explaining this phenomenon. 

In addition, sulphate reduction efficiency was observed to be improved over an 

extended reactor operation. During the period of Day 10 to Day 150, the efficiency was 

observed as 90% which, eventually, improved to 95% and 99% during the period of Day 

155 to Day 220 and Day 225 to Day 300, respectively. More than 150 days of reactor 

operation was needed to achieve a 5% increase in sulphate reduction efficiency while 

other operational parameters, such as pH, VFA and TOC, remained unchanged. This 

observation is in agreement with the study of Omil et al. (1997), Harada et al. (1994) but 

conflicts with Stucki et al. (1993), Mulder (1984) and O’Flaherty et al (1998). Omil et al. 

(1997) concluded that ASRB out-competed AMPB after extended reactor operation of 
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more than 100 days; whereas, Harada et al. (1994) reported longer period of 250 to 400 

days for the same. A different observation time may be the reason of the conflicting 

results of Stucki et al. (1993) and Mulder (1984). O’Flaherty et al. (1998) worked with a 

full-scale fixed-film anaerobic digester and observed that AMPB were predominant even 

after operating for more than 4 years. Better attachment capability of MPB to the media 

than SRB and limitation of transport of nutrients to SRB may potentially helped MPB to 

win the competition. This leads to the conclusion that time required for a population shift 

may also depend on the reactor technology. 

 

 

 

Figure 4. 27 Sulphate reduction in extended operation of reactor with COD/SO4
2-

 = 1.96 
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4.7  Summary of Results 

Sulphate reduction was observed to increase with increasing COD/SO4
2-

 ratios. 

Table 4.2 illustrates the sulphate reduction during phase I with varying COD/SO4
2-

 ratios: 

 

Table 4.2 Sulphate reduction with varying COD/SO4
2-

 ratios (Phase I) 

Reactors COD/SO4
2- Influent sulphate (mg/L) Sulphate reduction (%) 

R1 & R1C 4.66 3095 99 ± 1 

R2 & R2C 1.96 3095 89 ± 4 

R3 & R3C 0.75 3095 50 ± 3 

 

The effect of LA at a concentration of 250 mg/L did not improve the sulphate 

reduction in reactors with COD/SO4
2-

 ratios of 4.66 and 1.96 (Figure 4.28), though 

increase in VFA levels indicate the methanogenic inhibition (Figure 4.29). During phase I 

(without LA), VFA levels were observed 1157 ± 50 mg/L, 127 ± 11 mg/L in reactors 

with COD/SO4
2-

 ratios of 4.66 and 1.96 respectively. Due to the inhibition of 

methanogenic activities by LA, the VFA levels increased to 1901 ± 61 mg/L and 1934 ± 

61 mg/L in R1 (COD/SO4
2
- = 4.66) and R2 (COD/SO4

2- 
= 1.96) respectively.  
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Figure 4.28 Sulphate reduction with varying COD/SO4
2-

 ratios with LA at 250 mg/L 

 

 

Figure 4.29 VFA levels with varying COD/SO4
2-

 ratios with LA at 250 mg/L 
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The effect of LA on sulphate reduction was observed in reactor with lowest 

COD/SO4
2-

 ratio of 0.75. Sulphate reduction increased with increasing concentrations of 

LA. Table 4.3 shows the effect of LA on sulphate reduction in reactor with COD/SO4
2-

 

ratio of 0.75 with varying LA concentrations of 250, 500 and 1000 mg/L.  

 

Table 4.3       Effect of LA with varying concentrations in reactor with COD/SO4
2-

 = 0.75 

LA  

concentration (mg/L) 

Influent  

sulphate  

(mg/L) 

Effluent  

sulphate  

(mg/L) 

Sulphate  

reduction 

 (%) 

0 3095 1550 50 ± 3 

250 3095 710 77 ± 3 

500 3095 340 89 ± 2 

1000 3095 30 99 ± 1 

 

The effect of LA was also tested with a slug dose of 1000 mg/L. Sulphate 

reduction increased from 46% to 65% due to first slug dose of LA (1000 mg/L). Almost 

complete removal of sulphate (98%) was observed after the second dose of LA with same 

concentration (1000 mg/L). This level of sulphate reduction is comparable with that 

(99%) observed due to continual LA addition in each feeding cycle in R3. 

In case of long-term operation, sulphate reduction improved over time and an 

oscillation pattern was observed within the range of 50 to 70 days. During the period of 

Day 10 to Day 150, the efficiency was observed as 90% which, eventually, improved to 

95% and 99% during the period of Day 155-220 and Day 225-300, respectively. More 
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than 150 days of reactor operation was needed to achieve a 5% increase in sulphate 

reduction efficiency while other operational parameters, such as pH, VFA and TOC, 

remained unchanged 

. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1  Conclusions 

This study examined the effect of linoleic acid and COD/SO4
2-

 ratio on anaerobic 

sulphate reduction in semi-continuous stirred tank reactors (SCSTRs) with glucose as the 

carbon source in a synthetic medium. The reactors were operated at a hydraulic retention 

time (HRT) of 40 days at a temperature of 37 ± 1 
o
C. The experiments were conducted in 

two phases. 

5.1.1 Phase I 

Phase I examined the effect of COD/SO4
2-

 ratio at sulphate concentration of 3095 

mg/L. The results are as follows: 

1. Sulphate reduction increased from ~ 50% to ~ 99% with increasing COD/SO4
2- 

ratio 

from 0.75 to 4.66. 

2. At COD/SO4
2- 

ratio of 4.66, ~ 99% (3060 mg/L) of sulphate was reduced. Volatile 

fatty acids (VFA) accumulation of 800 mg/L and residual TOC concentrations in the 

range of 800 mg/L suggest organic overloading. 

3. At COD/SO4
2-

 ratio of 1.96, ~ 89% (2750 mg/L) of sulphate was reduced. VFA 

accumulation was less than 350 mg/L and residual TOC concentrations were below 

100 mg/L. 

4. At COD/SO4
2-

 ratio of 0.75, sulphate reduction of ~ 50% (1550 mg/L) was observed. 

VFA accumulation was less than 150 mg/L and residual TOC concentrations were 

below 100 mg/L. 
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5.1.2 Phase II 

Phase II examined the effect of LCFA (linoleic acid) and COD/SO4
2-

 ratio on anaerobic 

sulphate reduction in SCSTRs. The results are as follows: 

1. At COD/SO4
2-

 ratio of 4.66, sulphate reduction was maintained at  98% in both the 

control SCSTR (no LA) and SCSTR receiving 250 mg/L of LA concentration in the 

feed during a period of 40 days (1HRT). VFA accumulation of  1700 mg/L in the 

reactor receiving LA as compared to  800 mg/L the control reactor (no LA) 

indicated inhibition of methanogenic bacteria by the added LA. 

2. At COD/ SO4
2-

 ratio of 1.96, sulphate reduction in the range of 84% to 96% was 

maintained in both the control SCSTR (no LA) and SCSTR receiving 250 mg/L LA 

concentration in the feed during the period of 40 days (1 HRT). VFA accumulation of 

 1900 mg/L in the reactor receiving LA as compared to < 150 mg/L in the control 

reactor (no LA) indicated inhibition of methanogenic bacteria by the added LA. 

3. At COD/ SO4
2-

 ratio of 0.75, sulphate reduction of  50% was observed in the control 

SCSTR (no LA) during 140 days of operation. In the SCSTR receiving LA, sulphate 

reduction was observed to increase with increasing LA concentration. Increasing LA 

concentrations in the feed from 250 to 500 and 1000 mg/L increased the sulphate 

reduction to ~ 77%, 89%, and 99%, respectively. 

 

5.2  Recommendations 

1. Future experiments should be conducted to optimize a two-stage treatment process 

for industrial wastewater with high concentration of sulphate. In the first reactor, 

mixed microbial consortia enriched with SRB and inhibitors to MPB should be 
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assessed to produce sulphide-rich effluent. This sulphide-rich effluent could then be 

used in the second reactor to optimize the removal of heavy metals from industrial 

wastewater. 

2. Future work is required to investigate whether LCFA can serve as electron donors to 

sulphate reducers. 

3. The effect of elevated LCFA levels on sulphate reduction could be examined as 

effluents from many industries contain LCFA levels as high as 20000 mg/L (Borja 

and Banks, 1994). 

4. Studies are required to investigate the effect of both COD/SO4
2
- ratio and LCFA 

with elevated levels in high rate reactors. 

5. Contradictory findings have been reported regarding the reversibility of LCFA 

inhibition. Some studies have reported the inhibition to be permanent and irreversible 

(Sharma & Biswas, 2010; Rinzema et al., 1994) while others have reported this to be 

temporary and reversible (Pereira et al., 2005; Pereira et al., 2004).This could be 

interesting to study the nature of inhibition which may reduce the overall treatment 

cost. 
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APPENDICES 

APPENDIX A 

Enrichment of SRB culture: M1 (2:2) 

HRT = 40 days       

Volume replaced = 400 ml       

 2 L of substrate + 2L of anaerobically digested sludge were mixed. Semi continuous 

operation was started after 10 days of mixing. 

 

Day pH 

ORP  

(mV) 

Temperature 

(
o
C) 

Sulphate 

(mg/L) 

TOC 

(mg/L) 

Gas 

Production 

(mL) 

0 7.1 -340 19.9 1083.3 20.91 40 

4 7.06 -343 20.3 928 30.795 125 

8 6.68 -313 20.2 922 74.54 225 

12 6.96 -290 19.2 1137.43 205.564 160 

16 6.91 -291 20.4 1099.92 354.6 200 

20 6.85 -315 20.7 911.64 451.258 80 

24 6.9 -330 20.7 857.58 480.416 100 

28 6.83 -330 20.1 708.65 634.11 100 

32 6.91 -365 22.7 651.28 740.667 150 

36 6.75 -358 21.1 738.12 510.427 40 

40 6.86 -367 21.4 682.2 995.47 50 

44 6.84 -353 24.4 584.6 1025.63 85 
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Day pH 

ORP  

(mV) 

Temperature 

(
o
C) 

Sulphate 

(mg/L) 

TOC 

(mg/L) 

Gas 

Production 

(mL) 

48 6.69 -345 21.6 640 1201 50 

52 6.62 -339 19.6 769 1282 40 

56 6.51 -331 20 757 1272 20 

60 6.62 -336 22.3 624 1496 100 

64 6.65 -341 24.8 510 1471 120 

68 6.48 -334 21.6 707 1657 0 

72 6.35 -327 20.3 911 1682 20 

76 6.42 -330 23 755 1686 0 

80 6.47 -335 19.7 973 1604 0 

84 6.38 -314 24.3 1066 1650 50 

88 6.3 -316 24 540 1724 100 

92 6.4 -325 21.5 570 1685 50 

96 6.31 -309 20.3 611 1760 150 

100 6.28 -328 24.1 580 1678 150 

104 NR -312 23.8 

Data not collected 108 6.05 -310 23.6 

112 6.1 -312 24 
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APPENDIX B 

Enrichment of SRB culture: M2 (1:3) 

HRT = 40 days       

Volume replaced = 400 ml       

 1 L of substrate + 3L of anaerobically digested sludge were mixed. Semi continuous 

operation was started after 10 days of mixing. 

Day pH 

ORP  

(mV) 

Temperature 

(
o
C) 

Sulfate 

(mg/L) 

TOC 

(mg/L) 

Gas 

Production 

(mL) 

0 6.8 -315 19.9 653 12 440 

4 6.9 -311 20.3 694 119 450 

8 7.01 -291 20.2 679 103 450 

12 6.97 -299 19.2 796 131 400 

16 7.02 -303 20.4 788 198 340 

20 7.03 -314 20.7 611 298 120 

24 7.01 -332 20.7 598 389 190 

28 7.06 -331 20.1 418 597 140 

32 7.05 -378 22.7 264 546 150 

36 7.16 -371 21.1 74 674 30 

40 7.18 -374 21.4 140 731 40 

44 7.1 -344 24.4 87 810 50 

48 7.05 -356 21.6 97 1011 80 

52 7.07 -358 19.6 151 1351 60 

56 7.06 -348 20 90 1051 50 
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Day pH 

ORP  

(mV) 

Temperature 

(
o
C) 

Sulfate 

(mg/L) 

TOC 

(mg/L) 

Gas 

Production 

(mL) 

60 7.04 -340 22.3 95 1213 100 

64 6.92 -346 24.8 121 1152 80 

68 6.95 -351 21.6 260 1193 100 

72 6.91 -349 20.3 258 1208 100 

76 6.94 -350 23 197 1328 50 

80 6.85 -355 19.7 112 1485 300 

84 6.85 -334 24.3 140 1783 240 

88 6.9 -261 24 24 1305 400 

92 6.91 -290 21.5 30 1424 500 

96 7.18 -347 20.3 47 940 600 

100 7.24 -328 24.1 26 1030 700 

104 NR -360 23.8 

Data not collected 108 7.1 -339 23.6 

112 6.98 -353 24 
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APPENDIX C 

Calculation of Sulphate 

 

Na2SO4:  

M.W. = 142.06; SO4
2-

 = 96.06 

 4.54 g of Na2SO4contributes = (96.06X4.54)/142.06 = 3.0699 g of SO4
2- 

 

MgSO4.7H2O:  

M.W. = 246.06; SO4
2-

 = 96.06 

 0.061 g of MgSO4.7H2O contributes = (96.06X0.061)/246.06 = 0.0238 g of SO4
2-

 

 

FeSO4.7H2O:  

M.W. = 277.86; SO4
2-

 = 96.06 

 0.004 g of FeSO4.7H2O contributes = (96.06X0.004)/277.86 = 0.0013 g of SO4
2-

 

 

Total SO4
2-

 concentration = (3.0699 + 0.0238 + 0.0013) g/L 

         = 3.095 g/L 

         = 3095 mg/L  
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APPENDIX D 

TC calibration curve 
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APPENDIX E 

IC calibration curve 
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APPENDIX F 

COD calibration curve 

y = 0.0003x + 0.0438
R² = 0.9983
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