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ABSTRACT 

 External dampers are widely used to control vibrations of stay cables on cable-

stayed bridges. In general, the estimation of the damping of a stay cable in a cable-

damper system is done based on the assumption that the bridge stay cable has fixed 

supports at both ends and the damper has a fixed support on the deck. But long-span 

bridges experience frequent bridge-girder vibrations under dynamic loadings due to long 

span length, light weight and flexible nature. Therefore, the assumptions of fixed support 

for the cable and damper is no longer valid in the case of long-span bridges. 

 An analytical model has been proposed in the current study to determine the 

damping property of a bridge stay cable when attached with a damper, by considering the 

effect of bridge-deck vibration on the cable and the damper. The static and the dynamic 

behaviour of the cable-damper-deck system have been simulated in the model. The 

validity of the model was verified by assuming a very rigid equivalent beam and was 

compared with the results obtained from a cable fixed end case. A Matlab program was 

developed to perform matrix calculations and iterations associated with the model. 

Associated dynamic analysis was carried out using the finite element model in ABAQUS 

6.9. 

 Case studies were conducted to investigate the effect of cable-deck interaction on 

the damper efficiency for cable-stayed bridges with different span lengths. The range of 

main span length that requires the consideration of bridge-deck vibration for the 

estimation of damper efficiency was proposed.  
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CHAPTER I  INTRODUCTION 

1.1 Background 

 One main achievement of the recent advancement in bridge engineering is the use 

of much longer spans of girders in cable-stayed bridges and thereby efficient use of 

materials and other resources in construction and maintenance. Light weight of the 

structural components and use of longer spans results in more slender elements which are 

susceptible for vibration under dynamic excitations. The cables in long-span cable-stayed 

bridges are prone to exhibit high amplitude of oscillation due to their light mass, high 

flexibility and very low intrinsic damping. It has become more important and serious 

matter of concern in recent years due to the rapid development of  long-span cable-stayed 

bridges and due to the incidence of high amplitude cable vibration observed on bridge 

site and experimental studies in the past few decades. 

  The complex behavior of cable–stayed bridges when subjected to dynamic loads, 

such as wind, traffic or seismic excitation is a long standing issue in bridge engineering. 

The non linear interaction between local cable vibrations and bridge deck vibrations is an 

issue which can lead to very large cable vibrations or high amplitudes of deck vibrations. 

These can in turn lead to an issue of structural safety, user discomfort or fatigue damage.  

Wind-induced cable vibrations are identified as the most common in bridge stay cables. 

The initiative and the amplitude of excitation depend on the flow characteristics of wind, 

the geometry and the dynamic properties of the cable.  Depending on their mechanisms,  

wind-induced cable vibration mostly related to stay cables can be categorized as 

following types (Cheng & Tanaka, 2002): a) Vortex-induced vibration;  b) Buffeting; c) 
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Wake galloping;  d) Rain-wind-induced vibration; e) High-speed vortex excitation; f) Dry 

inclined  cable galloping. 

  Vortex-shedding is a phenomenon that excites cables under flow of wind. If the 

natural frequency of the cable lies in close proximity of the shedding frequency of 

vortices form in the wake of the cable, vortex resonance would occur resulting high 

amplitude cable vibration. The frequency of vortex shedding is much higher for normal 

wind speeds than the range of natural frequency of bridge stay cables to excite in first few 

modes. Therefore it is unlikely that vortex shedding be critical in bridge stay cable 

excitation (Strouhal, 1898). 

 Buffeting is a vibration forced by the velocity fluctuation of the oncoming flow 

and it is directly related to the level of wind speed. Buffeting has not been found to cause 

serious effect on bridge stay cable vibration. However, this frequent low amplitude 

vibration could induce fatigue damage and thus threats safety of the bridge. 

 Based on field observations and measurements, it was found (Hikami & Shiraishi, 

1988; Matsumoto et al, 1989b; Yoshimura et al, 1989; Main et al, 1999; 2001) that rain-

wind induced vibration usually occurs at wind speeds of 6-18 m/s, accompanied with 

light rain. Wind is in a direction 20o-60o skewed to the cable plane with low turbulence 

intensity. The majority of the cables that experienced this vibration, locate in the leeward 

side of the bridge pylon and are geometrically declined in the mean wind direction. The 

formation of upper water rivulet on the cable surface seems to be a key factor ( Yamada 

et al, 1997).  This phenomenon is very common in bridge stay cables. 

 High speed vortex excitation has been observed in field and in wind tunnel tests 

without precipitation. It occurs at much higher wind velocity ranges than that for regular 
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vortex-induced vibration. Some studies (Matsumoto et al, 1990) suggest that this 

phenomenon could be caused by regular Karmen vortex shedding and axial vortex 

shedding along the cable axis. 

 Dry inclined cable galloping is an excitation phenomena identified during wind 

tunnel testing ( Cheng & Tanaka, 2002). Although it has not yet been observed on site,  , 

it causes a big concern in the bridge industry due to its divergent nature and uncertain 

onset conditions. One of the possible mechanisms is proposed to be linked to negative 

aerodynamic damping ( Cheng & Tanaka, 2002).  Research about this phenomenon is 

still under way.  

 Suppressing the  vibration of bridge stay cables is of prime importance since the 

effect of vibration of stay-cable as a key structural element, is directly related to the 

serviceability and life span of the entire bridge. Frequent vibrations could lead to 

connection failures, breakdown of the corrosion protection system, and fatigue failure of 

the cable itself. On the other hand, excessive vibration will be a safety issue for the entire 

structure, and may result in sudden cable failure leaving the bridge unusable. Therefore, 

different counter measures are adopted to control the cable vibration. They can be 

categorized mainly into two types, aerodynamic and mechanical types.  

 In aerodynamic  methods, the surface of the bridge stay cable is modified to 

ensure that rain-wind related excitations are minimized . Some of the surface treatments 

adopted at present are dimpled surface on Tatara bridge in Japan, (Verlogeux, 1998); 

helical wire whirling surface on Vasco da Gama bridge in Portugal (Bosdogianni & 

Olivari, 1996) and  axially protuberant surface cables on Higashi-Kobe bridge in Japan 

(Saito et al, 1994). Mechanical improvements are directed to dissipate kinetic energy of 
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the cable by using external dampers near anchorage points and dissipate kinetic energy 

and improve stiffness by connecting adjacent cables together using cable cross-ties. 

Transverse elements as cross-ties in the cable plane  will effectively reduce the length of 

the cross cable, thereby increasing the frequency and the stiffness of the system. Also the 

cross-ties will act as a means of transferring energy from the excited cable to stiffer 

elements (Yamaguchi & Nagahawatta, 1995). Use of external dampers at or near the 

cable anchorage point is much more popular than use of cross-ties since it does not 

interfere with the aesthetical appearance of the bridge. External dampers can be classified 

as passive, semi-active and active. All three types exert a transverse damping force on the 

cable based on the velocity at the contact point. Damper force induced by the passive 

damper will have a predefined relation with the velocity at the contact point whereas 

semi-active and active dampers exerts optimum damper force based on the amount of 

vibration present  and have a nonlinear force variation.   

 

1.2 Motivations 

 External dampers have been used as a measure of controlling transverse cable 

vibration mostly induced by dynamic excitation such as wind. The behaviour of a stay 

cable when attached to a transverse damper has been studied by many researchers 

(Kovacs, 1982; Yoneda & Maeda ,1989; Uno et al ,1991 and Pacheco et al, 1993). The 

approximate relations between damper size, maximum achievable damping ratio and 

damper installation location have been developed for design purposes by treating the 

cable as a taut string.  Subsequently, the above relationships were further developed by 

incorporating cable parameters, bending stiffness and sag extensibility (Tabatabai and 
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Mehrabi,1998).  The experimental and analytical findings (Tabatabi & Mehrabi, 2000) 

confirmed that higher damper size do not necessarily result in higher cable damping 

ratios. By formulating simplified equations  and damping estimation curves using the 

non-linear properties of cable, properties of damper and damper location, Tabatabai & 

Mehrabi (1998) introduced a design tool for damper design. 

  It is noted that all the existing studies are based on the underlying assumption that 

the bridge deck does not move  and the supports of the cable and the damper at the deck 

level are fixed.  Although this assumption  could be accepted for a short-span bridge 

which has relatively rigid super structure, it may not be applicable for more flexible 

medium to long-span bridges.  In a real bridge configurations, the two ends of an inclined 

cable are connected with pylon and deck respectively. This does not comply with the 

fixed-fixed support conditions assumed in the existing studies. Especially for longer  span 

cable-stayed bridges, the bridge girders are light weight and less rigid. The bridge deck 

which provides the support for one end of the cable and support for the damper thus 

should be treated as  moving supports for accurate prediction of the damper efficiency.  

The force exerted by the viscous damper on the cable is proportional to the relative 

velocity of the cable at the contact point of the damper, and this relative velocity could 

only be accurately predicted if the bridge girder vibration is taken into account in the 

analysis. Therefore, the focus of this thesis is to incorporate the cable-deck interaction in 

the dynamic analysis of a damped stay cable vibration to predict more accurately the 

damping effects of the damper. 
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1.3 Objectives 

 The objectives of the current study are summarized as follows. 

1. Propose an analytical model of cable-deck-damper system to investigate cable-

deck interaction on damper performance. 

2. Develop a method to analyze the dynamic behavior of the cable-deck–damper 

system. 

3. Investigate the influence of cable-deck interaction on the damper efficiency. 

4. Conduct case studies to compare the results from the proposed model with those 

from the existing methods. 

5. Perform parametric studies to establish the range of bridge span length that 

requires the consideration of cable-deck interaction in external damper design. 

6. Shed light on the development of  more accurate optimum damper design for 

longer span cable-stayed bridges.  

 To achieve the above objectives, the scope of the current study thus includes 

• Free vibration analysis of horizontal and inclined cables by considering the effects 

of sag and cable bending stiffness. 

• Free vibration analysis of uniform beams with multiple spans and different end 

conditions. 

• Dynamic analysis of a cable-damper system by considering the effects of cable 

sag extensibility, bending stiffness, damper properties and damper location. 

• Development of an analytical model of cable-deck-damper system to analyze the 

motion and evaluate the effect of cable-deck interaction on damper efficiency. 
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• Conduct case studies. 

• Perform a parametric study  to establish the range of bridge span length for which 

the developed model should be used to evaluate damper performance.   
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CHAPTER II  REVIEW OF LITERATURE 

 A brief review of the literature in cable dynamics and free vibration of multi-span 

continuous  beams which relates to the current work is presented in this chapter.  

 

2.1 Free vibration of a suspended uniform cable. 

2.1.1  Horizontal Cable 

 A linear theory for the free vibrations of horizontally suspended uniform cables 

was presented by Irvine & Caughy (1974),  where the ratio of sag to span is about 1:8 or 

less. It is assumed that the static effects of cable elasticity govern the horizontal tension 

and the sag of the cable. A diagram of a horizontally suspended cable which indicates the 

parameters of subsequent equations is shown in Fig. 2-1. In the diagram, 7 is the 

longitudinal component and @ is the vertical component of in-plane motion, A is the 

transverse horizontal component (perpendicular to the vertical plane through supports) of 

motion, _ is the length of the span and ` is the maximum static deflection observed at 

mid-span. 9 and H  represent the coordinates of  the static profile of the cable as shown.  

The transverse horizontal motion, as the easily excited mode, is uncoupled from the in-

plane motion to the first order since there is no involvement of cable tension. In the in-

plane mode, the amplitude of the corresponding longitudinal modal component is always 

substantially less than the amplitude of the vertical motion.  Since the sag of the cable is 

considered to be small, the longitudinal component of the motion has been neglected in 

the analysis. 
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                 9                                                                                       â b                                                                                                                                  
                             y    
                                     w                                           d      
                          P    u                                                                                                             
                                          
                             @ 
                                           P’(9 + 7, H + @, A)  
 

                            Figure 2-1 Definition diagram for cable vibration 

 The transverse horizontal modal frequencies are obtained as the solution to an 

eigenvalue problem of  

 

2 da1e (f)dfa + 
U�Ae(9) = 0           (2-1) 

 

 where A(9, :) =  Ae(9)hiLj  is the transverse component of motion, 2 is the horizontal 

component of cable tension and 
 is the mass density of the cable. The circular 

frequency of the transverse vibration is given by Uk = lm _X2 
⁄⁄  , l = 1,2,3, . ., where 

_  is the length of the cable and l is the mode number. 

The equation of  in-plane vertical motion is given by  

 

2 pa0pfa + ℎ dardfa = 
 pa0pja.                (2-2) 

 

where ℎ is the additional horizontal component of cable tension due to cable vibration.  

The elastic and geometric compatibility of the  cable element is given by Irvine (1980).  
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ℎ (dP df⁄ )s
EtBt = p/pf + drdf u0uf         .(2-3) 

 

where "G is the cross sectional area of the cable, �D is the elastic modulus of the cable 

and ̀ v is the  length of the cable element  considered. 

  The in-plane vertical motion is considered as two fold for computational 

simplicity, that is symmetric mode and anti-symmetric mode. Frequency for anti-

symmetric in-plane motion of which no additional cable tension is developed is obtained 

from Eq.(2-2) as Uk = �kwb \?]   where l = 1,2,3, … is the mode number. The anti-

symmetric vertical modal component is given by 

 

@k(9) = "k sin x�kwfb y , l = 1,2,3, …        (2-4) 

 

The longitudinal component of the anti-symmetric model motion can be  found when the 

additional tension in Eq.(2-3) is zero. It leads to  

 

7k(9) = −4(db )"k |(1 − 2 xfb y) sin x�kwfb y + #kw (1 − cos x�kwfb y)}   (2-5) 

 

where "k is the amplitude of the anti-symmetric vertical component of the nth mode. It is 

clear from the above expression that when the cable becomes flatter, the amplitude of the 

longitudinal component becomes smaller. 

 In the case of the symmetric in-plane modes, the additional cable tension is non-

zero. It is treated as a function of time alone.  The solution to the eigenvalue problem 
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leads to the following transcendental  equation, from which the natural frequencies of the 

symmetric in-plane modes may be found (Irvine & Caughy, 1974). 

 

tan~â�b� = ~â�b� − x &�ay (â�b)%              (2-6) 

 

where  W� = (�db )� b?�� EtBt⁄  is called the Irvine parameter and  3� = � (`v `9)⁄ % `9 ≅b,
_(1+8`_2) is the elastic compatibility condition of the cable.  The Irvine parameter 

describes the relation between cable geometry and elasticity. It governs natural 

frequencies and mode shapes of the cable motion. For example, if λ2 is very large, i.e. if 

the cable is theoretically inextensible, the above transcendental equation becomes  

tan~â�b� = (âI_). This relationship is found in other problems of mechanics, i.e. torsional 

and flexural buckling of struts under certain boundary conditions. In the present study, 

the cable is idealized as a taut string, i.e. �� and sag are ignored in the formulation. The 

value of  λ2 represents taut string is zero. Equation (2-6) thus becomes  tan~â�b� = −∞ 

and the first root will be I_ = m which is used in the analysis. 

 

2.1.2 Inclined Cable 

 Formulations relevant to the motion of cables supported at the same level is of 

less use in the analysis of bridge stay cables since the cable arrangements are always 

inclined.  A simplified solution to the static profile of an inclined cable shown in Fig. 2-2 

is given by Irvine (1980). 
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� = â�(#��){#���(#���)}.             (2-7) 

 

where �, � (l` � are the non-dimensional parameters defined as forms  given by  

� = � (
�vh�S_� 2)⁄⁄ ,    � = 9 _⁄ (l`   � = ]�bPikQ?  , 
 is the mass density, _ is the 

cable length, 2 is horizontal component of cable tension and S is the angle of inclination 

   

 

                                                   A          9                      
                                                                 S          
                                                                                9:(lS                                                          
 
 
 
                                                                                   z                                                                                                                                      
                                                                      _                    
         B 
                                                                                                                                                             

                           Figure 2- 2 Static profile of an inclined cable (Irvine ,1980) 

 

                                   

of the cable with respect to the  horizontal axis. The above derivation is done by 

neglecting the second order terms of the derivatives in the static equilibrium equation. A 

similar formulation was used  (Wu et al ,2005) to obtain natural frequencies and mode 

shapes of an inclined cable as follows: 
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                              Figure 2-3 Geometry of an inclined cable (Wu et al, 2005)                             

 

 The static profile of an inclined cable as shown in Fig. 2-3 is given by 

 

�� = â9�(1 − 9�){1 + �� (1 − 29�} + �(��)             (2-8) 

 

Where the  non dimensional parameters �� and 9� are given by �� = � 3⁄  and  9� = 9/3. Also  

�� = �� 8I��vS⁄ , I = 
�3 82vh�S⁄ , and � = 
�3 (2vh�Sv�lS⁄ ) = 8Iv�lS. By 

substituting 9 = 9∗��vS − �∗v�lS, � = �∗/��vS  in Eq. (2-8), the profile can be obtained 

in the local coordinate system as 

 

��∗ = â9�∗(1 − 9�∗) |1 − �% (1 − 29�∗)} + �(��).          (2-9) 
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 The equations of in-plane motion of an inclined cable in the local coordinate 

system are given by (Wu et al, 2005) 

 

ddP ((6 + �)(df∗
dP + p/∗

pP ) = 
 pa/∗
p a − 
�v�lS                    (2-10) 

 

ddP ((6 + �)(d¡∗
dP + p1∗

pP ) = 
 pa1∗
p a − 
���vS         (2-11) 

 

where � is the additional tension generated,  7∗  is the in-plane longitudinal displacement 

in 9∗ direction and A∗is the transverse displacement in �∗  direction. Displacement of an 

element of the cable in the local coordinate system is shown in Fig.2-4. Removing self -

weight components from Eqs. (2-10) and (2-11) based on the cable static profile, the  

following equations of motion can be obtained  in the local coordinate system. 

 

ddP x� df∗
dP + (6 + �) p/∗

pP y = 
 pa/∗
pja         (2-12) 

 

ddP x� d¡∗
dP + (6 + �) p1∗

pP y = 
 pa1∗
pja .       (2-13) 
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                 9∗             6 d¡∗
dP  

        �∗                                           
                                                `9∗ 

                      6 df∗
dP                                     `�∗ 

                                        ∆v                           6 df∗
dP + ddP (6 df∗

dP )∆v                                                       

                              A∗                          
                                                       6 d¡∗

dP + ddP (6 d¡∗
dP )∆v                                               

                                                                                                                      

                                                        (6 + �) xd¡∗
∆P# + p1∗

pP y                           
                           

                                               u*                ̀ 9∗ + p/∗
pP ∆v1 

                             (6 + �) xdf∗
∆P# + p/∗

pP y                                 `�∗ + p1∗
p¡ ∆v1 

                                                                  ∆v1           

           

 

                                                                                                            (6 + �) xdf∗
∆P# + p/∗

pP y                                                                                       

                                                                                             + ddf {(6 + �) xdf∗
∆P# + p/∗

pP y}∆v1                               

                                                                                                                                          .                                                                                                               
                                                    

    (6 + �) xd¡∗
∆P# + p1∗

pP y + ddf {(6 + �) xd¡∗
∆P# + p1∗

pP y}∆v1                               

                                                                                                                                                                            

Figure 2-4 Displacement of an element of cable in the local coordinates(Wu et al, 2005) 

 

 If a flat sag cable is considered, the longitudinal motion can be neglected. By 

substituting ℎ∗ = � df∗
dP  (l` 2∗ = 6 df∗

dP   and assuming ℎ∗ is constant along the cable, 

`v ≈ `9∗,  Eq.  (2-13) can be reduced to:  

 

ℎ∗ da¡∗
df∗a + (2∗ + ℎ∗) pa1∗

pf∗a = 
 pa1∗
pja .        (2-14) 
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Using Eq.(2-14) and the elastic compatibility of the cable, and adopting a method similar 

to that of Irvine & Caughy (1974) the following transcendental equation was obtained for 

the in-plane modal shapes and natural frequencies of an inclined cable (Wu et al, 2005). 

 

&�a (wL� )% = x1 + �a
% y wL� − :(l wL� + �a

j¤kwL �⁄ − ��a
wL       (2-15) 

 

 where   W� = ¥a(��GOPQ)a
��  is the Irvine parameter and ¦� = �"/(2��vS).  

 Even though the static profile of an inclined cable considered in the current study  

is similar to that described  by Wu et al (2005), the cable here is idealized as a taut string 

and its support at the deck level is no longer fixed.  

   A more accurate solution to the free vibrations of an extensible, sagging  inclined 

cable was given by Triantafyllou (1983). He identified that the general asymptotic 

solution to the  linear dynamic problem of a taut  inclined cable had two physical 

mechanisms. The solution corresponded to the elastic waves changed from sinusoidal to 

exponential as the curvature increased. It occurred along the cable when the supports 

were at two different elevations. The part of the cable close to the higher  support hung 

almost vertical. The part of the cable close to the lower support lied more flat. The 

motion of the nearly vertical part exhibited properties of an elastic chain, where as that of 

the nearly horizontal part exhibited properties of a taut wire. This phenomenon was 

accompanied by a shift of the natural frequency of the symmetric mode towards the 

natural frequency of an anti-symmetric mode.  
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2.2 Free vibration of a suspended cable attached to a transverse linear viscous 

 damper 

 When analyzing a cable-damper system shown in Fig. 2-5, the key aspects the 

designers  look for are the relationships between damper size, damping ratio and location 

and the amount of damping provided by the damper.  

                

                     @ 

       6                   9                                                                      9′                            6 

                                     �                                    
                                          

                            (                                       (′                                                                                       

                                                              _ 
                 Figure 2-5 A taut cable with external linear viscous damper     

  Kovacs (1982) first identified the existence of optimum damping in a cable-

damper system using a semi-empirical approach. According to the results, the maximum 

modal damping ratio attainable by a concentrated viscous damper was about half the 

relative distance of the damper from the cable support. i.e. ( 2_⁄  in Fig.2-5. 

 In a numerical analysis conducted by Yoneda & Maeda (1989) the existence of 

optimum damping was confirmed. Moreover an empirical formula was proposed  by 

which the amount of damping in a cable-damper system could be estimated without 

resolving a complex eigenvalue problem. In this formulation the logarithmic decrement 

of the cable-damper system was related to the damping coefficient of the  damper itself 

and the optimum achievable damping of the system. 
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 By introducing a non dimensional damping coefficient, the empirical formula for 

predicting maximum attainable modal damping ratio based on damper location has been 

derived by Uno et al (1991). 

 Subsequently, a universal damping estimation curve was proposed by Pacheco et 

al (1993). It related the model damping ratio of a cable-damper system, the mode 

number, the damper size, the damper location, unit mass, and fundamental frequency of 

the cable. They also confirmed the findings of Kovacs (1982) by investigating the 

frequency response curves when the  damper coefficient equaled to zero, optimum and 

infinity.  

  The problem of controlling a vibrating horizontal string by a concentrated viscous 

damper  was formulated by Krenk (2000)  based on the assumption that the cable tension 

remained as a constant during oscillation. The equation of motion of the cable damper 

system shown in Fig. 2-5  is given by  

 

6 pa0pfa − 
 pa0pja = � p0pj R(9 − ()          (2-16) 

 

where 6 is the cable static tension, 
 is the mass density and � is the coefficient of the 

damper, respectively. The boundary conditions are @(0, :) = 0  and  @(_, :) = 0. The 

discontinuity of slope at the location of damper results in the following equilibrium 

condition: 

 

6 x¨p0pf¨¤© − ¨p0pf¨¤ªy = � p0pj           (2-17) 
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That is, the damper force at the damper location is treated as equal to the transverse force 

induced by cable tension due to discontinuity of slope at the location of damper. The 

coupling between the displacement space and time derivatives at  damper location  leads 

to complex mode shapes and frequencies of free vibration. It reveals that the eigen 

frequencies of the damped modes are complex, with the imaginary part representing the 

attenuation due to damping. By substituting the displacement function @(9, :) =
@�(9)hiLj satisfying the boundary conditions and the continuity condition at damper 

location in Eq.(2-17), the following transcendental equation could be obtained for 

determination of eigen frequencies . 

 

cot(I() + cot(I(«) = −� G√N]           (2-18) 

  

 where = U\]N  .  

 

The frequency U could be obtained  from  Eq. (2-18) by simplifying the trigonometric 

functions  using Taylor’s expansion with the base value as the circular frequency of the 

cable. The solution  will be  a complex eigen frequency in the following form Krenk 

(2000) 

 

U = Uk,[X1 − ®� + �®]          (2-19) 
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where   Uk, is the circular frequency of the cable in the nth  mode and ® is the damping 

ratio. 

 A non-dimensional formulation was developed to calculate the vibration 

frequencies and the damping ratio for a stay cable equipped with a mechanical viscous 

damper by Tabatabai & Mehrabi (2000). The Bending stiffness and the sag extensibility 

of the cable  were taken into account in the analysis. Non-dimensional parameters were 

defined based on a cable damper system as shown in Fig. 2-6 as follows.   

                         9                                                                                                                   

2                                                           �� , 
                                                       2       

                    3d        � 

                                                         3 

                         Figure 2-6 Layout of a cable-damper system 

 

° = 3X2 ��⁄             (2-20) 

 

± = m� 
3U#⁄            (2-21) 

 

Γd = L´ L⁄             (2-22) 

 

where  ° is the bending stiffness parameter, ± is the damping parameter, and Γd is the 

damper location parameter. The cable properties are as follows: 2 is the pretension, 3 is 

the length, 
 is the mass density, and �� is the bending stiffness. The damper properties 

are the damping coefficient c, and the damper location 3d. Practical ranges of these 
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parameters were  established based on a data base of over 1400 bridge stay cables in 16 

cable-stayed bridges in  USA (Tabatabai & Mehrabi, 2000). It was observed that for more 

than 95% of cables in the field, the sag extensibility ratio is less than 1 and the effect of 

sag extensibility parameter W� on performance of mechanical dampers was not very 

significant.  Therefore sag extensibility could be treated as independent of the 

performance of mechanical damper. On the other hand, sag extensibility is the only 

parameter that represents the inclination of the cable in their formulation and hence they 

proposed that the performance of the mechanical damper is independent of the inclination 

of the cable.  

   Xu & Yu (1999) studied the non-linear behaviour of an inclined sag cable with 

respect to change in cable sag parameter and the effect of an oil damper on the cable 

vibration control using physical experiments.  Results showed that an oil damper with an 

appropriately selected damping coefficient  could effectively suppress non-linear in-plane  

cable motion.  

   An energy based approach to estimate the equivalent damping existed in a cable-

damper system has been proposed (Cheng et al, 2010; Cheng & Koralalage, 2009 and 

Koralalage & Cheng, 2009). By introducing the kinetic energy decay ratio as a key index, 

the relation between the additional damping provided by an external damper and the 

kinetic energy dissipation rate of a damped cable was derived. The relationship of damper 

location, damper size, cable length, cable tension, cable bending stiffness, and equivalent 

cable model damping ratio was established. A set of damping estimation curves were 

developed as a design tool to assist external damper design for controlling bridge stay 

cable vibration.  
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In all the literature reviewed above, the support conditions at both cable ends are 

fixed. The movement of the bridge deck on real bridges and its impact on the behaviour 

of the cable and the damper are not taken into account.  However, when the bridge span 

becomes longer and the bridge girder becomes more flexible, the motion at the cable-

deck and damper-deck anchorage points can no longer be neglected. Its impact on the 

efficiency of the damper in controlling cable vibration can be considerable. 

 

2.3  Free vibration of multi-span continuous uniform beams 

 The free vibration analysis of multi-span beams by considering different classical 

and non classical support conditions and various span combinations was conducted by 

Gorman (1975). The conventional beam differential equation was used in the analysis 

which expressed the equilibrium between the inertia forces and elastic restoring forces 

subjected to prescribed boundary conditions as given below. Figure 2-7 shows an element 

of a uniform beam under dynamic equilibrium. 

 

 

      @(9, :)                       µ                                                        µ + `µ 

                               ¶                                ·" pa0(f,j)pja                            ¶ + `¶ 

                                                                            

                                                                            ̀9                     

                                                                                                                                   x      

                         Figure 2-7 An element of a uniform beam subjected to vibration 
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The transverse shear force in the beam is given by  

 

µ = �� ps0(f,j)pfs              (2-23) 

 

where �� is the bending stiffness of the beam and @(9, :) is the transverse displacement 

of the beam. Considering the dynamic equilibrium of the beam element shown in Fig. 2-

7, the net transverse shear force should be equal to the inertia force acting on the element.  

Hence 

 

− pa0(f,j)pja = E¸¹B pZ(0(f,j)pfZ .           (2-24) 

 

 The effect of shear strain and rotary inertia are neglected in the analysis. The Free 

vibration of a beam with intermediate point supports was studied by Kong & Cheung 

(1996) using Ritz method. The transverse displacement of the beam was approximated by 

a function comprised of a polynomial and a term of the conventional single span beam 

vibration function. Stiffness and mass matrices were formulated using the admissible trial 

functions, and the resulting linear eigen–equation was solved. 

 

2.4 Effect of cable-deck interaction on vibration of a damped stay cable 

 Several researchers have studied theoretically and experimentally the internal 

resonance between the bridge global modes and the cable local modes which leads to 

highly unstable oscillation of stay cables. It has been observed that the angle of 

inclination of the stay cable plays a significant role in parametric excitation (Caetano, 



24 
 

24 
 

2006). When the inclination angle is 0,, the cable is horizontal and the vibration excited 

by the deck vertical motion becomes a forced vibration whereas when the angle of 

inclination is 90,, the cable is vertical and deck motion creates a purely parametric effect 

without any forced vibration effect. When the cable inclination is  between 0, − 90, the 

forced and parametric vibrations are coupled.  The cable instability occurs when the 

vibration frequency of bridge deck is in the neighbourhood of twice the first natural 

frequency of the cable. In this case parametric vibration and forced vibration of stay 

cables are generally coupled. Such a parametric oscillation can be controlled by a 

damping system installed on the cable (Sun et al, 2003) . Based on the experiments 

conducted on the Second Severen Crossing in UK and the associated numerical analysis, 

Macdonald (2004)  revealed that wind loads on cables can significantly affect global 

bridge response and since many combined cable-deck modes existed, cable and deck 

vibrations should not be considered separately.  

  The effects of girder vibration on the functionality of an external damper was 

investigated by Liang et al (2008). The cable was treated as a taut string and the bridge 

girder was simplified as a cantilever beam with the pylon end fixed as shown in Fig. 2-8 

below. Results suggested that the girder vibration reduced the effectiveness of the damper 

as the cable length increases.  In Fig. 2-8, AC represents the equivalent bridge girder, CD 

is the cable under investigation and BE represents the linear viscous damper. 7(9, :) is 

the horizontal component of the cable motion, @(9, :) is the vertical component of cable 

motion and A(9, :) is the vertical motion of the bridge girder. 

 This model, though considered cable-deck interaction in the formulation, the 

simplification of the bridge girder as a cantilever beam would lead to distorted dynamic 
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behaviour compared to the original bridge. In particular, the mode shapes of vibration are 

not represented correctly. This misrepresentation would directly affect the motions at 

cable-deck and damper-deck anchorage points and their relative relations. Therefore the 
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Figure 2-8 Simplified theoretical model of cable-deck–damper system (Liang et al, 2008) 

 

impact of cable-deck interaction on the efficiency of the damper in controlling cable 

vibration cannot be reasonably simulated. 

 To the author’s knowledge, the consideration of cable-deck interaction in 

evaluating dynamic behaviour of a damped cable has rarely been seen in the literature. To 

address this important issue, in particular, when designing dampers for cables in medium- 

to long-span cable-stayed bridges, a more accurate and reasonable analytical model of a 

cable-damper-deck system will be proposed. The details of the model and formulation 

will be presented in Chapter III. 
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CHAPTER III ANALYTICAL FORMULATION OF A CABLE- 
 DAMPER-DECK COUPLED SYSTEM 

 In order to investigate the impact of cable-deck interaction on the damper efficiency to 

control cable vibration on cable–stayed bridge, an analytical model is developed in the current 

chapter. In the model, the bridge super-structure is modeled as a three-span continuous 

equivalent beam which has the same static and dynamic behaviour as the original bridge.  A 

typical cable in the mid-span is included in the model. The cable is idealized as a taut cable, i.e. 

its bending stiffness is neglected in the analysis. An external damper is attached to the cable 

close to its anchorage point on the bridge deck. And it is considered as a linear viscous damper in 

the analysis. 

 In the following sections, the equations of motion and dynamic analyses of a single cable 

and a three-span continuous beam will be developed separately first. Then, the analytical 

formulation of the cable-damper-deck coupled system will be derived. A procedure to solve the 

equation of motion of the coupled system will also be proposed. 

 

3.1 Free in-plane vibration of an inclined taut cable  

3.1.1 Static Analysis 

 Figure 3-1(a) portrays an inclined suspended cable, the angle of inclination is S. Fig.3-

1(b) shows the static forces acting on an element of the cable of length ds. 
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                                  θ+α+dα 
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                Figure 3-1  Static forces acting on an element of an inclined cable 

     
 Considering the static equilibrium of a cable element of length ̀ v as shown in Fig. 3-

1(b), the  following relationships could be obtained: 

 

∑ � = 0; (6 + R6)cos (S + º + `º) − 6��v(S + º) = 0         (3-1) 

 

∑ ½ = 0; (6 + R6)  v�l(S + +`º) − 6v�l(S + º) + ·`v� = 0       (3-2) 

 

where  · is the mass density of the cable, � is the gravitational acceleration, 6is the static tension 

of the cable, S is the inclination angle of the cable with respect to the horizontal direction and  

(S + º) is the inclination of the cable element considered. 

 The geometric relationships for a small cable element of length ds are 
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¾¿¿
À
¿¿Á

sin(S + º) = drdPcos(S + º) = dfdP`v = X`9� + `H�
dfdP = #

\#�ÂÃÂÄ
a

Å             (3-3) 

 

Substituting Eq.(3-3) into Eqs. (3-1) and (3-2), yields  

 

ddP Æ6 dfdPÇ = 0              (3-4) 

 

ddP Æ6 drdPÇ = −·�.             (3-5) 

 

 Equation (3-4) shows that the horizontal component of the cable tension, 2, is a constant 

along the cable length, i.e. 

 

2 = 6 dfdP = ��lv:(l:            (3-6) 

 

3.1.2 Dynamic  Analysis 

 The static equilibrium equations of a 2D inclined cable, Eqs. (3-4) and (3-5), can be 

further developed to dynamic equilibrium equations for in-plane motion of an inclined cable by 

the addition of dynamic terms to its horizontal displacement,9, vertical displacement, H, and 

tension, 6, and incorporating the inertia force. The terms in the dynamic analysis  are shown 

below. 
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    Static analysis                                          Dynamic analysis 

 

Horizontal displacement   9                                                  9 + 7(9, :) 

 

Vertical displacement                H                                                  H + @(9, :) 
 

Cable tension     6                                                   6 + �(9, :) 

 

Inertia force          No                                        · pa/pja , · pa0pja 

 

where 7(9, :),@(9, :),and �(9, :) are the additional horizontal displacement , additional vertical 

displacement and the additional cable tension induced by cable vibration respectively. 

 Replacing the static terms in Eq. (3-5) with the corresponding dynamic terms, the 

equation of motion for in-plane cable vibration in the vertical direction can be obtained as 

 

ddP |(6 + �) ddP [H(9) + @(9, :)]} = −� + · pa0(f,j)pja          (3-7) 

 

 Similarly, the equation of motion in the horizontal direction can be obtained as 

 

ddP |(6 + �) ddP [9 + 7(9, :)]} = · pa/(f,j)pja           (3-8) 
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 Equation (3-7) can be simplified as follows with the assumption that the dynamic tension 

� is negligible. 

 

ddP Æ6 drdPÇ + ddP Æ6 d0(f,j)dP Ç = −·� + · pa0(f,j)pja   

 

 By eliminating static terms using (3-5) and writing the partial derivative term 
ddP with 

respect to ̀9; 

 

ddf Æ6 d0df dfdPÇ dfdP = · pa0pja  

 

 Substituting Eqs. (3-3) and (3-6) into the above equation, leads to the relationship  

defining the in-plane vertical motion of an inclined taut string as 

 

?
\#�ÂÃÂÄ

a pa0pÈa = · pa0pja             (3-9) 

 

 Similarly the equation of motion of in-plane cable vibration in the horizontal direction is  

 

ddP |(6 + �) ddP [9 + 7(9, :)]} = · pa/(f,j)pja         (3-10) 

 

 Assume the  dynamic tension � is very small, gives 
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ddP {6 ÆdfdP + d/df dfdPÇ} = · pa/pja           (3-11) 

 

 The  equation of motion for horizontal in-plane vibration of an inclined taut cable can 

finally be expressed as follows by substituting Eqs.(3-3) and (3-6) into Eq.(3-11); 

 

?
\#�ÂÃÂÄ

a ppf x1 + d/dfy = · pa/pja   
?

\#�ÂÃÂÄ
a ÉaÊÉÈa = · pa/pja       (3-12) 

 

3.1.3 Numerical example 

 The equations of motion derived in Section 3.1.2 are verified by a numerical example and 

compared with that of Irvine (1980). 

 In an experimental cable setup, a horizontal cable of length 3 = 13.695 m and unit mass 

of cable · = 3.6 kg/m was used under static cable tension of  2 = 122.1 kN. It is intended to 

determine the first modal frequency of the cable for in-plane vertical motion. The cable is 

idealized as a taut string. 

3.1.3.1   Application of Eq. (3.9)  

 Since the cable is suspended horizontally and there is negligible sag, 
drdf = 0. Hence Eq. 

(3.9) becomes 

 

2 pa0pfa = · pa0pja            (3-13) 

 

 Substituting @(9, :) = @�(9)Ì(:) to separate variables in Eq. (3-13) we obtain 
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2 0ÍÎÎ(f)0Í(f) = · ÏÐ (j)Ï(j) = ¦           (3-14) 

 

where k is a constant. 

 Equation (3-14) can be written as two separate equations as follows 

 

2@�««(9) − ¦@�(9) = 0           (3-15) 

 

·ÌÐ (:) − ¦Ì(:) = 0           (3-16) 

 

 The solution for Eq. (3-15) is in the form of 

 

@�(9) = "v�l I9 + ) ��vI9          (3-17) 

 

where ", ) (l` I are constants. 

 Since the cable is suspended horizontally and fixed at both ends, A(0) = 0 (l` A(3) =
0. Using these boundary conditions in Eq. (3-17) leads to  ) = 0 and v�lI3 = 0 since " ≠ 0 

→ I3 = lm �Ó I = kw�  AℎhÓh l = 1,2,3 …. 

 Substituting @�(9) = "v�lI9 in Eq. (3-15), the following result is obtained 

 

[I� − ¥?]@�(9) = 0           (3-18) 

 

 Hence for non trivial solution of @�(9), ¦ = I�2 = kawa
�a 2. Similarly, using  
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equation (3-16), it can be shown that if 

 

Ì(:) = 4v�l U:               (3-19) 

 

[U� − ¥¹]Ì(:) = 0           (3-20) 

 

where 4 is a constant and U is the circular frequency of cable vibration. 

Using Eq. (3-20), for nontrivial solution of 7(:)  

 

U = \¥¹ = kw� \?¹           (3-21) 

 

The frequency of vibration is given by 

 

Ô = L�w = k�� \?¹ , l = 1,2,3, ..          (3-22) 

 

 Substituting 2 = 122100Õ, · = 3.6 kg/m and 3 = 13.695 m into Eq. (3-22), the first 

modal frequency  ( l = 1) is Ô = 6.72 Hz. 

 

3.1.3.2   Irvine’s approach 

 The first mode is the symmetric first mode of vertical in-plane motion. Since the cable is 

a taut string , the Irvine parameter W� = 0. The transcendental equation becomes l L×� = −∞ , 
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where U× = U3/(2 ·)⁄ â. Hence U× = m → U = w� \?¹ → Ô = #�� \?¹ substitute into  2, ·, 3  yields 

Ô = 6.72Hz. Since both approaches gave the same results, the derivations in Section 3.1.2 
are correct. 

 

3.2  Free vibration analysis of a three-span continuous beam  

3.2.1 Equation of motion for in-plane vibration 

 A three-span continuous beam with simply supported ends is considered for the 

analysis. The mass density and the bending stiffness of the beam are assumed to be 

uniform  through all the spans. The effects of shear strain and rotary inertia are neglected 

in the analysis. Schematic diagram of the beam considered in the analysis is shown in 

Figure 3-2. 

A                                      B                                                  C                                            D                                                                                 

  9#                      HBC                   9�                HCD                                      HD<                  9%   

                          

     3#        3�               3% 

                                                                       L 

 

                       Figure 3-2 schematic diagram of a three-span continuous beam 

 

 The  motion of the beam can be described by Eq. (2-34) 

 

− par(f,j)pja = E]̧ pZr(f,j)pfZ             (3-23) 
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where  
 is the mass density of the beam, �� is  the beam bending stiffness and H(9, :) is the 

vertical in-plane displacement of the beam with respect to its static profile. 

 Substituting   H(9, :) = @(9)Ì(:) and substitute it into Eq. (3-23), and rearranging the 

terms, we obtain  

 

             �� 0ÙÚ(f)0(f) = −
 ÏÐ (j)Ï(j) = ¦         (3-24) 

 

where  @i0(9) represents the fourth derivative of @(9) with respect to 9, ÌÐ (:) is the second 

derivative of Ì(:) with respect to :  and ¦ is a constant. 

 Equation (3-24) can be re-written as two separate equations as follows: 

 

��@i0(9) − ¦@(9) = 0          (3-25) 

        

ÌÐ (:) + ¥] Ì(:) = 0             (3-26) 

 

 The solution to Eq.(3-25)  for the  �jÛspan (� = 1,2,3 ) will be given by the shape 

function 

 

@i(9i) = "iv�lW9i + )i��vW9i + +iv�lℎ W9i + -i��vℎW9i, � = 1,2,3      (3-27) 
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where "i , )i, +i , -i  are coefficients of shape function @i(9i) of the  �jÛ span ( � = 1,2,3), and W is 

the eigenvalue.  

 Using non-dimensional form °i = fÙ�  and substituting Eq. (3-27) to Eq.(3-25) gives 

 

[W& − ¥�Z
E¸ ]@i(°i) = 0           (3-28) 

 

 For nontrivial solutions of @i(°i) , Eq. (3-28) should satisfy ; 

 

¦ = W&��/3&                                                                                                    (3-29) 

where 3 is the total length of the beam.  

 

 The solution to Eq. (3-26) is assumed to have the form of  

 

Ì(:) = 4v�lU:                                                                             (3-30) 

 

where  4 is constant and U represents the frequency of vibration of the beam. Substituting the 

value of @(:) from Eq. (3-20) in Eq. (3-16) yields 

 

U = \ ¥]                       (3-31) 

 

 Substituting Eq. (3-29) into Eq. (3-31) gives 
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U = �a
�a \E]̧            (3-32) 

 

 Boundary conditions and compatibility conditions: (please refer to Fig. 3-2) 

 

1. Boundary conditions: 

 

Displacement at A:      [@BC]f^Ü, = 0; →  )# + -# = 0     (3-33) 

 
Moment at A:       [@′′BC]f^Ü, = 0; →  −)# + -# = 0     (3-34) 

 

 Combining the above two equations, yields 

     

)# = -# = 0             (3-35) 

 

Displacement at B: 
 [@BC]f^Ü�^ = 0; "#v�lW3# + +#v�lℎW3# = 0; +# = − Pik��^PikÛ��^ "#    (3-36) 

 

 Using results (3-35) and (3-36); 

 

@BC = "#[v�lW9# − Pik��^PikÛ��^ v�lℎW9#]                                                                           (3-37) 

 

 Due to the symmetry of the structure, @<D for span CD can be similarly derived as  

 

@<D = "%[v�lW9% − Pik��sPikÛ��s v�lℎW9%]         (3-38) 
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Displacement at B : [@CD]faÜ, = 0; →  )� + -� = 0 → -� = −)�               (3-39) 

 
Displacement at C ; 

 

→ [@CD]faÜ�a = 0; →  "�v�lW3� + )�[��vW3� − ��vℎW3� ] + +�v�lℎW3� = 0       (3-40) 

 

2. Compatibility conditions: 

 
Slope at B: [@′CD]faÜ, = [@′BC]f^Ü�^ → "# Æ��vW3# − Pik��^PikÛ��^ ��vℎW3#Ç −"� − +� = 0  (3-41) 

 

Slope at C:  [@′CD]faÜ�a = −[@′<D]fsÜ�s → 

  

"���vW3� + "% Æ��vW3% − Pik��sPikÛ��s ��vℎW3%Ç − )�[v�lW3� + v�lℎW3�] + +���vℎW3� = 0    . 

                 (3-42) 

 

Moment at B: [��@′′CD]faÜ, = [��@′′BC]f^Ü�^ → )� = "#v�lW3#                (3-43) 

 

Moment at C:    [��@′′CD]faÜ�a = [��@′′<D]fsÜ�s 

 

→ −"�v�lW3� + 2"%v�lW3% − )�[��vW3� + ��vℎW3�] + +�v�lℎW3� = 0             (3-44) 

 

 From Eqs. (3-40) and (3-43): +� = −"#v�lW3#Ý −"�S                        (3-45) 

 

where S = Pik��aPikÛ��a  and Ý = (��vW3� − ��vℎW3�)/v�lℎW3� 
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 Substituting Eqs. (3-43) and (3-45) into  (3-41),(3-42) and (3-44) leads to  

 

Þ ��vW3# − v�lW3#��:ℎW3# + Ýv�lW3#v�lW3#[v�lW3� + v�lℎW3� + Ý��vℎW3�]v�lW3#��vW3�
Å ß S − 1S��vℎW3� − ��vW3�v�lW3�

ß Å 0−−v�lW3%
��vW3% + v�lW3%��:ℎW3%à á"#"�"%

â = á000â                    (3-46) 

.                                                                                                                                         

 It is in the form [G]{S}={0}, where {S}=["# "� "%]′ , {0} is the null matrix and  

 

[>] = Þ ��vW31 − v�lW31��:ℎW31 + Ýv�lW31v�lW31[v�lW32 + v�lℎW32 + Ý��vℎW32]v�lW31��vW32
Å ß S − 1S��vℎW32 − ��vW32v�lW32

ß Å 0−−v�lW33
��vW33 + v�lW33��:ℎW33à 

 

 For nontrivial solutions of "i(� = 1,2,3), the det|>| should be zero.   This condition will 

yield the results of eigenvalues Wi and eigenvectors. The natural frequency of the beam can thus 

be determined from Ôi = �Ùa
�a X�� 
⁄   and the mode shape is the corresponding eigenvectors. 

 

3.2.2 Numerical Example 

 Consider a three-span continuous bridge with span lengths 50m, 100m and 60m as shown 

in Fig. 3-3. The ends of the bridge are simply supported and the two middle supports are 

continuous. The average mass per unit length of the bridge along its longitudinal axis is 
 =
3000 ¦�. The bending stiffness of the bridge is �� = 1.5x 10##Õ
�. It is intended to find the 

natural frequency of the bridge. 
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                                                                          �� , 
 

                                                                    

                                                                                 

                             50 m                                         100 m                                              60m 

                                                                                    210 m 

                      Figure 3-3 Schematic diagram of a three-span continuous beam 

 

Solution: Substituting 3# J 50, 3� J 100, 3% J 60 in the developed Matlab program to resolve  

Eq. (3-46) gives the following graphical solution for W#  

 

      λ 

Figure 3-4 Graph of Det[G] vs λ 

 Figure 3-4 shows eigenvalue W# J 8.15. Substitute,   W# J 8.15, 3 J 210 m, �� J
1.5x 10##Õ
� , 
 J 3000kg into Eq. (3-32) gives U J 10.65 rad/s and the natural frequency 

of in-plane vertical vibration of the bridge is Ô J 1.69 2� . 
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 Gorman (1975) carried out free vibration analysis of beams with multiple spans and 

different support conditions. The results of this example is compared with that obtained from the 

tabulated eigenvalues  by Gorman (1975)  as follows: 

Using non-dimensional parameters   °# J 0.24,   °� = 0.48,   °% = 0.28  in triple-span simply-

supported beam table to get  W# = 8.082. Substituting W#, 3, 
 and �� into Eq. (3-32) gives 

U = 10.47rad/s and Ô = 1.67 2� 

 The results from the derived model agrees well with that of  Gorman (1975). 

 

3.3  Equation of motion of cable-damper-deck coupled system  

 To consider cable-deck interaction in analyzing the controlling effect of an external 

damper on cable vibration, the single cable in section 3.1 and the three-span continuous beam in 

section 3.2  and a linear viscous damper are integrated in this section to derive equation of 

motion of a cable-damper-deck coupled system. The system is shown schematically in Fig.3-5. 

  The mathematical model in this analysis comprised of an isolated bridge stay cable HD, 

an equivalent three-span  continuous beam ABCDEF which represents the bridge superstructure 

along with all the other cable supports except cable HD, and a linear viscous damper attached to 

the cable at G.  Cable HD has a fixed support at H, the pylon end and a vertically moving support 

at D, the bridge girder end. The equivalent beam ABCDEF is simply supported at ends A and F, 

and two intermediate supports are at B and E. The linear viscous damper  is attached to the cable 

at G and supported on bridge girder at C as shown in Figure 3-5. 
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Figure3-5  schematic diagram of the theoretical model of cable-deck- damper system 

 

 The following basic assumptions are made in order to simplify the analysis.  

• The axial deformation of the bridge girder can be neglected. Only vertical movements 

due to bridge girder vibration are considered. 

• The bridge girder is idealized as a three-span continuous equivalent beam which has 

uniform mass density and flexural rigidity over the entire span. 

• For the three-span equivalent continuous beam,  the static deflection at the cable-deck 

anchorage and the fundamental frequency are assumed to be the same as the original 

bridge superstructure.  

• The static deflection at point D, where the cable is anchored to the bridge girder, is 

assumed to be zero. 

• The cable is assumed as a tensioned taut string. The effect of sag and bending stiffness 

are not considered in the formulation. 
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• Only in-plane vibrations of cable, deck are considered. Shear and torsional effects of 

bridge girder are neglected. 

• The damper is a linear viscous damper. 

 
 By neglecting the dynamic tension, the equation of motion for free vibration of 

undamped taut inclined cable, is given similar to (3.9) and (3.12) by 

 

Horizontal :  
?

\#�xÂÃÂÄya ÉaÊÉÈa J 
# paÊpja                                             (3-47) 

 

Vertical:  
?

\#�xÂÃÂÄya pa0pfa J 
# pa0pja                            (3-48) 

 

where  2 is the horizontal component of cable tension 6, 
# is the mass density of the cable,u, @ 

are the horizontal and vertical displacements of cable from its static configuration, respectively. 

Considering the damping force acting on the cable, and substituting  
drdf = :(lS  in Eq. (3-47) 

above; 

 

6��v�S pa/(f,j)pfa − 
# pa/(f,j)pja = −./R(9G − ()       (3-49) 

 

Similarly considering vertical motion of the cable and the damping force in the vertical direction, 

Eq. (3-48) can be written as  
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6��v�S pa0(f,j)pfa − 
# pa0(f,j)pja = −.0R(9G − ()       (3-50) 

 

Considering the vertical motion of the bridge girder and the damping force acting on it, the 

equation of motion of the bridge girder with the existence of an external damper can be given by 

 

�� pZ1(f,j)pfZ + 
� pa1(f,j)pja = −.1R(9� − *)        (3-51) 

 

where R is the dirac delta function, �� is the bending stiffness of the bridge girder, 
� is the mass 

density of the bridge girder , ./ is the force exerted by the damper on the cable in the horizontal 

direction at point G,  .0 is the force exerted by the damper on the cable in vertical direction at 

point G and .1 is the force exerted by the damper on the bridge girder in the vertical direction at 

point C respectively. 

Since the damping force exerted on the cable is equivalent to the transverse force induced by 

cable tension due to discontinuity of slope at the damper location, the following expressions can 

be used to express the damping force on the cable in the horizontal and vertical directions. 

 

6v�lS |Æp/(f,j)pf Ç¤© − Æp/(,j)pf Ç¤ª} = −./        (3-52) 

 

6��vS |Æp0(f,j)pf Ç¤© − Æp0(f,j)pf Ç¤ª} = −.0        (3-53) 

 

The change in shear force on the location of the damper is the damping force acting on the 

girder. Hence 
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�� |Æp1s(f,j)pfs Çåª − Æp1s(f,j)pfs Çå©} = −.1        (3-54) 

 

Based on the assumption of a linear viscous damper, the damping force developed in the damper 

in the horizontal and vertical directions are 

 

−+ d/(¤,j)dj =  ./           (3-55) 

 

−+ Æd0(¤,j)dj − d1(å,j)dj Ç = .0 = −.1         (3-56) 

 

where C is the damping coefficient in N-s/m.  

The following form of solutions are assumed for u, @  and A  

 

7(9, :) = 7Í(9)hiLj           (3-57) 

 

@(9, :) = @�(9)hiLj           (3-58) 

 

A(9, :) = Aæ(9)hiLj           (3-59) 

 

where the shape function Aæ(9) is defined as  AæBC(9#)Ô�Ó  0 ≤ 9# ≤ 3#;  AæCD(9�)Ô�Ó 0 ≤ 9� ≤
*; AæD<(9%)Ô�Ó 0 ≤ 9% ≤ *«;  AæE<(9&)Ô�Ó 0 ≤ 9& ≤ 3& ; AæFE(9')Ô�Ó 0 ≤ 9' ≤ 3%. The shape 
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function @�(9;  is defined as @�?=(9G)Ô�Ó 0 ≤ 9G ≤ (;  @�<=(9′G)Ô�Ó 0 ≤ 9G« ≤ (#. And the shape 

function 7Í(9) is defined as 7Í?=(9G)Ô�Ó 0 ≤ 9G ≤ (;  7Í<=(9′G)Ô�Ó 0 ≤ 9G« ≤ (# 

 

where  9#, 9�, 9%, 9&, 9', 9G(l` 9G«   are the local  coordinates  measured from the direction 

indicated in Fig.3-5. They are introduced for the convenience of derivation. 

Substituting Eqs. (3-57)-(3-59) into Eqs. (3-52)-(3-54) gives 

 

da/æ(f)dfa + ]^La
NGOPaQ 7Í(9) = + [/æèé(¤)]iLu(ft�¤)NGOPaQ         (3-60) 

 

da0Í(f)dfa + ]^La
NGOPaQ @�(9) = + [0Íèé(¤)�1æêë(å)]iLu(ft�¤)NGOPaQ         (3-61) 

 

dZ1æ (f)dfZ − ]aE¸ Aæ(9)U� = + ì1æêë(å)�0Íèé(¤)íE¸ �UR(9� − *)      (3-62) 

 

 The boundary conditions, compatibility conditions and initial conditions of the cable-

damper –deck system shown in Fig.(3-5) are; 

 

i) Span AB 

Displacement at A:        AæBC(0) = 0               (3-63-a) 
 

Moment at A:     AæBC′′ (0)  = 0                    (3-63-b)  
 

Continuity of slope at B: AæBC′ (3#) = Aæ ′CD(0)                         (3-63-c) 
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Continuity of moment at B: Aæ ′′BC(3#; J AæCD′′ (0)              (3-63-d) 
 

Displacement at B: AæBC(3#) = 0               (3-63-e) 
  

ii) Span BC 

Displacement at B: AæCD(0) = 0                (3-63-f) 
 

Continuity of displacement at C: AæCD(*) = AæD<(0)                            (3-63-g)   
 

Continuity of slope at C: Aæ ′CD(*) = Aæ ′D<(0)                        (3-63-h) 
 

Continuity of moment at C: Aæ ′′CD(*) = Aæ ′′D<(0)              (3-63-i) 
 

iii) Span CD 

Shear  at C:  AD<′′′ (0, :) − ACD′′′ (*, :) = −+[Aî CD(*) − @î(*)]/(��)          (3-63-j) 
 
 

Continuity of displacement at D: AæD<(*′) = AæE<(3&)             (3-63-k) 
 

Continuity of slope at D: Aæ ′D<(*′) = −Aæ ′E<(3&)             (3-63-l) 
 

Continuity of moment at D: Aæ ′′D<(*′) = Aæ ′′E<(3&)                    (3-63-m) 
  

Shear at D: 
 ��AD<′′′ ~*′, :� + ��AE<′′′ (3&, :) = −6��vS p0ïé(,,j)pf               (3-63-n) 

 

iv) Span DE 

 

Displacement at E: AæE<(0) = 0               (3-63-p) 
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Slope continuity at E: AæFE′ (3%; J AæE<′ (0)               (3-63-q) 
 

Moment continuity at E: AæFE′′ (3%) = Aæ ′E<′ (0)                                    (3-63-r)  
 

v) Span EF 

 

Displacement at E: AæFE(3%) = 0                (3-63-s) 
  

Displacement at F: AæFE(0) = 0                (3-63-t) 
 
 
Moment at F: Aæ ′′FE(0) = 0                (3-63-u) 

 

vi) Cable 

 

Horizontal displacement at H: 7Í?=(0) = 0             (3-64-a) 
 

Vertical displacement at H:  @�?=(0) = 0             (3-64-b) 
    

Horizontal displacement at G: 7Í=(() = 7Í<=((′)             (3-64-c) 
 

Vertical displacement at G:  @�?=(() = @�<=((′)             (3-64-d) 
 

Continuity of vertical displacement at D: @�<=(0) = AæD<(*′)            (3-64-e) 
  

Horizontal displacement at D:  7Í<=(0) = 0            (3-64-f) 
 

Horizontal component of damping force on cable at G:  
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 6v�lS |ðp/(f,j)pf ñ¤© − ðp/(f,j)pf ñ¤ª} = + d/(¤,j)dj                  (3-64-g) 

 

Vertical damping force on cable at G: 

 

   

  6��vS |ðp0(f,j)pf ñ¤© − ðp0(f,j)pf ñ¤ª} = + |d0(¤,j)dj − d1(å,j)dj }           (3-64-h) 

 

The assumed forms of solution for the shape functions are 

 

AæBC(9#) = "#v�lW9# + )#��vW9# + +#v�lℎW9# + -#��vℎW9#                (3-65-a) 

 

AæCD(9�) = "�v�lW9� + )���vW9� + +�v�lℎW9� + -���vℎW9�             (3-65-b) 

 

AæD<(9%) = "%v�lW9% + )%��vW9% + +%v�lℎW9% + -%��vℎW9%                       (3-65-c) 

 

AæE<(9&) = "&v�lW9& + )&��vW9& + +&v�lℎW9& + -&��vℎW9&            (3-65-d) 

 

AæFE(9') = "'v�lW9' + )'��vW9' + +'v�lℎW9' + -'��vℎW9'             (3-65-e) 

 

@�?=(9G) =  4# sin [9G + 5# ��v[9G                  (3-65-f) 

 

@�<=(9′G) =  4� sin [9G′ + 5� ��v[9G′                  (3-65-g) 
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where "i , )i, +i , -i , (� = 1,2,3,4,5), 4#, 4�, 5# (l` 5�are constants. 

 

For 0 ≤ 9G < ( , substituting  v(9, :) = @�?=hiLj into Eq. (3-61), gives 

 

@�?=′′ (9G) + ]^La
NGOPaQ @�?=(9G) = 0         (3-66) 

 

Substituting Eq.(3-65-f) into Eq.(3-66) yields   

 

ó−[� + 
#U�
6��v�Sô @�?=(9G) = 0 

 

The eigenvalue [ can be thus found as 

 

[ = LGOPQ \]^N             (3-67) 

 

where U is the frequency of vibration of the system.  

 

Referring to Eq. (3-32)  

 

W = \La]aE¸Z
            (3-68) 
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The assumed  solutions for the shape functions are substituted in the  boundary conditions, Eqs. 

(3-63-a) to (3-63-u) to determine the unknown coefficients, 

"i , )i, +i, -i , (� = 1,2,3,4,5), 4#, 4�, 5# and 5�. 

 

AæBC(0) = 0:  )# + -# = 0         (3-69) 
 

AæBC«« (0) = 0:      −)# + -# = 0                    (3-70) 
 

Combining Eqs. (3-69) and (3-70) it can be found that  

 

  )# = -# = 0            (3-71) 

 

AæBC(3#) = 0:    "#v�lW3# + +#v�lℎW3# = 0; →  +# = − Pik��^PikÛ��^ "#    (3-72) 

 AæBC« (3#) = ACD« (0): "# Æ��vW3# − GOPÛ��^PikÛ��^ v�lW3#Ç − "� − +� = 0               (3-73) 

 

AæBC«« (3#) = ACD«« (0): )� = "#v�l W3#                  (3-74) 
 

AæCD(0) = 0:       )� + -� = 0; →  -� = −)�       (3-75) 
 

AæCD(*) = AæD<(0):                "#v�lW3#[��vW* − ��vℎW*] + "�v�lW* + +�v�lℎW* − )% − -% = 0    (3-76) 

 

AæCD« (*) = AæD<« (0):  

  

 −"#v�l W3#[v�lW* + v�lℎW*] + "���vW* − "% + +���vℎW* − +% = 0   (3-77) 
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AæCD«« (*; J AæD<«« (0):   
 

 −"#v�l W3#[��vW* + ��vℎW*] − "�v�lW* + )% + +�v�lℎW* + −-% = 0   (3-78) 

 

@�?=(0) = 0; → 5# = 0: → @�?= = 4#v�l[9G       (3-79) 
 

AæD<««« (0, :) − AæCD««« (*, :) = �Dö1î êëî (å)�0î (¤)÷E¸  : 

 

    −"% + +% − [−"���vW* + "#v�l W3#[v�lW* − v�lℎW*] + +���vℎW*] = −�T["�v�lW* +
)2��vW*++2v�lℎW*+-2��vℎW*−41v�l[(  

Substituting    )� = −-� = "#v�lW3# into the  above equation         "#v�lW3#[v�lℎW* −
v�lW*+�T(��vW*−��vℎW*)+"2��vW*+�Tv�lW*−"3++2�Tv�lℎW*−��vℎW*++3−�T41v�l[(=
0                                                                           (3-80) 

 

where  T = +,U/(W%��)          (3-81) 

 

AæD<(*«) = AæE<(3&): 
 

"%v�lW*« − "&v�lW3& − "'v�lW3%[��vW3& − ��vℎW3&] + )%��vW*« + +%v�lℎW*« −
+&v�lℎW3& + -%��vℎW*« = 0                                                                 (3-82) 

 

AæD<« (*«) = −AæE<« (3&): 

 

"%��vW*« + "&��vW3& − "'v�lW3%[v�lW3& + v�lℎW3&] − )%v�lW*« + +%��vℎW*« +
+&��vℎW3& + -%v�lℎW*« = 0                                                                            (3-83) 
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AæD<«« (*«; J AæE<«« (3&;: 
 −"%v�lW*« + "&v�lW3& + "'v�lW3%­��vW3& + ��vℎW3&¯ − )%��vW*« + +%v�lℎW*« −

+&v�lℎW3& + -%��vℎW*« J 0                                                                            (3-84) 

          

��AD<««« (*«, :) + ��AE<««« (3&, :) = −6��vS p0ïé(,,j)pf  :  

  

−"%��vW*« − "&��vW3& + "'v�lW3%[v�lW3& − v�lℎW3&] + )%v�lW*« + +%��vℎW*« +
+&��vℎW3& + -%v�lℎW*« + 4� MNGOPQ�sE¸ = 0                                                    (3-85) 

 

AæFE« (3%) = AæE<« (0): "& − "' Æ��vW3% − Pik��sPikÛ��s ��vℎW3%Ç + +& = 0               (3-86) 

 

@?=(() = @<=((«): 4# sin([() − 4� sin([(«) − 5� cos([(«) = 0  
 

From which 

    5� = 4# øùú(M¤)ûüø(M¤Î) − 4� øùú~M¤Î�ûüø(M¤Î)        (3-87) 

 

@<=(0) = AD<(*«): 

  

"%v�lW*« + )%��vW*« + +%v�lℎW*« + -%��vℎW*« − 5� = 0     (3-88) 

Substituting Eq. (3-87) into Eq. (3-88) gives 

  

"%v�lW*« + )%��vW*« + +%v�lℎW*« + -%��vℎW*« − 4# øùú(M¤)ûüø(M¤Î) + 4� øùú~M¤Î�ûüø(M¤Î) = 0   (3-89) 
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6��vS ýþ�@(9, :)�9 �¤© − þ�@(9, :)�9 �¤ª� = +, ý`@((, :)`: − `A(*, :)`: � 

 

→                 

6��vS ý− þ�@�<=�9 �¤Î − þ�@�?=�9 �¤� hiLj = +,�@�?=(()�UhiLj − AæD<(0)�UhiLj� 
 

→           6��vS{−(4�[��v[(« − 5�[v�l[(«) − 4#[��v[(} = +,{4# v�l[( − ()% + -%) }�U 

 

�I)% + �I-% − 4#(�Iv�l[( + ��v[() − 4���v[(« + 5�v�l[(« = 0    (3-90) 

 

where   I = DKLMNGOPQ                      (3-91) 

 

Substituting Eq. (3-87) into Eq. (3-90 ) gives 

�I)% + �I-% − 4#(�Iv�l[( + ��v[( − :(l[(« ∗ v�l[() − 4�(��v[(« + :(l[(«v�l[(«) = 0 

                                                               (3-92) 

 

Equations (3-73),(3-76), (3-77),(3-78), (3-80),(3-82), (3-83),(3-84), (3-85),(3-86), (3-89) and (3-

92)  can be combined into  

 

[>]{�} = {0}              (3-93) 

where {0} is a 12x1 null matrix,  {�} = {"# "� "% "& "' )% +� +% +& -% 4# 4�}′ is a 12x1 matrix 

containing the unknown constants for describing the shape functions and [G] is a 12x12 matrix 

as follows. 
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> J �>11 >12 >13>21 >22 >23>31 >32 >33    >14>24>34>41 >42 >43 >44� 

The 3X3 sub matrices are as follows 

  	

 = 

�+1 − (+261)(�1) −1 0�1(+* − +2*) �* 0−�1(�* + �2*) +* −1     � 

 

 	
� = 

Þ0 0 00 0 −10 0 0 à 
 

	
� = 

Þ −1 0 0�2* 0 0+2* −1 0 à 

 

   

	

 = 

Þ 0 0 0−1 0 00 0 0à 
 

     	�
 = 

Þ −�1(+* + +2*) −�* 0�1(�2* + �T+* − �* − �T+2*) +* + �T�* −10 0 �*«à 
 

    	�� = 

Þ 0 0 10 0 0−�4 −�3(+4 − +ℎ4) −+*′à 
 

   

 	�� = 

Þ �* 0 0−+2* + �T�* 1 00 �*« −�4à 
 

           	�
 = 

Þ −1 0 00 −�T�>( 0+2*′ 0 0à 
 

 	�
 = 

Þ0 0 +*′0 0 −�*′0 0 +*′ à 
 

   

G�� = 

� +4 −�3(�4 + �24) −�*′�4 �3(+4 + +24) −+*′−+4 �3(�4 ± �24) �*′ � 
 

	�� = 

Þ0 +2*′ +240 �2*′ −�240 +2*′ +4 à 
 

	�
 = 

Þ�2*′ 0 0+2*′ 0 0�2*′ 0 [6��vS (W%��)⁄ à 
 

 

   

	

 = 

Þ0 0 00 0 �*′0 0 0 à 
 

	
� = 

�1 −+3 + (�3)(+23)/�23 00 0 +*′0 0 �I � 
 

	
� = 

Þ0 0 10 �2*′ 00 0 0à 
 

   



56 
 

56 
 

                             	

 = 

Þ 0 0 0+*′ −�>(/+>(′ 6>(′�I −�I(�>() − +>( − (6>(«) ∗ �>( −+>(« − (6>(«)(�>(«)à 
 

where    +� = ��vW3i , � = 1,2,3,4.,+2� = ��vℎW3i, � = 1,2,3,4.,  +* = ��vW*,             +*′ =
��vW*′,  +>( = ��v[(,   +>(′ = ��v[(′,  �� = v�lW3i , � = 1,2,3,4.,                   �2� =
v�lℎW3i , � = 1,2,3,4.,   S* = v�lW*,�*′ = v�lW*′,   �>( = v�l[(,   and      �>(′ = v�l[(′. 
 

3.4 Solution to equation of motion  

 The nontrivial solution of Eq.(3-93) requires to satisfy Eq. (3-94)  which will lead to the 

characteristic equation of motion of coupled system. The solution to the characteristic equation 

will be the complex eigen frequencies corresponding to different modes of damped free vibration 

of the system. 

 

`h:|>| = 0               (3-94) 

 

 The characteristic equation contains the mass density 
� and the bending stiffness  �� of 

the equivalent beam. They can be derived based on the following two conditions.  

• Static condition: Vertical static deflection at cable-deck anchorage point is zero. 

• Dynamic condition: 1st symmetric vertical bending frequency of  the three-span 

continuous beam is consistent with that of the original bridge super structure. 

 
The detailed derivations for determining 
� and �� are given in the Appendix A and Appendix 

B. 
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3.4.1 Conversion of parameters and trigonometric functions into linear terms 

 The characteristic equation of the cable-damper-deck coupled system  contains 

parameters W and T which have nonlinear relationships with frequency U. Also it has   

trigonometric and hyperbolic expressions which contain nonlinear terms of U. As seen from the 

Taylor’s expansion, the higher order derivatives of these parameters and functions with respect 

to the frequency U is not significant. Hence, these functions are converted to linear functions of 

U using Taylor’s expansion with the base value as the 1st modal frequency of the cable, U,. This 

conversion is carried out in the current analysis using a Matlab program. Parameters  W in Eq. (3-

68) and T in Eq. (3-81)  are converted to linear functions of U as follows: 

 

W = U,âX
� ��⁄Z + âU,
ªâ X
� ��⁄Z (U − U,;         (3-95) 

 

T J DKE¸ ( E¸]a;sZU,
ªâ − DKE¸ x E¸]aysZ ω,

ªsa (U − U,;                              (3-96) 

 

 

3.4.2 Relation between solution and damping ratio 

 The characteristic equation of the coupled system comprises a matrix [Ḡ, which is a 

12x12 matrix. Therefore, in general, the solution  will yield 12  complex eigenvalues. The 

magnitude of the correct solution should be the first modal frequency of cable U, from which the 

accuracy of calculation could be verified and the imaginary part will represent °U,, from which 

the damping ratio ° of the cable could be obtained. 
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3.4.3 Analysis Procedures 

 As described in section 3.3, the simplified equivalent system consists of three main 

components: a three-span equivalent continuous beam which represent the bridge deck and all 

the supporting cables except the cable considered in the analysis, a stay cable and a damper. The 

solution to the equation of motion of the coupled cable-damper-deck system are the roots of its 

characteristic equation, Eq.(3-94). A Matlab program was developed to  solve this equation. The 

input data (please refer to Fig.3-5) include the cable tension(6); the mass density of the 

cable(
#); the length of the cable (3); the fundamental frequency of the cable (Ô,); the horizontal 

distance from the pylon end to the damper location of the cable ((); the horizontal distance from 

the bridge deck end to the damper location of the cable ((′); the damping coefficient of the 

damper (+;; the angle of inclination of the cable (S;; and the first vertical bending frequency of 

cable–deck system(ÔP). 

 The analysis procedures are as follows: 

• Step 1- Calculation of mass density 
� and bending stiffness �� of the three-span 

 continuous equivalent beam. 

a) Use the static condition in Appendix A to get the relationship between  
�  and  

��. 

b) Apply the dynamic condition in Appendix B to converge the frequency of the first 

vertical global bending mode of the equivalent beam to ÔP by varying the cross 

section of the equivalent beam.   

c) Now check  if the static condition is still satisfied. If not , then vary the density of 

the equivalent beam material ρs to obtain zero deflection at the cable-deck 
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anchorage. Apply new �� and m2 in b). Repeat a) to c) until both  static and 

dynamic conditions are satisfied. 

• Step-2- Use Taylor expansion with the base value of U, = 2mÔ, to convert all 

 parameters, trigonometric and hyperbolic functions in matrix ­>¯ into  linear 

 terms of U. Then solve matrix [G] to obtain eigen frequencies. A  Matlab 

 program was developed to perform these tasks. 

• Step-3- The solution will be in the form º + �I, where both º and I are positive  values 

 and U, = Xº� + I� , ® = �X�a��a . 
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CHAPTER IV CASE STUDY 

 A case study of cable vibration control on a real cable-stayed bridge, the Sutong bridge in 

China, is presented in this chapter. The impact of deck vibration on the efficiency of the external 

damper is studied using the proposed model and method described in chapter 3. Results will be 

compared with those from other studies. 

 

4.1 Description of the example bridge 

 The Sutong bridge is at present the world’s largest cable-stayed bridge, situated in 

Jiangsu province, China. It provides the transportation and economical link between Suzhou and 

Nantang crossing the Yangtze river. The key issues related to this bridge are significant ship 

traffic (over 2000 ships per day), high design wind speed, strong currents, poor soil conditions, 

306 m high concrete pylons and a record main span. A photograph of the bridge is shown in 

Fig.4-1. 

 The bridge is a double cable plane, twin-pylon cable-stayed bridge with a continuous 

span arrangement of  2,088 m as shown in Fig.4-2.  Two auxiliary piers and one transitional pier 

are erected in each side span. The main span of the bridge is 1088m, which is the longest main 

cable-stayed bridge span at present. 

 The bridge girder is a streamlined closed flat steel box girder. The total width including 

wind fairing is 41.0 m accommodating dual 8 traffic lanes. The cross section height is 4.0m. The 

steel box is generally stiffened in the longitudinal direction with closed steel troughs. Transverse 

plate diaphragms are provided with a typical distance of 4.0m and with smaller distances down 

to 2.27 m locally around the two pylons. 
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 The inverted Y-shaped pylons are about 300m in height and are made of concrete grade 

C50 according to the Chinese standard JTJ01-89. The stay cables are anchored inside steel boxes 

fixed to the concrete by shear studs at the pylon top. The stay cables are arranged in double 

inclined cable planes with standard spacing of 16m in the central span and 12m near the ends of 

the back span along the girder.  To reduce the effect of wind loads, the cable stay systems are 

made of the parallel wire strand  consisting of 7mm wires, each with a cross sectional area of 

38.48mm2. The nominal tensile strength of cables is 1770MPa. The longest cable is about 577m 

with a weight of 59 tons.  

 The bridge has total of 272 stay cables. The longest 48 stay cables are damped with semi-

active magneto-rheological (MR) dampers. These dampers consists quite conventionally of a 

cylinder, a piston and a fluid. The fluid is magnetic and its shear strength, that is, its viscosity can 

be controlled by the surrounding magnetic field. By controlling the currents that create the 

magnetic field the resistance with which the damper reacts to the respective vibration can be 

controlled. Another 152 cables are equipped with linear viscous passive dampers. These dampers 

are preset to a certain response force that is a compromise of the total system. A typical linear 

viscous damper is shown in Fig. 4-3. 

 It is intended to estimate the damping ratio of a typical stay cable near the mid span of the 

Sutong bridge by considering the cable-deck interaction  using the proposed model and method. 
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Figure 4-1 Sutong bridge –Jiangsu Province ,China 
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100  100             300                                                             1088                                                        300           100   100                    

 
                                                                       2088 

                                                                                                                                                                         
Figure 4-2   Schematic diagram of span arrangements with only outermost cables in     
                    Sutong bridge (unit m) 
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Figure 4-3 A viscous damper attached to a bridge stay cable 

 

4.2  Effectiveness of damper by considering the cable-deck interaction 

 In the current analysis, the bridge is idealized as an equivalent three-span continuous 

beam with span arrangement of (300 + 1088 + 300) m. The equivalent beam represents the 

behaviour of the original bridge girder and all the stay cables except the studied one in the mid-

span. The stay cable investigated in the model is the longest stay cable at mid-span at Nantong 

end. Though on the bridge site, MR damper is used for the longest cable, no matured model has 

been developed to simulate the behavior of the MR damper. Since a linear viscous damper is 

included in the proposed cable-damper-deck model, and many studies have been performed 

considering a cable equipped with a linear viscous damper,  this case study also assumed a linear 

viscous damper is attached to the longest cable.  The passive damper connects to the stay cable 

close to the cable anchorage point on the bridge deck. The numerical model of the cable-damper-

deck system is shown schematically in Fig. 4-4. 
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Figure 4-4  Typical cable-damper-deck coupled model  

 The physical and dynamic properties of the cable and the damper are listed in Table 4-1. 

In the given data, 6 is the static tension of the cable in kN, 
# is the unit mass of the cable in 

kg/m length, L is the horizontal projected length of the cable, Ô, is the natural frequency of the 

cable, ( is the horizontal distance from cable–damper contact point to the pylon, (′ is the from 

cable-deck anchorage point to the cable-damper contact point, +, is the coefficient of damper, S 

is the angle of inclination of the cable and ÔP is the fundamental  frequency of the bridge. 

 

Table 4-1 The main parameters of the longest cable and damper 

6 kN 
# (kg/m) L(m) Ô,(Hz) ( (m) (′(m) +,(kNs/m) S(deg) ÔP(Hz) 

6708 100.8 532.925 0.224 526.139 6.785 325 22.46 0.195 



65 
 

65 
 

 

Detailed analysis is shown below. 

1.  ABAQUS model is created using the following data (please refer to Fig. B-1 in       

 Appendix B) 

    3 = 532.975
 

    3# = 300
 

    3� = 1088
 

    3% = 300
 

    ℎ = 3:(l(22.46) 

    6 = 6708000 Õ 

    ·P = 7850 ¦�/
% 

�P = 2.0x10##Õ/
� 

�D = 7.0x10#,Õ/
� 

�G = 0.065
 

�l�:�(_ v:Óhvv �Ô �(*_h = 5.053x10� Õ 
�⁄  

·G = 2400 ¦� 
%⁄  

 where  �P is the modulus of elasticity of steel, �Gis the modulus of elasticity of 

 material of the equivalent beam,  �D is the radius of the stay cable,  ·P is the  density 

of steel and ·D is the density of the equivalent beam material.  

2.  Select a rectangular hollow section for the equivalent beam. Use width = 32
 ,  height 

 ` = 5
  and thickness : = 0.18
   as the initial values. 

3. Adjust the ·G value so that static deflection at the cable-deck anchorage point is  zero 

 (condition given in Appendix A). 

4.  Run the ABAQUS program to get the 1st vertical bending frequency ÔP of the  cable-

deck  system.  

5. If the frequency ÔP does not equal to the 1st vertical bending frequency of the 

 original bridge (0.195 Hz), change the  height of the beam section used in Step 2  above 

and repeat Steps 3 & 4 until  ÔP converges to 0.195Hz. 
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6.  Calculate unit mass 
� of the equivalent beam using  

  
� J ·D~*` − (* − 2:;8` − 2:;�, where b, d and t are obtained in Step 5. 

7.  The final �� and 
� values thus obtained are used  in Eq. (3-94). This equation is 

 solved using Matlab to obtain damping ratio of the  cable as described below. The 

 corresponding Matlab source code is given in Appendix E.  

 Results of the above calculation in the current example: 

  �� J 3.45 x10##N. m�  and 
� = 264.58 ¦� 
⁄  

Table 4-2 Input parameters in matrix G 

(′ 6.785 m 3 532.925 m 

S 0.392 rad. 3# 300 m 


# 100.8 kg/m 3% 300 m 


� 264.58 kg/m 3& 555.075 m 

6 6708000 N +, 325000 N·s/m 

�� 3.45x1011 N·m2   

 

  All the elements in matrix [G] can be obtained using the input parameters listed in Table 

4-2. These elements are then converted to linear terms of U using Taylor’s expansion as 

described in Section 3.4.3, with the base value of frequency  U, = 2mÔ, = 1.407 Ó(`/vh�. The 

determinant of the final matrix [>] is an 11th order polynomial of ω. The following roots can be 

obtained with the formulation of U in linear terms. 
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1.524239221+0.1132960e-2i 

 1.459476458+0.3771170e-2i 

0 .561176513+0.25974130e-1i   

 9.693705852+3.306724103i      

0.832321640+1.169200114i 

0.14029283e-1+2.717521802i 

-20660.071092437+2303.751704748i 

 -27.811067728+1.953496478i 

 -5.657006310-0.28546957e-1i 

 -42.560825603-50.072125598i 

  0.524634081-0.109495838i 
   

 Root selection was done based on the expression of the complex eigen-frequency at 

U = X1 − ®�U, + �®U, where both real and imaginary parts of the correct root should be 

positive. Out of these selected roots, the one with the value closest to U, = 1.407Ó(`/vh� is  

1.459476458 + 0.3771170e − 2�. The circular frequency corresponding to this root is U =
√1.45947� + 0.003771� = 1.459 rad/s and the damping ratio is  ® = ,.,,%��##.&'� = 0.00258. 

 

4.3 Comparison with other models 

4.3.1  Fixed-fixed cable model 

 Theoretical derivation given in Appendix C can be used to obtain the damping ratio of 

the cable fixed at both ends. The Matlab source code along with the cable and the  damper input 

data for the above example given in Appendix F yields: U = 1.408 + 0.0072� and hence 

damping ratio ° = 0.0051. 

 

4.3.2  Cantilever beam model by Liang et al (2008) 

 The model proposed by Liang et al (2008) to investigate the effect of cable-deck 

interaction on the damper performance is adopted here to compare the results from the current 

model. In Liang’s model, the bridge girder is idealized as a cantilever beam supported at the 
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pylon.  A schematic diagram of the model is shown in Fig. 4-5. The damping ratio obtained 

using this model yields a cable damping ratio of  ® = 0.00153 when the damper is installed. 

 

                                                             526.139m                      6.785m 

 

                               H                                   7 

                                                       @ 

                                             9                                                                         A 

                          

                                                         524.980m                        7.944m  

                                                                              532.925m 

                                                                             

                    Figure 4-5 Simplified cantilever beam model used by Liang et al (2008) 

 Besides, the fixed-fixed cable scenario can be considered as a special case when Eq.(3-

94) is applied. It was assumed that the equivalent continuous beam is very rigid by substituting 

an EI value two orders higher than the derived value (�� = 3.45 x10##N. m� ) into Eq.(3-94) 

while keeping the rest of the input data unchanged. This would allow to simulate a no deck 

vibration scenario. This yields  U = 1.403 Ó(` vh�⁄  and a damping ratio  ° = 0.0051 . 

 Results of the damping ratio of the longest cable on Sutong bridge after attaching to a 

damper and predicted by using different models and approaches are summarized in Table 4-3. 

The analysis of cable fixed-fixed support condition using the theoretical approach and  the 

proposed model with rigid bridge girder yields the same equivalent cable damping ratio. This 

verifies the validity of the proposed equivalent 3-span continuous beam model. Both the 
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cantilever beam model used by Liang et al (2008) and the proposed 3-span continuous beam 

model which considers the cable-deck interaction in the analysis yield a damping ratio 

considerably less than that of the fixed-fixed cable case. Hence, the available design curve and 

formulae for selecting optimum damper, which are based on the assumption that the cable is 

fixed at both ends might be too optimistic. 

Table 4-3 Summary of results 

Model Root of the characteristic equation, 

ω 

Damping ratio    ® 

Fixed-fixed cable 

(Theoretical derivation) 

 

1.408 + 0.0072� 
 

0.0051 

Fixed-fixed cable (Proposed 

equivalent  3-span cantilever beam 

model) 

 

1.403 + 0.00712� 
 

0.0051 

Cantilever beam model 

Liang et al(2008) 

 

 

 

0.00153 

Proposed equivalent 3-span 

cantilever beam  model. (consider 

deck vibration) 

 

1.459 + 0.00377� 
 

0.00258 

 

  The above set of results suggests that in the case of a flexible long-span cable-stayed 

bridge, the consideration of cable-deck interaction in assessing the effectiveness of an external 

damper in cable vibration control is necessary. For the Sutong bridge studied here, the locations 

of the cable anchorage point and the damper support on the deck are  almost 8 m apart. 

Displacements and velocities at these two locations are highly dependent on the deformation 

shape of the bridge girder. In the case of a linear viscous damper, the actual damping force is 
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proportional to the relative velocity between the cable-damper attaching point and the deck-

damper anchorage point. Hence, the bridge girder motion would affect the amount of damping 

offered by the damper to the stay cable. 

 In the cantilever beam model by Liang et al (2008), the bridge girder is simplified as a 

cantilever beam with one end fixed at the pylon. Compared to a typical double tower bridge, of 

which the main portion consists of two side spans and one main span, the cantilever assumption 

would alter the response characteristics of the actual bridge girder due to inconsistent boundary 

conditions. Therefore, the motion at the cable-deck and the damper-deck connections and their 

relations cannot be correctly represented. The impact of deck vibration on the efficiency of the 

damper yielded from such a model could be misleading. 

 The three-span continuous beam model proposed in the current study has the advantage 

that the boundary conditions are kept consistent with the actual bridge girder. The girder 

deformation and the mode shapes can thus be well simulated. It is worth mentioning that the 

same model and approach proposed in this study can be applied to obtain damping characteristics 

for higher modes of cable vibrations.  In the analysis of higher modes, the corresponding modal 

frequency of the cable should be used as the base value in the Taylor’s expression.   

4.4  Other Case studies 

The objective of considering other case studies is to investigate the effect of cable-deck 

interaction on the damper efficiency and its impact on cable-stayed bridges with different span 

lengths. Four medium to long-span cable-stayed bridges with main span ranging from 432m to 

1018m were selected in this set of analyses. All the bridge data and input parameters relevant to 

the analyses are given in Table 4-4 and Table 4-5, respectively, and described in Fig.4-4. 
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4.4.1 Description of bridges used in the case studies 

4.4.1.1 Stonecutters Bridge – Hong Kong, China 

The Stonecutters bridge is a long-span cable stayed bridge carrying dual 3 lane highway 

over Rambler Channel at the entrance to the Kwai Chung container port in Hong Kong. The 

bridge main span has a twin deck cross-section with a length of 1018m. The twin decks are 

connected at intervals by transverse steel box girders. The two single 

 

Figure 4-6 View of Stonecutters bridge at the entrance to the Kwai Chung container port  

 

leg pylons are 290m tall with a lower section in concrete and the upper section formed in 

composite steel/concrete. The bridge also includes 4-span twin deck concrete side spans 

of total length of 289 m on each side. These 4-spans are treated in dynamic analysis of the 

present study as a single span. Hence the span configuration of the 3-span equivalent continuous 

beam is 289 m + 1018 m + 289 m. 

The circular tapered mono-column towers stand on the bridge centre line between the two 

longitudinal box girders of the twin girder deck. Stay cables are in two planes arranged in a 
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modified fan layout and attached with the outside edges of the deck girders. The deck girders are 

connected with cross girders spaced at 18 m in the main span coinciding with the stay anchorage 

spacing and 20 m in the back spans where the stays anchorages are spaced at 10 m. The length of 

the longest stay cable is 540 m and the weight is 75tons. The first vertical bending frequency of 

the bridge is 0.244 Hz.  

 

4.4.1.2 Tatara Bridge – Japan 

 

Figure 4-7 Tatara Bridge 

 The Tatara bridge is a cable-stayed bridge measuring 1480m in total length which links 

Ikuchijima Island and Hiroshima Prefecture in Japan. The main girder section consists of 3 

spans, 270 m, 890 m and 320 m. As either side span is shorter than the center span, PC girders 

are installed at each end of both the side span sections as counterweight girders to resist negative 

reaction. This cable-stayed bridge thus uses a steel and PC connection girder.  The main tower is 

220m high and designed as an inverted Y shape. Cables are installed at 21 levels in two planes 

with multi-fan pattern. The length of the longest cable is 460 m and it has a mass density of 122 

kg/m. 
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 The width of the bridge is 30.6 m including the sidewalk. The girder height is 2.7 

m and it uses flat box girders attached with fairings to ensure wind stability. The first vertical 

bending frequency of the bridge is 0.199 Hz.  

 

4.4.1.3 Third Nanjing Yangtze Bridge - China 

 

Figure 4-8 Third Nanjing Yangtze Bridge 

The third Nanjing Yangtze bridge is a 5-span cable-stayed bridge with two towers. The 

bridge is situated on the road between Shanghai and Chengdu in Jiangsu province in China. The 

span arrangement is 63 m + 257 m + 648 m + 257 m + 63 m. In the present analysis, the bridge is 

treated as a 3-span continuous beam by considering the span arrangement as 257 m + 648 m + 

257 m. 

The streamlined steel box girder deck has an overall width of 37.2 m and a structural 

height of 3.2 m. The deck facilitates 3 lane dual traffic and is designed for a vehicular speed of 

100 km/h. The two steel towers with a height of 215 m resemble a curved narrow “A” shape 
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when seen along the bridge. The towers are made up of concrete from the foundation up to the 

deck level and the portion above the deck level is of steel. The stay cables are arranged in two 

inclined planes in a modified- fan layout with the longest cable being 354.5 m in length and has a 

mass density of 72.1 kg/m. The first vertical bending frequency of the bridge is 0.243 Hz.  

4.4.1.4 Donghai Bridge - China 

 

Figure 4-9 Donghai Bridge 

   Donghai bridge is one of the longest cross-sea bridges in the world. It has a total length 

of 32.5 km and connects mainland Shanghai and the offshore Yangshan deepwater port in China. 

The cable-stayed section of the bridge has the longest span of 420 m, in order to allow for the 

passage of large ships. It has a navigation capacity of 5000 tons and a navigation height of 40 m. 

The bridge is a five–span continuous cable-stayed bridge with double pylons, single cable 

plane and auxiliary piers. The span arrangement is 73 m + 132 m + 420 m + 132 m + 73 m. In 

the present study it is treated as a three-span continuous beam by considering only the middle 3 

spans. The bridge is designed according to the two-way six-lane expressway standard and the 

deck is 33 m wide. 
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The pylon section above the deck has inverted Y shape while that below the deck is a box 

structure with uneven width. The 4.0m deep main girder has a steel-concrete composite of 

single-box-three-cell section. The top plate of the box girder is 33.0 m wide with two 4.5 m wide 

cantilevers. The standard cable spacing is 8m on the girders and 2.2 m on the pylons, totalling 

224 cables overall. The length of the longest stay cable is 227 m and its mass density is 85.3 

kg/m. The first vertical bending frequency of the bridge is 0.388 Hz.  
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Table 4-4 Summary of bridge data 

Bridge 
Sutong  

(Liang et al, 2008) 

Stonecutters 

(Vijrum et al 

2006) 

Tatara 

(Yabuno et 

al 2003) 

Nangjing 

(Liang et al, 

2008)  

Donghai 

(Liang et al, 

2008)  

L1(m) 300 289 270 255 132 

L2(m) 1088 1018 890 648 432 

L3(m) 300 289 320 255 132 

L(m) 532.925 496.330 422.680 315.297 203.876 

θ (rad) 0.392 0.405 0.405 0.475 0.455 

(«8
; 6.785 9.430 5.280 4.015 2.596 

*«(
; 7.944 11.160 6.260 5.077 3.217 

Cable tension T (kN) 6708 7000 6714 3785 5723 

Radius of cable Rc (m) 0.065 0.064 0.0702 0.054 0.06 

Natural frequency of 

cable fc(Hz) 
0.224 0.244 0.255 0.323 0.571 

Frequency of 1st global 

vertical mode of the 

bridge fs(Hz) 

 

0.195 

 

0.26 

 

0.199 

 

0.243 

 

0.388 

Damper capacity C 

(N·s/m) 
325000 332000 357717 206000 276000 
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Table 4-5 Summary of equivalent beam data 

Bridge Sutong Stonecutters Tatara Nanjing Donghai 

Cross-section of the 

equivalent beam 

 (hollow box section) width 

x depth x thickness 

32x6x0.18 32x11x0.3 32x8.2x0.2 32x12.4x0.25 34x4.34x0.2 

Modulus of elasticity of 

equivalent beam Eb (N/m2) 
3x109 1x109 1x109 1x108 1.1x109 

Bending stiffness of 

equivalent  beam EI (N·m2) 

 

3.45x1011 

 

6.06x1011 

 

1.5x1011 

 

6.61x1010 

 

6.64x1010 

Density of equivalent beam 

material ρc (kg/m3) 
17.65 11.8 20.95 10.95 41.7 

Mass density of equivalent 

beam m2   (kg/m) 

 

264.58 

 

300.192 

 

322.38 

 

240.35 

 

632.83 

 

 The bending stiffness EI of the equivalent beam and the mass density m2 of the 

equivalent beam obtained above are then used in Eq. (3-94) to determine the acceptable root of 

the characteristic equation and to find the damping ratio of the selected cable of each bridge as 

described in Section 3.4.3 Steps 2-4. For comparison, damping ratios are also calculated for the 

cable fixed-fixed condition for each bridge based on the theoretical derivation. The input source 

code of Matlab program for these calculations is provided in Appendix E. The results are 

summarized in Table 4-6 below. 
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Table 4-6 Summary of case study results 

Bridge 

Main 

span 

length 

(m) 

Proposed model 

(consider deck 

vibration) 

Analytical model of 

fixed-fixed cable 

(Appendix C) 

% 

Difference* 

 ω ξ ω ξ 

Sutong 1088 1.459+0.0038i 0.0026 1.408+0.0072i 0.0051 49 

Stonecutters 1018 1.604+0.0048i 0.0030 1.537+0.0077i 0.0050 40 

Tatara 890 1.683+0.0059i 0.0035 1.606+0.0080i 0.0050 30 

Nangjing 648 2.081+0.0101i 0.0049 2.035+0.0104i 0.0051 4 

Donghai 432 3.621+0.0186i 0.0051 3.594+0.0185i 0.0051 0 

*Used cable fixed-fixed condition as reference 

 

 

Figure 4-10 Equivalent 1st modal damping ratio of cable vs main span length 
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 The five cable-stayed bridges, including Sutong bridge and the other four in the case 

studies, with main span length varying from 432m to 1088m, covered the range of medium- to 

long-span cable-stayed bridges quite well.  Though different proportions of adjacent span lengths 

affect the mode shape and frequency of vibration, and  the location of the damper on the bridge 

girder also influences the relative speed of the damper with respect to the cable and hence the 

damping force, the results clearly indicate that for long-span bridges, deck vibration will have a 

considerable impact on the efficiency of the damper to suppress cable vibration. As can be 

observed from  Fig.4-10, compared to the conventional assumption of cable fixed at both ends, if 

the vibration of the bridge deck and its interaction with cable and damper supporting points are 

included in the formulation, for medium span length cable-stayed bridges as the Nanjing Bridge 

(main span 648m) and the Donghai Bridge (main span 420m), the effectiveness of the damper, in 

terms of the equivalent 1st modal damping ratio of the cable, has been reduced by roughly 5%. 

However, in the case of the Tatara Bridge, the Stonecutters Bridge and the Sutong Bridge, which 

has main span length of 890m, 1018m and 1088m, respectively, the impact is much more 

significant. For the Sutong Bridge, which has the longest main span of 1088m, the equivalent 1st 

modal cable damping ratio is found to be reduced by almost a half. The pattern of the current 

results, as shown in Fig.4-10, clearly indicates that as the main span length of the cable-stayed 

bridge increases, the actual performance of the damper on suppressing cable vibration will 

deviate more from the cable fixed-fixed case. Therefore, based on the current study, to have a 

more accurate estimation on the efficiency of a damper, for cable-stayed bridges with main span 

length exceeding 700m, the impact of deck vibration should be considered. 
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CHAPTER V  CONCLUSIONS AND RECOMMENDATIONS 

 

5.1  Concluding Remarks 

An analytical model was proposed to determine the damping property of a bridge stay 

cable when attached with a damper, by considering the effect of  bridge deck vibration on the 

cable and the damper. The proposed model comprised a bridge stay cable, an equivalent 3-span 

continuous beam representing the original bridge girder and all supporting cables except the one 

considered in the analysis, and a damper. The equation of motion of the cable and the equivalent 

3-span continuous beam have been derived separately. They are coupled to yield the equation of 

motion of the cable-deck-damper system by applying appropriate boundary conditions at the 

supports and compatibility conditions at cable-deck, damper-deck and cable-damper connection 

points. The equivalent 1st modal damping ratio of the cable was determined by solving the 

system of equations. A Matlab program was developed to perform associated matrix calculation 

and iterations. The associated finite element model for the dynamic analysis was developed using 

ABAQUS 6.9. 

 Case studies were carried out to investigate the effect of cable-deck interaction on the 

damper efficiency for cable-stayed bridges with different span lengths. Five cable-stayed bridges 

with a main span ranging from 423m to 1088m  were selected for this purpose. The validity of 

the  model was verified by assuming a very rigid equivalent beam and compared with the results 

obtained from a cable fixed-fixed case. The main conclusions obtained from the current research 

are  

• Developed a 3-span continuous beam model to study the impact of bridge- deck 

vibration on the efficiency of an external damper on suppressing bridge stay cable 
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vibration. The validity of the model was verified by theoretical approach with 

cable fixed-fixed support condition.  

• Applied the proposed model to a long-span cable stayed bridge-Sutong Bridge 

(main span 1088m). Results show that by considering the vibration of the bridge-

deck and its interaction with cable and damper, the efficiency of the damper has 

been reduced almost by 50%. 

• Conducted case studies for five medium to long-span cable-stayed bridges. It was 

found that if the main span length of the bridge exceeds 700m, it is necessary to 

include deck vibration effects in damper design. 

  Compared to the existing models and methods, the advantages of the proposed model in 

evaluating damping ratio are 

• The proposed model allows the cable – deck interaction to be incorporated into the 

analysis. 

• The model uses the real configuration of bridge structure in both static and dynamic 

analyses leading to more accurate results. 

• Higher modes of cable vibration can be analysed using the same model. 

• The model results are exact, no interpolation involved in the calculation. 

• The model can be used to optimize damper design for cables on long-span cable-stayed 

bridges.  
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5.2  Recommendations for Future Research 

  In the proposed model, the cable is assumed as a taut string of which the bending 

stiffness is ignored. But for more accurate results, the effect of sag and bending stiffness of the 

cable needs to be considered in the analysis. When dynamically excited,  in addition to the cable 

in-plane vibration, the bridge girder can be subjected to the out- of-plane movements such as 

shear and torsional effects. Such effects may influence the damper efficiency as well. Therefore 

in future studies, these effects should also be considered in evaluating damper efficiency. 
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APPENDIX A 

RELATIONSHIP BETWEEN m 2  AND EI IN THE EQUIVALENT BEAM BASED ON 

THE STATIC CONDITION 

 The static deflection of the equivalent beam at cable anchorage location is formulated 

based on two types of loads acting on the bridge girder, i.e. deflection due to the self weight of 

the equivalent beam and deflection due to cable tension at the anchorage point.  

 

a) Deflection due to self weight of the equivalent beam using the three-moment 

 theorem. 

 A  schematic of a continuous three-span beam with self weight of A� and bending 

stiffness �� is shown in Fig. A-1. Areas "#, "�, "% refers to the area of the bending moment 

diagram for given loading on each span under simply supported conditions. When using the 

three-moment theorem, 9# is the distance to the centre of gravity of the bending moment diagram 

of span1 measured from support A and 9� is the distance to the centre of gravity of the bending 

moment diagram of span 2 measured from support C.  The lengths of spans AB, BC and CD are 

3#, 3� and 3% and the bending moments at B and C are ¶C# and ¶C�, respectively.  �B#, �C#, 

�D# and �<#refer to support reactions at A,B,C and D, respectively. Distances x and y are 

measured as shown. 
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                 9 
 H  
                                                                               x2 
  
       x1  ¶C#  ¶C#                ¶D#            ¶D# 
A                            B                             C                                         D 
     
�B#   "#                    �C#             "�                        �D#       "%                         �<#
  
                3#                                         3�                                              3% 
 
 
 
Figure A-1 Three- span continuous beam under self weight loading, including bending 
moment diagrams for each span in simply supported condition. 

Considering equilibrium of span ABC, the three moment theorem is applied; 

 

¶B# �^̧ +  2¶C# x�^̧ Å + Å�a̧y + ¶D# �a̧ = 6 xB^�^ Å  f^̧ + Ba�a Åfa̧y       (A-1) 

 

"# = �a#� 3#% ,      9# = ��̂              "� = �a#� 3�%  ,      9� = �a�               ¶B = ¶<    = 0 

 

Substituting into Eq. (A-1) gives 

 

2¶C#(3# Å + Å3�) + ¶D#3� = �a& (3#% Å + Å3�% )         (A-2) 

 

Similarly, considering span BCD 
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2¶D#83� Å + Å3%; + ¶C#3� J �a& (3�% Å + Å3%% ;         (A-3) 

 

Shear Forces are given by; 

 

�B# J �a� 3# −  �ê^�^                        (A-4) 

 

�<# = �a� 3%    −  �ë^�s                                  (A-5) 

 

 

�C# = �a��a (3# Å + Å3�)� − � ^(�^ Å�Å�a)�a − �ë^�a                      (A-6) 

 

Deflection H at a distance 9 from the left support of the mid-span is given by; 

 

H = �1a�&E¸ 9& + �ê^�E¸ 9% − �ê^�E¸ 9� + x �a�&E¸ Å 3�% + �ê^�E¸ 3� − Å�ê^�E¸ 3�� y 9                 (A-7) 

 

 

b)  Deflection due to cable tension at the anchorage point. 

 A general case of deflection at location E due to a load 4 acting on a 3-span continuous 

beam ABCD shown in Figure A-2 is considered first. Span lengths of AB,BC and CD are 3#, 3� 

and 3%. L is the distance to the load P measured from support B. ¶C� and ¶D� represent the 

bending moments at supports B and C while �B�, �C�, �D� and �<� are reactions at A,B,C and 
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D, respectively. Load  4 will be replaced by the vertical component of cable tension in upward 

direction afterwards. 

 
 
 3#   3�    3% 
 
  
                   
                  ¶C� 
 ¶C�           L 4      ¶D�        ¶D� 
A             B            E      C             D 
 
                                    "�                                                           
�B�                �C�                                         �D�                                       �<� 
 
Figure A-2 Three - span continuous beam subjected to a concentrated load, including the 
bending moment diagram  for simply supported case. 
 
Using moments and reactions  as shown in Fig. A-2  

 

¶B� J ¶<� J 0,  "# = "% = 0, "� J !�(�a��;� , 9# J (�a��;%  ,  9� J (��a��;%  

 

Substituting  the values above into Eq. (A-1) for span ABC, we obtain; 

 

2¶C�(3# Å + Å3�; + ¶D�L� J 43(3� − 3)(23�  − 3)/3�                  (A-8) 

 

Substituting the values above into Eq. (A-1) for span BCD, we obtain; 

 

¶C�3� + ¶D�(3� + 3%) = 43(3� − 3)(3�  + 3)/3�                                        (A-9) 

 

Shear forces are given by; 



87 
 

87 
 

 

�B� J −�êa�^                       (A-10) 

 

�D� J −�ëa�s                       (A-11) 

 

�C� J !(�a��;�a − � a(�^��a;�a − �ëa�a                                 (A-12) 

 

Deflection y at a distance x from the left support of the mid-span is given by; 

 

H J �êa�E¸ 9% − �êa�E¸ 9� − P #È�$%s�&' + (�êa�E¸ 3� − Å�êa�E¸ 3�� + P ($a�$;s
�$a&' y 9                          (A-13) 

 

 Since the deflection at the cable anchorage location is adjusted to zero at the time of 

construction, the upward deflection of the bridge deck due to cable tension at the anchorage point 

should be equal to the downward deflection due to self weight of the bridge at that location. 

Hence, substituting  xJ 3 into Eq. (A-7) gives 

 

H# J ��a�&E¸ 3& + �ê^�E¸ 3% − �ê^�E¸ 3� + x �a�&E¸ Å 3�% + �ê^�E¸ 3� − Å�ê^�E¸ 3�� y 3               (A-14) 

 

Substituting  4 J −6v�lS and 9 J 3 into Eq. (A-13) gives 

 

H� J �êa�E¸ 3% − �êa�E¸ 3� + (�êa�E¸ 3� − Å�êa�E¸ 3�� + P ($a�$;s
�$a&' y 3                (A-15) 
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The condition for zero deflection is; 

 

H# + H� J 0                               (A-16) 
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APPENDIX B  

RELATIONSHIP OF  (� AND  )* IN THE EQUIVALENT BEAM BASED ON THE 

FIRST VERTICAL BENDING FREQUENCY OF THE BRIDGE 

 
A two-dimensional  finite element model of a cable-deck system was developed using the 

general purpose finite element software ABAQUS. Both the cable and the deck  were 

represented by B21 two-node linear in-plane beam elements. The cable tension under static 

loading was represented by an initial stress in the cable.  The finite element model is 

schematically  shown in Fig. B-1.                            

 

                                                    3 
 
                                   E 
 
                   
                    h 
 
        A                          B                                 F                               C                               D 
                                                                                                
 
                   3#                                            3�                                                 3% 
 
 

             Figure B-1 schematic diagram of the numerical model of cable-deck system 

 

In Fig. B-1, ABCD represents the equivalent bridge girder, support A has restricted 

movements in both horizontal and vertical directions whereas supports B,C and D only have 

restricted vertical movements. EF represents the cable under investigation. Support E is a fixed 

support and support F is free to move.  Young’s modulus for steel and the given section of the 
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cable was used as the cable properties. For the bridge girder, a hollow rectangular section was 

used with element type B21 and Young’s modulus for concrete was used and the density of the 

material was varied to satisfy the deflection criterion while satisfying the frequency requirement. 

The analysis was performed in two steps. step1 as the static general case and step2 as the linear 

perturbation, frequency.  The Lanczos eigen solver was selected as the method and requested for 

20 eigen values.  

 To get an idea about the number of elements required for accurate solution of vibration  

frequency , ABAQUS simulation was conducted for the beam ABCD by using different mesh 

sizes. The span lengths used were 3# = 300
, 3� J 1088
 and 3% J 300
. It was found that 

an element length of 10m or less gives an accurate solution up to the third decimal place of the 

frequency value. Hence an element size of 10m was considered optimum to mesh the beam. 

Since the cable length was 577
 and it was also meshed using the B21 beam element, the same 

optimum mesh size is applicable for the cable.    

Since the mass density of the bridge girder is unknown at the beginning, a bridge girder 

section has to be assumed initially and the frequency value of the cable-deck system must be 

verified. This will be a trial and error procedure until the frequency value is obtained and the 

static displacement at the cable anchorage point is zero.  
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APPENDIX C 

MODEL DAMPING RATIO OF AN INCLINED TAUT STRING WITH  FIXED 

SUPPORTS ATTACHED TO A LINEAR VISCOUS DAMPER 

 

 Fig. C-1 shows a cable-damper system comprised of an inclined cable connected to fixed 

supports at A and B and a damper, connected to the cable at C and connected to a fixed support 

at D.  

 

                                                                                        9 

                                            (′                                (                       B 

                          @                                   C    

                      A                     S                    D                                                                                                

 9′ 
 Figure C-1 A cable-damper system 

 

The following equation can be obtained considering the in-plane vertical motion of the inclined 

cable AB of the cable-damper system. 

 

?
\#�xÂÃÂÄya

pa0pfa = · pa0pja                                                                                                       (C-1) 
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where H is the horizontal component of the cable tension T, y(x) is the static profile of the cable, 

ρ is the mass density of the cable, v(x,t) is the vertical in-plane dynamic displacement of the 

cable with respect to time t and the other dimensional parameters are as shown in the Fig.C-1.  

 

2 = 6��vS                                                                                                                    (C-2) 

 

If the sag in the cable is neglected; 

  

drdf = :(lS                                                                                                                     (C-3) 

 

Substituting Eq.(C-3) into Eq.(C-1) and rewriting, considering the damper force  Fv at 9 = ( ; 

we obtain: 

 

6��v�S pa0pfa − · pa0pja J −.0R(9 − (;                                                                             (C-4) 

 

Where δ is the Dirac delta function. 

Damping force at 9 J ( can be expressed as; 

 

6��vS |¨d0df¨¤© − ¨d0df¨¤ª} J −.0                                                                                   (C-5) 

 

Also 
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−.0 = + d08¤,j;df                                                                                                               (C-6) 

 

where C is the damper capacity. 

Assuming 

 

 @89, :; =  @#(9)hiLj    0 ≤ 9 < (                                                                                 (C-7) 

 

@(9, :) =  @�(9′)hiLj   0 ≤ 9′ < (′                                                                               (C-8) 

 

Also assuming 

 

@#(9) = "# sin([9) + )#cos ([9)                                                                               (C-9) 

 

@�(9) = "� sin([9′) + )�cos ([9′)                                                                           (C-10) 

 

The boundary conditions are: 

 

@(0, :) = 0 →  @#(0) = 0 → @#(9) = "# sin([9)                                                     (C-11) 

 

@(3, :) = 0 →  @�(0) = 0 → @�(9′) = "� sin([9′)                                                   (C-12) 

 

where     [ = LGOPQ \]N                                                                                                                                                               
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Substituting Eqs.(C-11),(C-12) and (C-6) into Eq.(C-5) 

 

"#8cos([() + �I sin([()) + "� cos([(′) = 0                                                         (C-13) 

 

where   I = DLMNGOPQ 

The continuity condition at C ; 

 

@#(()hiLj = @�((′)hiLj →  "# sin([() = "� sin([(«)                                               (C-14)  

 

Substituting Eq.(14) into Eq.(13) ; 

 

"#(cos([() + �I sin([()) + "#sin ([() cot([(′) = 0                                             (C-15)  

 

Since "# ≠ 0;  Eq.(C-15) yields the transcendental equation for the cable motion as  

                                                                                           

(cos([() + �I sin([()) + sin ([() cot([(′) = 0                                                      (C-16) 

 

The solution of Eq.(C-16), γ, yields the complex frequency ω, from which the damping ratio ξ 

can be determined. 
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APPENDIX D  MATLAB PROGRAM FOR MATRIX CALCULATIONS AND 
 ITERATIONS 

 
D-1 Matlab program to calculate eigen frequencies of cable-damper-deck system 
 
%Model analysis of Sutong Bridge  
%This programm calculates the eigen frequencies of the model  
clear,clc  
theta=0.392; %Angle of inclination of the cable  
x=0.0127; %This is the damper location parameter;x= Ld/L  
Lc=577; %Length of the cable  
L=Lc*cos(theta); %Horizontal distance from the cabl e anchorage point to the 
pylon  
Ld=x*Lc; %Distance along the cable to the damper co nnection  
a1= Ld*cos(theta);  
b1=Ld/cos(theta);  
a=L-a1;b=L-b1;  
m1= 100.8; % Mass density of the cable kg/m  
m2= 264.971; % Mass density of the equivalent bridg e girder kg/m  
C0= 325000; % Damping capacity of the damper N.s/m  
L1= 300; %Length of span 1  
L2=1088; %Length of main span  
L3= 300; %Length of span 3  
L4= L2-L;  
T=6708000; %Cable tension under static condition N  
EI=3.11E11; %Bending stiffness of the equivalent br idge girder N.m^2  
syms w  
ga=w/cos(theta)*(m1/T)^0.5; %Parameter γ 
be=C0*w/ga/T/cos(theta); %Parameter β 
la=(m2/EI)^0.25*w^0.5; %Parameter λ 
ne=C0*w/la^3/EI; %Parameter η 
  
D=[cos(la*L1)-cosh(la*L1)*sin(la*L1)/sinh(la*L1) -1   0  0   0   0   -1  0   0   
0   0   0;  
sin(la*L1)*(cos(la*b)-cosh(la*b)) sin(la*b) 0   0   0   -1  sinh(la*b)  0   0   
-1  0   0;  
-sin(la*L1)*(sin(la*b)+sinh(la*b))  cos(la*b)   -1  0   0   0   cosh(la*b)  -
1  0   0   0   0;  
-sin(la*L1)*(cos(la*b)+cosh(la*b))  -sin(la*b)  0   0   0   1   sinh(la*b)  0   
0   -1  0   0;  
sin(la*L1)*(sinh(la*b)-sin(la*b)+i*ne*(cos(la*b)-co sh(la*b)))   
cos(la*b)+i*ne*sin(la*b) -1 0 0 0 i*ne*sinh(la*b)-c osh(la*b) 1  0 0 -
i*ne*sin(ga*a) 0;  
0   0   sin(la*b1)  -sin(la*L4) -sin(la*L3)*(cos(la *L4)-cosh(la*L4))    
cos(la*b1)  0   sinh(la*b1) -sinh(la*L4) cosh(la*b1 ) 0 0;  
0   0   cos(la*b1)  cos(la*L4)  -sin(la*L3)*(sin(la *L4)+sinh(la*L4))    -
sin(la*b1) 0   cosh(la*b1) cosh(la*L4) sinh(la*b1) 0 0;  
0   0   -sin(la*b1) sin(la*L4)  sin(la*L3)*(cos(la* L4)+cosh(la*L4)) -
cos(la*b1) 0   sinh(la*b1) -sinh(la*L4) cosh(la*b1)  0 0;  
0   0   -cos(la*b1) -cos(la*L4) sin(la*L3)*(sin(la* L4)-sinh(la*L4)) 
sin(la*b1)  0   cosh(la*b1) cosh(la*L4) sinh(la*b1)  0   
ga*T*cos(theta)/la^3/EI;  
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0   0   0   1   -cos(la*L3)+sin(la*L3)*cosh(la*L3)/ sinh(la*L3)  0   0   0   1   
0   0   0;  
0   0   sin(la*b1)  0   0   cos(la*b1)  0   sinh(la *b1) 0   cosh(la*b1) -
sin(ga*a)/cos(ga*a1)   tan(ga*a1);  
0   0   0   0   0   i*be    0   0   0   i*be    -co s(ga*a)-
i*be*sin(ga*a)+tan(ga*a1)*sin(ga*a)  -cos(ga*a1)-ta n(ga*a1)*sin(ga*a1)];  
  
k1=1;  
for k1=1:12  
    k2=1;  
    for k2=1:12  
        F=D(k1,k2);  
        F1=diff(F,'w');  
        E(k1,k2)=subs(F,[w],[1.405])+subs(F1,[w],[1 .405])*(w-1.405);  
        end  
end  
S=det(E)  
S1=solve(S);S2=S1(:,1) 
 
 
 

D-2 Model analysis for fixed inclined cable-damper system 
 
%This programm calculates the eigen frequencies of the model  
clear,clc  
theta=0.392; %Angle of inclination of the cable  
x=0.0127; %This is the damper location parameter;x= Ld/L  
Lc=577; %Length of the cable  
L=Lc*cos(theta); %Horizontal distance from the cabl e anchorage point to the  
    pylon  
Ld=x*Lc; %Distance along the cable to the damper co nnection  
a1= Ld*cos(theta);  
b1=Ld/cos(theta);  
a=L-a1;b=L-b1;  
m1= 100.8; % Mass density of the cable kg/m  
m2= 264.971; % Mass density of the equivalent bridg e girder kg/m (not  
   used)  
C0= 325000; % Damping capacity of the damper N.s/m  
L1= 300; %Length of span 1  
L2=1088; %Length of main span  
L3= 300; %Length of span 3  
L4= L2-L;  
T=6708000; %Cable tension under static condition N  
EI=3.11E11; %Bending stiffness of the equivalent br idge girder N.m^2(not  
  used)  
syms w  
ga=w/cos(theta)*(m1/T)^0.5;%Parameter γ 
be=C0*w/ga/T/cos(theta);%Parameter β 
la=(m2/EI)^0.25*w^0.5;%Parameter λ 
ne=C0*w/la^3/EI;%Parameter η 
 
D=[cos(ga*a) sin(ga*a) cot(ga*a1)];  
for k=1:3  
    F=D(k);  
    F1=diff(F);  
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    E(k)=subs(F,[w],[1.369])+subs(F1,[w],[1.369])*( w-1.369);  
end  
EQ=E(1)+be*i*E(2)+E(2)*E(3);  
A=solve(EQ) 
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APPENDIX E  INPUT SOURCE CODE FOR ABAQUS SIMULATION  

**FREE VIBRATION SIMULATION OF CABLE-DECK SYSTEM OF SUTONG 

 BRIDGE 

** Job name: Job-1 Model name: SUTONG 
** Generated by: Abaqus/CAE 6.9-1 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
**DEFINE NODES AT SUPPORTS AND  LOCATIONS OF CHANGE IN PROPERTIES 
*Node 
      1,0,0 
      21,300,0 
      56,824.9795,0 
      57,832.924,0 
      94,1388,0 
      114,1688,0 
      115,300,220.308 
      154,826.139,2.8043 
**GENERATE NODES IN BETWEEN KNOWN NODES 
*NGEN,NSET=B 
 1,21,1 
 21,56,1 
 57,94,1 
 94,114,1 
*NGEN,NSET=C 
 115,154,1 
**DEFINE ELEMENTS  
*Element, type=B21 
  1,   1,   2 
  21,  21,  22 
  56,  56,  57 
  57,  57,  58 
  94,  94,  95 
  115, 115, 116 
  154, 154,  57 
**GENERATE ELEMENTS  USING ALREADY DEFINED ELEMENTS 
*ELGEN,ELSET=BEAM1 
 1,20,1,1 
 21,35,1,1 
 57,37,1,1 
 94,20,1,1 
**NAME ELEMENT SETS 
*ELSET, ELSET=BEAM 
 BEAM1 
 56, 
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*ELGEN,ELSET=CABLE1 
 115,39,1,1 
*ELSET,ELSET=CABLE 
 CABLE1, 
 154, 
**NAME NODE SETS 
*Nset, nset=N154 
 154, 
*Nset, nset=N56  
 56, 
** DEFINE CABLE SECTION 
*Beam Section, elset=CABLE, material=STEEL, temperature=GRADIENTS, section=CIRC 
0.065 
0.,0.,-1. 
** DEFINE BEAM SECTION 
*Beam Section, elset=BEAM, material=CONCRETE, temperature=GRADIENTS, section=BOX 
36., 5.55, 0.18, 0.18, 0.18, 0.18 
0.,0.,-1. 
**DEFINE LOCATION OF DAMPER 
*Element, type=DashpotA, elset=dashpot1 
251, 154, 56 
**DEFINE DAMPER CAPACITY 
*Dashpot, elset=dashpot1 
 
325000. 
**  DEFINE NODE SETS 
*Nset, nset=N1 
 1, 
*Nset, nset=NSS 
 21,   
 94, 
114, 
*Nset, nset=N57 
 57, 
*Nset, nset=N115 
 115, 
**End Assembly 
**DEFINE INITIAL STRESS ;REF.INITIAL TENSION 
*INITIAL CONDITIONS,TYPE=STRESS 
 CABLE,5.05E8,0,0. 
**  
** MATERIALS 
** DEFINE MATERIAL PROPERTIES 
*Material, name=CONCRETE 
*Density 
15.2, 
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*Elastic 
 3e+9, 0.15 
*Material, name=STEEL 
*Density 
7850., 
*Elastic 
 2e+11, 0.3 
** ------------------------------------------------ ---------------- 
**STEP1 STATIC 
*Step, name=Step-1, nlgeom=YES 
*Static 
1., 6., 1e-05, 6. 
**DEFINE BOUNDARY CONDITIONS 
** BOUNDARY CONDITIONS 
**  
*Boundary 
N1, 1, 1 
*Boundary 
N1, 2, 2 
*Boundary 
NSS, 2, 2 
*Boundary 
N115, 1, 1 
*Boundary 
N115, 2, 2 
**  
** OUTPUT REQUESTS 
** 
**Loads; Type:Gravity 
**Dload 
**BEAM, GRAV, 9.81, 0., -1. 
**CABLE, GRAV, 9.81, 0., -1. 
** 
** 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
*Output, field, variable=PRESELECT 
*Output, history, variable=PRESELECT 
*End Step 
** ------------------------------------------------ ---------------- 
**DEFINE STEP 2 LINEAR PERTURBATION  
** STEP: Step-2 
**  
*Step, name=Step-2, perturbation 
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frequency 
*Frequency, eigensolver=Lanczos, acoustic coupling=on, normalization=displacement 
20, , , , ,  
**  
*Restart, write, frequency=0 
**  
*Output, field, variable=PRESELECT 
*End Step 
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