University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2011

Impact of Cable-deck Interaction on the Efficiency of External
Damper in Controlling Stay Cable Vibration on Cable-Stayed
Bridges

Krishanth Koralalage
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Koralalage, Krishanth, "Impact of Cable-deck Interaction on the Efficiency of External Damper in
Controlling Stay Cable Vibration on Cable-Stayed Bridges" (2011). Electronic Theses and Dissertations.
81.

https://scholar.uwindsor.ca/etd/81

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/81?utm_source=scholar.uwindsor.ca%2Fetd%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Impact of Cable-deck Interaction on the Efficiencyof External
Damper in Controlling Stay Cable Vibration on Cable Stayed
Bridges

By

Krishanth Koralalage

A Thesis
Submitted to the Faculty of Graduate Studies ThndDiyil and Environmental
Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2011

© 2011 Krishanth Koralalage



Impact of Cable-deck Interaction on the Efficiemé\External Damper in

Controlling Stay Cable Vibration on Cable-StayedBes

By

Krishanth Koralalage

APPROVED BY:

Dr. D. Green, Outside Department Reader
Department of Mechanical, Automotive and MateriabBeering

Dr. F. Ghrib, Department Reader
Department of Civil and Environmental Engineering

Dr. S. Cheng, Advisor
Department of Civil and Environmental Engineering

Dr. T.Bollisetti, Chair of Defense
Department of Civil and Environmental Eregring
11 Ap2id11



DECLARATION OF ORIGINALITY

| hereby certify that | am the sole author of ttliesis and that no part of this
thesis has been published or submitted for pulidicat

| certify that, to the best of my knowledge, myesdls does not infringe upon
anyone’s copyright nor violate any proprietary tggland that any ideas, techniques,
guotations, or any other material from the workotfier people included in my thesis,
published or otherwise, are fully acknowledged iccardance with the standard
referencing practices. Furthermore, to the extdwt 1 have included copyrighted
material that surpasses the bounds of fair deakiigin the meaning of the Canada
Copyright Act, | certify that | have obtained a tten permission from the copyright
owner(s) to include such material(s) in my thegisl &ave included copies of such
copyright clearances to my appendix.

| declare that this is a true copy of my thesmgluding any final revisions, as
approved by my thesis committee and the Graduaigiest office, and that this thesis has

not been submitted for a higher degree to any dfinérersity or Institution.



ABSTRACT

External dampers are widely used to control vibrest of stay cables on cable-
stayed bridges. In general, the estimation of tamming of a stay cable in a cable-
damper system is done based on the assumptiorthibdtridge stay cable has fixed
supports at both ends and the damper has a fixagoduon the deck. But long-span
bridges experience frequent bridge-girder vibratiander dynamic loadings due to long
span length, light weight and flexible nature. ®fere, the assumptions of fixed support
for the cable and damper is no longer valid indage of long-span bridges.

An analytical model has been proposed in the otrstudy to determine the
damping property of a bridge stay cable when agdahith a damper, by considering the
effect of bridge-deck vibration on the cable and tlamper. The static and the dynamic
behaviour of the cable-damper-deck system have Iseanlated in the model. The
validity of the model was verified by assuming ayegid equivalent beam and was
compared with the results obtained from a cabledfiend case. A Matlab program was
developed to perform matrix calculations and iierst associated with the model.
Associated dynamic analysis was carried out udirdihite element model in ABAQUS
6.9.

Case studies were conducted to investigate tleetadf cable-deck interaction on
the damper efficiency for cable-stayed bridges wlifferent span lengths. The range of
main span length that requires the considerationbradge-deck vibration for the

estimation of damper efficiency was proposed.
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CHAPTER| INTRODUCTION

1.1 Background

One main achievement of the recent advancemeridge engineering is the use
of much longer spans of girders in cable-stayeddas and thereby efficient use of
materials and other resources in construction amaghtenance. Light weight of the
structural components and use of longer spanstsasuinore slender elements which are
susceptible for vibration under dynamic excitatiofise cables in long-span cable-stayed
bridges are prone to exhibit high amplitude of keton due to their light mass, high
flexibility and very low intrinsic damping. It hasecome more important and serious
matter of concern in recent years due to the rdpictlopment of long-span cable-stayed
bridges and due to the incidence of high amplitcalele vibration observed on bridge
site and experimental studies in the past few decad

The complex behavior of cable—stayed bridges wshdmected to dynamic loads,
such as wind, traffic or seismic excitation is agestanding issue in bridge engineering.
The non linear interaction between local cableatibns and bridge deck vibrations is an
issue which can lead to very large cable vibratimnsigh amplitudes of deck vibrations.
These can in turn lead to an issue of structufabygauser discomfort or fatigue damage.
Wind-induced cable vibrations are identified as itih@st common in bridge stay cables.
The initiative and the amplitude of excitation degen the flow characteristics of wind,
the geometry and the dynamic properties of theecaBlepending on their mechanisms,
wind-induced cable vibration mostly related to stegbles can be categorized as

following types (Cheng & Tanaka, 2002): a) Vortexhiced vibration; b) Buffeting; c)



Wake galloping; d) Rain-wind-induced vibration;High-speed vortex excitation; f) Dry
inclined cable galloping.

Vortex-shedding is a phenomenon that excitesesabhder flow of wind. If the
natural frequency of the cable lies in close praowinof the shedding frequency of
vortices form in the wake of the cable, vortex reswe would occur resulting high
amplitude cable vibration. The frequency of vorgdedding is much higher for normal
wind speeds than the range of natural frequentyidfe stay cables to excite in first few
modes. Therefore it is unlikely that vortex sheddime critical in bridge stay cable
excitation (Strouhal, 1898).

Buffeting is a vibration forced by the velocityétuation of the oncoming flow
and it is directly related to the level of wind spe Buffeting has not been found to cause
serious effect on bridge stay cable vibration. Hesve this frequent low amplitude
vibration could induce fatigue damage and thusatisreafety of the bridge.

Based on field observations and measurementsgtfeund (Hikami & Shiraishi,
1988; Matsumoto et al, 1989b; Yoshimura et al, 1988in et al, 1999; 2001) that rain-
wind induced vibration usually occurs at wind speed 6-18 m/s, accompanied with
light rain. Wind is in a direction 260° skewed to the cable plane with low turbulence
intensity. The majority of the cables that expecgmhthis vibration, locate in the leeward
side of the bridge pylon and are geometrically ided in the mean wind direction. The
formation of upper water rivulet on the cable scefgaeems to be a key factor ( Yamada

et al, 1997). This phenomenon is very common iiciger stay cables.

High speed vortex excitation has been observdgtlish and in wind tunnel tests

without precipitation. It occurs at much higher divelocity ranges than that for regular



vortex-induced vibration. Some studies (Matsumotoak 1990) suggest that this
phenomenon could be caused by regular Karmen vatedding and axial vortex

shedding along the cable axis.

Dry inclined cable galloping is an excitation pberena identified during wind
tunnel testing Cheng & Tanaka, 2002). Although it has not yet beleserved on site,
it causes a big concern in the bridge industry wu#s divergent nature and uncertain
onset conditions. One of the possible mechanisnpsaposed to be linked to negative
aerodynamic damping ( Cheng & Tanaka, 2002). Rekeabout this phenomenon is

still under way.

Suppressing the vibration of bridge stay calbdesfiprime importance since the
effect of vibration of stay-cable as a key struatwglement, is directly related to the
serviceability and life span of the entire bridgdgequent vibrations could lead to
connection failures, breakdown of the corrosiongrtion system, and fatigue failure of
the cable itself. On the other hand, excessiveatitm will be a safety issue for the entire
structure, and may result in sudden cable failaawihg the bridge unusable. Therefore,
different counter measures are adopted to contrel dable vibration. They can be

categorized mainly into two types, aerodynamic meeghanical types.

In aerodynamic methods, the surface of the briskgey cable is modified to
ensure that rain-wind related excitations are miréh . Some of the surface treatments
adopted at present are dimpled surface on Tatadgebin Japan, (Verlogeux, 1998);
helical wire whirling surface on Vasco da Gama ¢eidn Portugal (Bosdogianni &
Olivari, 1996) and axially protuberant surface lealon Higashi-Kobe bridge in Japan

(Saito et al, 1994). Mechanical improvements arectied to dissipate kinetic energy of

3



the cable by using external dampers near anchgaiges and dissipate kinetic energy
and improve stiffness by connecting adjacent cabbgether using cable cross-ties.
Transverse elements as cross-ties in the cable plat effectively reduce the length of
the cross cable, thereby increasing the frequendytlze stiffness of the system. Also the
cross-ties will act as a means of transferring gndrom the excited cable to stiffer
elements (Yamaguchi & Nagahawatta, 1995). Use téreal dampers at or near the
cable anchorage point is much more popular thanofiseross-ties since it does not
interfere with the aesthetical appearance of tidgbr External dampers can be classified
as passive, semi-active and active. All three typest a transverse damping force on the
cable based on the velocity at the contact poimimper force induced by the passive
damper will have a predefined relation with theoegly at the contact point whereas
semi-active and active dampers exerts optimum dargoee based on the amount of

vibration present and have a nonlinear force tiana

1.2 Motivations
External dampers have been used as a measurentwbliog transverse cable

vibration mostly induced by dynamic excitation swahwind. The behaviour of a stay
cable when attached to a transverse damper has diedied by many researchers
(Kovacs, 1982; Yoneda & Maeda ,1989; Uno et al 1188d Pacheco et al, 1993). The
approximate relations between damper size, maximghievable damping ratio and
damper installation location have been developeddésign purposes by treating the
cable as a taut string. Subsequently, the abda&aeships were further developed by

incorporating cable parameters, bending stiffness sag extensibility (Tabatabai and



Mehrabi,1998). The experimental and analyticatlifigs (Tabatabi & Mehrabi, 2000)
confirmed that higher damper size do not necegsasult in higher cable damping
ratios. By formulating simplified equations andngang estimation curves using the
non-linear properties of cable, properties of damgred damper location, Tabatabai &
Mehrabi (1998) introduced a design tool for dangesign.

It is noted that all the existing studies areeliasn the underlying assumption that
the bridge deck does not move and the suppottiseofable and the damper at the deck
level are fixed. Although this assumption coukl dccepted for a short-span bridge
which has relatively rigid super structure, it magt be applicable for more flexible
medium to long-span bridge#n a real bridge configurations, the two ends ofrentined
cable are connected with pylon and deck respegtividiis does not comply with the
fixed-fixed support conditions assumed in the éxgsstudies. Especially for longer span
cable-stayed bridges, the bridge girders are kgiight and less rigid. The bridge deck
which provides the support for one end of the calrld support for the damper thus
should be treated as moving supports for accymegdiction of the damper efficiency.
The force exerted by the viscous damper on theecabproportional to the relative
velocity of the cable at the contact point of ttenger, and this relative velocity could
only be accurately predicted if the bridge girdération is taken into account in the
analysis. Therefore, the focus of this thesis imtorporate the cable-deck interaction in
the dynamic analysis of a damped stay cable vidmatd predict more accurately the

damping effects of the damper.



1.3

Objectives

The objectives of the current study are summarazefbllows.

. Propose an analytical model of cable-deck-dampstesy to investigate cable-

deck interaction on damper performance.

. Develop a method to analyze the dynamic behaviothefcable-deck—damper

system.

. Investigate the influence of cable-deck interactorthe damper efficiency.

. Conduct case studies to compare the results frenptbposed model with those

from the existing methods.

. Perform parametric studies to establish the ranfgéridge span length that

requires the consideration of cable-deck interadtioexternal damper design.

. Shed light on the development of more accurateanyph damper design for

longer span cable-stayed bridges.

To achieve the above objectives, the scope ofuhent study thus includes

Free vibration analysis of horizontal and inclireadbles by considering the effects
of sag and cable bending stiffness.

Free vibration analysis of uniform beams with npléispans and different end
conditions.

Dynamic analysis of a cable-damper system by censig the effects of cable
sag extensibility, bending stiffness, damper proggand damper location.
Development of an analytical model of cable-deckidar system to analyze the

motion and evaluate the effect of cable-deck imtisva on damper efficiency.



» Conduct case studies.
» Perform a parametric study to establish the rarigeidge span length for which

the developed model should be used to evaluate efapepformance.



CHAPTER I REVIEW OF LITERATURE

A brief review of the literature in cable dynamarsd free vibration of multi-span

continuous beams which relates to the current wgopkesented in this chapter.

2.1 Free vibration of a suspended uniform cable.
2.1.1 Horizontal Cable

A linear theory for the free vibrations of horizally suspended uniform cables
was presented by Irvine & Caughy (1974), whereréti® of sag to span is about 1:8 or
less. It is assumed that the static effects ofecakldsticity govern the horizontal tension
and the sag of the cable. A diagram of a horizonsalspended cable which indicates the
parameters of subsequent equations is shown in Zg. In the diagramu is the
longitudinal component and is the vertical component of in-plane motion,is the
transverse horizontal component (perpendiculahéovertical plane through supports) of
motion, [ is the length of the span andis the maximum static deflection observed at
mid-span.x andy represent the coordinates of the static profilthe cable as shown.
The transverse horizontal motion, as the easilytecenode, is uncoupled from the in-
plane motion to the first order since there is meolvement of cable tension. In the in-
plane mode, the amplitude of the correspondingitadmal modal component is always
substantially less than the amplitude of the vattiootion. Since the sag of the cable is
considered to be small, the longitudinal comporarthe motion has been neglected in

the analysis.
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Figure 2-1 Definitioradram for cable vibration
The transverse horizontal modal frequencies ataimdd as the solution to an

eigenvalue problem of

a2w(x)
dx?

H

+ mw?w(x) =0 (2-1)

wherew(x,t) = W(x)e'®t is the transverse component of motiéhis the horizontal
component of cable tension and is the mass density of the cable. The circular
frequency of the transverse vibration is giverndpy= nn/l\/H/_m ,n=123,.., where

[ is the length of the cable ands the mode number.

The equation of in-plane vertical motion is giu®n

2 2 2
HE 4 pd2 =22 (2-2)

whereh is the additional horizontal component of cablesien due to cable vibration.

The elastic and geometric compatibility of the leaddement is given by Irvine (1980).
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i (ds/dx)® _ ou n dy §v
E;Ac T 9x | dxéx

(2-3)
whereA, is the cross sectional area of the caBlejs the elastic modulus of the cable
andds is the length of the cable element considered.

The in-plane vertical motion is considered as tWtd for computational
simplicity, that is symmetric mode and anti-symneetmode. Frequency for anti-

symmetric in-plane motion of which no additionableatension is developed is obtained

2nm

from Eq.(2-2) asw, =T\/§ wheren = 1,2,3, ...is the mode number. The anti-

symmetric vertical modal component is given by

2nmx
l

v,(x) = A, sin( ),n =123, .. (2-4)

The longitudinal component of the anti-symmetricd@omotion can be found when the

additional tension in Eq.(2-3) is zero. It leads to

2nnx

1y () = =4(DA {1 = 2 (3)) sin (25) + = (1 — cos ()} (2-5)

whered,, is the amplitude of the anti-symmetric verticaimmmnent of the Amode. It is
clear from the above expression that when the dadtemes flatter, the amplitude of the
longitudinal component becomes smaller.

In the case of the symmetric in-plane modes, titttianal cable tension is non-
zero. It is treated as a function of time alonehe Bolution to the eigenvalue problem

10
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leads to the following transcendental equatioomfvhich the natural frequencies of the

symmetric in-plane modes may be found (Irvine & §lay 1974).

tan(2pt) = (1) — (%) Gp)® (2-6)

where 12 = (?)Zﬁ is called the Irvine parameter ant, = fol (ds/dx)® dx =

/(1+84/2) is the elastic compatibility condition of the cabl The Irvine parameter
describes the relation between cable geometry dadtigty. It governs natural
frequencies and mode shapes of the cable motioreXample, ifA? is very large, i.e. if
the cable is theoretically inextensible, the abdrenscendental equation becomes
tan(%ﬁl) = (3BD). This relationship is found in other problems aahanics, i.e. torsional
and flexural buckling of struts under certain boanydconditions. In the present study,
the cable is idealized as a taut string, Eeand sag are ignored in the formulation. The

value of A% represents taut string is zero. Equation (2-6) tbemmestan(%gz) = —00

and the first root will bg! = © which is used in the analysis.

2.1.2 Inclined Cable

Formulations relevant to the motion of cables sufgal at the same level is of
less use in the analysis of bridge stay cablesesihe cable arrangements are always
inclined. A simplified solution to the static pilefof an inclined cable shown in Fig. 2-2

is given by Irvine (1980).

11
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Z = 2X(1-X){1+<(1-2X)}. (2-7)

where Z,X and ¢ are the non-dimensional parameters defined assforgiven by

mglsiné

Z = z/(mgsecOl?*/H), X =x/land ¢ =——— , m is the mass density, is the

cable lengthH is horizontal component of cable tension &nd the angle of inclination

Figure 2- 2 Static plefof an inclined cable (Irvine ,1980)

of the cable with respect to the horizontal axibe above derivation is done by
neglecting the second order terms of the derivatinghe static equilibrium equation. A
similar formulation was used (Wu et al ,2005) twain natural frequencies and mode

shapes of an inclined cable as follows:

12



13

VA |

<
l

Figure 2-3 Geometfyan inclined cable (Wu et al, 2005)

The static profile of an inclined cable as showikig. 2-3 is given by
zZ=1%(1-0{1 +§(1 — 2%} + 0(e?) (2-8)
Where the non dimensional parameteedx are given by = z/L and X = x/L. Also
Z =2Z/8Bcos6,B = mgL/8HsecH,and &= mgL/(HsecOsinf) = 8Bsinb. By

substitutingx = x*cos@ — z*sinf,z = z* /cosO in Eq. (2-8), the profile can be obtained

in the local coordinate system as

N

7' = %' (1 - ) {1 —2(1- 2:?*)} + 0(£2). (2-9)

13
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The equations of in-plane motion of an inclinedbleain the local coordinate

system are given by (Wu et al, 2005)

2.,%

d dx* ou* d
ST+ -+ =m

P mgsin (2-10)

o%w*
at2

d dz* ow*

- (T+1) (d—ZS + a_M; =m — mgcosf (2-11)
wherert is the additional tension generated, is the in-plane longitudinal displacement
in x* direction andv*is the transverse displacementzin direction. Displacement of an
element of the cable in the local coordinate systeshown in Fig.2-4. Removing self -
weight components from Egs. (2-10) and (2-11) bamedhe cable static profile, the

following equations of motion can be obtained ha local coordinate system.

d dx* ou* o%u*
E(TE + (T + T) E) =m 9c2 (2-12)
d dz* ow* 0%w
E (TE + (T + T) ¥) = 92 (2-13)
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MW A1
VA

Z*
+6

(T+T)(ZTx;+aa—f)

d dx* ou*
+ (T +7) (E + E)}As1

dz*

T+ (B +20)+ (T +0) (& + 25 )ias1

As1 ds As1

Figure 2-4 Displacement of an element of cabld@élbcal coordinates(Wu et al, 2005)

If a flat sag cable is considered, the longitubimation can be neglected. By

dx* dx* . .
— and H* = T—— and assuming:* is constant along the cable,

substitutingh™ =t
ds

ds = dx*, Eq. (2-13) can be reduced to:

2, % 2.,,% 2.,,%
WIS+ +h) T =mI (2-14)

d x*? at2
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Using EqQ.(2-14) and the elastic compatibility o ttable, and adopting a method similar
to that of Irvine & Caughy (1974) the following trscendental equation was obtained for

the in-plane modal shapes and natural frequen€ias imclined cable (Wu et al, 2005).

2 2 2
SE =(1+5) 2 a2+ - (2-15)

tanmtw/2 Tw

k?(8Bcosh)?

where A2 = is the Irvine parameter aikd = EA/(Hcos0).

e

Even though the static profile of an inclined eabbnsidered in the current study
is similar to that described by Wu et al (2006§ table here is idealized as a taut string
and its support at the deck level is no longerdixe

A more accurate solution to the free vibratiohan extensible, sagging inclined
cable was given by Triantafyllou (1983). He iddetif that the general asymptotic
solution to the linear dynamic problem of a tairclined cable had two physical
mechanisms. The solution corresponded to the elastves changed from sinusoidal to
exponential as the curvature increased. It occuatedg the cable when the supports
were at two different elevations. The part of tlable close to the higher support hung
almost vertical. The part of the cable close to ltneer support lied more flat. The
motion of the nearly vertical part exhibited prapes of an elastic chain, where as that of
the nearly horizontal part exhibited propertiesaofaut wire. This phenomenon was
accompanied by a shift of the natural frequencythef symmetric mode towards the

natural frequency of an anti-symmetric mode.
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2.2 Free vibration of a suspended cable attached to transverse linear viscous
damper
When analyzing a cable-damper system shown in Zfg. the key aspects the
designers look for are the relationships betwesnpkr size, damping ratio and location

and the amount of damping provided by the damper.

l

Figure 2-5 A taut cable with exi@rlinear viscous damper

Kovacs (1982) first identified the existence gdtimum damping in a cable-
damper system using a semi-empirical approach. oo to the results, the maximum
modal damping ratio attainable by a concentrategoris damper was about half the
relative distance of the damper from the cable sttppe.a/2l in Fig.2-5.

In a numerical analysis conducted by Yoneda & MagP89) the existence of
optimum damping was confirmed. Moreover an emgplirfoamula was proposed by
which the amount of damping in a cable-damper systeuld be estimated without
resolving a complex eigenvalue problem. In thisrfolation the logarithmic decrement
of the cable-damper system was related to the dagrgwefficient of the damper itself

and the optimum achievable damping of the system.
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By introducing a non dimensional damping coeffitjehe empirical formula for
predicting maximum attainable modal damping ratsdadl on damper location has been
derived by Uno et al (1991).

Subsequently, a universal damping estimation cwag proposed by Pacheco et
al (1993). It related the model damping ratio otcable-damper system, the mode
number, the damper size, the damper location,mags, and fundamental frequency of
the cable. They also confirmed the findings of Kes/g1982) by investigating the
frequency response curves when the damper casffigqualed to zero, optimum and
infinity.

The problem of controlling a vibrating horizongating by a concentrated viscous
damper was formulated by Krenk (2000) based eraisumption that the cable tension
remained as a constant during oscillation. The souaf motion of the cable damper
system shown in Fig. 2-5 is given by
T2 —m2l = cZ5(x - a) (2-16)
whereT is the cable static tensiom is the mass density anrdis the coefficient of the
damper, respectively. The boundary conditions @@ t) =0 and v(l,t) =0. The

discontinuity of slope at the location of dampesules in the following equilibrium

condition:

v
ox

v
ox

at

(

0
)= (2-17)
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That is, the damper force at the damper locatidrested as equal to the transverse force
induced by cable tension due to discontinuity @ipsl at the location of damper. The
coupling between the displacement space and timeatiges at damper location leads
to complex mode shapes and frequencies of freeatidlor. It reveals that the eigen
frequencies of the damped modes are complex, Wéhimhaginary part representing the
attenuation due to damping. By substituting thepldiiement functionv(x,t) =
v(x)e't satisfying the boundary conditions and the coityngondition at damper
location in Eq.(2-17), the following transcendentguation could be obtained for

determination of eigen frequencies .

c

cot(Ba) + cot(Ba’) = —im

(2-18)

m
where= w\/; )

The frequencyw could be obtained from Eq. (2-18) by simplifyitige trigonometric
functions using Taylor's expansion with the baatug as the circular frequency of the
cable. The solution will be a complex eigen freogy in the following form Krenk

(2000)

w = wd[/1—-2+1i{] (2-19)
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where ? is the circular frequency of the cable in tH® mode and] is the damping
ratio.

A non-dimensional formulation was developed tocghlte the vibration
frequencies and the damping ratio for a stay cehlépped with a mechanical viscous
damper by Tabatabai & Mehrabi (2000). The Bendirffnsss and the sag extensibility
of the cable were taken into account in the amaly$éon-dimensional parameters were

defined based on a cable damper system as shokig.iR-6 as follows.

R

AR\

L

Figure 2-6 Layout of a lemdamper system

£ = LJH/EI (2-20)

Y = mc/mLw; (2-21)

I, = Lg/L (2-22)

where ¢ is the bending stiffness parametgr,is the damping parameter, afigs the
damper location parameter. The cable propertieasfellows:H is the pretension, is
the lengthyn is the mass density, aiitd is the bending stiffness. The damper properties

are the damping coefficient ¢, and the damper iocat,;. Practical ranges of these
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parameters were established based on a data bagerd 400 bridge stay cables in 16
cable-stayed bridges in USA (Tabatabai & MehrabQ0). It was observed that for more
than 95% of cables in the field, the sag exterighiatio is less than 1 and the effect of
sag extensibility parametaf on performance of mechanical dampers was not very
significant.  Therefore sag extensibility could Ibeated as independent of the
performance of mechanical damper. On the other ,haad extensibility is the only
parameter that represents the inclination of theeca their formulation and hence they
proposed that the performance of the mechanicapdaim independent of the inclination
of the cable.

Xu & Yu (1999) studied the non-linear behaviafiran inclined sag cable with
respect to change in cable sag parameter and fibet ef an oil damper on the cable
vibration control using physical experiments. Ressshowed that an oil damper with an
appropriately selected damping coefficient codfdatively suppress non-linear in-plane
cable motion.

An energy based approach to estimate the egumivdamping existed in a cable-
damper system has been proposed (Cheng et al, 20Hdg & Koralalage, 2009 and
Koralalage & Cheng, 2009). By introducing the kio&nergy decay ratio as a key index,
the relation between the additional damping praditly an external damper and the
kinetic energy dissipation rate of a damped calas derived. The relationship of damper
location, damper size, cable length, cable tensiable bending stiffness, and equivalent
cable model damping ratio was established. A sedamiping estimation curves were
developed as a design tool to assist external dadgsagn for controlling bridge stay

cable vibration.
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In all the literature reviewed above, the supporiditions at both cable ends are
fixed. The movement of the bridge deck on realde&land its impact on the behaviour
of the cable and the damper are not taken intoustcoHowever, when the bridge span
becomes longer and the bridge girder becomes nhexible, the motion at the cable-
deck and damper-deck anchorage points can no |dregereglected. Its impact on the

efficiency of the damper in controlling cable vitloam can be considerable.

2.3 Free vibration of multi-span continuous unifom beams

The free vibration analysis of multi-span beamsbysidering different classical
and non classical support conditions and variow spmbinations was conducted by
Gorman (1975). The conventional beam differentgliagion was used in the analysis
which expressed the equilibrium between the inddraes and elastic restoring forces
subjected to prescribed boundary conditions asngnetow. Figure 2-7 shows an element

of a uniform beam under dynamic equilibrium.

v(x,t) 1

v (xt)
at2

dx

y
\ 4

X

»
>

Figure 2-7 An element afraform beam subjected to vibration
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The transverse shear force in the beam is given by

(2-23)

whereE] is the bending stiffness of the beam arfd, t) is the transverse displacement
of the beam. Considering the dynamic equilibriumhef beam element shown in Fig. 2-
7, the net transverse shear force should be egtilaétinertia force acting on the element.

Hence

_ 9%v(xt) _ EI 3*(w(xt)
a2 pA  ax*

(2-24)

The effect of shear strain and rotary inertiareeglected in the analysis. The Free
vibration of a beam with intermediate point supposas studied by Kong & Cheung
(1996) using Ritz method. The transverse displac¢mmiethe beam was approximated by
a function comprised of a polynomial and a ternthaf conventional single span beam
vibration function. Stiffness and mass matriceseAfermulated using the admissible trial

functions, and the resulting linear eigen—equatvas solved.

2.4  Effect of cable-deck interaction on vibration 6a damped stay cable

Several researchers have studied theoretically experimentally the internal
resonance between the bridge global modes andatble tocal modes which leads to
highly unstable oscillation of stay cables. It hasen observed that the angle of

inclination of the stay cable plays a significaaterin parametric excitation (Caetano,
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2006). When the inclination angle 08, the cable is horizontal and the vibration excited
by the deck vertical motion becomes a forced vibnatvhereas when the angle of
inclination is90°, the cable is vertical and deck motion createsralpparametric effect
without any forced vibration effect. When the cainielination is between® — 90° the
forced and parametric vibrations are coupled. Table instability occurs when the
vibration frequency of bridge deck is in the neighthood of twice the first natural
frequency of the cable. In this case parametricatibn and forced vibration of stay
cables are generally coupled. Such a parametridlatem can be controlled by a
damping system installed on the cable (Sun et @32 . Based on the experiments
conducted on the Second Severen Crossing in UKlendssociated numerical analysis,
Macdonald (2004) revealed that wind loads on alken significantly affect global
bridge response and since many combined cable-ohexles existed, cable and deck
vibrations should not be considered separately.

The effects of girder vibration on the functionalif an external damper was
investigated by Liang et al (2008). The cable weated as a taut string and the bridge
girder was simplified as a cantilever beam with plylon end fixed as shown in Fig. 2-8
below. Results suggested that the girder vibragoluced the effectiveness of the damper
as the cable length increases. In Fig. 2-8, ACasmts the equivalent bridge girder, CD
is the cable under investigation and BE represtr@dinear viscous dampet(x,t) is
the horizontal component of the cable motio(x, t) is the vertical component of cable
motion andw(x, t) is the vertical motion of the bridge girder.

This model, though considered cable-deck intesaat the formulation, the

simplification of the bridge girder as a cantilebeam would lead to distorted dynamic
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behaviour compared to the original bridge. In gaitr, the mode shapes of vibration are
not represented correctly. This misrepresentationlavdirectly affect the motions at

cable-deck and damper-deck anchorage points aird¢laive relations. Therefore the

|: “ »le a »|
D]
Iy
u
v
E
X 1 w
B C

2

b b’

L

Figure 2-8 Simplified theoretical model of cableskledamper system (Liang et al, 2008)

impact of cable-deck interaction on the efficieméyhe damper in controlling cable
vibration cannot be reasonably simulated.

To the author's knowledge, the consideration obleaeck interaction in
evaluating dynamic behaviour of a damped cabledrady been seen in the literature. To
address this important issue, in particular, whesighing dampers for cables in medium-
to long-span cable-stayed bridges, a more accarataeasonable analytical model of a
cable-damper-deck system will be proposed. Theilsatéthe model and formulation

will be presented in Chapter IlII.
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CHAPTER IlI ANALYTICAL FORMULATION OF A CABLE-
DAMPER-DECK COUPLED SYSTEM

In order to investigate the impact of cable-daderaction on the damper efficiency to
control cable vibration on cable—stayed bridgeanalytical model is developed in the current
chapter. In the model, the bridge super-struct@emiodeled as a three-span continuous
equivalent beam which has the same static and dgnlbemaviour as the original bridge. A
typical cable in the mid-span is included in thedelo The cable is idealized as a taut cable, i.e.
its bending stiffness is neglected in the analy&is.external damper is attached to the cable
close to its anchorage point on the bridge deckl iA\rs considered as a linear viscous damper in
the analysis.

In the following sections, the equations of moterd dynamic analyses of a single cable
and a three-span continuous beam will be develogegmhrately first. Then, the analytical
formulation of the cable-damper-deck coupled sysielinbe derived. A procedure to solve the

equation of motion of the coupled system will dt&oproposed.

3.1 Free in-plane vibration of an inclined taut cake
3.1.1 Static Analysis
Figure 3-1(a) portrays an inclined suspended cdb&eangle of inclination i8. Fig.3-

1(b) shows the static forces acting on an elemkttteocable of length ds.
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dx
0+a dy

ds
pdsg

\ \ g+o+dat

T + 6T

(@) (b)

Figure 3-1 Static forces actingamnelement of an inclined cable

Considering the static equilibrium of a cable edaemof lengthds as shown in Fig. 3-

1(b), the following relationships could be obtalne

Y>X=0;(T+6T)cos (6 +a+da)—Tcos(@+a)=0 (3-1)

XY =0;(T+38T) sin(0 + +da) — Tsin(6 + a) + pdsg =0 (3-2)

where p is the mass density of the calgeis the gravitational acceleratichis the static tension
of the cableg is the inclination angle of the cable with respecthe horizontal direction and

(6 + «) is the inclination of the cable element considere

The geometric relationships for a small cable eletnof length ds are
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(sin(0 + a) = %
cos(0 + a) = 3—;‘

\ds = &7 F dy? (3-3)

dx 1

as [ a?
\ 1+E

Substituting Eq.(3-3) into Egs. (3-1) and (3-2glgs

slral=o (@-4)

dy — }
_[TE = —pg. (3-5)

Equation (3-4) shows that the horizontal compoméihe cable tensior, is a constant

along the cable length, i.e.
H = TZ—: = constant (3-6)

3.1.2 Dynamic Analysis

The static equilibrium equations of a 2D inclineable, Egs. (3-4) and (3-5), can be
further developed to dynamic equilibrium equatiémsin-plane motion of an inclined cable by
the addition of dynamic terms to its horizontal ptesement, vertical displacementy, and
tension,T, and incorporating the inertia force. The termgha dynamic analysis are shown

below.
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Static analysis Dynamic analysis
Horizontal displacement X x +u(x,t)
Vertical displacement y y+v(x,t)
Cable tension T T+ 1(x,t)
Inertia force No p%,p%

whereu(x, t),v(x,t),andt(x,t) are the additional horizontal displacement , aoldil vertical
displacement and the additional cable tension ieduloy cable vibration respectively.
Replacing the static terms in Eq. (3-5) with th@responding dynamic terms, the

equation of motion for in-plane cable vibratiortlr vertical direction can be obtained as

2%v(x,t)

o+l +ve ol =-g+p s (3-7)

Similarly, the equation of motion in the horizdnd&ection can be obtained as

%u(x,t)
at?

%{(T +1) =[x +ulx, t)]} =p (3-8)
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Equation (3-7) can be simplified as follows wiltte tassumption that the dynamic tension

T is negligible.

d dy d dv(xt)] _ %v(x,t)
T+ alr e = —pa + 03

By eliminating static terms using (3-5) and wfithe partial derivative terrﬁ; with

respect talx;

d [ dvdx] dx _ 9%
dx dx dslds — p oat2

Substituting Egs. (3-3) and (3-6) into the abowgiagion, leads to the relationship

defining the in-plane vertical motion of an inclth&ut string as

H 09%v _ 0%v (3_9)

dyz 6X2 p atz
/1+—
dx

Similarly the equation of motion of in-plane callbration in the horizontal direction is

d d 9%u(x,
Ho+ oL +ut ol = p 532 (3-10)

Assume the dynamic tensioms very small, gives
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d dx = dudx 92%u
Sr|E+EEh =05 (3-11)

The equation of motion for horizontal in-plandnation of an inclined taut cable can

finally be expressed as follows by substituting.E28) and (3-6) into Eq.(3-11);

H i(1+d—u)=p3% — H 0%u 9%u (3-12)

[ay2oxz Poe
142
dx

3.1.3 Numerical example

The equations of motion derived in Section 3.X&erified by a numerical example and
compared with that of Irvine (1980).

In an experimental cable setup, a horizontal cablengthL = 13.695 m and unit mass
of cablep = 3.6 kg/m was used under static cable tensionHo&= 122.1 kN. It is intended to
determine the first modal frequency of the cable ifeplane vertical motion. The cable is
idealized as a taut string.

3.1.31 Application of Eq. (3.9)
Since the cable is suspended horizontally ancetisenegligible sagz—z = 0. Hence Eq.

(3.9) becomes

o pZ (3-13)

ax2 ~ I ar2
Substitutingv(x, t) = 7(x)q(t) to separate variables in Eq. (3-13) we obtain
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HE® _ pd0 _ (3-14)

v(x) a®)

where k is a constant.

Equation (3-14) can be written as two separatatsaus as follows
Hv"(x) —kv(x) =0 (3-15)
pg(t) —kq(t) =0 (3-16)
The solution for Eqg. (3-15) is in the form of
v(x) = Asin Bx + B cosPx (3-17)
whereA, B and [ are constants.

Since the cable is suspended horizontally andifateboth endsy(0) = 0 and w(lL) =

0. Using these boundary conditions in Eq. (3-17p¢eto B = 0 andsinL = 0 sinced # 0
s pBL=nmor f = nL—n wheren =1,2,3 ...

Substitutingi(x) = Asinfx in Eq. (3-15), the following result is obtained

[ = Z19(x) = 0 (3-18)

n

2.2
Hence for non trivial solution af(x), k = p*H = LZ H. Similarly, using
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equation (3-16), it can be shown that if

q(t) = Psin wt (3-19)
[w? —=]q(®) = 0 (3-20)

whereP is a constant and is the circular frequency of cable vibration.

Using Eqg. (3-20), for nontrivial solution af(t)

w=\/§=%\/§ (3-21)

The frequency of vibration is given by
f=—=— Son= 1,2,3,. (3-22)

SubstitutingH = 122100N, p = 3.6 kg/m andL = 13.695m into Eq. (3-22), the first

modal frequency ¢ = 1) isf = 6.72 Hz.

3.1.3.2 Irvine’s approach

The first mode is the symmetric first mode of ieat in-plane motion. Since the cable is

a taut string , the Irvine parametér = 0. The transcendental equation becomé‘;’s= — ,
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1
where® = wL/(H/p)?. Hence® = -» w = %\/g - f= i\/g substitute intoH, p, L yields

f = 6.72Hz. Since both approaches gave the same results, the derivations in Section 3.1.2

are correct.

3.2 Free vibration analysis of a three-span contuous beam
3.2.1 Equation of motion for in-plane vibration

A three-span continuous beam with simply suppoeteds is considered for the
analysis. The mass density and the bending stéfoethe beam are assumed to be
uniform through all the spans. The effects of sisér@in and rotary inertia are neglected

in the analysis. Schematic diagram of the beamidered in the analysis is shown in

Figure 3-2.
A B C D
7777 7777
7 | A | |
X1 YaB X2 YBC Ycp x3.

Figure 3-2 schematic diagiama three-span continuous beam

The motion of the beam can be described by E§4§2

2 4
_ 9%yt _ EI97y(xt) (3-23)

at2 m dx*
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where m is the mass density of the bea#i, is the beam bending stiffness ayn, t) is the
vertical in-plane displacement of the beam witlpees to its static profile.
Substituting y(x,t) = v(x)q(t) and substitute it into Eq. (3-23), and rearranging

terms, we obtain

v o dm -
EI% 2 =-mio=k (3-24)

where v¥(x) represents the fourth derivative ofx) with respect tax, §(t) is the second
derivative ofq(t) with respect ta andk is a constant.

Equation (3-24) can be re-written as two separgtetions as follows:

Elv(x) —kv(x) =0 (3-25)

G(t) +-q(t) =0 (3-26)

The solution to Eq.(3-25) for theit*span (i = 1,2,3) will be given by the shape

function

v;i(x;) = A;sindx; + BicosAx; + C;sinh Ax; + D;coshAx;, i = 1,2,3 (3-27)
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where4;, B;, C;, D; are coefficients of shape functiop(x;) of the it" span ( = 1,2,3), andi is
the eigenvalue.

Using non-dimensional forg = % and substituting Eq. (3-27) to Eq.(3-25) gives

[ =€) = 0 (3-28)
For nontrivial solutions ob;(¢;) , Eq. (3-28) should satisfy ;

k = A*EI/L* -29)

wherel is the total length of the beam.
The solution to Eq. (3-26) is assumed to havddha of
q(t) = Psinwt (3-30)

where P is constant and represents the frequency of vibration of the beSunbstituting the

value ofv(t) from Eqg. (3-20) in Eq. (3-16) yields

w=J§ (3-31)

Substituting Eq. (3-29) into Eqg. (3-31) gives
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w="2 [E (3-32)

LZAlm

Boundary conditions and compatibility conditio(@ease refer to Fig. 3-2)

1. Boundary conditions:
Displacement at A:  [v4g]y,—0 =0; » By +D; =0 (3-33)
Moment at A: [v"aplx,=0 =0; > =By +D; =0 (3-34)

Combining the above two equations, yields

Bl = Dl = 0 (3'35)

Displacement at B:

. . inAL
[UAB]X1=L1 = 0, AlslnALl + ClslnhALl = 0, C1 = _Si‘lr:lhll,ll Al (3'36)

Using results (3-35) and (3-36);

Sy sinhax, ] (3-37)

sinhALq

UAB = Al [Sinﬂ.xl -

Due to the symmetry of the structurg, for span CD can be similarly derived as

. inAL; .
Vpe = As[sindx; — :;ZMLZ sinhAxs] (3-38)

37
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Displacement at B[vgcly,=0 = 0; > B, + D, =0 - D, = —B, (3-39)

Displacement at C ;

= [vpcly,=1, = 0; = AzsindL, + B,[cosAL, — coshAL, ] + CysinhAL, = 0 (3-40)

2. Compatibility conditions:

Slope at B:

sinAL
[Vscliy=0 = [Viapluy=1, = A [COS/lL1 - :

sinhALq

coshALy|—A; = C; = 0 (3-41)

Slope at C:[v'pcly,=1, = —[V'pclas=1, =

A,cosAL, + Az [cosALg — ;ZLZAL; coshALg,] — B,[sinAL, + sinhAL,| + C,coshAL, = 0
3
(3-42)
Moment at B:[EIUHBc]x2=O = [EIUHAB]XI=L1 d BZ = AlsinALl (3'43)
Moment at C: [EIV"pcly,=1, = [EIV"pclx,=1,
— —A,sinAL, + 2AssinAL; — B,[cosAL, + coshAL,] + C,sinhAL, = 0 (3-44)
From Egs. (3-40) and (3-43); = —A;sinAL,¢ —A,0 (3-45)

SinAL,
sinhAL,

wheref = and¢ = (cosAL, — coshAL,)/sinhAL,
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Substituting Egs. (3-43) and (3-45) into (3-43:4@) and (3-44) leads to

cosALy — sinAL,cothAL, + ¢psinAL, 6-1 0 Ay 0
sinAL,[sinAL, + sinhAL, + ¢coshAL,] |6coshAL, — cosAL, —  c0SALs + sinALzcothAL;| A, | = [0} (3-46)
sinAL,cosAL, sinAL, —sinALs 3 0

It is in the form [G){S}={0}, where {S}=[4; A, A3]", {0} is the null matrix and

cosALy — sinAL,cothAL; + ¢sinAL, -1 0
[G] = [sinAL,[sinAL, + sinhAL, + ¢coshAL,] [6coshAL, — cosAL, —  cosAL; + sinAL;cothAL,
sinAL,cosAL, sinAL, —SinAL;

For nontrivial solutions of; (i = 1,2,3), the defG| should be zero. This condition will

yield the results of eigenvaludg and eigenvectors. The natural frequency of thenbean thus

be determined frornfy = =-./EI/m and the mode shape is the corresponding eigesrgect

;2
12
3.2.2 Numerical Example

Consider a three-span continuous bridge with $gagths 50m, 100m and 60m as shown
in Fig. 3-3. The ends of the bridge are simply supga and the two middle supports are
continuous. The average mass per unit length obtltge along its longitudinal axis & =
3000 kg. The bending stiffness of the bridgeHs = 1.5x 101 Nm?2. It is intended to find the

natural frequency of the bridge.
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El,m

50m 100 m 60m

210 m

Figure 3-3 Schematic diag@ three-span continuous beam

Solution: Substitutind.; = 50,L, = 100, L; = 60 in the developed Matlab program to resolve

Eq. (3-46) gives the following graphical solutiar 1,

6 T T T T T T T T
: : : : : Characteristic Equation

) s U U YRR DU oy Aoy gy Syt A .
4_ ____________________________________________________________________________________ —
) s U SNy RU U RN Uy PRy UpUUUpNY: SUUUpUUUURE B U USRS SRR RyUp SRR .
2_ ____________________________________________________________________________________ —
T o U SIS S S U N _
: X: 8.5
: ¥ -0.07666
D ____I__________I__________l_________J_________JI.___________________I_.- __________________ —
e R B Tl R e =
e e T -]
N B i e .
| | | | i | | |
1 2 3 4 5 [3] T 8 9 10

Figure 3-4 Graph of Det[G] Vs
Figure 3-4 shows eigenvalug = 8.15. Substitute, A; =8.15, L =210m,El =
1.5x 101*Nm? , m = 3000kg into Eq. (3-32) gives = 10.65 rad/s and the natural frequency

of in-plane vertical vibration of the bridgefis= 1.69 Hz .
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Gorman (1975) carried out free vibration analysisbeams with multiple spans and
different support conditions. The results of thiample is compared with that obtained from the
tabulated eigenvalues by Gorman (1975) as fotlows
Using non-dimensional parameters; = 0.24, &, = 0.48, &; = 0.28 in triple-span simply-
supported beam table to get; = 8.082. Substituting4,, L,m and EI into Eq. (3-32) gives
w = 10.47rad/s andf = 1.67 Hz

The results from the derived model agrees wehlwiat of Gorman (1975).

3.3 Equation of motion of cable-damper-deck couptesystem

To consider cable-deck interaction in analyzing ttontrolling effect of an external
damper on cable vibration, the single cable inise@.1 and the three-span continuous beam in
section 3.2 and a linear viscous damper are iatedrin this section to derive equation of
motion of a cable-damper-deck coupled system. Vhtes is shown schematically in Fig.3-5.

The mathematical model in this analysis comprisiedn isolated bridge stay cable HD,
an equivalent three-span continuous beam ABCDEEhepresents the bridge superstructure
along with all the other cable supports excepte#tid, and a linear viscous damper attached to
the cable at G. Cable HD has a fixed support @ahélpylon end and a vertically moving support
at D, the bridge girder end. The equivalent beanCBEF is simply supported at ends A and F,
and two intermediate supports are at B and E. iflead viscous damper is attached to the cable

at G and supported on bridge girder at C as shaviagure 3-5.
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Figure3-5 schematic diagram of the theoretical @hofl cable-deck- damper system

The following basic assumptions are made in oraeimplify the analysis.

» The axial deformation of the bridge girder can leglected. Only vertical movements
due to bridge girder vibration are considered.

» The bridge girder is idealized as a three-spanimonotis equivalent beam which has
uniform mass density and flexural rigidity over #gire span.

* For the three-span equivalent continuous beam, stigc deflection at the cable-deck
anchorage and the fundamental frequency are asstonke the same as the original
bridge superstructure.

* The static deflection at point D, where the calsleanchored to the bridge girder, is
assumed to be zero.

» The cable is assumed as a tensioned taut strirggeffact of sag and bending stiffness

are not considered in the formulation.
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» Only in-plane vibrations of cable, deck are consde Shear and torsional effects of
bridge girder are neglected.

* The damper is a linear viscous damper.

By neglecting the dynamic tension, the equationnaftion for free vibration of

undamped taut inclined cable, is given similar3®) and (3.12) by

. 92 92
Horizontal : ———"— = m, > (3-47)
1+(2)

Vertical: ——=m (3-48)

where H is the horizontal component of cable tensigm, is the mass density of the cab)esu

are the horizontal and vertical displacements bfec&om its static configuration, respectively.
Considering the damping force acting on the caduhel substitutingz—z = tan6 in Eq. (3-47)
above;

2%u(x,t) _ %u(xt)

9x2 17 52— _Fua(xc - a) (3-49)

Tcos?8

Similarly considering vertical motion of the calaled the damping force in the vertical direction,

Eq. (3-48) can be written as
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Pv(xt) %v(xt)

Tcos?0 2 17— = k(e —a) (3-50)

Considering the vertical motion of the bridge gir@ad the damping force acting on it, the

equation of motion of the bridge girder with thestence of an external damper can be given by

4w (x,t)
ox*

Pw(x,t)

El 28 = —F,6(x; — b) (3-51)

+m,

wheres is the dirac delta functioi;,/ is the bending stiffness of the bridge girdey,is the mass
density of the bridge girderF, is the force exerted by the damper on the cabtearhorizontal
direction at point G,E, is the force exerted by the damper on the cabieeitical direction at
point G andF, is the force exerted by the damper on the bridgkegin the vertical direction at
point C respectively.

Since the damping force exerted on the cable isvalgunt to the transverse force induced by
cable tension due to discontinuity of slope atdhmper location, the following expressions can

be used to express the damping force on the calheihorizontal and vertical directions.

Tsing {[%]a+ - [BL a_} = —F, (3-52)
oo [229] - 2] ) es

The change in shear force on the location of thepda is the damping force acting on the

girder. Hence
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0x3 0x3

£l {[aws(x.t) - [M b+} - —F, (3-54)

Based on the assumption of a linear viscous dartipeidamping force developed in the damper

in the horizontal and vertical directions are

du(a,t) _
ac

—C E, (3-55)

dv(ait) dw(bt)
dt dt

—C[ ] =F, =—F, (3-56)

where C is the damping coefficient in N-s/m.

The following form of solutions are assumed for tandw

u(x, t) = u(x)etwt (3-57)
v(x, t) = v(x)elwt (3-58)
w(x, t) = w(x)e'®t (3-59)

where the shape function(x) is defined asw,gz(x;)for 0 < x; < L;; Wgc(x,)for 0 < x, <

b; Wep(x3)for 0 < x3 <b"; Wgp(xy)for0<x, <L, ; Weg(xs)for 0 < xs < L;. The shape
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functionv(x) is defined a®y;(x.)for 0 < x. < a; Vpg(x'.)for 0 < x, < a,. And the shape

functionii(x) is defined asiyq(x.)for 0 < x. < a; Ups(x')for 0 <x. < a,

where x4, x5, X3, X4, X5, x;and x; are the local coordinates measured from the titrec
indicated in Fig.3-5. They are introduced for tlawenience of derivation.

Substituting Egs. (3-57)-(3-59) into Egs. (3-52)5@) gives

d?u(x) , miw? _ _ ~lung(@)]ind(x.—a) -
dx? + Tcoszeu(x) =C Tcos28 (3 60)

d?v(x) muw? _ _ ~Prc(@)-wpc(b)]iwd(x.—a) -
dx? + Tcos26 v(x) =C Tcos28 (3 61)
o _ e

ddviix) _ %v_v(x)wz =C [WBc(b)ElvHG(a)] iwS(xy — b) (3-62)

The boundary conditions, compatibility conditioasd initial conditions of the cable-

damper —deck system shown in Fig.(3-5) are;

)] Span AB
Displacement at A:  w,5(0) =0 (3-63-a)
Moment at A: w,5(0) =0 (3-63-b)
Continuity of slope at B:  w,z(L;) = w'g(0) (3-63-c)
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Continuity of moment at B: w"5(L;) = Wg(0)

Displacement at B: w,z(L;) =0

Span BC

Displacement at B: wg-(0) =0
Continuity of displacement at C:  wg-(b) = w¢p(0)
Continuity of slope at C:  w'g:(b) = w'cp(0)

Continuity of moment at C: w"g.(b) = w"¢p(0)

Span CD

Shear at C: w,p(0,t) — wge(b,t) = —C[wgc(b) — v(b)]/(ED)

Continuity of displacement at D: w¢p(b) = Wwgp(Ly)

Continuity of slope at D: ~ w'cp(b") = —w'gp(Ls)

Continuity of moment at D: w"¢p(b) = W"gp(Ls)

Shear at D:

a‘UDg(O,t)

EIWCD(b ’ t) + Elwgp(Ly, t) = —TcosO o

Span DE

Displacement at E: wg,(0) =0
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(3-63-d)

(3-63-€)

(3-63-f)

(3-63-9)

(3-63-h)

(3-63-i)

(3-63-))

(3-63-K)

(3-63-1)

(3-63-m)

(3-63-n)

(3-63-p)
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Slope continuity at Ewgz(Ls) = wgp(0)

Moment continuity at E: Wz (L) = w'gp(0)

Span EF

Displacement at E: wgg(L3) =0

Displacement at F: wp;(0) =0

Moment at F:w"r;(0) = 0

Cable
Horizontal displacement at H: Uys(0) =0
Vertical displacement at H: Uye(0) =0

Horizontal displacement at G: tig(a) = tpg(a)

Vertical displacement at G: Pye (@) = pg(a)

Continuity of vertical displacement at D: 7 (0) = wep(b)

Horizontal displacement at D: Upe(0) =0

Horizontal component of damping force on cable at G

48

(3-63-0)

(3-63-1)

(3-63-s)

(3-63-t)

(3-63-u)

(3-64-a)

(3-64-b)

(3-64-C)

(3-64-d)

(3-64-€)

(3-64-f)
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Vertical damping force on cable at G:

Tcos@ {[%]w — [M a_} —C {M _ aw(,t)

dx

dat

The assumed forms of solution for the shape funstare

Wyg(x1) = Aysindx; + BicosAx; + CysinhAxy + DycoshAx,

Wgc(xy) = Aysindx, + BycosAx, + C,sinhAx, + D,coshAx,

Wep(x3) = A3sindxz + BzcosAx; + C3sinhAxs + D3coshAxs

Wgp(x4) = Aysindx, + BycosAx, + CysinhAx, + DycoshAx,

Wrg(x5) = Agsindxs + BscosAxs + CssinhAxs + DscoshAxs

Ve (xc) = Pysinyx, + Q1 cosyx,

Upe(x'.) = P,sinyx, + Q, cosyx,
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(3-64-9)

(3-64-h)

(3-65-a)

(3-65-h)

(3-65-c)

(3-65-d)

(3-65-e)

(3-65-f)

(3-65-9)
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whereA,;, B;, C;, D;, (i = 1,2,3,4,5), P;, P,, Q; and Q,are constants.
For0 < x. < a, substituting ¢, t) = vyze't into Eq. (3-61), gives

myw?

Uhe(Xe) + 75 Ve (xc) = 0

Substituting Eq.(3-65-f) into Eq.(3-66) yields

2

mw _
[—VZ + m] Uue(x) =0

The eigenvalug can be thus found as

wherew is the frequency of vibration of the system.

Referring to Eqg. (3-32)

4 |w?m
A= 2
El
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(3-66)

(3-67)

(3-68)
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The assumed solutions for the shape functionswstituted in the boundary conditions, Eqs.

(3-63-a) to (3-63-u) to determine the unknown

Ai, Bi, Ci, Di, (l = 1,2,3,4‘,5), Pl' Pz, Ql ansz

WAB(O) =0: Bl + Dl =0

Combining Egs. (3-69) and (3-70) it can be fourat th

SinAL4

WAB(LI) =0: AlsinlLl + ClsinhALl = 0, d C1 = _sinhlL 1
1

coshALq
SinhALq

Wap(Ly) = wpc(0): Ay [COS/Uq - Sinlel] —A4,—C,=0
Wap(L1) = wpe(0): By = Agsin ALy

WBC(O) =0: BZ + DZ = 0,_> DZ = _BZ

wgc(b) = wep(0):
A,sinAL;[cosAb — coshAb] + A,sinAb + C,sinhAb — B3 — D3 =0

WBc(b) = Wcp (0):

—A;sin AL,[sinAb + sinhAb] + A,cosAb — A3 + Cycoshib — C3 =0

51

doifhts,

(3-69)

(3-70)

(3-71)

(3-72)

(3-73)

(3-74)

(3-75)

(3-76)

(3-77)
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wpc(b) = wep (0):

—A;sin AL;[cosAb + coshAb] — A,sinAb + B; + C,sinhdb + —D3; =0 (3-78)

EHG(O) = 0, d Q1 =0:- EHG = Plsin)/xc (3'79)

w50, 6) — Wie(b, £) = ~Lbe®2@]

—A; + C3 — [—A,cosAb + A;sin AL, [sinAb — sinhAb] + C,coshAb] = —in[A,sinAb +
B2 cosAb+ C2sinfid D2 coshidb— Pl sinya
Substituting B, = —D, = A;sinAL, into the above equation A;sinAL,[sinhAb —
SinAb+ i cosAb— coshAD)+ A2 cosAb+ iysindb— A3+ C2 iysinfidb— coshdb+ C3— ipPlsinya=

0 (3-80)

where n = Cow/(A3ED) (3-81)

Wwep (b)) = wigp(Ly):
AzsinAb’ — A,sinAL, — AssinALs[cosAL, — coshAL,] + BscosAb' + CysinhAb’ —
C,SinhAL, + DycoshAb’ =0 (3-82)
Wep(b") = —=Wgp (Ly):

AzcosAb' + A,cosAL, — AssinALs[sinAL, + sinhAL,] — BssinAb' + CscoshAb’ +

C,coshAL, + D3sinhAb' =0 (3-83)
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Wep (D) = Wep (Ly):
—A3sindb’ + AsinAL, + AgsindLs[cosAL, + coshAL,] — BscosAb' + C5sinhAb’ —

C,SinhAL, + DzcoshAb’ =0 (3-84)

EIwl(b',6) + Elwgip(Ly,t) = —Tcoss 22200,

—AscosAb" — AycosAL, + AgsinALs[sinAL, — sinhAL,] + BssinAb’ + CscoshAb’ +

C,coshAL, + D3sinhAb' + P, yﬁ;;je =0 (3-85)
wrp(Ls) = wgp(0): A, — As [cosAL3 S”;f;; coshAL ] +C,=0 (3-86)
3

vy (@) = vpg(a’): Pysin(ya) — Py sin(ya’) — Q; cos(ya’) = 0

From which
_ sin(ya) sin(ya')
Q2 - Pl cos(ya’) P2 cos(ya’) (3-87)
vpg(0) = wep(b'):
A3sinAb’ + BscosAb' + C3sinhAb’ + D3coshAb’ — Q, = 0 (3-88)

Substituting Eq. (3-87) into Eq. (3-88) gives

singa) | p S09) _ - (3.g)

AzsinAb’ + BscosAb' + C3sinhAb’ + DycoshAb' — Cos(ya,) 2 costya’)
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Tcos@{ ov(x. 1) = [Gv(x, D) } — ¢, {dv(a, t) dw(b, t)}

dx ox g dt dt

N
Tcos@ {— [agzala, - ﬁ?—;ala}eiwt = Co{ﬁﬂa(a)iweiwt - WCD(O)iweiwt}

- TcosO{—(P,ycosya’ — Q,ysinya') — Pyycosya} = Co{P; sinya — (B3 + D) }liw

ifBs + iBD; — Py (ifsinya + cosya) — P,cosya' + Q,sinya’ =0 (3-90)

where g = VTC;’:; - (3-91)

Substituting Eq. (3-87) into Eqg. (3-90 ) gives
ifB5 + ifDs; — P, (ifsinya + cosya — tanya’ = sinya) — P,(cosya’ + tanya’'sinya’') =0

(3-92)

Equations (3-73),(3-76), (3-77),(3-78), (3-80),(®:8(3-83),(3-84), (3-85),(3-86), (3-89) and (3-

92) can be combined into

[G]{s} = {0} (3-93)
where{0} is a 12x1 null matrix,{S} = {4, A, A3 A, As B; C, C; C, D5 P, P,} is a 12x1 matrix
containing the unknown constants for describingsih@pe functions and [G] is a 12x12 matrix

as follows.
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G11 G12 G13 G14
G = G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44
The 3X3 sub matrices are as follows
G11= G12 =
C1—-(CHT1)(S1) -1 0 00 O
S1(Cb — CHD) Shb 0 [0 0 —1]
—S1(Sb+SHb) Cb —1 00 0
G14 = G21 =
0 0 O —S51(Cb + CHb) —Sb 0
[—1 0 0] S1(SHb + inCb — Sb — inCHb) Cb + inSh —1]
0 0 O 0 0 Sb’
G23 = G24 =
Sh 0 0 -1 0 0
—CHb+inSb 1 0 0 —inSGa O]
0 Sb' -S4 CHb' 0 0
G32 = G33 =
C4 —S3(S4+SH4) -Sb' 0 CHb' CH4
S4 S3(C4 + CH4) —Cb' 0 SHb' —SH4
—C4 S3(S4 + SH4) Sb’ 0 CHb' Cc4
Ga1= G42 =
00 0 1 —C3+(S3)(CH3)/SH3 0
[O 0 Sb 0 0 Ccb’'
00 0 0 0 ip
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0
0
-S54

SHb'
CHD'
SHb'

G13 =

-1
SHb 0
CHb

0

-1

G22 =

0
0

0
0
0

|

—S3(C4 — Ch4)

|

0
0
0

0
0

G31=

0 Cb
0 —-Sb'
0 Cb

G34 =

0
0

|

1
0
—Cb'

0 yTcos8/(A3El)

0
0
0

G43 =

0
SHb'
0

1
0
0

|

55



56

G44 =

0 0 0
Cb' —SGa/CGa’ TGa'
i —if(SGa) — CGa— (TGa') * SGa —CGa' — (TGa')(SGa")

where Ci = cosAL;, i = 1,2,3,4.,CHi = coshAL;,i = 1,2,3,4., Cb = cosAb, Cb' =
cosAb’, CGa = cosya, CGa' = cosya’, Si = sinAL;, i = 1,2,3,4., SHi =

sinhAL;,i = 1,2,3,4.,, 9 = sinAb,Sb’ = sinAb’, SGa = sinya, and SGa' = sinyad'.

3.4  Solution to equation of motion

The nontrivial solution of Eq.(3-93) requires tttisfy Eq. (3-94) which will lead to the
characteristic equation of motion of coupled syst&he solution to the characteristic equation
will be the complex eigen frequencies correspondindifferent modes of damped free vibration

of the system.

det|G| = 0 (3-94)

The characteristic equation contains the massityeins and the bending stiffneds! of
the equivalent beam. They can be derived baseldeofolowing two conditions.
» Static condition: Vertical static deflection at taldeck anchorage point is zero.
« Dynamic condition: ¥ symmetric vertical bending frequency of the thspan

continuous beam is consistent with that of theipnalgoridge super structure.

The detailed derivations for determining, andEI are given in the Appendix A and Appendix

B.
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3.4.1 Conversion of parameters and trigopnometric factions into linear terms

The characteristic equation of the cable-dampek-deoupled system  contains
parametersA and n which have nonlinear relationships with frequenoy Also it has
trigonometric and hyperbolic expressions which aonhonlinear terms ab. As seen from the
Taylor's expansion, the higher order derivativeshafse parameters and functions with respect
to the frequencw is not significant. Hence, these functions areveotied to linear functions of
w using Taylor's expansion with the base value asittmodal frequency of the cable,. This
conversion is carried out in the current analysieagia Matlab program. Parametetsn Eq. (3-

68) andy in Eqg. (3-81) are converted to linear functiohgaas follows:

1 -1
A= w2 ymy/El +lwi Ymy/EI (0 — wg) (3-95)
Co EI3 2 co(EINi 2
n=2Cep —2(m) wg (@=w) (3-96)

3.4.2 Relation between solution and damping ratio

The characteristic equation of the coupled systemprises a matrix [{z which is a
12x12 matrix. Therefore, in general, the solutiomill yield 12 complex eigenvalues. The
magnitude of the correct solution should be the&t finodal frequency of cabile, from which the
accuracy of calculation could be verified and timaginary part will represeiw,, from which

the damping ratig of the cable could be obtained.
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3.4.3 Analysis Procedures

As described in section 3.3, the simplified eqlémta system consists of three main
components: a three-span equivalent continuous lvelaich represent the bridge deck and all
the supporting cables except the cable consideréuki analysis, a stay cable and a damper. The
solution to the equation of motion of the couplathle-damper-deck system are the roots of its
characteristic equation, Eq.(3-94). A Matlab prognaas developed to solve this equation. The
input data (please refer to Fig.3-5) include théleatension]); the mass density of the
cablefn,); the length of the cabld); the fundamental frequency of the calfig;(the horizontal
distance from the pylon end to the damper locadiotine cable ¢); the horizontal distance from
the bridge deck end to the damper location of thiglec @'); the damping coefficient of the
damper (); the angle of inclination of the cablé)( and the first vertical bending frequency of
cable—deck systerfi).

The analysis procedures are as follows:

» Step 1- Calculation of mass density, and bending stiffnes&l of the three-span
continuous equivalent beam.

a) Use the static condition in Appendix A to get tledationship betweenn, and
EI.

b) Apply the dynamic condition in Appendix B to congerthe frequency of the first
vertical global bending mode of the equivalent bdanfi by varying the cross
section of the equivalent beam.

c) Now check if the static condition is still satedi If not , then vary the density of

the equivalent beam materigk to obtain zero deflection at the cable-deck
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anchorage. Apply newl and m in b). Repeat a) to c) until both static and
dynamic conditions are satisfied.

» Step-2- Use Taylor expansion with the base valuewgf= 2nf, to convert all
parameters, trigonometric and hyperbolic functionsatrix [G] into linear
terms ofw. Then solve matrix [G] to obtain eigen frequencies Matlab
program was developed to perform these tasks.

« Step-3- The solution will be in the fora+ i, where bothw andf are positive values

andwoz,/a2+ﬁz,{:\/#ﬁz.
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CHAPTER IV CASE STUDY

A case study of cable vibration control on a rzdlle-stayed bridge, the Sutong bridge in
China, is presented in this chapter. The impacteak vibration on the efficiency of the external
damper is studied using the proposed model andadeathscribed in chapter 3. Results will be

compared with those from other studies.

4.1 Description of the example bridge

The Sutong bridge is at present the world’s largedle-stayed bridge, situated in
Jiangsu province, China. It provides the transpiorisand economical link between Suzhou and
Nantang crossing the Yangtze river. The key isse&ged to this bridge are significant ship
traffic (over 2000 ships per day), high design wameed, strong currents, poor soil conditions,
306 m high concrete pylons and a record main spaphotograph of the bridge is shown in
Fig.4-1.

The bridge is a double cable plane, twin-pylonleatayed bridge with a continuous
span arrangement of 2,088 m as shown in Fig.A¥20 auxiliary piers and one transitional pier
are erected in each side span. The main span dirithge is 1088m, which is the longest main
cable-stayed bridge span at present.

The bridge girder is a streamlined closed flaglsb®x girder. The total width including
wind fairing is 41.0 m accommodating dual 8 traffioes. The cross section height is 4.0m. The
steel box is generally stiffened in the longitudidimection with closed steel troughs. Transverse
plate diaphragms are provided with a typical distaof 4.0m and with smaller distances down

to 2.27 m locally around the two pylons.
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The inverted Y-shaped pylons are about 300m ighteand are made of concrete grade
C50 according to the Chinese standard JTJ01-89stHyecables are anchored inside steel boxes
fixed to the concrete by shear studs at the pytygm The stay cables are arranged in double
inclined cable planes with standard spacing of Itthe central span and 12m near the ends of
the back span along the girder. To reduce theteffewind loads, the cable stay systems are
made of the parallel wire strand consisting of 7mvires, each with a cross sectional area of
38.48mni. The nominal tensile strength of cables is 1770MPe longest cable is about 577m
with a weight of 59 tons.

The bridge has total of 272 stay cables. The lsng@ stay cables are damped with semi-
active magneto-rheological (MR) dampers. These @asnponsists quite conventionally of a
cylinder, a piston and a fluid. The fluid is magoeind its shear strength, that is, its viscosity ¢
be controlled by the surrounding magnetic field. &yntrolling the currents that create the
magnetic field the resistance with which the dameacts to the respective vibration can be
controlled. Another 152 cables are equipped withdr viscous passive dampers. These dampers
are preset to a certain response force that isrgp@mise of the total system. A typical linear
viscous damper is shown in Fig. 4-3.

It is intended to estimate the damping ratio tffacal stay cable near the mid span of the

Sutong bridge by considering the cable-deck intemacusing the proposed model and method.
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Figure 4-1 Sutong bridge —Jiangsu Province ,China

Nantong Suzhou
- e

i b

100, 10Q 300 1088 300 100,100

2088

Figure 4-2 Schematic diagram of span arrangenwattisonly outermost cables in
Sutong bridge (unit m)
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Figure 4-3 A viscous damper attached to a bridgg cable

4.2 Effectiveness of damper by considering the cibdeck interaction

In the current analysis, the bridge is idealizedaa equivalent three-span continuous
beam with span arrangement of (300 + 1088 + 300) e equivalent beam represents the
behaviour of the original bridge girder and all gtay cables except the studied one in the mid-
span. The stay cable investigated in the moddiaddngest stay cable at mid-span at Nantong
end. Though on the bridge site, MR damper is usethi longest cable, no matured model has
been developed to simulate the behavior of the MRgkr. Since a linear viscous damper is
included in the proposed cable-damper-deck modwl, many studies have been performed
considering a cable equipped with a linear visatarsper, this case study also assumed a linear
viscous damper is attached to the longest cablee phssive damper connects to the stay cable
close to the cable anchorage point on the bridgk.déhe numerical model of the cable-damper-
deck system is shown schematically in Fig. 4-4.
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L,

Figure 4-4 Typical cable-damper-deck coupled model

The physical and dynamic properties of the cahtkthe damper are listéd Table 4-1.
In the given dataTl is the static tension of the cable in ki, is the unit mass of the cable in
kg/m length, L is the horizontal projected lengthtlee cablef; is the natural frequency of the
cable,a is the horizontal distance from cable—damper airgaint to the pylong’ is the from
cable-deck anchorage point to the cable-dampercbpbint,C, is the coefficient of dampe#,

is the angle of inclination of the cable afyds the fundamental frequency of the bridge.

Table 4-1 The main parameters of the longest cafdedamper

T kN m, (kg/m) | L(m) fo(Hz) | a (m) a’'(m) | Co(kNs/m) | 6(deg)| f;(Hz)

6708 100.8 532.92% 0.224 526.1839 6.785 325 22.461950.

64



65

Detailed analysis is shown below.

1. ABAQUS model is created using the following aldqiplease refer to Fig. B-1 in

Appendix B)
L =532.975m E; = 2.0x10 N /m?
L, = 300m Ep = 7.0x101°N /m?
L, = 1088m R, = 0.065m
L; = 300m Initial stress of cable = 5.053x108 N /m?
h = Ltan(22.46) pe = 2400 kg/m?3
T = 6708000 N

ps = 7850 kg/m3

where E is the modulus of elasticity of steef.is the modulus of elasticity of
material of the equivalent beamR. is the radius of the stay cablg, is the density
of steel ang, is the density of the equivalent beam material.
2. Select a rectangular hollow section for theiegjant beam. Use widtls 32m , height
d = 5m and thickness = 0.18m as the initial values.
3. Adjust thep,. value so that static deflection at the cable-dewdhorage pointis  zero
(condition given in Appendix A).
4. Run the ABAQUS program to get th&\iertical bending frequendfy of the cable-
deck system.
5. If the frequencyf, does not equal to the®'lvertical bending frequency of the
original bridge (0.195 Hz), change the heighthef beam section used in Step 2 above
and repeat Steps 3 & 4 unif] converges to 0.195Hz.

65



66

6. Calculate unit massa, of the equivalent beam using
m, = pc(bd — (b — 2t)(d — 2t)), where b, d and t are obtained in Step 5.

7. The final EI and m, values thus obtained are used in Eq. (3-94). €hgation is
solved using Matlab to obtain damping ratio of thmable as described below. The
corresponding Matlab source code is given in Aplpek&.

Results of the above calculation in the curresinepie:
El = 3.45x10'N.m? andm, = 264.58kg/m

Table 4-2 Input parameters in matrix G

a 6.785m L 532.925 m

6 0.392 rad. L, 300 m

my 100.8 kg/m Ly 300 m

m, 264.58 kg/m L, 555.075 m

T 6708000 N Co 325000 Ns/m
El 3.45x16" N-m*

All the elements in matrix [G] can be obtainethgshe input parameters listed in Table
4-2. These elements are then converted to lingansteof w using Taylor's expansion as
described in Section 3.4.3, with the base valukegfuency w, = 2rf, = 1.407 rad/sec. The
determinant of the final matrijG] is an 11" order polynomial ofs. The following roots can be

obtained with the formulation @ in linear terms.
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1.524239221+0.1132960&-2 -20660.071092437+2303.751704748
1.459476458+0.3771170&-2 -27.811067728+1.953496478
0.561176513+0.25974130é&-1 -5.657006310-0.28546957¢-1
9.693705852+3.3067241i03 -42.560825603-50.072125598
0.832321640+1.1692001i14 0.524634081-0.109495838

0.14029283e-1+2.717521802

Root selection was done based on the expressidgheotomplex eigen-frequency at

w =+1-C%w, +i{w, where both real and imaginary parts of the correct should be
positive. Out of these selected roots, the one withvalue closest tw, = 1.407rad/sec is

1.459476458 + 0.3771170e — 2i. The circular frequency corresponding to this raowi=

0.003771
1.459

V1.459472 + 0.0037712 = 1.459 rad/s and the damping ratio §s= = 0.00258.

4.3  Comparison with other models
4.3.1 Fixed-fixed cable model

Theoretical derivation given in Appendix C canuszd to obtain the damping ratio of
the cable fixed at both ends. The Matlab source @dng with the cable and the damper input
data for the above example given in Appendix Fdgel = 1.408 + 0.0072i and hence

damping raticc = 0.0051.

4.3.2 Cantilever beam model by Liang et al (2008)
The model proposed by Liang et al (2008) to ingas¢ the effect of cable-deck
interaction on the damper performance is adopted teecompare the results from the current

model. In Liang’s model, the bridge girder is ideatl as a cantilever beam supported at the
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pylon. A schematic diagram of the model is showrFig. 4-5. The damping ratio obtained

using this model yields a cable damping ratiofof 0.00153 when the damper is installed.

526.139m 6.785m
- e N
-
v
X, tw
%
524.980m ‘ 7.944m
53r2.925m

Figure 4-5 Simplified cantileys@am model used by Liang et al (2008)

Besides, the fixed-fixed cable scenario can besidemned as a special case when Eq.(3-
94) is applied. It was assumed that the equivatentinuous beam is very rigid by substituting
an El value two orders higher than the derived e/dlif = 3.45 x10'N.m? ) into Eq.(3-94)
while keeping the rest of the input data unchan@éds would allow to simulate a no deck
vibration scenario. This yield& = 1.403 rad/sec and a damping ratig = 0.0051 .

Results of the damping ratio of the longest cabieSutong bridge after attaching to a
damper and predicted by using different models @moroaches are summarized in Table 4-3.
The analysis of cable fixed-fixed support conditiosing the theoretical approach and the
proposed model with rigid bridge girder yields theme equivalent cable damping ratio. This

verifies the validity of the proposed equivalens@n continuous beam model. Both the
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cantilever beam model used by Liang et al (2008) #we proposed 3-span continuous beam
model which considers the cable-deck interactionthe analysis yield a damping ratio
considerably less than that of the fixed-fixed eatdse. Hence, the available design curve and
formulae for selecting optimum damper, which aredaghon the assumption that the cable is
fixed at both ends might be too optimistic.

Table 4-3 Summary of results

Model Root of the characteristic equation, Damping ratio ¢

()

Fixed-fixed cable

(Theoretical derivation) 1.408 + 0.0072i 0.0051

Fixed-fixed cable (Proposed
equivalent 3-span cantilever beam 1.403 + 0.00712i 0.0051

model)

Cantilever beam model

Liang et al(2008) E— 0.00153

Proposed equivalent 3-span
cantilever beam model. (consider 1.459 + 0.00377i 0.00258

deck vibration)

The above set of results suggests that in the ohs flexible long-span cable-stayed
bridge, the consideration of cable-deck interactioassessing the effectiveness of an external
damper in cable vibration control is necessary.tRerSutong bridge studied here, the locations
of the cable anchorage point and the damper supporthe deck are almost 8 m apart.
Displacements and velocities at these two locatameshighly dependent on the deformation

shape of the bridge girder. In the case of a linescous damper, the actual damping force is
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proportional to the relative velocity between thable-damper attaching point and the deck-
damper anchorage point. Hence, the bridge girdé¢romavould affect the amount of damping
offered by the damper to the stay cable.

In the cantilever beam model by Liang et al (20@8¢ bridge girder is simplified as a
cantilever beam with one end fixed at the pylonmPared to a typical double tower bridge, of
which the main portion consists of two side spamd @ne main span, the cantilever assumption
would alter the response characteristics of thaeahdiridge girder due to inconsistent boundary
conditions. Therefore, the motion at the cable-deo# the damper-deck connections and their
relations cannot be correctly represented. The anphdeck vibration on the efficiency of the
damper yielded from such a model could be misleadin

The three-span continuous beam model proposeukicurrent study has the advantage
that the boundary conditions are kept consisterih e actual bridge girder. The girder
deformation and the mode shapes can thus be wmelllaied. It is worth mentioning that the
same model and approach proposed in this studpeapplied to obtain damping characteristics
for higher modes of cable vibrations. In the as@&lyf higher modes, the corresponding modal

frequency of the cable should be used as the lese in the Taylor's expression.

4.4 Other Case studies

The objective of considering other case studids isvestigate the effect of cable-deck
interaction on the damper efficiency and its impactcable-stayed bridges with different span
lengths. Four medium to long-span cable-stayedgbsdvith main span ranging from 432m to
1018m were selected in this set of analyses. Allltidge data and input parameters relevant to

the analyses are given in Table 4-4 and Tablerdspectively, and described in Fig.4-4.
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4.4.1 Description of bridges used in the case stedi
4.4.1.1 Stonecutters Bridge — Hong Kong, China

The Stonecutters bridge is a long-span cable stagidde carrying dual 3 lane highway
over Rambler Channel at the entrance to the Kwain@hcontainer port in Hong Kong. The
bridge main span has a twin deck cross-section witength of 1018m. The twin decks are

connected at intervals by transverse steel box egrd The two single

Figure 4-6 View of Stonecutters bridge at the emteato the Kwai Chung container port

leg pylons are 290m tall with a lower section imoete and the upper section formed in
composite steel/concrete. The bridge also inclddgsan twin deck concrete side spans
of total length of 289 m on each side. These 4sp@ae treated in dynamic analysis of the
present study as a single span. Hence the spamgeation of the 3-span equivalent continuous
beam is 289 m + 1018 m + 289 m.

The circular tapered mono-column towers stand erbtidge centre line between the two

longitudinal box girders of the twin girder decka cables are in two planes arranged in a
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modified fan layout and attached with the outsidges of the deck girders. The deck girders are
connected with cross girders spaced at 18 m imidie span coinciding with the stay anchorage
spacing and 20 m in the back spans where the ataysrages are spaced at 10 m. The length of
the longest stay cable is 540 m and the weighbisné. The first vertical bending frequency of

the bridge is 0.244 Hz.

4.4.1.2 Tatara Bridge — Japan

Figure 4-7 Tatara Bridge

The Tatara bridge is a cable-stayed bridge maagud480m in total length which links
Ikuchijima Island and Hiroshima Prefecture in Jap@he main girder section consists of 3
spans, 270 m, 890 m and 320 m. As either side spsainorter than the center span, PC girders
are installed at each end of both the side spamors@s counterweight girders to resist negative
reaction. This cable-stayed bridge thus uses hatelePC connection girder. The main tower is
220m high and designed as an inverted Y shapee€alé installed at 21 levels in two planes
with multi-fan pattern. The length of the longeable is 460 m and it has a mass density of 122

kg/m.
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The width of the bridge is 30.6 m including thdesvalk. The girder height is 2.7
m and it uses flat box girders attached with fgsino ensure wind stability. The first vertical

bending frequency of the bridge is 0.199 Hz.

4.4.1.3 Third Nanjing Yangtze Bridge - China

Figure 4-8 Third Nanjing Yangtze Bridge

The third Nanjing Yangtze bridge is a 5-span calbdgred bridge with two towers. The
bridge is situated on the road between ShanghaCameagdu in Jiangsu province in China. The
span arrangement is 63 m + 257 m + 648 m + 25768 m. In the present analysis, the bridge is
treated as a 3-span continuous beam by considérengpan arrangement as 257 m + 648 m +
257 m.

The streamlined steel box girder deck has an dvesdth of 37.2 m and a structural
height of 3.2 m. The deck facilitates 3 lane dualfic and is designed for a vehicular speed of

100 km/h. The two steel towers with a height of 2d5esemble a curved narrow “A” shape
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when seen along the bridge. The towers are mad# apncrete from the foundation up to the
deck level and the portion above the deck levelfisteel. The stay cables are arranged in two
inclined planes in a modified- fan layout with flb@gest cable being 354.5 m in length and has a
mass density of 72.1 kg/m. The first vertical begdrequency of the bridge is 0.243 Hz.

4.4.1.4 Donghai Bridge - China

Figure 4-9 Donghai Bridge

Donghai bridge is one of the longest cross-selgés in the world. It has a total length
of 32.5 km and connects mainland Shanghai andffeleare Yangshan deepwater port in China.
The cable-stayed section of the bridge has theekingpan of 420 m, in order to allow for the
passage of large ships. It has a navigation capatcB000 tons and a navigation height of 40 m.

The bridge is a five—span continuous cable-stayeify® with double pylons, single cable
plane and auxiliary piers. The span arrangemen8im + 132 m + 420 m + 132 m + 73 m. In
the present study it is treated as a three-spatincmus beam by considering only the middle 3

spans. The bridge is designed according to thewasp-six-lane expressway standard and the

deck is 33 m wide.
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The pylon section above the deck has inverted Yeheile that below the deck is a box
structure with uneven width. The 4.0m deep maimeagirhas a steel-concrete composite of
single-box-three-cell section. The top plate ofhoe girder is 33.0 m wide with two 4.5 m wide
cantilevers. The standard cable spacing is 8m ergitders and 2.2 m on the pylons, totalling
224 cables overall. The length of the longest style is 227 m and its mass density is 85.3

kg/m. The first vertical bending frequency of thédge is 0.388 Hz.
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Table 4-4 Summary of bridge data

76

Stonecutters| Tatara | Nangjing | Donghai
_ Sutong
Bridge (Virumetal | (Yabunoet| (Liang etal, | (Liang et al,
(Liang et al, 2008)
20086) al 2003) 2008) 2008)
L1(m) 300 289 270 255 132
Lo(m) 1088 1018 890 648 432
L3(m) 300 289 320 255 132
L(m) 532.925 496.330 422.680 315.297 203.8[76
0 (rad) 0.392 0.405 0.405 0.475 0.455
a'(m) 6.785 9.430 5.280 4.015 2.596
b’ (m) 7.944 11.160 6.260 5.077 3.217
Cable tension T (kN) 6708 7000 6714 3785 5728
Radius of cable Rim) 0.065 0.064 0.0702 0.054 0.06
Natural frequency of
0.224 0.244 0.255 0.323 0.571
cable §(Hz)
Frequency of 1 global
vertical mode of the
0.195 0.26 0.199 0.243 0.388
bridge £(Hz)
Damper capacity C
325000 332000 357717 206000 276000
(N-s/m)
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Table 4-5 Summary of equivalent beam data
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Bridge Sutong Stonecutters  Tatara Nanjing Donghai
Cross-section of the
equivalent beam
32x6x0.18 32x11x0.3 32x8.2x0.2 32x12.4x0.25 344032
(hollow box section) width
x depth x thickness
Modulus of elasticity of
3x10° 1x10° 1x10 1x10° 1.1x10
equivalent beam FHN/m?)
Bending stiffness of
equivalent beam EI (N | 3.45x13* 6.06x10" 1.5x10* 6.61x10° 6.64x106°
Density of equivalent beamn
17.65 11.8 20.95 10.95 41.7
materialp, (kg/nt)
Mass density of equivalent
beam m (kg/m) 264.58 300.192 322.38 240.35 632.83

The bending stiffness El of the equivalent beamd #me mass density smof the

equivalent beam obtained above are then used ii3E@4) to determine the acceptable root of
the characteristic equation and to find the dampaig of the selected cable of each bridge as
described in Section 3.4.3 Steps 2-4. For comparidamping ratios are also calculated for the
cable fixed-fixed condition for each bridge basedtloe theoretical derivation. The input source

code of Matlab program for these calculations isvated in Appendix E. The results are

summarized in Table 4-6 below.
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Table 4-6 Summary of case study results

Main
Proposed model Analytical model of
span
(consider deck fixed-fixed cable %
Bridge length
vibration) (Appendix C) Difference*
(m)
® g ® g
Sutong 1088 1.459+0.00380.0026| 1.408+0.0072j 0.0051 49
Stonecutter§ 1018 1.604+0.004&).0030| 1.537+0.0077{ 0.0050 40
Tatara 890 | 1.683+0.005910.0035| 1.606+0.0080{ 0.0050 30
Nangjing 648 | 2.081+0.0101i0.0049| 2.035+0.0104{ 0.0051 4
Donghai 432 | 3.621+0.0186i0.0051| 3.594+0.0185| 0.0051 0
*Used cable fixed-fixed condition as reference
0.006 -
2
S 0,005 - - = = -
£ IR
€  0.004 - RN
3 A~
§ o 0.003 A A cable- vibrating deck support "%
o8 TA
£% 0002 -
‘q&; 0.001 - W cable- fixed support
3 0 ; ; ; ; ; .
“ 0 200 400 600 800 1000 1200

Main span length (m)

Figure 4-10 Equivalent®iImodal damping ratio of cable vs main span length
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The five cable-stayed bridges, including Sutonglde and the other four in the case
studies, with main span length varying from 432ni®88m, covered the range of medium- to
long-span cable-stayed bridges quite well. Thadifflerent proportions of adjacent span lengths
affect the mode shape and frequency of vibratiod, #he location of the damper on the bridge
girder also influences the relative speed of themk with respect to the cable and hence the
damping force, the results clearly indicate thatlémg-span bridges, deck vibration will have a
considerable impact on the efficiency of the damjpesuppress cable vibration. As can be
observed from Fig.4-10, compared to the conveatiaasumption of cable fixed at both ends, if
the vibration of the bridge deck and its interactwith cable and damper supporting points are
included in the formulation, for medium span leng#ile-stayed bridges as the Nanjing Bridge
(main span 648m) and the Donghai Bridge (main gj28m), the effectiveness of the damper, in
terms of the equivalentimodal damping ratio of the cable, has been redbgeaughly 5%.
However, in the case of the Tatara Bridge, the &totters Bridge and the Sutong Bridge, which
has main span length of 890m, 1018m and 1088mecésply, the impact is much more
significant. For the Sutong Bridge, which has threglest main span of 1088m, the equivaléht 1
modal cable damping ratio is found to be reducedlbyost a half. The pattern of the current
results, as shown in Fig.4-10, clearly indicatest #s the main span length of the cable-stayed
bridge increases, the actual performance of thepdaron suppressing cable vibration will
deviate more from the cable fixed-fixed case. Tiweee based on the current study, to have a
more accurate estimation on the efficiency of a plennfor cable-stayed bridges with main span

length exceeding 700m, the impact of deck vibrasbould be considered.
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CHAPTER YV CONCLUSIONS AND RECOMMENDATIONS

5.1 Concluding Remarks

An analytical model was proposed to determine thmming property of a bridge stay
cable when attached with a damper, by considethrgetfect of bridge deck vibration on the
cable and the damper. The proposed model compaisedige stay cable, an equivalent 3-span
continuous beam representing the original bridgeegiand all supporting cables except the one
considered in the analysis, and a damper. The iequait motion of the cable and the equivalent
3-span continuous beam have been derived separatedy are coupled to yield the equation of
motion of the cable-deck-damper system by applypgropriate boundary conditions at the
supports and compatibility conditions at cable-detmper-deck and cable-damper connection
points. The equivalent®lmodal damping ratio of the cable was determinedsblying the
system of equations. A Matlab program was develdpgzerform associated matrix calculation
and iterations. The associated finite element mfme¢he dynamic analysis was developed using
ABAQUS 6.9.

Case studies were carried out to investigate tleeteof cable-deck interaction on the
damper efficiency for cable-stayed bridges withedént span lengths. Five cable-stayed bridges
with a main span ranging from 423m to 1088m wetecsed for this purpose. The validity of
the model was verified by assuming a very rigidieglent beam and compared with the results
obtained from a cable fixed-fixed case. The mainctgsions obtained from the current research
are

* Developed a 3-span continuous beam model to stelynipact of bridge- deck
vibration on the efficiency of an external dampersoppressing bridge stay cable
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vibration. The validity of the model was verifie¢ theoretical approach with
cable fixed-fixed support condition.

» Applied the proposed model to a long-span cablgestdridge-Sutong Bridge
(main span 1088m). Results show that by considehagibration of the bridge-
deck and its interaction with cable and damper effieiency of the damper has
been reduced almost by 50%.

» Conducted case studies for five medium to long-sjadobe-stayed bridges. It was
found that if the main span length of the bridgee=ds 700m, it is necessary to
include deck vibration effects in damper design.

Compared to the existing models and methodsadhantages of the proposed model in

evaluating damping ratio are

The proposed model allows the cable — deck interadb be incorporated into the
analysis.

The model uses the real configuration of bridgeicstme in both static and dynamic
analyses leading to more accurate results.

Higher modes of cable vibration can be analysedgusie same model.

The model results are exact, no interpolation iwedlin the calculation.

The model can be used to optimize damper desigodbles on long-span cable-stayed

bridges.

81



82

5.2 Recommendations for Future Research

In the proposed model, the cable is assumedast string of which the bending
stiffness is ignored. But for more accurate resutts effect of sag and bending stiffness of the
cable needs to be considered in the analysis. Wieamically excited, in addition to the cable
in-plane vibration, the bridge girder can be sulgeédo the out- of-plane movements such as
shear and torsional effects. Such effects mayenite the damper efficiency as well. Therefore

in future studies, these effects should also bsidered in evaluating damper efficiency.
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APPENDIX A

RELATIONSHIP BETWEEN m >, AND EI IN THE EQUIVALENT BEAM BASED ON

THE STATIC CONDITION

The static deflection of the equivalent beam dileanchorage location is formulated
based on two types of loads acting on the bridgdegi i.e. deflection due to the self weight of

the equivalent beam and deflection due to cablgiderat the anchorage point.

a) Deflection due to self weight of the equivalebéam using the three-moment
theorem.

A schematic of a continuous three-span beam watfi weight ofw, and bending
stiffnessEI is shown in Fig. A-1. Aread,, 4,, A; refers to the area of the bending moment
diagram for given loading on each span under sinsplyported conditions. When using the
three-moment theorem, is the distance to the centre of gravity of thedieg moment diagram
of spanl measured from support A ands the distance to the centre of gravity of thadieg
moment diagram of span 2 measured from suppoffi@& lengths of spans AB, BC and CD are
L, L, andL; and the bending moments at B and C Mgg and My,, respectively. R4, Rp4,

R-1 and Rpqrefer to support reactions at A,B,C and D, respebti Distancesx andy are

measured as shown.
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Figure A-1 Three- span continuous beam under selfjht loading, including bending
moment diagrams for each span in simply suppomediton.

Considering equilibrium of span ABC, the three mattbeorem is applied,;

A1 X1

Ay xz)
Ly I

L L | L L
Man 5 2Mp (0 5) + Mea = 6 (32 5+ 225

Ly
X ==
175

Ly

_ W2,3 _
A, =—=1L5, x2—7

W2
A1 = _L3 y 12

12
Substituting into Eq. (A-1) gives
2Mpy (Ly + Lp) + Mgy Ly = =2 (L3 + L3)

Similarly, considering span BCD

84
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2M¢i(Ly + L3) + Mg, L, = %(L% +L3) (A-3)

Shear Forces are given by;

RAl = %Ll - ML_il (A-4)

RDI = %Lg - ML_C: (A-5)
Rp1(L1+Ly) M

Rpy =52 (Ly + Lp)? — == == (A-6)

Deflectiony at a distance from the left support of the mid-span is given by;

— W24 Re1,3 Mg,z (W2 ;3 , Mg, _ Rpi;p N
Y= 2w ® Tem® Xt (24151L2 t 2m L, 6EI Lz)x (A7)
b) Deflection due to cable tension at the ancheant.

A general case of deflection at location E dua toadP acting on a 3-span continuous
beam ABCD shown in Figure A-2 is considered fi&pan lengths of AB,BC and CD dkg, L,
and L. L is the distance to the lod®l measured from support Bfz, and M, represent the

bending moments at supports B and C whilg, Rg;, Rc; andRy,, are reactions at A,B,C and
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D, respectively. LoadP will be replaced by the vertical component of eatansion in upward

direction afterwards.

—
\4
A
\ 4
A
y

Mg, '3 L P Mcﬁ M,
- 5

T |\ * | T

RAZ RBZ RCZ RDZ

>
N
5
v

m

Figure A-2 Three - span continuous beam subjecdeddoncentrated load, including the
bending moment diagram for simply supported case.

Using moments and reactions as shown in Fig. A-2

My, = Mp, =0, A1 =453 =0,4, :@’xl :(LZ::'L)’ X,

_ (2Ly-L)
T3

Substituting the values above into Eq. (A-1) foars ABC, we obtain;

2Mp,(Ly + Lp) + M¢,L, = PL(L, —L)(2L, —L)/L, (A-8)

Substituting the values above into Eq. (A-1) foarsBCD, we obtain;

MpyLy + Mca(Ly + L3) = PL(L, —L)(Ly +L)/L, (A-9)

Shear forces are given by;
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Raz = L (A-10)

Rep = —1‘1—‘;2 (A-11)
_ P(La—L)  Raa(Li+lz) Mc )

Ry, = L L L (A-12)

Deflectiony at a distance from the left support of the mid-span is given by;

_Rg2z 3 Mgy > (X L) Mgz Re2 2 (Lz-L)3 )
Y= 6E] x 2EI Xt —P= (ZEI 6EI L P 6L, EI )x (A 13)

Since the deflection at the cable anchorage locas adjusted to zero at the time of
construction, the upward deflection of the bridgelddue to cable tension at the anchorage point
should be equal to the downward deflection dueeld \geight of the bridge at that location.

Hence, substituting= L into Eq. (A-7) gives

yi= gty lmys Moz (a3t B2y (A-14)
24EI1 6E1 2EI 24EI 2E1 6E1

Substituting P = —Tsinf andx = L into Eq. (A-13) gives

_Rpp ;3 Mpp,p , Mp Rp2 ;2 (Lp-L)3 )
Yo =oml —om L ¥ Ggle gy lz +P 6LEI )L (A-15)
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The condition for zero deflection is;

yi+y.=0
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(A-16)
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APPENDIX B
RELATIONSHIP OF m, AND EI IN THE EQUIVALENT BEAM BASED ON THE

FIRST VERTICAL BENDING FREQUENCY OF THE BRIDGE

A two-dimensional finite element model of a cablkek system was developed using the
general purpose finite element software ABAQUS. lBthe cable and the deck were
represented by B21 two-node linear in-plane beasmehts. The cable tension under static
loading was represented by an initial stress in ¢hble. The finite element model is

schematically shown in Fig. B-1.

) rl

Ll‘ »

4
. A
r'Y

Figure B-1 schematic diagram of thenatical model of cable-deck system

In Fig. B-1, ABCD represents the equivalent bridgeder, support A has restricted
movements in both horizontal and vertical directiamhereas supports B,C and D only have
restricted vertical movements. EF represents théeaander investigation. Support E is a fixed

support and support F is free to move. Young's wmhasl for steel and the given section of the
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cable was used as the cable properties. For tdgebgirder, a hollow rectangular section was
used with element type B21 and Young’s modulusctorcrete was used and the density of the
material was varied to satisfy the deflection citte while satisfying the frequency requirement.
The analysis was performed in two steps. stephastatic general case and step2 as the linear
perturbation, frequency. The Lanczos eigen soleas selected as the method and requested for
20 eigen values.

To get an idea about the number of elements redjdor accurate solution of vibration
frequency , ABAQUS simulation was conducted for beam ABCD by using different mesh
sizes. The span lengths used wkfe= 300m, L, = 1088m andL; = 300m. It was found that
an element length of 10m or less gives an accwa@teéion up to the third decimal place of the
frequency value. Hence an element size of 10m wasidered optimum to mesh the beam.
Since the cable length w&37m and it was also meshed using the B21 beam elethensame
optimum mesh size is applicable for the cable.

Since the mass density of the bridge girder is omknat the beginning, a bridge girder
section has to be assumed initially and the frequemlue of the cable-deck system must be
verified. This will be a trial and error procedwastil the frequency value is obtained and the

static displacement at the cable anchorage pondris
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APPENDIX C

MODEL DAMPING RATIO OF AN INCLINED TAUT STRING WITH

SUPPORTS ATTACHED TO A LINEAR VISCOUS DAMPER

Fig. C-1 shows a cable-damper system comprisesh aficlined cable connected to fixed

supports at A and B and a damper, connected toablke at C and connected to a fixed support

at D.

s

W

Figure C-1 A cable-damper system

The following equation can be obtained considetirtgin-plane vertical motion of the inclined

cable AB of the cable-damper system.

H a%v 0%

—— p_
@axz at2
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whereH is the horizontal component of the cable tendioy(x) is the static profile of the cable,

p is the mass density of the cablgx,t) is the vertical in-plane dynamic displacement o t

cable with respect to timteand the other dimensional parameters are as shote Fig.C-1.

H = Tcosf (C-2)

If the sag in the cable is neglected;

— = tanf (C-3)

Substituting Eq.(C-3) into Eq.(C-1) and rewritirmpnsidering the damper forcé, atx = a ;

we obtain:
2, 0% 0%v
Tcos<6 Pz = —-F,6(x —a) (C-4)

Whered is the Dirac delta function.

Damping force at = a can be expressed as;

dv
dx

dv
dx

at

Tcos6 {

a_} = —F, (C-5)

Also
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where C is the damper capacity.

Assuming

v(x,t) = v;(x)et 0<x<a

v(x,t) = v,(xNe'?t 0<x' <a

Also assuming

v1(x) = A; sin(yx) + B;cos (yx)

v,(x) = A, sin(yx") + B,cos (yx')

The boundary conditions are:

v(0,t) =0 - v,(0) =0 - v;(x) = A; sin(yx)

v(L,t) =0 - v,(0) =0 - v,(x') = A, sin(yx")

_ w m
where Y==5.7
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Substituting Egs.(C-11),(C-12) and (C-6) into EgH)C

A, (cos(ya) + if sin(ya)) + A, cos(ya’) =0 (C-13)
_ Cw
where f = Tcosd

The continuity condition at C ;

v, (a)e’t = v,(a)e'“t - A, sin(ya) = A, sin(ya’) (C-14)
Substituting Eq.(14) into Eq.(13) ;

A;(cos(ya) + if sin(ya)) + A;sin (ya) cot(ya’) = 0 (C-15)
Sinced; # 0; Eq.(C-15) yields the transcendental equatiornifercable motion as

(cos(ya) + ip sin(ya)) + sin (ya) cot(ya’) =0 (C-16)

The solution of Eq.(C-16);, yields the complex frequeneay, from which the damping rati§

can be determined.
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APPENDIX D

MATLAB PROGRAM FOR MATRIX CALCULATIONSAND
ITERATIONS

D-1 Matlab program to calculate eigen frequenciasable-damper-deck system

%Model analysis of Sutong Bridge
%This programm calculates the eigen frequencies of
clear,clc

theta=0.392; %Angle of inclination of the cable
x=0.0127; %This is the damper location parameter;x=
Lc=577; %Length of the cable

L=Lc*cos(theta); %Horizontal distance from the cabl
pylon

Ld=x*Lc; %Distance along the cable to the damper co

al= Ld*cos(theta);

bl=Ld/cos(theta);

a=L-al;b=L-b1;

m1=100.8; % Mass density of the cable kg/m

m2= 264.971,; % Mass density of the equivalent bridg
CO0= 325000; % Damping capacity of the damper N.s/m

L1=300; %Length of span 1
L2=1088; %Length of main span
L3= 300; %Length of span 3
L4=12-L;

T=6708000; %Cable tension under static condition N
El=3.11E11; %Bending stiffness of the equivalent br
syms w

ga=w/cos(theta)*(m1/T)"0.5; %Parameter
be=C0*w/ga/T/cos(theta); %Parameter
la=(m2/EN"0.25*w"0.5; %Parameter A
ne=CO*w/la"3/El; %Parameter n

™ <

D=[cos(la*L1)-cosh(la*L1)*sin(la*L1)/sinh(la*L1) -1

0 0 O

sin(la*L1)*(cos(la*b)-cosh(la*b)) sin(la*b) 0 0O

-1 0 0O

-sin(la*L1)*(sin(la*b)+sinh(la*b)) cos(la*b) -1

100 0 O

-sin(la*L1)*(cos(la*b)+cosh(la*b)) -sin(la*b) 0O

0 -10 O
sin(la*L1)*(sinh(la*b)-sin(la*b)+i*ne*(cos(la*b)-co
cos(la*b)+i*ne*sin(la*b) -1 0 0 O i*ne*sinh(la*b)-c
i*ne*sin(ga*a) O;

0 0 sin(la*bl) -sin(la*L4) -sin(la*L3)*(cos(la
cos(la*bl) O sinh(la*bl) -sinh(la*L4) cosh(la*b1

0 0 cos(la*bl) cos(la*tL4) -sin(la*L3)*(sin(la
sin(la*b1) 0 cosh(la*bl) cosh(la*L4) sinh(la*b1)

0 0 -sin(la*bl) sin(la*L4)  sin(la*L3)*(cos(la*
cos(la*bl) 0 sinh(la*bl) -sinh(la*L4) cosh(la*bl)

0 0 -cos(la*bl)
sin(la*bl) 0
ga*T*cos(theta)/la*3/El,

cosh(la*bl)

95

-cos(la*L4) sin(la*L3)*(sin(la*
cosh(la*L4)

the model

Ld/L
e anchorage point to the

nnection

e girder kg/m

idge girder N.m"2

00 0O -100

o

-1 sinh(la*b) 0 O
0 0 O cosh(la*b) -
0 0 1 sinh(la*b) O

sh(la*b)))
osh(latb) 1 0 0O -

*L4)-cosh(la*L4))

)00;

*L4)+sinh(la*L4)) -
00;

L4)+cosh(la*L4)) -

00:;
L4)-sinh(la*L4))

sinh(la*bl)
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0 0 0 1 -cos(la*L3)+sin(la*L3)*cosh(la*L3)/ sinh(la*L3) 0 0 0 1
0 0 O
0 0 sin(la*bl) 0 0 cos(la*bl) 0 sinh(la *b1l) 0 cosh(la*bl) -
sin(ga*a)/cos(ga*al) tan(ga*al);
0 0 0 0 0 i*be 0 0 0 i*be -co s(ga*a)-
i*be*sin(ga*a)+tan(ga*al)*sin(ga*a) -cos(ga*al)-ta n(ga*al)*sin(ga*al)];
k1=1;
for k1=1:12
k2=1;
for k2=1:12
F=D(k1,k2);
F1=diff(F,'w");
E(k1,k2)=subs(F,[w],[1.405])+subs(F1,[w],[1 .405])*(w-1.405);
end
end
S=det(E)

Si1=solve(S);S2=S1(;,1)

D-2 Model analysis for fixed inclined cable-dampgstem

%This programm calculates the eigen frequencies of the model

clear,clc

theta=0.392; %Angle of inclination of the cable

x=0.0127; %This is the damper location parameter;x= Ld/L

Lc=577; %Length of the cable

L=Lc*cos(theta); %Horizontal distance from the cabl e anchorage point to the
pylon

Ld=x*Lc; %Distance along the cable to the damper co nnection

al= Ld*cos(theta);
bl=Ld/cos(theta);

a=L-al;b=L-b1;
m1=100.8; % Mass density of the cable kg/m
m2= 264.971,; % Mass density of the equivalent bridg e girder kg/m (not

used)

CO0= 325000; % Damping capacity of the damper N.s/m
L1=300; %Length of span 1
L2=1088; %Length of main span
L3= 300; %Length of span 3
L4=12-L;
T=6708000; %Cable tension under static condition N
El=3.11E11; %Bending stiffness of the equivalent br idge girder N.m"2(not

used)
syms w
ga=w/cos(theta)*(m1/T)"0.5;%Parameter %
be=C0*w/ga/T/cos(theta);%Parameter B
la=(m2/E"0.25*w"0.5;%Parameter A
ne=CO0*w/la"3/El;%Parameter n

D=[cos(ga*a) sin(ga*a) cot(ga*al)];
for k=1:3

F=D(K);

F1=diff(F);
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E(k)=subs(F,[w],[1.369])+subs(F1,[w],[1.369])*(
end
EQ=E(1)+be**E(2)+E(2)*E(3);
A=solve(EQ)

97

w-1.369);
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APPENDIX E INPUT SOURCE CODE FOR ABAQUS SIMULATION
**FREE VIBRATION SIMULATION OF CABLE-DECK SYSTEM OF SUTONG
BRIDGE

** Job name: Job-1 Model name: SUTONG
** Generated by: Abaqus/CAE 6.9-1
*Preprint, echo=NO, model=NO, history=NO, contac&N
*DEFINE NODES AT SUPPORTS AND LOCATIONS OF CHANGE PROPERTIES
*Node
1,0,0
21,300,0
56,824.9795,0
57,832.924,0
94,1388,0
114,1688,0
115,300,220.308
154,826.139,2.8043
*GENERATE NODES IN BETWEEN KNOWN NODES
*NGEN,NSET=B
1,211
21,56,1
57,94,1
94,1141
*NGEN,NSET=C
115,154,1
*DEFINE ELEMENTS
*Element, type=B21
1, 1, 2
21, 21, 22
56, 56, 57
57, 57, 58
94, 94, 95
115, 115, 116
154, 154, 57
*GENERATE ELEMENTS USING ALREADY DEFINED ELEMENTS
*ELGEN,ELSET=BEAM1
1,20,1,1
21,35,1,1
57,37,1,1
94,20,1,1
*NAME ELEMENT SETS
*ELSET, ELSET=BEAM
BEAM1
56,

98



99

*ELGEN,ELSET=CABLE1

115,39,1,1

*ELSET,ELSET=CABLE

CABLEL1,

154,

*NAME NODE SETS

*Nset, nset=N154

154,

*Nset, nset=N56

56,

** DEFINE CABLE SECTION

*Beam Section, elset=CABLE, material=STEEL, tempa@=GRADIENTS, section=CIRC
0.065

0.,0.,-1.

** DEFINE BEAM SECTION

*Beam Section, elset=BEAM, material=CONCRETE, terapere=GRADIENTS, section=BOX
36.,5.55, 0.18, 0.18, 0.18, 0.18

0.,0.,-1.

*DEFINE LOCATION OF DAMPER
*Element, type=DashpotA, elset=dashpotl
251, 154, 56

*DEFINE DAMPER CAPACITY
*Dashpot, elset=dashpotl

325000.

** DEFINE NODE SETS

*Nset, nset=N1

1,

*Nset, nset=NSS

21,

94,

114,

*Nset, nset=N57

57,

*Nset, nset=N115

115,

*End Assembly

*DEFINE INITIAL STRESS ;REF.INITIAL TENSION
*INITIAL CONDITIONS, TYPE=STRESS
CABLE,5.05E8,0,0.

**

* MATERIALS

** DEFINE MATERIAL PROPERTIES
*Material, name=CONCRETE
*Density

15.2,

99



*Elastic

3e+9, 0.15

*Material, name=STEEL
*Density

7850.,

*Elastic

2e+11,0.3

**

*STEP1 STATIC

*Step, name=Step-1, nlgeom=YES
*Static

1., 6., 1e-05, 6.

*DEFINE BOUNDARY CONDITIONS
* BOUNDARY CONDITIONS

*%

*Boundary

N1,1,1

*Boundary

N1, 2, 2

*Boundary

NSS, 2, 2

*Boundary

N115,1,1

*Boundary

N115, 2, 2

*%*

* QUTPUT REQUESTS

*%

**_oads; Type:Gravity
**Dload

*BEAM, GRAV, 9.81, 0., -1.
*CABLE, GRAV, 9.81, 0., -1.

*%

*%

*%

*Restart, write, frequency=0

*%

** FIELD OUTPUT: F-Output-1
*Qutput, field, variable=PRESELECT
*Qutput, history, variable=PRESELECT
*End Step

**

*DEFINE STEP 2 LINEAR PERTURBATION
** STEP: Step-2

*%*

*Step, name=Step-2, perturbation

100

100



101

frequency

*Frequency, eigensolver=Lanczos, acoustic couplimgsormalization=displacement
20’ 111

*%

*Restart, write, frequency=0

**

*Qutput, field, variable=PRESELECT
*End Step
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