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Application of discrete-basis-set methods to the Dirac equation

G. W. F. Drake and S. P. Goldman
Department ofPhysics, University of 8'indsor, Windsor, Ontario, Canada N98 3P4

IReceived 21 November 1980)

Variational solutions to the Dirac equation in a discrete I.' basis set are investigated. Numerical calculations
indicate that for a Coulomb potential, the basis set can be chosen in such a way that the variational eigenvalues
satisfy a generalized Hylleraas-Undheim theorem. A number of relativistic sum rules are calculated to demonstrate
that the variational solutions form a discrete representation of the complete Dirac spectrum including both positive-
and negative-energy states. The results suggest that widely used methods for constructing I.' representations of the
nonrelativistic electron Green s function can be extended to the Dirac equation. As an example, the relativistic basis
sets are used to calculate electric dipole oscillator strength sums from the ground state, and dipole polarizabilities.

I. INTRODUCTION

In nonrelativistic quantum mechanics, varia-
tional methods provide a powerful and widely
used technique for the construction of approxi-
mate eigenvalues and eigenfunctions of the Schro-
dinger equation. To briefly review, if $„ is any
normalizable trial function and H is the Schro-
dinger Hamiltonian, then the expression

is an upper bound to the ground-state energy. If
g„ is expanded in an orthonormal basis set 4,
with linear variational coefficients a&,

Then E„is optimized with respect to the a, by
solving the set of N homogeneous equations

BEtr
BQ)

for the a, . This is equivalent to diagonalizing
the NxN matrix H with matrix elements

If„=&C. , (H)e, & . (1.4)

The jth eigenvector ~C &) gives the optimum values
of the a, and, by the Hylleraas-Undheim theorem, '
the X eigenvalues are upper bounds to the true
eigenvalues of H. The bounds progressively im-
prove as Ã .is increased since the matrix eigen-
values necessarily move downward (or remain
fixed).

The bounds discussed above cannot in general
be extended to the Dirac Hamiltonian H~ because,
unlike H, F~ is not bounded from below. Any
positive-energy eigenvalue of the matrix H~ cor-
responding to (1.4) can collapse without limit to
a negative- energy eigenvalue as the basis set is
enlarged.

Variational methods have previously been used

to solve the Dirac-Hartree-Fock equations"' and
the stability of these solutions against collapse
to negative-energy states has recently been dis-
cussed. ~ In this context, stability is ensured
by projecting out the negative-energy states. In
the present work, we obtain instead a variational
representation of the complete Dirac spectrum
without the explicit. use of projection operators.
We suggest on the basis of numerical evidence
that for the special case of the Dirac equation
with a Coulomb potential, the basis set can be
chosen in such a way that the eigenvalues do yield
upper bounds to the discrete positive energies,
while the negative eigenvalues lie in the negative-
energy continuum.

The primary usefulness of the results is that the
N-eigenvalue spectrum of FI~ forms a discrete
variational representation of the actual eigenvalue
spectrum of H~, including both positive and nega-
tive energies. This allows the Dirac Green's
operator to, be approximated by the expression

(~ )z g I 6) Al (1 5)Ej z

where the sum over j includes both positive and
negative variational eigenvalues of H~. The non-
relativistic analog of (1.5) has been widely used to
perform summations over complete sets of inter-
mediate states, ' and to extract information on
scattering states. " The present results suggest
that the same techniques can be extended to the
Dirac Hamiltonian.

In the. remainder of the paper, the variational
solution of the Dirac equation is first discussed
in Sec. II. We then show the variational eigen-
values are bounds on the exact eigenvalues in Sec.
III, and suggest on the basis of numerical evi-
dence that a generalized Hylleraas-Undheim
theorem exists for the relativistic Coulomb pro-
blem. The completeness of the basis set is tested
by calculating a number of sum rules in Sec. IV.
The variational basis set is then used in Sec. V
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to calculate the electric dipole oscillator-strength
sum from the ground state.

Z
I&'-2(s-

I &I&(I &I - y&' ]'" (2.10)

II. VARIATIONAL FORMULATION

%e restrict our discussion to an electron in a
Coulomb potential o(r) = Z—e2r since this has
special properties which lead to bounds. The
four-component Dirac equation is then

,(2.1}

with

Our variational procedure consists of using a
trial function of the same form as (2.8) with u, and

b& regarded as linear variational parameters, and
A, a nonlinear parameter which can be adjusted
arbitrarily. Starting with 2N basis functions

(2.11)

Ze 2

If = ca ~ p +Pmc (2.2}
(2.12)

$2gr '

(-fr-'
(2.3)

and the Dirac matrices n and P have their usual
meanings. For any central potential, the solutions
to (2.1) can be written in the form'

(2.13)

which satisfy

the computational procedure is first to ortho-
normalize the basis set, and then to diagonalize
II, to obtain the linear combinatioris

4'2= Z «~.SA+&2.if'&
/=1

where g(r) and f (r) are the large and small radial
functions and 0»& is a two-component spherical
spinor defined as the vector coupled product

4] 4~dr = 5) ~, (2.14)

fl~w =~ «~2& IfM&1'P(8~m&X2 (2.4)
J IIr@j~+

0
(2.15}

with

(oi E1)

All necessary integrals can easily be evaluated
analytically. The e, , i = 1, ..., 2N are the discrete
variational eigenvalues.

For convenience, we define a real two-compo-
nent radial spinor by

@( )
f'g(r )
&f(r))

Then 4 (r) satisfies the radial Dirac equation

with

d K 0'
H = -io — +o —+~-rpdyx

(2.5)

(2.6}

(2.7)

in atomic units (e = 5' = m = 1). The &r's are the
Pauli spin matrices, and I(." is the Dirac quantum
number x = + (j+ —,') for j= / w —,'. The exact posi-
tive-energy solutions to (2.6) for quantum numbers
n and z can be written in the form

III. BOUNDS

c„=g(r) al I+fpI
fib - t'0

&oi &»
(3.1}

In general, the e, obtained above are distributed
between + ~ and -~, and move in an unpredictable
way as the parameters of the basis set are varied.
There is no guarantee that any eigenvector is
an approximate representation of some particular
state, and the eigentalues are not bounds. But
for the special case of a Coulomb potential, it
appears that one does obtain bounds in the form
of a generalized Hylleraas-Undheim Theorem.
We give here a rigorous proof for the case N = 1,
together with numerical evidence that the theorem
can be extended to arbitrary N.

For the case N = 1, consider a trial function
of the form

y-l e- &r ~4 (15 /ON

&0) &1)
(2.8) where g(r) is an arbitrary continuous function

subject to the conditions

with

y (Z2 ~2 +2)1h (2.9)
f g(r)'dr = 1,

0

lim g(r) = 0.
r~0

(3.2)
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Then variation of

(8 8)

(8.4)

where

gt' 2vr dr (3.5)

TV= gt' x 'dr ~

0
(8 5)

Clearly, a g(r) can be chosen to yield a wide
range of eigenvalues if Y and S"are independent.
But for the Coulomb potential, V = -ZW and (3.4}
reduces to

E„=—ZW+ r (1+ a'~'W')'+. (8.7)

The lower root always lies below —1/a', and is
therefore a lower bound on the highest negative-
energy eigenvalue. The upper root can be opti-
mized with respect to arbitrary variations in
W & 0 to yield a single minimum

with respect to a and b for an arbitrary potential
e(r) yields

negative -energy continuum below E = —1/n',
while the positive-energy eigenvalues behave
exactly as if the Dirac Hamiltonian were a posi-
tive-definite operator. They move progressively
lower as N is increased, but never cross the exact
energies. The s,@ eigenvalues for Z = 92 and
X = 65.2 are shown for progressively larger basis
sets in Fig. 1. The spurious root for I(; &0 dis-
cussed previously is always present, but causes
no difficulties.

The above behavior depends on there being as
many f,[(Eq. 2.12)] as g, [(Eq. 2.11)]functions in
the basis set. As f, functions are omitted, nega-

'

tive eigenvalues progressively disappear and
positive eigenvalues fall progressively below the
exact values. It, therefore, appears that for the
Coulomb-Dirac Hamiltonian, there exists a
generalized Hylleraas-Undheim theorem stating
that for 2N-dimensional basis sets containing as
many functionally equivalent degrees of freedom
in the upper component as in the lower component,
there are N-positive eigenvalues and N-negative
eigenvalues. For x &0, the positive eigenvalues
are upper bounds on the first N discrete energies.
For g &0, one obtains bounds on the first N-1
discrete energies, together with a spurious root.
In both cases, the negative eigenvalues are lower
bounds on the highest negative-energy state (i.e.,
-mc'}.

Y
tr (8.8) IV. THE DIRAC GREEN'S OPERATOR AND SUM

RULES

w=z/yl~l. (8.9)

These are the exact values for the lowest posi-
tive-energy state having any a &0 (i.e., j = l+ —,).
For &~0, the above procedure yields a spurious
root degenerate with the corresponding state
with x &0. For example, a 1p,~,(z = 1) root is ob-
tained which is degenerate with 1s,@(~= -1).
This causes no problem as the basis set is en-
larged because the single spurious root can be
simply discarded. The essential point is that a
lowest posibve-energy root always exists which
prevents the spectrum from collapsing. For
g &0, the root is a rigorous upper bound on the
lowest positive eigenvalue for any choice of g(r}
subject to conditions (3.2).

We have not yet been Able to extend the formal
proof of bounds to basis sets with N&1. However,
we have done extensive numerical calculations with
progressively larger basis sets of the form (2.8)
for g = + 1, + 2, N up to 16, and a range of values of

In every case, the 2N eigenvalues split into
N-positive eigenvalues and N-negative eigen-
values. The negative eigenvalues all lie in the

To the extent that the discrete variational spec-
trum obtained by diagonalizing H~ in a finite
basis set represents the actual spectrum of H~,
the Green's operator can be approximated by

G( ) g l 4.&&4.l

6ff —Z
(4.1)

w'here the e„are the variational eigenvalues and
the

l p„& the corresponding eigenvectors To tes.t
the validity of (4.1},we have evaluated a number
of sum rules of the form

(4.2)

where the sum includes integrations over both
positive- and negative-energy continua. By re-
placing factors of (E„-E,) with [H~, r] as in the
derivation of nonrelativistic oscillator strength
sum rules, ' the S;(i = 0, ... , 4) can be calculated
exactly. The results are

(4.3)

(4.4)

(4.5)
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FIG. 1. Distribution of the nsf j2 variational eigenvalues for Z= 92 and X= 65.2 as a function of the size of the basis
set. Each basis set of size 2~has X-positive eigenvalues in the upper half of the diagram and N-negative eigenvalues
in the lower half of the diagram. The vertical scale is logarithmic.

8~ (40 I &
I ko& + 12 ~ (4.7}

(4.8)

with G(E,) approximated by (4.1). The errors

and S,diverges for ns, ~, and npy/2 states. The non-
relativistic 8, also diverges even though the relativ-
istic S, remains finite. Equation (4.4) for S, shows
that the contributions from positive- and negative-
energy states to the nonrelativistic oscillator
strength sum (for which S, = 1) exactly cancel.
This result was obtained previously by Levinger
et al. ' Alternatively, the S; can be written in
the form

2oI~= 3$ (4.9)

Relativistic values of o'IZ' (in units of ao} are
given in Table II for a selection of hydrogenic
ions. The values have converged to the number
of figures quoted. The exact nonrelativistic
value is &„=4.5/Z'.

arising from the use of (4.1) with N = 14 are
shown in Table I. All of the errors are small,
and extrapolate smoothly to zero as N is in-
creased. This provides strong evidence that
the variational representation tends to a com-
plete and accurate description of the Dirac spec-
trum as the size of the basis set is enlarged.

The sum S, is related to the dipole polarizability
e, by'
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Sum Exact value
as)/S]

Z=l Z =50

Sp

Sg

S4

(V+ 1)(~+1)/2 '
0

s/n~

4 y2(V'-1)(V-2) +
y(W —1)

-5x10 "
6 x10~
1x10~

3 x 10-1i

2 x10-"

7 x 10-10

5 x 10+

6 x10

2 x10+

2 x 10~

TABLE I. Comparison of sum rules [Eqs. (4.3)-(4.7)]
with exact values for the 1s~g& state, using a 2x14 term
basis set. M& =S&(exact) -S&(sum rule), For S&, the
number tabulated is M~ instead of M~/S~. The values
of y from (2.9) are 0.99997337 for Z =1 and 0.93105942
for Z =50.

troducing an arbitrary high-energy cutoff, and
find that the summed oscillator strength is in-
sensitive to the cutoff chosen. An advantage of
the finite basis set method used here is that it
provides a built-in high energy cutoff. Since
larger basis sets include progressively higher
energy states, the oscillator strength sum is
said to converge if the results are independent
of the size of the basis set.

Following Grant, "the relativistic dipole oscil-
lator strength from the ground state to an np
state with J= —,

' and —', is given by

1 ~ (2J+1) (-,' l
o~ggl

7=j/g j)z ) g 0

where

V. THE RELATIVISTIC DIPOLE OSCILLATOR
STRENGTH SUM

(5.1)

Z
1
5

10
20
30
40
50
60
70
80
90

100

n„Z'(a4, )
4.499 751 5
4.493 788 3
4.475 1644
4.400 837 6
4.277 562 1
4.106247 4
3.888 1792
3.625 029 5
3.318865 9
2.972 152 4
2.587 720 5
2.168 648 3

A long-standing problem of interest in the cal-
culation of th'e forward photon scattering ampli-
tude at high energies by dispersion theory is the
value of the dipole oscillator strength sum'~

$(+) —Q f
where n runs over only the positive-energy states
n (including the continuum). If relativistic and

retardation effects are neglected, then the
Thomas-Reiche-Kuhn (TRK) sum rule yields
the value S~+~ = 1. The problem of determining
the full relativistic value with retardation has been
discussed by Payne and Levinger, "and Levinger,
Rustgi, arid Okamoto. ' '" They point out that ac-
cording to the approximate analytic formulas of
Sauter" and Hall, ' S,' diverges logarithmically
since the dipole oscillator strength density is ap-
proximately proportional to 1/(o„at very high en-
ergies, where „ is the transition frequency to
the nth state. They avoid the divergence by in-

I

TABLE II. Dipole polarizabilities for hydrogenic ions,
obtained with a 2 x 14 term basis set. Values not listed
can be estimated from the interpolation formula ~&Z4
=& —@(O.Z) +0.53983 (eZ) .

M' 8= ~ f(j( —~,)I,'+2I, ]

—W[(~„-x~)I,' -I,],
M~. s = 2~&+ (x~ -xs)(&;+ I', ) -I, + 2I-, ,

I ( )= fcc(g f c fgc)jcc(cc»lc)d»,
0

dc (tc)= J (g„gc»f„fc)jc4u»fc)d»
0

&u =z(P) -z(e),
and y~ is a spherical Bessel function. For the
present calculation, n = ls,g, and P = npz. M'
in (5.3) is the contribution from the longitudinal
part of the photon vector potential. This term
vanishes identically if exact wave functions are
used, making the results independent of the gauge
parameter G. The choices G = 0 and G =~2 yield
the dipole velocity and length forms in the non-
relativi'stic limit. " The degree to which the pres-
ent results depend on Q provides a check on the
accuracy of the calculation.

Numerical values of the relativistic dipole os-
cillator strength sum with and without retardation
are given in Table III for a number 'of values of Z.
The values without retardation correspond to
$,'(no ret) =-', g„,(E„-g,)~(0~'P)n) ('. The sums with
G =&2 appear to have converged to the number
of figures quoted with a 2x14 term basis set for
each of the np, ~, and np, ~, series of final states.
For example, at Z= 82, the values of $+(ret) are
0.71924 and 0.71932, respectively, for 2x 7 and
2x14 term basis sets. To five figures, no fur-
ther change was found with larger basis sets. A
few results with Q=O are also given in Table III
for comparison. These values are more slowly
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TABLE III. Relativistic dipole oscillator strength
sums with and without retardation using a 2 && 14 term
basis set. G is the gauge parameter appearing in Eq.
{5.3).

z
1

10
20
30
40
50
60
70
80
82
90

100

S,'(ret)

G =M2
0.999 948 5
0.994 90
0.979 8
.0.955 4
0.923 6
0.8849
0.839 7
0.788 2
0.7313
0.7193
0.669
0.60

S&+ (ret}

G=0
0.999 948 5
0.994 89
0.979 7

0.884 5

0.717 6

S~ (no ret)

G =v"2
0.999 955 6
0.995 62
0.983 0
0.963 3
0.937 5
0.906 5
0.871 0
0.831 4
0.787 8
0.778 4
0.739 9
0.69

convergent with the size of the basis set, but
they extrapolate to the same limit as the basis
set is increased. To the extent that the figures
agree, this demonstrates the gauge invariance
of the results.

In common with Payne and Levinger, "the values
with retardation lie below those without, but the
numerical value of S',(ret) at Z= 82 is substantially
smaller than their result. They obtained 0.86
(Ref. 9) and 0.82 (Ref. 10). Since even our $~+(no

ret) lies below their values with retardation, it
seems likely that their values are too large. How-
ever, both calculations suffer from the defect
that there may. still be a contribution from a very

high energy tail which does not show up in the
convergence test. Although a sharp high-energy
cutoff is not defined, the present calculation in-
cludes continuum states up to about 50 times the
ionization energy, or about 5 MeV for Z= 82. It
does not seem likely that the present results would
get significantly larger with larger basis sets.

Vl. DISCUSSION

We have shown that the Dirac equation with a
Coulomb potential can be diagonalized in a suitably
chosen finite basis set to obtain a discrete varia-
tional representation of the complete Dirac spec-.
trum, including both positive- and negative-energy
states. The variational solutions satisfy a variety
of sum rules to high accuracy, and can be used
to construct an approximate representation of
the Dirac Green's function. The oscillator strength
sums over positive-energy states calculated in
Sec. V a,re difficult to obtain in any other way.
This appears to be a very useful technique for the
direct relativistic calculation of atomic properties.
Generalizations to systems containing more than
one electron are currently under investigation.
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