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Abstract

Protein-protein interactions are very important for many biological processes as this of-

ten leads to a particular protein complex to perform particular function. Thus, to identify

different protein interactions helps to understand the function performed by that protein.

The interaction between obligate and non-obligate complexes with each other is a particu-

lar problem that has drawn the attention of the research community in the past few years.

In this thesis, we discuss this classification problem and show an efficient model to dis-

tinguish these two types of protein complexes correctly. We used new features such as

desolvation energies for atom and amino acid type to compare with some other features

which have already been used to validate and evaluate our model and test the strength of

our newly selected features. We also used some well-known feature selection techniques to

perform classification with almost the same or higher accuracy but in time efficient manner.

To achieve a better insight of this classification, we also performed some visual and post-

analysis, and biochemically driven feature selection to achieve a better perspective about

the reasons for interaction of these types of complexes.
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Chapter 1

Introduction

Molecular biology is a branch of biology that overlaps biology and chemistry. It studies dif-

ferent biological activities with respect to molecules. This branch mainly deals with differ-

ent types of interactions between various cell systems such as different types of DNA, RNA

and protein complexes. Understanding these interactions is also included in this branch of

biology. Molecular biology revealed the original convergence of geneticists, physicists and

structural biochemists on a common problem; the structure and function of a biological

complex. Key concepts of molecular biology include mechanisms, information and genes.

The history of molecular biology provides the importance of the discovery of macromolec-

ular mechanisms [12].

1.1 Bioinformatics

Bioinformatics can be seen as an application of statistics and computer science. It is actu-

ally, a combination of computer science techniques applied to molecular biology [28], and

an indispensable field for modern genomics. The growth of biological information made

1



CHAPTER 1. INTRODUCTION 2

this branch very important for researchers. Rapid development in molecular biology is

producing huge amounts of data every day which needs efficient computational and math-

ematical approaches. The most common problems in bioinformatics are to analyze DNA

and protein sequences aligning and comparing different DNA and proteins, viewing and

studying the structure of proteins, among others. The goal of this section is to understand

different biological processes by applying computationally intensive methods such as pat-

tern recognition, machine learning and data mining. Drug development and evolution needs

information about biological processes, and hence this area of research is very important

for health.

1.2 Protein-protein Interaction Prediction

Protein is an organic compound made of a chain of amino acids that forms a globular form.

They have different types and four level of structure (details discussed in Chapter 2). In

our thesis, we focus only on specific types of proteins, namely obligate and non-obligate

protein complexes. Precise collision in different proteins often leads to the final complex

which is known as obligate complex, and when this collision forms an encounter complex

that may finally lead to a different one is known as non-obligate complex [20]. In Figure

1.1 (a) complex 1B4U is an obligate complex with chains A-B and in (b) complex 1AVA

is a non-obligate complex with chains A-C. Our goal is to predict these types of protein

complexes based on their structural and interaction data.

Multiple cellular processes such as signal transduction, immune response, regulation

of gene expression and different biological processes that needs oligomerization are in-

volved in protein-protein interaction (PPI). These interactions can be attractive or repul-

sive. Though PPI has dependency on protein surfaces and the environment conditions,
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Figure 1.1: Examples of obligate and non-obligate protein complexes.

there have been many efforts made to identify and understand the responsible factors for

different types of interactions between proteins at different levels such as atomic and amino

acid level [13, 15, 25]. The study of PPI depends on purposes and perspectives. The key

problems in PPI are [16]:

• Predicting interfaces involved in the interaction

• Predicting spatial arrangement of the interacting chains or molecules

• Predicting the identity of the molecules involved in the interaction

Different types of protein-protein interactions provide different levels of information on

different biological processes [20]. Specific types of PPI are obligate and non-obligate in-

teractions [19, 30]. These types of interactions are mostly based on the lifetime and stability

of the protein complexes. Non-obligate interactions are usually less stable which makes the

prediction and discriminating this type from obligate very hard. In vivo, the structural units

of obligate complexes do not exist as stable, whereas in non-obligate complexes, structure

may stay as stable as functional units. In our study, we focus on this problem of predicting
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obligate and non-obligate interactions with different prediction methods.

1.3 Feature Generation and Selection

To predict the class types, every prediction method needs observed properties of the known

class samples called features. Features are generally nominal or numeric values, and the

process of calculating the features for each sample from the input dataset is called feature

generation. To reduce the size of the generated features from the input we use feature ex-

traction methods. Feature extraction [10] is a popular pattern recognition method. It is a

special form of dimensionality reduction. When the length of the feature vector is very

large, we may need to apply feature extraction methods to find the lower dimensional rep-

resentation of that original feature vector. The transformation of high dimensional data to

lower dimensional data is called feature extraction [10]. There are many feature extraction

methods and for our thesis we use principal component analysis (PCA) [14] and three linear

dimensionality reduction (LDR) methods [24] (details discussed in Chapter 3) which are:

• Fisher’s discriminant analysis (FDA) [5, 6]

• Heteroscedastic discriminant analysis (HDA) [17]

• Chernoff discriminant analysis (CDA) [24]

Lower dimensional data obtained by these three LDR methods are then passed through

quadratic Bayesian (QB) and linear Bayesian (LB) classifiers [5] for final prediction. For

each classifier, prediction accuracy and time taken for that prediction are very important.

Thus, to reduce the computational time for classification, in our thesis we use some feature

selection algorithms to find the best subset of the original feature set that produces almost
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the same accuracy level, if not better. Feature selection methods select some of the features

that are strong enough for prediction. Thus, using feature selection methods we can have

less number of features for our classifiers.

1.4 Motivation and Objectives

Many researchers are working to understand different biological functions based on pro-

tein sequence or secondary structure. They are conducting their research work either by

following labor intensive experimental or computational approaches. These approaches

gather the required information from different types of interactions that happen within

the protein complex or between different protein complexes. Protein-protein interaction

may change the shape of the complex or modify another protein complex, which means

that its functionality might also change. Thus, by understanding protein-protein interac-

tions, we could provide a plausible mechanism for complex formation and explain different

biological processes such as signal transduction. These information might also help re-

searchers understand different diseases better which can lead to effective drug development

and open a new way for treatment. Obtaining information from protein composition, sta-

bility and interaction duration which is the key factor to differentiate two specific type of

protein groups namely obligate and non-obligate complexes, can also help this research

work greatly. Thus, studying these two types of protein-protein interactions will help the

researchers gather more information for understanding and explaining biological processes

and mechanism of complex formation.

Among different types of protein-protein interactions, we focus on obligate and non-

obligate protein-protein interactions [19, 30]. During their life span, proteins interact with

each other or even within themselves to change their shape or other complexes to perform
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a specific biological function. Determination of obligate and non-obligate interactions via

experimental approaches such as co-immunoprecipitation or affinity chromatography is of-

ten labor expensive and might suffer from system errors [1, 7, 23]. Thus, efficient com-

putational approaches are necessary to solve this problem successfully. In our thesis, we

study this problem of determining the type of interaction based on the stability of the pro-

tein complexes which is a two class prediction problem where the classes are obligate and

non-obligate.

Different feature and prediction methods can be used to solve this specific problem. In

our thesis we use desolvaion energies [4]. Using these properties we show that it is better

than recently used properties such as NOXclass features (interface area, interface area ratio,

amino acid composition of the interface, correlation between amino acid compositions of

interface and protein surface, gap volume index and conservation score of the interface)

[30]. With our proposed new properties, we also include some grouping methods such as

grouping by amino acids or by atom types. We use some feature selection algorithms such

as forward/backward feature selection [26] and minimum redundancy maximum relevance

(mRMR) [8] to select the best feature set that can reduce the prediction time while still

achieving good prediction performance.

In this thesis, we also use some biological groups such as hydrophobicity, hydrophilic-

ity and amphipathicity which provides a better insight of the solution. To perform visual

post-analysis we use heatmaps that can help us choose the atom pairs or amino acid pairs re-

sponsible for obligate and non-obligate interactions visually. Finally, we compile a dataset

of obligate and non-obligate complexes by using our computational approach. Merging all

available data helps the classifier train better for other new features. In out thesis we also

propose a general model to solve similar kinds of problems.
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1.5 Contribution

In this thesis, we focus on prediction of two types of protein-protein interactions, namely

obligate and non-obligate and evaluate the results efficiently. Our main contributions in this

thesis are:

• Propose a new prediction scheme that combines LDR classification methods and de-

solvation energy as properties.

• Compile a new dataset by combining Mintseris et al. dataset [19] and Zhu et al.

dataset [30].

• The use of desolvation energies with different grouping criteria such as by atom types

and amino acid types.

• Post analysis by using visual tools (heatmaps) and feature selection algorithms for

pattern recognition [26].

In this thesis, we are proposing a new method to solve this type of problems efficiently.

The development of an automatic tool is also important, which downloads the structural

information from PDB [2] and calculates desolvation energies for the classifiers. In order

to provide a large number of samples for prediction and future use a new dataset is created.

Furthermore, to achieve a better insight about the results, biologically meaningful grouping

such as by hydrophobicity, hydrophilicity and amphipathicity is also applied to find out the

pairs of amino acid that are mainly involved in these types of interactions. Post-analysis

with heatmaps and different feature selection algorithms are used to evaluate the results of

our experiments and draw some valid and interesting biological points from this study.
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1.6 Thesis Organization

The thesis is organized in six chapters. Chapter II provides a survey of obligate and non-

obligate protein-protein interaction and the prediction methods used to determine those

types. Chapter III presents different feature extraction and selection methods that can be

used for prediction. Chapter IV describes the proposed model and features and all re-

quired methods for the experiments. Chapter V discusses the experimental results with

the proposed approach and a comparison with some existing methods. Finally, Chapter VI

concludes the thesis and identifies the problems arising from this work and relevant future

works.



Chapter 2

Obligate and Non-obligate PPI

Prediction

2.1 Proteins

In 1838, Dutch chemist Gerhardus Johannes Mulder first described proteins, which were

named by Swedish chemist Jöns Jakob Berzelius. Protein is an organic compound, made

of an arranged chain of amino acids which forms a globular or fibrous form [27]. All the

amino acids in a protein are joined by peptide bonds between carboxyl and amino groups

of adjacent amino acids.

2.2 Protein Structures

A protein is a polymer of amino acid that has four levels of structure [22]:

1. Primary

9
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2. Secondary

3. Tertiary

4. Quaternary

In its primary structure, Figure 2.1 (a), the protein is expressed with its amino acid

sequence of its polypeptide chain. This expression contains either one letter (or three letter)

abbreviations for the amino acid of that specific protein. Secondary structure, Figure 2.1 (b),

describes the regions of the chains of a protein that are organized into regular shapes known

as alpha-helices, beta-sheets and others. These secondary structures are held together by

hydrogen bonds. Adding the folding information to the secondary structure, the tertiary

structure, Figure 2.1 (c), describes the three dimensional shape of the protein. When a

protein has more then one polypeptide chain (also called subunit), the structure of that

protein complex is the quaternary structure, Figure 2.1 (d). In our thesis, we focus on

tertiary and quaternary structures of the proteins and use the three dimensional shape data

for our calculations.

2.3 Protein-protein Interactions

To perform many biological functions, one or more proteins must bind with each other to

react. Protein-protein interaction involves [20]:

• Direct contact association of molecules, which means that different molecules be-

longing to specific amino acids within a protein may interact with each other if they

are close to each other. Generally, for direct association molecules, it should be within

7Å distance [4].
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Figure 2.1: Schematic representation of protein structure.
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Figure 2.2: Protein-protein interaction for complex 1B4U.

• Long range interactions through the surrounding neighborhood. Interaction may take

place if the molecules are more than 7Å apart. But this is possible when the surround-

ing neighborhood such as water helps molecules to interact with each other.

If we need to understand why proteins interact with each other, we first need to know

that proteins perform different biological functions and that is one of the main reasons why

they interact. The protein becomes stable when the molecules correlate mutation across its

interface. In our thesis, we consider only direct contact association of molecules. If we

look at Figure 2.2, we can see that, complex 1B4U has 4 chains (different colors are used

for atoms in different chains) and they might have direct contacts among the atoms that are

in the marked area.
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2.3.1 Protein-protein Interaction types

The structural and functional diversity of protein-protein interactions (PPIs) depends on the

protein family and their three dimensional structures. PPIs play diverse roles in different

biological processes. PPIs can give ideas about the function performed by different proteins

and that is the main reason why researchers are very much interested in understanding PPIs.

Based on physiological functions, specificity and evolution, PPIs can be divided into three

broad non-mutually exclusive categories [20]:

1. Homo and hetero-oligomeric complexes

2. Non-obligate and obligate complexes

3. Transient and permanent complexes

PPIs can take place between identical or non-identical chains which are based on their

structural similarity. If the interacting chains of an oligomer has structural symmetry then

it is called homo-oligomeric PPI, otherwise it is called hetero-oligomeric PPI. Based on the

composition, there are two types: obligate and non-obligate PPIs. In an obligate PPI, the

proteomers are not found as stable structures on their own, which are generally functionally

obligate. In our thesis we focus on this type of PPI. If we consider the life time of a complex

then we can have transient and permanent PPI. Permanent PPI outputs a stable complex,

but transient PPIs are less stable and they tend to continue changing their shapes until they

dissociate or result in permanent complexes. To find out about the biological functions

performed by different type of complexes, it is important to know about the PPIs. In our

thesis we study the type that considers the composition, that is obligate and non-obligate

PPI.
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2.4 Protein-protein Interaction Prediction

Many researchers have been working on predicting different types of PPI with different

perspective. These approaches are mainly divided into two categories, namely:

1. Experimental Approaches

2. Computational Approaches

Traditionally, the detection of PPI prediction was limited to experimental techniques such

as co-immunoprecipitation or affinity chromatography [1, 7, 23]. They are labor-intensive

and often the results of these approaches contain systematic errors. Since the amount of

data for prediction is getting larger, these experimental processes become less applicable.

This is why computational approaches are in demand. In our thesis, in order to predict the

obligate and non-obligate PPIs we use a computational approach which is described in the

next few subsections.

2.4.1 Prediction types

To predict obligate and non-obligate PPIs, many classifiers including random forest (RF),

Bayes, decision trees, logistic regression, and support vector machines (SVM) can be used.

Different classifiers achieve different performances based on the type of data and properties

used. Some research in [5, 6, 24] achieved a classification accuracy of 70% for the problem

of distinguishing obligate and non-obligate interactions with a wide range of parameters and

different types of features such as desovation energy, amino acid composition, conservation

scores, electrostatic energies, and hydrophobicity. In our thesis, we focus on the same clas-

sifiers used in [5, 6, 24] and improve the classification accuracy with our proposed features.

For this, first we use principal component analysis (PCA) as a pre-processing step. PCA,
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though an unsupervised method, is applied to eliminate ill-conditioned matrices involved

in the linear dimensionality reduction (LDR) techniques. Applying different threshold val-

ues, the desired number of principal components from a dataset can be achieved with PCA.

We use different threshold values and select the threshold that leads to the highest classifi-

cation accuracy. After obtaining those principal components, we classify complexes with

quadratic Bayesian (QB) and linear Bayesian (LB) classifiers [5] combined with LDR meth-

ods including the well-known Fisher’s discriminant analysis [5, 6] and two heteroscedastic

approaches [17, 24].

If we consider groups by 18 unique atom type (N, CA, C, O, GCA, CB, KNZ, KCD,

DOD, RNH, NND, RNE, SOG, HNE, YCZ, FCZ, LCD, CSG) pairs then the length of

feature vector is 171 (18C2 +18) and group by 20 unique amino acid (Ala, Arg, Asn, Asp,

Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val) pairs then the

length of feature vector is 210 (20C2 + 20) [29]. The basic idea of LDR is to represent a

desolvation energy object of dimension n (171 or 210) as a lower-dimensional vector of di-

mension d, achieving this by performing a linear transformation. We consider two classes,

obligate as ω1 and non-obligate as ω2, represented by two normally distributed random

vectors x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), respectively, with p1 and p2 the a priori prob-

abilities. After the LDR is applied, two new random vectors y1 = Ax1 and y2 = Ax2, where

y1 ∼ N(Am1; AS1At) and y2 ∼ N(Am2; AS2At) with mi and Si being the mean vectors

and covariance matrices in the original space, respectively. The aim of LDR is to find a lin-

ear transformation matrix A in such a way that the new classes (yi = Axi) are as separable

as possible. Let SW = p1S1+ p2S2 and SE = (m1−m2)(m1−m2)
t be the within-class and

between-class scatter matrices respectively. Various criteria have been proposed to measure

separability between atoms [24]. In our thesis, we focus on the following three LDR meth-
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ods:

Fisher’s discriminant analysis (FDA) [5, 6] : Its optimization criterion is as follows.

JFDA(A) = tr
{
(ASW At)−1(ASEAt)

}
. (2.1)

The matrix A is found by considering the eigenvector corresponding to the largest

eigenvalue of SFDA = S−1
W SE .

Heteroscedastic discriminant analysis (HDA) [17] : It aims to obtain the matrix A that

maximizes the function:

JHDA(A) = tr
{
(ASW At)−1 [ASEAt

−AS
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W At

]}
. (2.2)

This criterion is maximized by obtaining the eigenvectors, corresponding to the largest

eigenvalues, of the matrix:

SHDA = S−1
W[

SE −S
1
2
W

p1 log(S
− 1

2
W S1S

− 1
2

W )+p2 log(S
− 1

2
W S2S

− 1
2

W )
p1 p2

S
1
2
W

]
. (2.3)

Chernoff discriminant analysis (CDA) [24] : It aims to maximize the following func-

tion:
JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}.
(2.4)
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Figure 2.3: Schematic of 3-fold cross validation.

In [24], a gradient-based algorithm was proposed, which maximizes the function in an

iterative way. For this gradient algorithm, a learning rate, αk needs to be computed. In

order to ensure that the gradient algorithm converges, αk is maximized by using the secant

method. One of the keys in this algorithm is the random initialization of the matrix A, and

in this work, we have performed ten different initializations and then chosen the solution

for A that gives the maximum Chernoff distance.

2.4.2 Prediction Evaluation

K-fold cross validation is a commonly used technique which takes a set of m samples and

partitions them into K sets (folds) of size m/K. For each fold, a classifier is trained on

the other folds and then tested on that fold. For our experiments we use 10-fold cross

validation that means, first the dataset with desolvation energy is partitioned into 10 equal

sets (if possible) and then in each iteration 9 sets are chosen as training and one set is used

for testing. Figure 2.3 shows an example of 3-fold cross validation.
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To compute the accuracy for each classifier we use the following equation:

Accuracy =
T P+T N

T P+FP+T N +FN
(2.5)

Here, TP is number of correctly identified obligate complex samples and TN is number of

correctly identified non-obligate complex samples and FP and FN are number of incorrectly

classified obligate and non-obligate complexes respectively.



Chapter 3

Feature Generation and Selection

Methods

3.1 Features

In machine learning and pattern recognition, one of the key factors is to include and select

the right features for successful prediction. They are the observed properties of each sample

that is used for the prediction. The value of the features are usually numeric, but other types

such as strings and graphs are also used as features.

3.2 Features used for PPI Prediction

There are many properties of PPI that can be used for PPI prediction. Some of them are

[21]:

β-factor : It is the flexibility of the protein complexes during the interaction.

19
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Solvent Accessibility : It is the exposed surface area that affects contact of atoms during

the interaction.

Geometric features : The shape index, planarity or curvedness of the interacting com-

plexes can also be used as features.

Evolutionary features : They include conservation scores or sequence profiling informa-

tion.

Physicochemical features : They include hydrophobicity, electrostatic potential and des-

olvation energy.

3.3 Proposed Features

According to [4], knowledge-based contact potential that accounts for hypdophobic interac-

tions, self-energy change upon desolvation of charged and polar atom groups and side-chain

entropy loss is called desolvation free energy. In our thesis, we propose the use of this des-

olvation energy for PPI prediction as features. The desolvation energy of an atom pair i and

j of a complex is defined as [4] :

g(r)ΣΣei j (3.1)

where, ei j is the atomic contact potential (ACP) [18, 29] between i and j and g(r) is

the smooth function score, based on their distance. For simplicity, we consider the smooth

function to be linear for a distance within 5Å-7Å. We also consider the criteria that for

a successful interaction, atoms should be within 7Å [4]. Within 5Å-7Å, the value of g(r)

varies from 1 to 0 which is equivalent to 100%− 0%. We know that for a particular atom

pair it has a predetermined (approximated) desolvation energy value which we can obtain
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Figure 3.1: Smooth function behavior of g(r).

from the ACP matrix [18, 29]. Thus, during the interaction the actual energy depends only

on their distances. If the atoms are within 5Å, then their actual energy will also be closer to

that fixed value for those particular atom pairs in the ACP matrix in Table 3.1 [29]. If the

distance is within 5Å-7Å, then we use the following equation to calculate smooth function

value,

x = 7−2y (3.2)

where x is the distance between an atom pair in Angstroms and the value of the smooth

function for that pair is y. The behavior of the smooth function is shown in Figure 3.1.

3.4 Feature Generation

Using Equation 3.1, we can approximate the desolvation energy between two atoms. There

are 18 unique type of atoms and 20 amino acids. The ACP matrix of Table 3.1 [29] is an

18×18 matrix, where all possible combinations of 18 unique atom types are represented.

If we know the ligand and receptor of a complex, our first job is to find the interacting

atoms. Then, we need to convert all atoms to 1 of 18 unique atom types. The method of
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conversion is discussed in [29]. Based on our experiments and the study of [29], we use

Tables 3.2 and 3.3 for atom type conversion. In these conversion tables, the first row of

each amino acid contains the original atoms that are inside and the second row contains the

converted unique types. When we have the unique types we simply find that pair in the ACP

matrix and obtain the value of ei j of Equation 3.1 and for g(r) we need to find the Euclidian

distance between the two atoms, which we compute from their structural data that can be

found from Protein Data Bank (PDB) [2]. Considering atom type and amino acid type, we

obtain 182 and 202 features respectively. For our thesis, we use only unique pairs of atom

and amino acid features which leads to feature vectors of length 171 (18C2 + 18) and 210

(20C2 + 20) respectively. To find the solvent accessible surface area (SASA) we use the

NACCESS [9] program. This program gives atom and residue-wise information that how

much of that atom/residue is exposed to solvent. To strengthen our approach, we use this

information to weight our generated feature vector.

3.5 Feature Selection Methods

Feature selection involves selecting best subset of features that represents the whole feature

set efficiently. If the feature vector is too large, it is wise to use feature selection to reduce

the size to improve the prediction time while keeping good performance. In our thesis,

we have feature vectors of length 171 and 210 respectively. We use some computational

approaches [26] and visual analysis for feature selection which are discussed below.
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3.5.1 Sequential Forward/Backward Search Selection

We explain this method through an example. Let us consider, the length of the original

feature vector, m = 4 which is x1,x2,x3,x4 and our target is to select the best subset of size

l = 2. Then, backward search selection works as follows:

• Adopt a class separability criterion, C, and compute its value for the feature vector.

• Eliminate one feature and for each of the possible resulting combinations, that is,

[x1,x2,x3], [x1,x2,x4], [x1,x3,x4], [x2,x3,x4]. Compute the value of the corresponding

criterion C for each subset. Select the combination with the best value, say [x1,x2,x3].

• From the selected feature vector in the previous step eliminate one feature, and for

each of the resulting combinations, [x1,x2], [x1,x3], [x2,x3], compute the criterion

value and select the one with the best value, say [x1,x3].

• This process will continue until the length of the current best selected vector is equal

to l.

The forward search selection can be seen as the reverse of sequential backward search

selection which can be explained for the same example as follows:

• Calculate the criterion value for each of the features. Select the feature with the best

class separability criterion value, say x1.

• Form all possible next level vectors that contain the winner from the previous step,

that is, [x1,x2], [x1,x3], [x1,x4]. Calculate the criterion value for each of them and

select the best one, say [x1,x3].

• This process will continue until the length of the current best selected vector is equal

to l.
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3.5.2 Floating Forward/Backward Search Selection

Both forward and backward search selection algorithms suffer from nesting-effect [26].

That is, when we discard one feature from backward selection, there is no possibility to

consider this feature again throughout the process. Similarly, when we add one feature

from forward selection, there is no way to discard this feature later. This problem can be

solved through floating search selection. With this method, a memory is used to save the

best criterion value among all the combinations and at each step it is updated, if possible.

Thus, we have a process to ”backtrack” and select a different subset which gives us the best

subset of features. With this backtracking technique, at every stage, the method will save

more than one best subsets. If at a future stage the selected best subset is not providing any

improvement, the process will discard that selection and try another from best subset from

the previous step.

3.5.3 mRMR Selection

Minimum redundancy maximum relevance feature selection (mRMR) [8] is a tool that dis-

cards the redundant features from the feature vector and uses maximum relevance score

as the class separability criterion. If the selected feature set is S with m features xi which

jointly have the largest dependency on the target class c and I is the criterion function for

each selected subset. Then, for maximum relevance,

max(S,c),D =
1
S ∑

xiεS
I(xi; c) (3.3)
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for minimum redundancy,

min(S),R =
1
S2 ∑

xi,x jεS
I(xi,x j) (3.4)

and finally, the mRMR is:

maxΦ(D,R),Φ = D−R (3.5)

This tool ranks each feature in the feature vector with Equation 3.5 and selects the best

number of features based on the user’s desired length for the feature vector.

3.5.4 Heatmaps

Graphical representation is a very good way to visualize and analyze data. A heatmap is

a kind of graphical representation of data in which the values of a two dimensional matrix

are represented with different shades of color. In our work we generate feature vectors with

desolvation energies for all samples. Then, if we sum along the same type for each pair, we

can have a single feature vector for each dataset of each type. For the heatmap, we consider

the two dimensional vector of size 18×18 that represents 171 features and of size 20×20

that represents 210 features, and fill the values of the matrix in the upper diagonal. Figures

3.2 and 3.3 show examples of heatmaps that are used for our analysis and discussion.

3.5.5 Biological Feature Selection

According to [22], if we consider the polarity of amino acids, they can be of the following

three types:

Hydrophobic : Tendency to avoid water contact. Alanine, Valine, Phenylalanine, Proline,

Leucine and Isoleucine are hydrophobic amino acids.
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Figure 3.2: Obligate samples (in red color representation).
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Figure 3.3: Non-obligate samples (in blue color representation).
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Hydrophilic : Tendency to interact with water. Arginine, Aspartic acid, Glutamic acid,

Serine, Cysteine, Asparagine, Glutamine and Histidine are hydrophilic amino acids.

Amphipathic : It has both polar and nonpolar behavior and therefore a tendency to form

interfaces between hydrophobic and hydrophilic molecules. Lysine, Tyrosine, Me-

thionine, Tryptophan and Threonine are amphipathic amino acids.

Using this information we can group the desolvation energy values by amino acid type

into three sub categories with only hydrophobic, only hydrophilic and only amphipathic

type. Then, we can use our classifiers to check the accuracy to find the distinguishing

features of obligate and non-obligate complexes.
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Chapter 4

Methodology

To predict the types of obligate and non-obligate protein complexs with good accuracy, we

follow the proposed model as depicted in Figure 4.1. This process starts from property

selection and continue to the post-analysis step to evaluate the behavior of the proposed

features to improve the prediction.

4.1 Procedure

A description of the procedure follows:

Step 1: (Preparing the dataset)

Merge the Obligate dataset obtained from Mintseris et al. [19] and Zhu et al. [30].

Merge the Non-obligate dataset obtained from Mintseris et al. [19] and Zhu et al. [30].

Remove redundant complexes and complexes with contradicting labels.

Convert all the complexes with multiple chains into two-chain by applying a suitable

distance threshold.

Add all the converted single chain complexes and remove those multiple chain com-

32



CHAPTER 4. PROPOSED METHODOLOGY 33

Figure 4.1: Proposed model to classify obligate and non-obligate interactions.

plexes to obtain the binary protein-protein interaction dataset (BPPI).

Step 2: (Initialization of the properties)

Set the desolvation energy equation to find the desolvation energy between two atoms.

Set the equation for calculating the surface area for each of the complexes.

Step 3: (Downloading structure information of each complex)

Download the structural files for all the complexes from the PDB [2].

Step 4: (Gathering information required for calculation)

Remove everything except the information about the ATOM of the complexes

(Atom name, atom number, chain name, residue name, residue number, x-y-z coor-

dinates and occupancy factor)
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Combine all the occupancy factors to add up to 1, if it is less than 1 for all the same

atoms within the same amino acid.

Seperate ligand and receptor for each complex based on to their chain information.

Step 5: (Calculating SASA)

For each complex in the dataset, run NACCESS [9] program separately for each chain

in the input dataset.

Step 6: (Calculate the feature vector with desolvation energy)

For each complex in the dataset

For each atom in the ligand

Calculate the Euclidean distance to all others atoms in the receptor

If atom pair distance is less than or equal to 7Å then do

Map Ligand/Receptor atom type to one of 18 unique type atoms [29]

Find the atomic contact potential from the ACP matrix [29]

Find the value of g(r) using Equation 3.2

Find SASA values from Naccess for that ligand atom

Calculate the desolvation energy value using Equation 3.1

Find the position of the unique atom-atom pair in the feature vector

Accumulate the desolvation energy value in that position

Multiply this value by the SASA value to obtain a weighted feature vector

If the input complex list belongs to Obligate then

set 1 to the class label

Else
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add 2 to the class label

Step 7: (Feature extraction)

(Principal component analysis )

If the final dataset (with/without SASA or by amino acid/atom) for prediction has a

large number of zeros then apply PCA with different thresholds to reduce the feature vector

with fewer zeros

Step 8: (Feature selection algorithms)

Apply different feature selection algorithms (Forward/backward/floating and mRMR)

Find the best feature subset that gives highest value for the objective function

Step 9: (Prediction)

Apply different LDR (HDA, FDA, CDA) combined with quadratic Bayesian (QB) and

linear Bayesian (LB) classifiers [5], to test the quality of the features (desolvation energies).

Step 10: (Post analysis)

Generate the Heatmap of obligate and non-obligate complexes for both atom type and

amino acid type

Combine the Heatmaps to find the best pair(s) that can predict the complexes

Find the common amino acid pairs from the heatmaps and the feature selection methods

Perform biological analysis
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4.2 Flow Diagram

These steps can also be easily understood with a graphical tool called data flow diagram

(DFD) in Figure 4.2.

4.3 Dataset Preparation

We worked on two well-known datasets, namely Mintseris et al. [19] and Zhu et al. [30]

which contain obligate and non-obligate complex names with the corresponding chain in-

formation. All the complexes in Zhu et al. dataset have the characteristics that one chain is

interacting with only one chain, while in Mintseris et al. dataset there are complexes which

have more than two chains in the interaction.

We have compiled a new dataset by merging these two datasets. Zhu et al. dataset con-

tains 75 obligate and 62 non-obligate complex names with interacting chains, and Mintseris

et al. dataset contains 115 obligate and 212 non-obligate complexes. There are 39 redun-

dant complexes in those two datasets and 7 complexes (1eg9, 1hsa, 1i1a, 1raf, 1d09, 1jkj

and 1cqi) had contradicting class labels. For example if we find a complex ”A” is defined

as obligate in one dataset and in other dataset it is defined as non-obligate then we conclude

the complex ”A” as contradicting complex. Thus, in the first step we removed all the con-

tradicting and redundant complexes and generated the merged dataset which contains 182

obligate and 235 non-obligate complexes.

The second step is a pre-processing stage. After counting, we found that the merged

dataset from the first step contains 93 complexes which have multiple chain interactions.

Now, to make the dataset with similar characteristics, those 93 complexes were removed

and copied to a new dataset so that we can convert them and finally add them to the merged
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Figure 4.2: Flow diagram for processing the data.
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datasets. In this pre-processing stage, we first convert each multiple chain complex into a

set of binary chain complexes. For example, if a complex has multiple chain information

such as A B : C D then it is converted into binary chain complexes: A : C, A : D, B : C

and B : D. After this we did an experiment to find out the number of interacting residues

on the surface of the interacting chain of those converted complexes for different distance

thresholds (4Å, 4.5Å, 5Å and 6Å). The experimental results for this conversion are listed in

Table A.1 in Appendix A.

From the study of [11], using the interface definition we specified the following two

criteria for filtering:

• Each pair of interacting residues from different chains must be within 5Å distance for

successful interaction.

• For each complex there must be five interacting residues on the interface.

We removed all the complexes which did not satisfy both of these criteria. After consid-

ering all these complexes, we obtain the merged dataset that has 516 complexes in which

303 are non-obligate and 213 are obligate complexes. We call this final merged dataset

binary protein-protein interaction (BPPI) dataset. This BPPI dataset of obligate and non-

obligate complexes with their interacting binary chain information used for all the later

experiment are listed in Tables 4.1 and 4.2
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Table 4.1: Obligte BPPI dataset (213 complexes).

1a0f , A:B 1be3 , E:A 1dor , A:B 1go3 , E:F 1jb0 , B:D 1k8k , B:F 1lti , C:E 1qfe , A:B 1ytf , B:D
1a4i , A:B 1be3 , G:A 1dtw , A:B 1gpe , A:B 1jb0 , A:E 1k8k , C:G 1luc , A:B 1qfh , A:B 1ytf , C:D
1a6d , A:B 1bjn , A:B 1dxt , A:B 1gpw , A:B 1jb0 , A:E 1k8k , A:E 1m2v , A:B 1qla , A:B 1yve , I:J
1afw , A:B 1bo1 , A:B 1e50 , A:B 1gux , A:B 1jb0 , A:C 1k8k , C:F 1mjg , B:M 1qlb , B:C 2aai , A:B
1ahj , A:B 1brm , A:B 1e6v , A:B 1h2a , L:S 1jb0 , C:E 1k8k , D:F 1mjg , A:M 1qor , A:B 2ae2 , A:B
1aj8 , A:B 1byf , A:B 1e8o , A:B 1h2r , L:S 1jb0 , B:C 1kfu , L:S 1mro , A:B 1qu7 , A:B 2ahj , A:B
1ajs , A:B 1byk , A:B 1e9z , A:B 1h2v , C:Z 1jb0 , A:D 1kpe , A:B 1mro , B:C 1req , A:B 2hdh , A:B
1aom , A:B 1c3o , A:B 1eex , A:B 1h32 , A:B 1jb0 , A:D 1kqf , B:C 1mro , A:C 1sgf , A:B 2hhm , A:B
1aq6 , A:B 1c7n , A:B 1eex , A:G 1h4i , A:B 1jb0 , C:D 1kqf , A:B 1msp , A:B 1sgf , A:Y 2kau , A:C
1at3 , A:B 1ccw , A:B 1efv , A:B 1h8e , A:D 1jb7 , A:B 1ktd , A:B 1n98 , A:B 1smt , A:B 2kau , B:C
1aui , A:B 1cmb , A:B 1ep3 , A:B 1hcn , A:B 1jk0 , A:B 1l7v , A:C 1nbw , C:B 1sox , A:B 2min , A:B
1b34 , A:B 1cnz , A:B 1exb , A:E 1hfe , L:S 1jk8 , A:B 1l9j , C:L 1nbw , A:B 1spp , A:B 2mta , A:H
1b3a , A:B 1coz , A:B 1ezv , D:H 1hgx , A:B 1jkm , A:B 1l9j , C:M 1nse , A:B 1spu , A:B 2nac , A:B
1b4u , A:B 1cp2 , A:B 1ezv , C:F 1hjr , A:C 1jmx , A:G 1ld8 , A:B 1one , A:B 1tbg , A:E 2pfl , A:B
1b5e , A:B 1cpc , A:B 1f3u , A:B 1hr6 , A:B 1jmz , A:B 1ldj , A:B 1pnk , A:B 1tco , A:B 2utg , A:B
1b7b , A:C 1dce , A:B 1f6y , A:B 1hss , A:B 1jmz , G:B 1li1 , A:C 1poi , A:B 1trk , A:B 3gtu , A:B
1b7y , A:B 1dii , A:C 1fcd , A:C 1hxm , A:B 1jnr , A:B 1li1 , B:C 1pp2 , L:R 1vcb , A:B 3pce , A:M
1b8a , A:B 1dj7 , A:B 1ffu , A:C 1hzz , A:C 1jro , A:B 1lti , A:H 1prc , C:H 1vkx , A:B 3tmk , A:B
1b8j , A:B 1dkf , A:B 1ffv , A:B 1ihf , A:B 1jv2 , A:B 1lti , C:G 1prc , C:L 1vlt , A:B 4mdh , A:B
1b8m , A:B 1dm0 , A:D 1fm0 , D:E 1ir1 , A:S 1jwh , A:C 1lti , A:F 1prc , C:M 1vok , A:B 4rub , D:T
1b9m , A:B 1dm0 , A:B 1fs0 , E:G 1isa , A:B 1jwh , A:D 1lti , A:G 1qae , A:B 1wgj , A:B 4rub , A:T
1be3 , D:A 1dm0 , A:F 1fxw , A:F 1jb0 , B:E 1k28 , A:D 1lti , C:H 1qax , A:B 1xik , A:B
1be3 , K:A 1dm0 , A:E 1g8k , A:B 1jb0 , B:E 1k3u , A:B 1lti , C:D 1qbi , A:B 1xso , A:B
1be3 , C:A 1dm0 , A:C 1gka , A:B 1jb0 , B:D 1k8k , A:B 1lti , C:F 1qdl , A:B 1ypi , A:B
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Table 4.2: Non-obligate BPPI dataset (303 complexes).

1a14 , L:N 1bi7 , A:B 1dn1 , A:B 1f3v , A:B 1gaq , A:B 1ib1 , A:E 1k5d , A:C 1nf5 , A:B 1uea , A:B
1a14 , H:N 1bi8 , A:B 1doa , A:B 1f51 , A:E 1gc1 , C:G 1ibr , A:B 1k5d , A:B 1noc , A:B 1ugh , E:I
1a2k , B:C 1bj1 , H:V 1dow , A:B 1f51 , B:E 1gcq , B:C 1icf , B:I 1k90 , A:D 1nsn , H:S 1wej , F:H
1a4y , A:B 1bj1 , L:W 1dpj , A:B 1f80 , A:E 1gh6 , A:B 1icf , A:I 1kac , A:B 1nsn , L:S 1wej , F:L
1acb , E:I 1bj1 , H:W 1dtd , A:B 1f83 , A:C 1ghq , A:B 1iis , B:C 1kcg , A:C 1o6s , A:B 1wq1 , G:R
1agr , E:A 1bkd , R:S 1du3 , A:D 1f83 , A:B 1gl1 , A:I 1iis , A:C 1kcg , B:C 1o94 , A:C 1www , V:X
1ahw , A:C 1bml , A:C 1du3 , A:F 1f93 , A:E 1gla , F:G 1ijk , A:B 1kkl , A:H 1osp , L:O 1www , W:X
1ahw , B:C 1bqh , A:G 1dx5 , M:I 1f93 , B:F 1go4 , A:G 1ijk , A:C 1kkl , C:H 1osp , H:O 1xdt , R:T
1ak4 , A:D 1buh , A:B 1e6e , A:B 1f93 , B:E 1gp2 , A:B 1im3 , A:D 1kmi , Y:Z 1pdk , A:B 1ycs , A:B
1akj , B:D 1buv , M:T 1e6j , L:P 1f93 , A:F 1grn , A:B 1iod , B:G 1kxp , A:D 1qbk , B:C 1zbd , A:B
1akj , A:E 1bvn , P:T 1e6j , H:P 1fak , H:T 1gvn , A:B 1iod , A:G 1kxq , H:A 1qfu , A:L 2btc , E:I
1akj , A:D 1bzq , A:L 1e96 , A:B 1fak , L:T 1gxd , A:C 1is8 , C:M 1kxt , A:B 1qfu , A:H 2btf , A:P
1ao7 , A:E 1c0f , S:A 1eai , A:C 1fbi , L:X 1gzs , A:B 1is8 , B:L 1kyo , O:W 1qfw , A:M 2hmi , B:C
1ao7 , C:E 1c1y , A:B 1eay , A:C 1fbi , H:X 1h2k , A:S 1is8 , E:O 1l0o , A:C 1qfw , B:M 2hmi , B:D
1ao7 , C:D 1c4z , A:D 1ebd , A:C 1fc2 , C:D 1h59 , A:B 1is8 , D:N 1l0o , B:C 1qfw , B:I 2jel , L:P
1ao7 , A:D 1cc0 , A:E 1ebd , B:C 1fg9 , B:C 1he1 , A:C 1is8 , A:K 1l6x , A:B 1qgw , A:C 2jel , H:P
1ar1 , B:C 1cgi , E:I 1ebp , A:D 1fg9 , A:C 1hez , A:E 1is8 , D:O 1lb1 , A:B 1qkz , A:L 2mta , A:L
1ar1 , B:D 1clv , A:I 1ebp , A:C 1fin , A:B 1hlu , A:P 1is8 , A:L 1lfd , A:B 1qkz , A:H 2mta , A:C
1aro , L:P 1cmx , A:B 1eer , A:B 1fle , E:I 1hwg , A:C 1is8 , E:K 1lk3 , A:L 1qo0 , A:E 2mta , H:L
1atn , A:D 1cs4 , A:C 1efu , A:B 1flt , V:X 1hwg , A:B 1is8 , C:N 1lk3 , A:H 1qo0 , A:D 2pcb , A:B
1ava , A:C 1cs4 , B:C 1efx , C:D 1flt , W:X 1hx1 , A:B 1is8 , B:M 1lpb , A:B 1rlb , A:E 2pcc , A:B
1avg , H:I 1cse , I:E 1efx , A:D 1fns , A:L 1hzz , B:C 1itb , A:B 1m10 , A:B 1rlb , C:E 2prg , B:C
1avw , A:B 1cvs , A:C 1eja , A:B 1fns , A:H 1i2m , A:B 1jch , A:B 1m1e , A:B 1rlb , B:E 2ptc , E:I
1avx , A:B 1cxz , A:B 1emv , A:B 1fq1 , A:B 1i3o , A:E 1jiw , I:P 1m2o , A:B 1rrp , A:B 2sic , E:I
1avz , B:C 1d2z , A:B 1es7 , C:B 1fqj , A:C 1i3o , D:E 1jma , A:B 1m4u , A:L 1sbb , A:B 2tec , E:I
1awc , A:B 1d4x , A:G 1es7 , A:B 1fqv , A:B 1i3o , B:E 1jsu , B:C 1mah , A:F 1smf , E:I 3hhr , A:B
1ay7 , A:B 1d5x , A:C 1eth , A:B 1frv , A:B 1i4d , B:D 1jsu , A:C 1mbu , A:C 1smp , I:A 3sgb , E:I
1azz , A:D 1de4 , C:A 1euv , A:B 1fsk , A:B 1i4d , A:D 1jtd , A:B 1ml0 , A:D 1stf , E:I 3ygs , C:P
1azz , A:D 1dee , D:G 1evt , A:C 1fsk , A:C 1i7w , A:B 1jtg , A:B 1mr1 , A:D 1t7p , A:B 4htc , H:I
1b6c , A:B 1dev , A:B 1ezv , E:Y 1fss , A:B 1i85 , B:D 1jw9 , B:D 1n2c , A:F 1tab , E:I 4sgb , E:I
1b9y , A:C 1df9 , B:C 1ezv , E:X 1g0y , I:R 1i8l , A:C 1k3z , B:D 1n2c , B:E 1tgs , I:Z 7cei , A:B
1bdj , A:B 1dfj , E:I 1ezx , A:C 1g4y , B:R 1i9r , A:L 1k3z , A:D 1n2c , A:E 1tmq , A:B
1bgx , L:T 1dhk , A:B 1f02 , I:T 1g73 , A:C 1i9r , A:H 1k4c , A:C 1n2c , B:F 1toc , B:R
1bgx , H:T 1dkg , A:D 1f34 , A:B 1g73 , B:C 1ib1 , B:E 1k4c , B:C 1nbf , A:D 1tx4 , A:B
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Results and Discussion

5.1 Dataset Description

We tested our prediction model on two well-known data sets and on our compiled BPPI

dataset. The datasets used for the experiments are as follows:

Table 5.1: Dataset description.

Dataset name No of obligate complex No of non-obligate complex
Mintseris et al. [19] dataset 115 212
Zhu et al. [30] dataset 75 62
BPPI dataset 213 303

These datasets includes predefined class label of obligate and non-obligate interaction.

For our experiments we used different types of combinations such as:

One against one : All possible combinations of binary interactions are considered. For

example, if we have a complex with chains AB:CD, then we use A:C, A:D, B:C and

B:D for calculation.

41
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All against all : Only the original combination is considered. For example, if we have

a complex with ABC:DE, then we use X:Y for calculation where X is equal to all

atoms in chain A, B, C and Y is equal to all atoms in chain D and E.

With SASA : The energy calculations are weighted by SASA values.

Without SASA : The energy calculations do not include SASA values.

We use the following acronyms listed in Table 5.2 for datasets with different combina-

tion for our experiments.

Table 5.2: Acronyms used for the datasets.

Acronym Dataset Description
MAS Mintseris et al. [19] dataset all against all with SASA
MAW Mintseris et al. [19] dataset all against all without SASA
MOS Mintseris et al. [19] dataset one against one with SASA
MOW Mintseris et al. [19] dataset one against one without SASA
ZS Zhu et al. [30] with SASA
ZW Zhu et al. [30] without SASA
BPPI-S Merged dataset with SASA
BPPI-W Merged dataset without SASA

5.2 Experimental Results

5.2.1 Prediction with proposed features

Based on our prediction model in Figure 4.1, first we use desolvation energies and SASA

values as properties. In the next step, we calculated desolvation energy features with unique

pairs of amino acids and unique pairs of atom types using the datasets mentioned in Table

5.1. To reduce the possibility of singularity during prediction, we use PCA with threshold
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values : 10−2, 10−3, 10−4, 10−5, 10−6 and 10−7. Then, we applied different LDR (HDA,

FDA, CDA) combined with quadratic Bayesian (QB) and linear Bayesian (LB) classifiers

to achieve maximum 82.13%, 80.86% and 74.38% accuracies on Zhu et al., Mintseries et

al. and BPPI dataset respectively. The details of the prediction accuracies with different

combinations of desolvation energies are listed in Tables 5.3, 5.4 and 5.5.

Table 5.3: Classification results for desolvation properties with unique pairs on Zhu et al.
dataset.

Quadratic Linear
with atom type FDA HDA CDA FDA HDA CDA
ZW 66.05 74.75 76.29 66.05 82.13 71.85
ZS 64.62 73.42 72.76 66.16 80.66 74.51

Quadratic Linear
with amino acid type FDA HDA CDA FDA HDA CDA
ZW 65.38 71.97 72.08 64.61 78.39 55.45
ZS 56.27 40.71 73.62 50.19 53.96 57.04

Table 5.4: Classification results for desolvation properties with unique pairs on Mintseris
et al. dataset.

Quadratic Linear
with atom type FDA HDA CDA FDA HDA CDA
MAW 70.58 77.96 78.88 69.94 78.26 77.03
MAS 75.49 78.53 77.00 73.94 74.26 74.84
MOW 73.16 80.09 80.86 69.52 78.54 75.11
MOS 77.00 79.70 78.36 77.19 77.40 75.10

Quadratic Linear
with amino acid type FDA HDA CDA FDA HDA CDA
MAW 69.56 76.40 73.62 68.68 77.65 65.65
MAS 68.69 76.13 71.80 68.40 73.67 65.92
MOW 76.43 79.31 76.82 73.16 77.39 72.22
MOS 75.86 78.93 76.43 75.08 77.39 72.60
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Table 5.5: Classification results for desolvation properties with unique pairs on the BPPI
dataset.

Quadratic Linear
With atom type FDA HDA CDA FDA HDA CDA
BPPI-W 71.85 72.05 74.38 72.43 73.58 73.79
BPPI-S 64.77 72.25 71.65 63.02 73.55 71.04

Quadratic Linear
with amino acid type FDA HDA CDA FDA HDA CDA
BPPI-W 68.88 72.25 74.17 69.47 73.57 73.55
BPPI-S 69.67 73.02 71.45 69.48 72.19 68.84

5.2.2 Prediction with Related Works

In order to compare the results with some related works [19, 30], we computed the NOX-

class features (interface area, interface area ratio, amino acid composition of the inter-

face, correlation between amino acid compositions of interface and protein surface) [30]

for all three datasets, and used our classification methods to find the accuracies listed in

Table 5.6. The BPPI dataset achieved maximum accuracy of 74.20%, Mintseries et al.

dataset achieved maximum of 77.32% and Zhu et al. dataset achieved maximum accuracy

of 77.92% with our method and NOXclass features. The details of the classification results

are listed in Table 5.6.

Table 5.6: Classification results for NOXclass properties with different datasets.

Quadratic Linear
FDA HDA CDA FDA HDA CDA

BPPI 74.20 69.90 71.27 72.65 70.10 70.88
Mintseris et al. [19] 77.32 76.45 75.20 77.32 76.42 74.90
Zhu et al. [30] 77.15 67.99 60.47 77.92 65.79 62.16
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5.2.3 Prediction with Biochemical Groups

Based on study of [22], to perform a biological analysis, we separated desolvation en-

ergies of amphipathic-amphipatic, hydrophobic-hydrophobic and hydrophilic-hydrophilic

pairs and measured the performance of our classification methods on those biochemical

groups. If we need to pick two out of n elements, the total number of possible combina-

tions is n(n−1)
2 + n. Thus, by taking 5 amphipatic amino acids, 8 hydrophilic amino acids

and 6 hydrophobic amino acids we selected 15, 36 and 21 combinations of amino acid pairs

respectively. The classification results are listed in Tables 5.7, 5.8 and 5.9. Among all three

datasets, the highest accuracy achieved by amphipatic, hydrophilic and hydrophobic groups

are 72.05%, 76.43% and 77.60% respectively.

Table 5.7: Classification results for desolvation energy grouped by amphipatic amino acids.

Quadratic Linear
FDA HDA CDA FDA HDA CDA

BPPI-W 61.86 64.80 64.81 62.45 64.81 65.37
BPPI-S 62.44 63.42 64.00 63.23 64.98 63.81
MAW 64.80 65.76 66.36 64.52 65.47 66.02
MOW 71.47 71.85 72.05 70.89 71.28 71.86
MAS 66.59 66.30 67.53 65.68 66.67 65.68
MOW 72.23 72.81 73.39 72.81 70.89 70.90
ZW 61.03 67.72 66.24 61.75 66.14 63.26
ZS 59.48 66.19 62.44 59.49 61.73 62.56



CHAPTER 5. RESULTS AND DISCUSSION 46

Table 5.8: Classification results for desolvation energy grouped by hydrophilic amino acids.

Quadratic Linear
FDA HDA CDA FDA HDA CDA

BPPI-W 66.92 68.70 69.09 66.93 68.11 68.32
BPPI-S 67.49 68.48 67.70 67.11 67.11 68.47
MAW 68.40 71.49 71.49 68.39 70.28 68.11
MOW 74.71 76.43 76.05 73.94 73.56 72.99
MAS 67.79 70.86 69.65 67.16 68.75 65.36
MOS 73.94 74.90 75.10 72.59 74.71 73.94
ZW 56.17 59.71 60.37 57.60 68.97 60.10
ZS 61.34 58.78 62.31 63.55 64.77 58.88

Table 5.9: Classification results for desolvation energy grouped by hydrophobic amino
acids.

Quadratic Linear
FDA HDA CDA FDA HDA CDA

BPPI-W 72.41 72.61 72.80 74.74 73.34 74.12
BPPI-S 71.85 71.66 71.07 72.82 71.79 72.38
MAW 73.36 75.51 75.54 73.67 75.53 75.52
MOW 76.06 77.60 77.40 76.07 77.39 77.02
MAS 73.67 75.51 75.23 74.58 74.29 74.93
MOS 75.86 77.21 76.63 76.25 77.20 75.86
ZW 72.61 76.23 73.38 74.04 75.78 77.07
ZS 68.05 73.27 75.42 70.30 72.66 76.85
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5.2.4 Prediction with Feature Selection Methods

5.2.4.1 With Floating Forward/backward Feature Selection

Using the floating forward/backward feature selection algorithms described in Section 3.5,

we did two experiments to select the best subsets of features. In the first experiment, we

let the algorithm choose the best subset of minimum size upto 1 and in the second one,

we fixed the size to 60 (one third of the length of unique amino acid type features). The

selected features achieved maximum accuracies of 71.05%, 77.83% and 77.39% for BPPI,

Zhu et al. and Mintseries et al. datasets respectively. The results are listed in Table 5.10.

Table 5.10: Classification results for desolvation energy with floating forward/backward
feature selection (minimum length 1).

Quadratic Linear
with atom type FDA HDA CDA FDA HDA CDA
BPPI-S 70.86 70.47 70.66 71.05 69.30 69.88
MAW 69.71 70.31 70.93 69.98 70.31 69.39
MAS 72.75 72.44 72.14 72.44 72.14 71.52
MOS 76.07 76.45 75.87 77.39 76.63 76.43
ZW 67.99 73.37 75.36 67.23 77.83 75.06

Quadratic Linear
with amino acid type FDA HDA CDA FDA HDA CDA
BPPI-W 66.54 66.75 66.54 66.34 66.32 66.91
BPPI-S 62.24 61.85 61.45 61.85 61.85 61.26
MOS 71.85 71.66 72.42 70.89 71.47 70.12
MOW 73.57 74.33 74.14 72.99 73.94 72.99
ZW 67.13 65.44 64.71 65.49 65.48 64.14
ZS 61.93 60.55 60.55 53.99 53.22 53.22

In experiment one, some combinations resulted the best subsets of length 1 by the se-

lection algorithm. Thus, for those combinations, there are no classification results in Table

5.10. All selected amino acid pairs for this experiment are listed in Table 5.11.
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Table 5.11: Selected amino acid pairs with floating forward/backward feature selection
(minimum length 1).

Dataset Selected amino acid pairs
BPPI-W GLU-GLY, ILE-VAL, LEU-TYR, PRO-THR
BPPI-S SER-THR, TYR-VAL
ZW PHE-TYR, PRO-PRO, THR-THR, THR-VAL
ZS TRP-TRP, TYR-TYR, VAL-VAL
MAS PHE-TYR
MOS GLU-TYR, LYS-TYR, PHE-SER, PRO-TRP, THR-TRP, THR-TYR, VAL-VAL
MAW VAL-VAL
MOW SER-THR, SER-VAL, THR-TRP, TRP-TRP, TRP-TYR, TRP-VAL, TYR-TYR

In experiment two, we selected 60 pairs of amino acid with floating forward/backward

feature selection algorithm.

5.2.4.2 With mRMR Feature Selection

With mRMR, we selected the top 60 amino acid pairs. Then, we merged all the amino acid

pairs selected by mRMR and floating forward/backward feature selection with length 60

and counted frequency of different amino acid pairs in that list. The frequency histogram is

shown in Figure 5.1. We also tested the strength of the mRMR selected features with our

prediction method. The classification results with 60 mRMR features are listed in Tables

5.12 and 5.13. For those classifications, the highest accuracy achieved by BPPI, Mintseris

et al. and Zhu et al. datasets are 74.89%, 80.27% and 82.18% respectively.

5.2.4.3 Analysis With Heatmaps

To generate heatmaps we created a 19×19 matrix with row labels [LYS, MET, THR, TRP,

TYR, ARG, ASN, ASP, CYS, GLN, GLU, HIS, SER, ALA, ILE, LEU, PHE, PRO, VAL]

and column labels [LYS, MET, THR, TRP, TYR, ARG, ASN, ASP, CYS, GLN, GLU,
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Figure 5.1: Frequency histogram of amino acid pairs selected by mRMR and floating for-
ward/backward feature selection.
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Table 5.12: Classification results for desolvation energy of amino acid pairs selected with
mRMR.

Quadratic Linear
FDA HDA CDA FDA HDA CDA

BPPI-W 71.46 73.81 71.85 72.05 74.53 74.71
BPPI-S 71.44 73.61 72.43 72.42 73.93 74.89
MAW 74.94 78.55 77.35 73.08 78.59 76.12
MAS 74.60 77.38 76.76 73.65 76.44 74.26
MOW 77.40 79.70 77.97 77.02 78.15 76.06
MOS 77.39 80.08 77.21 77.00 79.30 75.09
ZW 68.36 79.05 76.29 67.64 82.18 72.70
ZS 66.36 76.91 78.43 67.80 82.07 70.05

Table 5.13: Classification results for desolvation energy of atom type pairs selected with
mRMR.

Quadratic Linear
FDA HDA CDA FDA HDA CDA

BPPI-W 68.90 71.66 72.05 69.09 74.72 74.71
BPPI-S 68.90 71.66 72.04 69.29 72.93 72.94
MAW 73.93 77.03 78.9 73.91 77.67 77.36
MAS 73.34 77.35 77.64 72.09 77.03 77.91
MOW 79.70 80.08 80.27 78.17 79.12 78.54
MOS 77.02 79.89 80.08 76.82 78.55 77.59
ZW 69.04 74.91 76.40 67.65 81.31 77.22
ZS 70.57 73.93 75.26 70.57 78.95 75.58

HIS, SER, ALA, ILE, LEU, PHE, PRO, VAL]T . First, we took the column-wise sums

for all the feature vectors, and then sorted desolvation energies for amino acid pairs with

amphipatic-amphipatic, hydrophilic-hydrophilic and hydrophobic-hydrophobic pairs and

filled the matrix (we set zero for rest of the entries in the matrix). We created two separate

matrices for obligate and non-obligate for each datasets. We plotted obligate features in the

red color heatmap and non-obligate in the blue color heatmap. To perform a visual analysis,

we combined obligate and non-obligate heatmaps into a single heatmap to see the blue and

red colored points in the heatmap. When we have two individual matrices of obligate and
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non-obligate, we also calculated their difference matrix. We used this difference matrix

to generate the difference heatmap. The difference heatmap is plotted with standardized

values. Thus, it is represented in red-green color. We generated the heatmaps for 3×3,

4×4, 5×5, 6×6, 7×7 and 8×8 color resolutions. The best heatmaps are shown in Figures

5.2, 5.3 and 5.4. Other heatmaps are shown in Appendix B (Figures B.1, B.2, B.3, B.4, B.5

and B.6).

For all three datasets, in the combined heatmap, we can see that the bottom right corners

(which represents hydrophobic-hydrophobic pairs) are different and higher energies than

other two groups. In the difference heatmap, we can see that this same group is expressed

with red color (red means higher energies).
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5.3 Discussion and Comparison

In paper [30], Zhu et al. predicted the type of obligate and non-obligate complexes with

70.07% accuracy. They used four NOXclass features with two staged SVM [3] classifier to

achieve that performance. With our approach, that is LDR (HDA, FDA, CDA) combined

with quadratic Bayesian (QB) and linear Bayesian (LB), we achieved maximum accuracy

of 82.13%. Thus, we have over 12% improved result for this case. To make a fair compari-

son, we also used the same features with our prediction methods and it achieved maximum

accuracy of 77.92% which is still lower than the accuracy of our approach by 4%. With

the same four NOXclass features, Mintseris et al. [19] achieved 77.64% accuracy with

optimized SVM [3] classifier and our approach achieved 80.86% accuracy which is over

3% improvement from their results. We also tested those features for [19] with our pre-

diction method, in which it achieved 77.32% accuracy. We also applied feature selection

(FS) algorithms for selecting the best subsets of feature. Using floating forward/backward

feature selection, we achieved almost the same performance for both of the related works in

[19, 30] and 3-5% lower accuracy than without feature selection results with our approach.

When we used mRMR selected pairs coupled with our approach, the accuracies are almost

the same as those of our original approach without feature selection. The summary of the

comparison is shown in Table 5.14.

Table 5.14: Comparison with related works of [19, 30].

NOXclass NOXclass Our Our Our
Dataset features features approach approach approach

+ SVM + LDR + mRMR + FS
Mintseris et al. [19] 77.64 77.32 80.86 80.27 77.39
Zhu et al. [30] 70.07 77.92 82.13 82.18 77.83

Our main idea for applying feature selection was to find some biologically meaningful
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characteristics for predicting obligate and non-obligate complexes. When we look closely

at Figure 5.1, we find that among the selected pairs the highest number of pairs belongs

to hydrophobic-hydrophobic pairs. In Table 5.15, the numbers for all selected groups are

listed.

Table 5.15: Summary of feature selection.

Hydrophilic pairs Amphipatic pairs Hydrophobic pairs
unique pairs total pairs unique pairs total pairs unique pairs total pairs

14 39 15 114 32 189

Analyzing (c) and (d) of Figures 5.2, 5.3 and 5.4, we can see that in all difference

heatmaps hydrophobic-hydrophobic pairs have very high values (red). In the combined

heatmap, the bottom right corner colors are significantly different. This area is mostly

red which belongs to hydrophobic-hydrophobic pairs and other two regions (amphipatic-

amphipatic pairs and hydrophilic-hydrophilic pairs) are mostly green. When we used

our approach with only amphipathic-amphipatic pairs, hydrophobic-hydrophobic pairs and

hydrophilic-hydrophilic pairs, we find hydrophobic-hydrophobic pairs achieve the highest

accuracy of 77.60% among these three groups (see Tables 5.7, 5.8 and 5.9). Thus, for all

cases hydrophobic-hydrophobic pairs are significantly better for prediction than other pairs.



Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, we have presented a new model used to predict obligate and non-obligate

complexes. The key contributions of the thesis can be summarized as follows:

• The new model presented in this thesis results in significant improvements in Zhu et

al. dataset and moderate improvement in Mintseris et al. dataset for predicting ob-

ligate and non-obligate complexes with desolvation energies as properties and LDR

(HDA, FDA, CDA) combined with quadratic Bayesian (QB) and linear Bayesian

(LB) as classifiers.

• Including post analysis in the proposed model can help find some biologically mean-

ingful interesting facts. In our thesis, we found that hydrophobic-hydrophobic pairs

in obligate and non-obligate complexes have very high discriminating capabilities.

• Different feature selection methods can be coupled with our model and mRMR fea-

ture selection works better with our proposed model.

57
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• By picking hydrophobic-hydrophobic amino acid pairs, it is possible to predict obli-

gate and non-obligate protein-protein interactions efficiently.

• Our BPPI dataset can be used for obligate and non-obligate protein-protein interac-

tions prediction.

6.2 Limitations

We could not consider small atoms in our calculations as they do not have any mapping in

the atom conversion table (Tables 3.2 and 3.3). While scanning structure files for different

complexes, we found some atoms also have the same mapping problem. We do not know

the actual smooth function equation and using predetermined atomic contact potentials, we

approximated desolvation energy values and not the actual energy values between atom

pairs.

6.3 Future Work

Our future work involves the use of this model in different protein-protein interaction clas-

sification problems such as intra and inter domains, homo and hetero-oligomers and the

use of other properties such as residual vicinity, shape of the structure of the interface,

secondary structure, planarity, physicochemical features and others.



Appendix A

Counting numbers of amino acids

Table A.1: Counts for interacting amino acids for different distances in different complexes.

Name Chain 4Å 4.5Å 5Å 6Å Name Chain 4Å 4.5Å 5Å 6Å

1a14 L:N 25 36 59 134 1is8 E:O 5 12 20 34

1a14 H:N 29 47 68 145 1is8 E:M 0 0 0 0

1a2k A:C 1 1 3 4 1is8 E:N 0 0 0 0

1a2k B:C 47 85 122 261 1is8 J:K 0 0 0 0

1ahw A:C 17 28 55 105 1is8 J:L 0 0 0 0

1ahw B:C 52 87 149 284 1is8 J:O 0 0 0 0

1akj A:D 40 59 88 161 1is8 J:M 0 0 0 0

1akj A:E 14 22 28 57 1is8 J:N 0 0 0 0

1akj B:D 9 17 27 57 1is8 C:K 0 0 0 0

1akj B:E 0 0 2 3 1is8 C:L 0 0 0 0

1ao7 A:D 24 44 68 121 1is8 C:O 0 0 0 0

1ao7 A:E 8 19 28 45 1is8 C:M 6 11 18 35

59
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1ao7 B:D 0 0 0 0 1is8 C:N 8 14 28 62

1ao7 B:E 0 0 0 0 1is8 I:K 0 0 0 0

1ao7 C:D 14 26 41 69 1is8 I:L 0 0 0 0

1ao7 C:E 14 19 35 83 1is8 I:O 0 0 0 0

1ar1 A:C 0 0 0 0 1is8 I:M 0 0 0 0

1ar1 A:D 0 0 0 0 1is8 I:N 0 0 0 0

1ar1 B:C 20 29 53 111 1is8 D:K 0 0 0 0

1ar1 B:D 24 39 58 112 1is8 D:L 0 0 0 0

1avg H:I 42 69 113 205 1is8 D:O 8 11 23 63

1avg L:I 0 0 0 0 1is8 D:M 0 0 0 0

1azz A:D 41 80 127 233 1is8 D:N 7 14 20 34

1azz A:D 41 80 127 233 1is8 H:K 0 0 0 0

1b9y A:C 108 198 296 592 1is8 H:L 0 0 0 0

1b9y B:C 0 0 0 1 1is8 H:O 0 0 0 0

1be3 C:A 17 28 43 92 1is8 H:M 0 0 0 0

1be3 D:A 4 8 13 29 1is8 H:N 0 0 0 0

1be3 E:A 51 100 151 313 1is8 G:K 0 0 0 0

1be3 G:A 57 113 187 360 1is8 G:L 0 0 0 0

1be3 K:A 7 18 41 72 1is8 G:O 0 0 0 0

1bgx H:T 74 149 252 542 1is8 G:M 0 0 0 0

1bgx L:T 65 113 207 449 1is8 G:N 0 0 0 0

1bj1 H:V 2 2 5 10 1is8 F:K 0 0 0 0

1bj1 H:W 75 143 228 391 1is8 F:L 0 0 0 0

1bj1 L:V 0 0 0 0 1is8 F:O 0 0 0 0



APPENDIX A. COUNTING NUMBERS OF AMINO ACIDS 61

1bj1 L:W 2 5 8 21 1is8 F:M 0 0 0 0

1bqh A:G 36 56 83 168 1is8 F:N 0 0 0 0

1bqh B:G 0 0 0 0 1jb0 A:E 37 52 84 150

1cs4 A:C 11 26 38 67 1jb0 B:E 18 31 58 111

1cs4 B:C 30 71 101 213 1jb0 B:D 23 49 83 186

1de4 C:A 55 99 146 296 1jb0 A:D 57 95 146 313

1de4 F:A 1 1 1 5 1jb0 A:E 37 52 84 150

1dee C:G 0 0 0 0 1jb0 B:E 18 31 58 111

1dee C:H 0 0 0 0 1jb0 B:D 23 49 83 186

1dee D:G 8283 10537 13053 19050 1jb0 A:D 57 95 146 313

1dee D:H 0 0 1 20 1jb0 A:C 21 53 85 170

1dkg A:D 35 76 121 270 1jb0 B:C 42 76 114 247

1dkg B:D 0 1 1 2 1jmz A:B 66 130 184 363

1dm0 A:B 7 12 26 55 1jmz G:B 63 121 192 430

1dm0 A:C 15 34 59 114 1jro A:D 0 0 0 0

1dm0 A:F 12 26 47 89 1jro A:B 221 379 604 1225

1dm0 A:D 8 14 23 63 1jsu A:C 117 211 309 569

1dm0 A:E 15 40 54 103 1jsu B:C 69 134 182 381

1du3 A:D 41 76 113 238 1jwh A:C 6 11 19 40

1du3 A:E 0 0 0 0 1jwh A:D 35 60 97 181

1du3 A:F 44 74 115 233 1k3z A:D 86 155 221 413

1dx5 A:I 0 0 0 0 1k3z B:D 42 77 131 282

1dx5 M:I 55 85 131 252 1k4c A:C 39 57 85 155

1e6j H:P 37 66 104 202 1k4c B:C 34 63 98 162
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1e6j L:P 5 11 24 67 1kcg A:C 16 25 54 119

1ebd A:C 14 21 31 60 1kcg B:C 23 41 59 129

1ebd B:C 22 43 66 120 1kkl A:H 23 49 69 147

1ebp A:C 29 43 65 117 1kkl B:H 0 0 0 0

1ebp A:D 6 16 25 64 1kkl C:H 22 37 76 157

1efx A:D 38 70 114 207 1l0o A:C 25 43 70 140

1efx B:D 0 0 0 0 1l0o B:C 34 65 110 220

1efx C:D 6 6 8 18 1l7v A:C 41 72 124 273

1es7 A:B 46 100 157 305 1l7v B:C 0 0 0 0

1es7 C:B 15 33 55 103 1l9j C:H 0 0 0 0

1ezv E:X 44 69 100 232 1l9j C:L 7 15 22 54

1ezv E:Y 12 18 28 63 1l9j C:M 12 20 48 104

1ezx A:C 25 44 66 142 1li1 A:C 166 284 446 845

1ezx B:C 0 0 0 0 1li1 B:C 184 333 516 958

1f51 A:E 211 362 577 1326 1lk3 A:H 65 82 115 218

1f51 B:E 362 548 780 1392 1lk3 A:L 33 57 85 149

1f83 A:C 41 65 102 224 1lti A:D 0 2 2 2

1f83 A:B 99 148 220 449 1lti A:E 1 1 1 3

1f93 A:E 14 16 22 36 1lti A:H 3 4 7 17

1f93 A:F 16 28 57 107 1lti A:F 3 6 15 26

1f93 B:E 19 34 55 113 1lti A:G 12 16 22 42

1f93 B:F 12 17 24 36 1lti C:D 14 28 38 74

1fak H:T 48 70 106 200 1lti C:E 21 41 67 149

1fak L:T 57 119 176 344 1lti C:H 6 12 22 53
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1fbi H:X 41 77 139 262 1lti C:F 19 33 50 105

1fbi L:X 7 14 29 76 1lti C:G 3 3 8 26

1fg9 A:C 43 80 141 261 1m2o A:B 91 162 266 526

1fg9 B:C 14 24 36 77 1m2o C:B 0 0 0 0

1flt V:X 9 16 36 72 1mjg A:M 85 170 264 529

1flt W:X 24 42 76 159 1mjg B:M 21 39 67 155

1fns A:L 9 11 22 31 1n2c A:E 24 47 79 167

1fns A:H 48 78 118 196 1n2c A:F 24 48 70 149

1fsk A:C 48 83 128 227 1n2c B:E 31 52 72 170

1fsk A:B 19 31 48 97 1n2c B:F 34 64 101 206

1g73 A:C 27 41 67 127 1nbw A:B 38 60 91 197

1g73 B:C 44 75 103 161 1nbw C:B 17 43 65 146

1gvn A:B 78 122 166 389 1nsn H:S 21 35 50 127

1gvn C:B 0 0 0 0 1nsn L:S 19 38 57 135

1hez A:E 23 48 86 191 1o94 A:C 35 45 72 118

1hez B:E 0 0 0 0 1o94 A:D 0 0 0 0

1hr6 A:B 95 193 287 539 1o94 B:C 0 0 0 0

1hr6 E:B 0 0 0 0 1o94 B:D 0 0 0 0

1hwg A:B 69 134 225 448 1osp H:O 45 87 131 215

1hwg A:C 49 90 137 272 1osp L:O 47 65 98 187

1hzz A:C 21 38 64 122 1prc C:H 13 23 39 65

1hzz B:C 43 68 100 234 1prc C:L 97 190 287 576

1i3o A:E 18 25 36 88 1prc C:M 167 313 502 985

1i3o B:E 53 105 167 311 1qfu A:H 37 71 116 229
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1i3o C:E 0 0 0 0 1qfu A:L 4 6 8 44

1i3o D:E 25 45 63 104 1qfu B:H 0 0 0 0

1i4d A:D 39 73 109 221 1qfu B:L 0 0 0 0

1i4d B:D 7 13 18 44 1qfw A:I 0 0 0 0

1i9r A:H 22 44 84 200 1qfw A:M 4 8 15 33

1i9r A:L 17 28 46 90 1qfw B:I 34 55 74 127

1i9r B:H 0 0 0 1 1qfw B:M 24 43 64 126

1i9r B:L 0 1 1 1 1qkz A:L 5 5 17 37

1i9r C:H 0 0 0 0 1qkz A:H 37 85 116 212

1i9r C:L 0 0 0 0 1qo0 A:D 34 54 80 155

1ib1 A:E 62 104 162 357 1qo0 A:E 29 47 74 136

1ib1 B:E 1 1 5 8 1rlb A:E 6 10 21 44

1icf A:I 74 133 220 414 1rlb B:E 23 41 61 113

1icf B:I 12 22 31 54 1rlb C:E 9 18 23 57

1iis A:C 19 45 74 160 1rlb D:E 0 0 0 0

1iis B:C 24 42 70 129 1sgf A:B 10 21 38 94

1ijk A:B 13 28 43 81 1sgf A:Y 36 60 108 193

1ijk A:C 17 32 55 115 1toc A:R 0 0 0 0

1im3 A:D 33 62 105 222 1toc B:R 164 271 420 792

1im3 B:D 0 0 0 0 1wej F:H 26 36 53 106

1iod A:G 8 20 31 56 1wej F:L 30 48 68 118

1iod B:G 10 20 29 70 1www V:X 21 32 47 88

1iqd A:C 0 0 0 0 1www W:X 44 74 120 256

1iqd B:C 0 0 0 0 1ytf B:D 51 101 157 338
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1is8 A:K 7 14 21 33 1ytf C:D 122 241 386 708

1is8 A:L 8 11 26 61 2hmi A:C 0 0 0 0

1is8 A:O 0 0 0 0 2hmi A:D 0 0 0 0

1is8 A:M 0 0 0 0 2hmi B:C 9 17 23 49

1is8 A:N 0 0 0 0 2hmi B:D 28 52 74 161

1is8 B:K 0 0 0 0 2jel H:P 34 67 92 183

1is8 B:L 6 12 19 34 2jel L:P 14 28 50 89

1is8 B:O 0 0 0 0 2mta A:H 10 14 31 85

1is8 B:M 9 13 31 68 2mta A:L 13 28 48 144

1is8 B:N 0 0 0 0 4htc H:I 86 163 270 522

1is8 E:K 9 13 27 67 4htc L:I 0 0 0 0

1is8 E:L 0 0 0 0 4rub A:T 44 79 131 259

4rub D:T 21 49 70 147



Appendix B

Heatmaps

Figure B.1: BPPI-W heatmaps- (a) obligate, (b) non-obligate, (c) difference of (a) and (b),
(d) combined of (a) and (b), - with color resolution 4×4.
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