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Abstract

Prediction and discrimination of Crystal Packing interactions and Biological interactions is

a particular problem that has drawn the attention of the research community in recent years.

In this thesis, we have studied the prediction problem of these two types of interactions as

well as obligate and nonobligate interactions. We are proposing new features such as Num-

ber Based Amino Acid Composition and Area Based Amino Acid Composition to predict

different types of interactions more efficiently. We have measured our newly proposed fea-

tures contribution to the classification by comparing them with already proposed model.

Along with we are also proposing an efficient multi-stage classification strategy to success-

fully predict crystal packing, non-obligate and obligate interactions. In this thesis we are

also proposing a modified singularity problem free linear dimensionality reductions linear

transformation matrix maximization criterion. We have also applied our proposed LDR-

Singular Value Decompositions modified (LDR-SVD) to other protein-protein interaction

problems.
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Chapter 1

Introduction

1.1 Molecular biology

Molecular biology is the branch of biology that deals with molecular level details of various

biological functions. In this field of study we can see overlaps with other areas of biology

and chemistry, especially genetics and biochemistry. One of the main concerns of molecular

biology is to understand the interactions between the various systems of a cell that includes

the interactions between the different types of DNA, RNA and Protein complexes and also

to figure out how these interactions are regulated. The study of molecular underpinnings of

the processes of replication, transcription, translation, and cell function is summarized as

molecular biology. Molecular biology devotes itself to the study of the molecular principles

of the physiological processes in the life cycle of different organisms. To understand the

interactions and their regulators molecular biology investigates the structure and function

of various biological complexes. Molecular biology began its journey in the 1930s with the

convergence of previously distinct biological disciplines: biochemistry, genetics, microbi-

ology and virology. With the help of numerous physicists, chemists and computer scientists

1



CHAPTER 1. INTRODUCTION 2

molecular biology attempts to explain the phenomena of life starting from the macromolec-

ular properties that generate them. Particularly two categories of macromolecules are the

focus of the molecular biologist, nucleic acids the constituent of genes and proteins which

are active agents of the living organisms.

1.2 Bioinformatics

Most of the work in molecular biology is quantitative, and those quantitative works that has

been done at the interface of molecular biology, statistics and computer science is called

bioinformatics. The main goal of bioinformatics is to increase the understanding of bio-

logical processes by developing and applying various computationally intensive techniques

such as pattern recognition, machine learning algorithms, data mining and visualization. In

this field the major research arenas are protein structure alignment, protein structure pre-

diction, prediction of gene expression and proteinprotein interactions, sequence alignment,

gene finding, genome assembly, drug design, drug discovery, and the modeling of evolu-

tion. Over the last few decades the rapid improvements in genomic and other research

technologies had produced a tremendous amount of information related to molecular bi-

ology. Bioinformatics now also includes the creation and advancement of databases, al-

gorithms, computational and statistical techniques to solve the problems arising from the

management and analysis of these huge amounts of biological information. Mapping and

analyzing DNA and protein sequences, aligning different DNA and protein sequences to

compare them, creating and viewing 3-D models of protein structure are common activi-

ties in the field of bioinformatics. Bioinformatics was first applied to store nucleotide and

amino acid sequences in a database at the beginning of ”genomic revolution”. Develop-

ment of this type of databases produced not only design issues but also the development of
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complex interfaces whereby researchers could access existing information as well as submit

new or revised information. To understand different diseases better there is a need to study

how normal cellular activities are altered in different diseased states; the biological data

must be combined to form a comprehensive picture of these activities. Therefore, in the

field of bioinformatics the most important task now involves the analysis and interpretation

of various types of data, including nucleotide and amino acid sequences, protein domains

and protein structures.

1.3 Protein-protein interaction

Protein-protein interaction prediction is an interdisciplinary field between bioinformatics

and structural biology. The main goal of protein-protein interaction is to identify and

catalog physical interactions between pairs or group of proteins. Prediction of different

protein-protein interactions and understanding them are very important for the investiga-

tion of intercellular signalling pathways, modeling of protein complex structures and for

gaining insights into various biochemical processes. Also the structural models of the com-

plexes resulting from these interactions are necessary to understand those processes at the

molecular level. Prediction of protein-protein interaction has two components, experimen-

tal approach and computational approach. Currently the work to experimentally determine

the interactome of numerous species are ongoing and also computer scientists are working

on developing computational methods to predict different types of interactions as accurately

as possible.

In the field of proteomics one of the current goal is to map the protein interaction net-

works into different organisms [1]. In the complex web of interacting proteins to define

a protein by its position needs protein-protein interaction information. Knowledge of this
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information greatly helps biological research and makes the discovery of novel drug tar-

gets much easier. The detection of protein-protein interactions was previously limited to

labor-intensive experimental techniques such as co-immunoprecipitation or affinity chro-

matography. Mass spectroscopy and yeast two-hybrid methods are the high-throughput

experimental techniques those are now available for large-scale detection of protein-protein

interactions. But these methods may not be generally applicable to all proteins in all organ-

isms, and may also be prone to systematic error. Recently for the large-scale prediction of

protein-protein interactions various complementary computational approaches have been

developed based on protein sequences, structure and evolutionary relationships in complete

genomes.

To understand different responsible factors for different types of interactions within

protein at different level such as atomic level [11, 13, 27] different studies have been done.

Also all these protein-protein interactions are not biologically relevant, there are crystal

packing interactions [10] those have no biological functions associated with it. Thus there

is a need to distinguish these types of interactions with biologically relevant interactions,

in this thesis we are proposing a computational approach to differentiate these two types

of interactions. There are diversities of protein-protein interactions[22], different types of

protein-protein interactions happen in different biological processes. Among these differ-

ent types of interactions obligate and nonobligate interactions [21, 35] are worth mention-

ing. Protomers from obligate complexes do not exist as stable structures in vivo, whereas

protomers from nonobligate complexes can stay as stable and functional units. Another

types of interaction those are of particular interest of research community are permanent

and transient interaction, these interactions are distinguished on the basis of their lifetime.

Distinguishing these types of interactions must need computational approaches because ex-
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perimentally it is very hard to distinguish and study transient and permanent interactions

because of their ephemeral nature. In this thesis we are proposing a computational approach

to distinguish obligate and nonobligate interactions.

1.4 Feature extraction and prediction

In pattern recognition feature extraction is a special form of dimensionality reduction meth-

ods. When the input features for a classification is too large to be processed and consists

of redundant data then the input features are being transformed into a reduced dimension

of features, this process of reducing large dimension feature vectors to reduced dimension

feature vectors is called Feature Extraction. If the extracted features are carefully chosen

it is expected that the reduced feature set will extract the most relevant information from

the input feature vectors. There are many popular feature extraction algorithms available

namely Linear Dimensionality Reduction, Principal Component Analysis, Nonlinear Di-

mensionality Reduction and Independent Component Analysis. Because of its linear time

complexity and higher efficiency we will use Linear Dimensionality Reduction (LDR) in

our current study to predict different protein-protein interactions. In LDR we find reduced

feature vectors by finding a linear transformation matrix, in this thesis we have used three

different maximization criteria to get the optimum transformation matrix [26]

• Fisher’s Discriminant Analysis (FDA)

• Heteroscedastic Discriminant Analysis (HDA)

• Chernoff Discriminant Analysis (CDA)

After reducing the large feature vectors to reduced feature set we have used the quadratic

classifier and the linear classifier to predict different types of interactions. Quadratic clas-
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sifier is a statistical classifier to separate measurements of two or more classes of objects or

events by a quadratic surface. A linear classifier achieves the same classification decision

based on the value of linear combinations of characteristics.

1.5 Motivation and objective

The cell is the functional basic unit of life. To perform most of the physiological functions

within a cell there is a need of signal transduction. When signals from the exterior of the cell

are mediated to the inside of the cell through the process of signal transduction, it happens

through the chain of protein-protein interactions of signalling molecules. So we can see

underneath all biological process there is some protein-protein interactions are happening.

Thus it is of prime importance of research community to understand the protein-protein

interactions to decipher the enigma of life. Another major importance of studying protein-

protein interactions is to better understand diseases and develop drugs for them. Knowledge

of these interactions information greatly helps biological research and makes the discovery

of novel drug targets much easier. Because of protein-protein interactions the interacting

protein complexes might be changed or it can modify other protein complexes, it means

because of these interactions functionality of protein complexes might also change. Thus

protein-protein interaction is also of prime importance to understand the functionality of

protein complexes.

Previously there were only labor-intensive approaches such as affinity chromatography

or co-immunoprecipitation was available. Currently high throughput experimental tech-

niques such as mass spectroscopy and yeast two hybrid methods are available for large

detection of protein-protein interactions. But these methods may not generally be applica-

ble to all proteins in all organisms, and may also be prone to system error. For that reason
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recently for large-scale prediction of protein-protein interactions various complementary

computational approaches have been developed.

Among different types of protein-protein interactions we have focused on distinguish-

ing biological interactions with crystal packing interactions [35]. Previously computa-

tional approaches have shown that biological interactions have larger interface size than

non-biological interactions [10, 23]. We have also predicted obligate and nonobligate

protein-protein interactions successfully with more classification accuracy [21, 35]. De-

termining nonobligate and obligate interactions with experimental approaches such as co-

immunoprecipitation or affinity chromatography often leads to erratic results. Thus efficient

computational approaches were necessary to successfully predict these types of interac-

tions. We have also devised a multi-class classification model to classify biological and

non-biological interactions and nonobligate and obligate interactions.

To give an idea how rapidly research is going on this particular field, we can see the

growth of identifying protein three-dimensional structures by the research communities,

Protein Data Bank where the three-dimensional structures of different protein complexes

are kept started in 1971 with only 7 structures, in 2003 it had 20,000 structures and in 2010

it had 68,000 structures.

1.6 Problem statement

To predict different protein-protein interactions(biological-crystal packing and obligate-

nonobligate )

To solve the problem we propose a two step process:

1)Generation of features from physio-chemical properties of the protein complexes

2)Prediction with linear dimensionality reduction-SVD
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1.7 Contribution

The main contributions of this thesis are:

• Propose 40 new features on Solvent Accessible Surface Area (SASA) property to pre-

dict biological-crystal packing interactions and obligate-nonobligate interactions and

compare with previous approaches to verify the effectiveness of our new proposed

features by showing increased prediction accuracy.

• Propose a multi-class classification model to predict biological(nonobligate-obligate)-

crystal packing interactions and compare them with previous approaches.

• Propose a solution to the generation of singularity matrix problem for CDA criterion

of linear dimensionality reduction.

• Implement different visual classification analyzer tool such as Receiver Operating

Characteristic (ROC) Curve and Matthews correlation coefficient to analyze the ef-

fectiveness of our prediction.

1.8 Thesis organization

This thesis has six chapters. A survey of crystal packing-biological interactions and nonobligate-

obligate interactions is presented in Chapter II. Chapter III presents a detailed discussion

about different feature extraction and pattern classification methods. In Chapter IV we de-

scribe newly proposed features, solution to the singularity problem for CDA criterion for

linear dimensionality reduction and multi-class classification model. In Chapter V we have

shown experimental results and findings with proposed approach and its comparison with
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the existing methods. At last in Chapter VI we conclude the thesis and identify future works

that can be extended from this work.



Chapter 2

Protein-protein interaction prediction

2.1 Protein

Proteins are nitrogenous organic compounds that consist of large molecules of one or more

long chains of amino acids and are an essential part of all living organisms. Proteins consist

of one or more polypeptides folded into a globular form in a biologically functional way.

A polypeptide is a single polymer chain of amino acids bonded together by peptide bonds

between the carboxyl and amino groups of adjacent amino acid residues. Proteins are struc-

tural components of body tissues such as muscle, hair, collagen, etc. and as enzymes and

antibodies.

2.2 Proteomics

Proteomics is a field of study that deals with structural and functional properties of proteins.

Proteins are the main components of physiological metabolic pathways of cells, so they

are of prime importance of study to understand the mechanism of any living organisms.

10
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The term was first coined in 1997, to make an analogy with ’genomics’. Proteomics is

considered much more complicated than genomics because while an organism’s genome is

more or less constant, proteome (proteome is an entire complement of proteins, including

the modifications made to a particular set of proteins produced by an organism or system)

differs from time to time and from one cell to a different cell.

Proteomics gives much more better understanding of an organism than genomics. For

that reason scientists are very interested in proteomics lately. First, the level of transcription

of a gene gives only a rough estimate of its level of expression into a protein. It is known

that mRNA is translated into protein, but it is not always true. It is possible that an mRNA

produced in abundance may degrade rapidly or translate inefficiently resulting in a small

amount of protein. Second, many proteins experience post-transitional modifications that

profoundly affect their activities, as an example some proteins are not active until they

become phosphorylated. Third, many transcripts give rise to more than one protein through

alternative post-transitional modifications. Fourth, many proteins form complexes with

other proteins or RNA molecules, and only function on the presence of these molecules.

Finally, protein degradation plays an important role in protein content [4].

The benefits of studying human genes and proteins are the identification of the potential

new drugs for the treatment of disease. Scientists at first obtain genome and proteome

information that identifies proteins associated with a disease. Then after identification of

that vicious protein, they look into the three-dimensional structure of that protein, which

provides all the information to design drugs to interfere with the action of the protein.

Most proteins function in collaboration with other proteins. Thus, it is one of the major

goal of proteomics is to identify which proteins interact with other proteins. There are sev-

eral methods available to probe protein-protein interactions. The very popular traditional
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method is yeast two-hybrid analysis. There are several new methods those are currently

used by research community namely protein microarrays, immunoaffinity chromatography,

mass spectrometry, dual polarisation interferometry, microscale thermophoresis and exper-

imental methods such as phage display. Currently there is a substantial research effort

undergoing to develop effective computational methods to predict and identify different

protein-protein interactions and this is one of the major contributions of this thesis and

study.

2.3 Protein structures

Proteins are biochemical compounds consisting of one or more polypeptides. A polypeptide

is a single linear polymer chain of amino acids bonded by peptide bonds. To understand the

functions of protein sometimes it is necessary to determine their three-dimensional struc-

ture. This topic is the field of study in structural biology, which uses different techniques

namely X-ray crystallography, NMR spectroscopy, and dual polarization interferometry to

determine the structure of proteins. There are four distinct levels of protein structure pri-

mary structure, secondary structure, tertiary structure, quaternary structure.

The primary structure (Figure 2.1), of a protein is expressed by the amino acid se-

quences of the polypeptide chain. The sequence of a protein is unique to that protein. The

amino acid sequence of a protein can be determined by Edman degradation or tandem mass

spectrometry methods. The primary structure (Figure 2.1) of a protein is held together by

peptide bonds.

The secondary structure of a protein (Figure 2.2)describes the regions of the chains of

a protein that are organized into local sub structures known as alpha-helices or beta-sheets.

These secondary structures are held by hydrogen bonds between the main chain peptide
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Figure 2.1: Primary Structure of 1AVA A B C protein complex. Generated with the help of
ICM Molsoft browser

groups.

The tertiary structure (Figure 2.3) of protein molecules describes the specific atomic

positions in three-dimensional space. In tertiary structure alpha-helices and beta-sheets are

folded into a compact globule. The folding is driven by non-specific hydrophobic inter-

actions. In this thesis and study we have worked with this structure of proteins and used

three-dimensional shape information for the generation of feature vectors for the prediction.

The quaternary structure (Figure 2.4) of a protein describes the structure of a protein

which has more than one polypeptide chain which are also called subunits.
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Figure 2.2: Secondary Structure of 1AVA A B C protein complex. Generated with the help
of ICM Molsoft browser

2.4 Protein-protein interactions

Protein-protein interaction happens when two or more proteins bind together mostly to

carry out their biological functions. Protein-protein interactions are at the main part of

the entire interactomics (interactions and the consequences of the interactions between and

among proteins or other molecules within a cell) system of any living cell. Protein-protein

interactions are important for the majority of biological functions. Most of the molecular

processes happen in the cell because of protein-protein interactions, such as DNA replica-

tion carried out by large molecular machines organized by their protein-protein interactions.

Enzymes interact with their substrates, inhibitors interact with enzymes, transport proteins

interact with structural proteins, hormones interact with receptors and these are small sub-

sets of interactions that happen in a cell. Signals from the exterior of the cell are mediated

to the inside of the cell by protein-protein interactions of those signalling molecules. This

process is known as signal transduction and it plays a crucial role in many biological pro-
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Figure 2.3: Tertiary Structure of 1AVA A B C protein complex. Generated with the help of
ICM Molsoft browser
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Figure 2.4: Quaternary Structure of 1AVA A B C protein complex. Generated with the help
of ICM Molsoft browser
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cesses and diseases such as cancer. Protein might interact for a long time to form a part of

the protein complex, a protein might carry another protein such as to carry a protein from

cytoplasm to nucleus or vice versa, a protein might interact with another protein to mod-

ify it. These are the reasons why proteins interact. Specifically protein-protein interactions

happen because every protein wants to be more stable to have a specific shape that performs

particular functions.

Molecules belong to specific amino acids within a protein, interact with each other if

the distances between them are 1Å - 7Å. These interactions between molecules are called

direct contact association of molecules. Long range interactions (if the molecules are more

than 7Å apart) of molecules are also possible if the surrounding neighborhood such as water

solution helps molecules to interact with each other. In (Figure 2.5) complex 1B3A has 2

chains and they are in direct contact with the atoms of the different chains in the marked

area.

Not only the interactions but also the structural models of the complexes resulting

from these protein-protein interactions are necessary to understand most of the biologi-

cal processes at the molecular level. Protein-protein interactions have been studied from

the perspectives of biochemistry, quantum chemistry, molecular dynamics, signal transduc-

tion and other metabolic or genetic networks. A huge active research is currently going

on to probe different protein-protein interactions by applying different methods including

computational methods, which is the main topic of the current study.

2.4.1 Different types of protein-protein interactions

Different types of protein-protein interactions vary on the basis of their belongings to par-

ticular protein family and their different three-dimensional structures. Protein-protein inter-
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Figure 2.5: Protein-protein interaction of 1B3A Obligate Interactions between Chain A and
B. Generated with the help of ICM Molsoft browser

actions play different roles in different biological processes starting from signalling carrier

to another protein generation. By studying protein-protein interactions we can know what

the behavior of particular interacting protein molecules is. On the basis of physiological

functions, specificity and evolution, protein-protein interactions can be divided into 4 cat-

egories [22] such as Homo- and Hetero-oligomeric, Obligate and Non-obligate, Transient

and Permanent, Crystal packing and Biological [35].

Homo-oligomer and hetero-oligomeric protein-protein interactions: If two interacting

protein chains of an oligomer have structural symmetry then those kinds of protein-protein

interactions are called homo-oligomeric protein-protein interactions. If the two interact-

ing chains of oligomers have difference in their structure, then that kind of interaction is

classified as hetero-oligomeric protein-protein interaction.

Obligate and non-obligate protein-protein interactions: If the interacting protomers are
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not found as stable structures in vivo, that kind of protein-protein interaction is called ob-

ligate protein-protein interaction. If the interacting protomers have stable structure in vivo

then that kind of protein-protein interaction is classified as non-obligate protein-protein

interaction.

Transient and permanent protein-protein interactions: These two different types of

protein-protein interactions are differentiated on the basis of the life-time of the interact-

ing protein complexes. Permanent interactions outputs stable complexes but the transient

protein-protein interactions outputs less stable complexes. These less stable complexes that

are being generated from transient interactions continuously change their shapes until they

convert into a stable complex.

Crystal packing and biological protein-protein interactions: Different protein complexes

during crystallization process (as an example: X-ray crystallography) form solid crystals.

This kind of interaction do not serve any biological purpose, because by forming crystal

of different protein complexes they do not carry out any biological functions. This kind

of protein-protein interaction is called crystal packing interaction. Most of the crystallized

protein complexes that are being produced as a result of crystal-packing interactions does

not exist in vivo. All other protein-protein interactions that happen and also carry out some

biological functions are called biological protein-protein interactions. In this thesis we have

predicted crystal packing and biological protein-protein interactions and also obligate and

non-obligate interactions.

2.5 Crystallization of proteins

X-ray crystallography plays a central role to determine the structural models of proteins.

Among all the other methods available it is the most popular method [25]. It is a method
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to determine the arrangements of atoms within a crystal. In this method, a beam of X-rays

strikes a crystal and diffracts it into many specific directions. By measuring the angles and

intensities of these diffracted beams a crystallographer can generate a three-dimensional

picture of the density of electrons within the crystal. The mean positions of the atoms in

the crystal, their chemical bonds and their disorder and other different information can be

determined from this electron density. The importance of protein crystallization is that it is

the basis of X-ray crystallography.

Protein molecules can be crystallized if the purified protein undergoes slow precipitation

from an aqueous solution. As a result of the crystallization, individual molecules align

themselves in a repeating series of unit cells by adopting a consistent orientation. The

crystallized protein complexes that results from the crystallization process are held together

by non-covalent interactions. It is observed that protein crystals if surrounded by their

mother liquor gave better diffraction patterns than dried crystals [2].

The primary goal of crystallization of protein is to produce a well-ordered crystal that

lacks contaminants. The generated crystals should also be large enough to provide a diffrac-

tion pattern when it would be exposed to X-rays. The diffraction pattern that was generated

by the X-rays then should be analyzed to discern the protein’s tertiary structure.

2.6 Crystal packing and biological protein-protein inter-

actions

As discussed in the previous section, X-ray crystallography is the most popular method to

determine three dimensional structures of protein complexes. But not all interactions those

are observed in structures of protein complexes determined by X-ray crystallography are
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biologically relevant. Many of these interactions that are observed form during the crystal-

lization process. These interactions would not appear within any living organisms. These

crystal packing contacts are non-specific and there are no biological functions associated

with them. Thus there is a huge need to discriminate these kinds of interactions with bio-

logically relevant interactions, as we do not want to waste our time studying protein-protein

interactions those have no biological relevance.

Previous studies have examined properties of protein-protein interfaces in order to dif-

ferentiate between biologically relevant interactions and non-biological interactions those

results from crystal packing contacts. It has been observed that biological interactions tend

to have large protein interface sizes than non biological interactions [6, 9, 10, 15, 23, 28].

In PQS [15] they have primarily used interface size as the main discriminant to separate

true biological interactions with crystal packing interactions with a 78% accuracy on a

non-redundant dataset [33]. PQS used 400 Å2 cut-off for interface size to discriminate be-

tween biological interactions and non-biological interactions. Amino acid composition of

the interface is also another well-analyzed discriminating feature for identifying biological

interactions [12, 16, 23, 24]. It has been found that amino acid composition of biological

interfaces is different from that of the rest of protein surface [12, 16, 24]. On the other side,

in his paper [23] Carugo and co-authors showed that the chemical composition of interface

of crystal packing contacts is very similar to that of the rest of the surface as a whole. In [35]

Zhu et al. used six physio-chemical interface properties to discriminate biological interac-

tions with crystal-packing contacts with 90.9% accuracy. These interface properties are also

used to identify different protein-protein interaction sites. Jones and Thornton analyzed six

physio-chemical interface properties to predict different interaction sites [12, 31].
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2.7 Obligate and non-obligate protein-protein interactions

We can differentiate biological protein-protein interactions based on different properties

such as homo-oligomer and hetero-oligomer, obligate and nonobligate, transient and per-

manent. In our study we discriminate between obligate and nonobligate protein-protein

interactions. If the interacting protomers are not found as stable structures in vivo that kind

of protein-protein interaction is called obligate protein-protein interaction. If the interact-

ing protomers have stable structure in vivo then that kind of protein-protein interaction is

classified as non-obligate protein-protein interaction.

There are several studies have been done previously to differentiate obligate and non-

obligate protein-protein interactions. The study [8] by Nooren et al revealed that interfaces

of nonobligate complexes have smaller area, and are more planar and polar on average than

those of stable homodimers. It has been also found that interface residues of nonobligate

homodimers be more conserved than the other surface residues. In their study [14], Gu-

nasekaran et al reported that both pre-residue surface area and interface area of non-obligate

interactions are much smaller than those of obligate interactions. In this study [29], De et

al. performed a statistical analysis of the interface properties for obligate and non-obligate

interactions. They reported that obligate protein-protein interaction interfaces have more

contacts than non-obligate interfaces, and these contacts are nonpolar. Mintseris et al.[21]

have explained the difference between obligate and nonobligate complexes from an evolu-

tionary point of view. Interface residues were reported to be significantly more conserved

in obligate interactions than those in non-obligate interactions. That study also showed that

the coevolution rate is lower for obligate interactions than for non-obligate interactions.

In general, obligate and non-obligate proteins have distinct interaction preferences. The

point is that there is no single interface property with a clear cut-off on that basis we can
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discriminate between different protein interaction types. But this is explainable given the

complexity and diversity of protein interactions.

In the NOXClass study, [35] Zhu et al have investigated six interface properties namely

1. Interface area

2. Ratio of interface area to protein surface area

3. Amino acid composition of the interface

4. Correlation between amino acid compositions of interface and protein surface

5. Interface shape complimentarity

6. Conservation score of the interface

By taking into account these protein-protein interaction interface properties they predict

biological and non-biological interactions and intra-biological (obligate and non-obligate)

interactions. As in the study in the thesis we propose 40 new computed derived features

from these interface properties and predict different interaction types with higher accuracy

than the NOXClass [35], it is worth discussing here in extenso these interface properties.

Interface Area: Interface area of a protein protein interaction is defined as one half of

the total decrease of SASA( ∆ SASA ) (Solvent Accessible Surface Area) of the two pro-

tomers upon the formation of interaction.

Inter f aceArea =
1
2
(SASAa +SASAb −SASAab) (2.1)
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In the above equation a and b are two protomers in the complex ab; and SASAa, SASAb

and SASAab are the values for a, b, and ab respectively. A residue is defined as being part

of the protein-protein interaction interface if its Solvent Accessible Surface Area (SASA)

decreases by greater than 1 Å2 upon the formation of the complex [30]. SASA values for

residues were calculated using NACCESS [7], with a probe sphere of radius 1.4 Å2.

Interface Area Ratio: In biological protein-protein interaction involving small pro-

tomers can not have large interface areas for instance in some enzyme-inhibitor complexes.

For that reason we have normalized interface area by the SASA of the smaller protomer in

the complex.

Inter f aceAreaRatio =
Inter f aceArea

min(SASAa,SASAb)
(2.2)

In the above equation SASAa and SASAb are the SASA values for interacting protomers

a and b respectively.

Amino Acid Composition of the interface: To obtain the amino acid composition of the

interface we have we have calculated both number based and area based amino acid com-

position [24]. The number-based amino acid composition (vn) of the interface is calculated

as the frequency of each type of the 20 standard amino acids in the protein-protein inter-

face. By weighting each residue with its ∆ SASA, the area-based amino acid composition

of protein-protein interaction interface va is computed:
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va,i=1,...,20 =
1

2 Inter f ace Area
Σr,type(r)=i∆SASA(r) (2.3)

In the above equation type(r) is the type of the amino acid of residue r.

The amino acid composition of the interface is calculated by this equation where ∆v

distance between two vectors v and v′ of amino acid composition, number or area based

[16, 24].

(∆v)2 =
1

19
Σ20

i=1(vi − vi′)2 (2.4)

Correlation between amino acid compositions of interface and protein surface: In [34]

Ofran et. al. showed that the amino acid composition of the biological interface to be sig-

nificantly different from that of the rest of the protein surface. We can expect that amino

acid composition of the crystal packing interface to be similar to the rest of the protein sur-

face. Thus, it can be a good distinguishable feature to discriminate between biological and

non-biological interaction types. To capture this effect, the Pearson correlation coefficient

between the amino acid composition of interface and surface was calculated.

Gap Volume Index: It has been shown in [12, 24] that protein-protein interfaces are

more complimentary in nature in obligate protein complexes than those in non-obligate

complexes. It is shown by Bahadur et al [24] that the gap volume index is one of the mea-

surements for interface complementarity. As the gap volume is dependent on protein size,
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it is computed by normalizing the gap volume between protomers with their interface area.

GapVolumeIndex =
GapVolume

Inter f aceArea
(2.5)

The more complementary the interface shapes are the smaller the gap volume index

would be. The gap volume was computed using the SURFNET program [17]. The mini-

mum and maximum radii for gap sphere were set to 1.0 to 5.0 Å respectively for the com-

putation of the gap volume index, and the grid separation was set to 2.0 Å.

Conservation scores of the interface: Conservation scores for residues in the interface

were calculated by Consurf [3]. The average value of conservation scores of all the residues

at the protein-protein interface is defined as the conservation score of the interface. As we

have weighted area based amino acid composition, in a similar fashion we weighted the

conservation score for each residue by its ∆SASA upon the formation of the interaction.

The average of these weighted residue conservation scores was used as the area-based con-

servation score of the interface.



Chapter 3

Feature extraction and prediction

3.1 Pattern recognition

Pattern recognition is the scientific field whose goal is the classification of objects into a

number of categories and classes [32]. These objects can be images, protein sequences,

signal waveforms, email messages or any type of measurements that need to be classified

depending on the application. The field of pattern recognition has a long history, but before

the 1960s it was primarily the output of theoretical research in the area of statistics. With

the advent of computers and digital devices there was an increase in the demand of practical

applications of pattern recognition, which in turn set new demands for further theoretical

developments in this field. As information retrieval and handling are becoming the most

important activities in modern days, so the demands of pattern recognition techniques are

also rising. These demands have pushed pattern recognition to the high edge of today’s

engineering application and research.

There are several application areas of pattern recognition in today’s world. It is an

inseparable part of most machine intelligence systems built for decision making. Pattern

27
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recognition is also of high importance in the area of machine vision. A machine vision

system takes images via a camera and analyzes them to produce descriptions of that image.

An example of a machine vision system is an automated visual inspection system in the

assembly line of a manufacturing firm. Pattern recognition also has applications in the

field of automated information handing, as is the example of Optical Character Recognition

systems. A typical commercial application of an optical character recognition system would

be an automated machine that reads bank checks, this machine must be able to recognize

the amounts in figures and digits and match them. Another application of optical character

recognition system is an automatic mail sorting machines for postal code identifications in

post offices. Pattern recognition also has applications in medical fields such as computer-

aided diagnosis. It aims to assist doctors to make diagnostic decisions. The medical data

are not often easily interpretable. Computer aided diagnosis plays an important role there

by automatically interpreting X-rays, computer tomographic images, ultrasound images

and electrocardiograms. Pattern recognition has its contributions to the field of speech

recognition. Recently a huge research and development effort has been invested in the field

of speech recognition. Speech is the most natural means by which human beings exchange

information among each other. For that reason building intelligent machines that recognize

spoken information has been of prime importance, and pattern recognition has a significant

contribution to achieve that goal.

Pattern recognition algorithms are also applied to the field of fingerprint identification,

signature authentication, face recognition, gesture recognition and text retrieval [32]. Face

and gesture recognition have recently attracted much research interest and investment in an

attempt to facilitate human-computer interaction and to further enhance the role of comput-

ers in office automation, automatic personalization of environments [32]. Pattern recogni-
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tion is also closely linked to other scientific disciplines such as linguistics, computer graph-

ics and computer vision. In this thesis we apply pattern recognition to successfully predict

different types of protein-protein interactions. This is of high importance in proteomics

research.

In pattern recognition to classify objects in the categories and classes at first measurable

quantities of information are collected from these objects. These objects are called sam-

ples and the observed numerical properties that are collected from these samples are called

features. These features are then fed to the classifiers to successfully classify or predict

different samples.

3.2 Feature extraction methods

When the input features for a classification are too large to be processed and consists of re-

dundant data, the input features are transformed into a reduced dimension of features. This

process of reducing large dimension feature vectors to reduced dimension feature vectors

is called feature extraction [5]. If the extracted features are carefully chosen it is expected

that the feature set will extract the most relevant information from the input feature vectors.

Feature extraction simplifies the amount of resources required to describe a large set of

data accurately. When performing analysis of complex data major problems arise from the

number of variables involved. Analysis with a large number of variables in the input feature

vector requires a large amount of memory and computation power. Another major problem

arises with large input feature vector is that the classification algorithm overfits the training

sample and generalizes poorly for new samples those are not subset of the training samples

[5]. Feature extraction is generalized terms for procedures of constructing combinations

of the variables to get solve these problems while still describing the input feature vectors
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with sufficient accuracy. For feature extraction the best results can be achieved when an

expert of that field constructs a set of application-dependent features. If there is no such ex-

pert knowledge available, general dimensionality reduction techniques can be applied [5].

There are several dimensionality reduction techniques are available including:

1. Linear Dimensionality Reduction

2. Non-linear Dimensionality Reduction

3. Principal components analysis

4. Kernel PCA

5. Multilinear PCA

6. Multifactor dimensionality reduction

7. Semidefinite embedding

8. Multilinear subspace learning

9. Partial least squares

10. Independent component analysis

11. Latent semantic analysis

12. Isomap
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3.3 Linear dimensionality reduction

Among all available techniques mentioned above, linear dimensionality reduction tech-

niques are the preferred ones because of their linear time computation complexity and their

efficiency. Linear dimensionality reduction has been studied for a long time in the field of

pattern recognition.

The basic idea of LDR is to represent an object of dimension n as a lower-dimensional

vector of dimension d (where d << n), achieving this by performing a linear transforma-

tion. We consider two classes, ω1 and ω2, represented by two normally distributed random

vectors x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2), respectively, with p1 and p2 are the a priori

probabilities of these two classes. After the LDR is applied, two new random vectors y1 =

Ax1 and y2 = Ax2 are generated, where y1 ∼ N(Am1;AS1At) and y2 ∼ N(Am2;AS2At)

with mi and Si being the mean vectors and covariance matrices in the original space, re-

spectively. The aim of LDR is to find a linear transformation matrix A in such a way that

the new classes (yi = Axi) are as separable as possible. Where SW = p1S1 + p2S2 and

SE = (m1 −m2)(m1 −m2)
t be the within-class and between-class scatter matrices respec-

tively.

3.3.1 Linear discriminant analysis

There are various schemes available that yield linear dimensionality reduction. Linear dis-

criminant analysis is one of them. Linear discriminant analysis includes methods to find

a linear combination of features which characterizes or separates two or more classes of

objects. Linear discriminant analysis is closely related to regression analysis which also

attempts to express one dependent variable as linear combinations of other features. Linear

discriminant analysis is also related to principal component analysis in that both look for
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Figure 3.1: Linear Dimensionality Reduction.

linear combinations of variable which represents the original data as accurately as possible.

But principal component analysis does not take into account different classes. Linear dis-

criminant analysis is a supervised method for dimensionality reduction, if we say x and y

are samples from two classes, in linear discriminant analysis we want to find the direction

that is defined by vector A, such that when data are projected onto A the examples from

two classes are as well separated as possible. In this thesis to reduce feature dimensions we

have used three different linear discriminant analysis criteria including:

1. Fishers Discriminant Analysis

2. Heteroscedastic Discriminant Analysis

3. Chernoff Discriminant Analysis
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3.3.2 Fisher’s discriminant analysis

The Fisher’s discriminant analysis was proposed by Ronald Fisher [5]. We assume that we

have two classes ω1 and ω2 where SW = p1S1 + p2S2 and SE = (m1 −m2)(m1 −m2)
t be

the within-class and between-class scatter matrices respectively. The well-known Fisher’s

discriminant analysis criterion consists of maximizing the Mahalanobis distance between

the transformed distributions by finding A that maximizes the following function [5]

JFDA(A) = tr
{
(ASW At)−1(ASEAt)

}
. (3.1)

The matrix A that maximizes (3.1) is obtained by finding the eigenvalue decomposition

of the matrix:

SFDA = S−1
W SE , (3.2)

and taking the d eigenvectors whose eigenvalues are the largest ones. Since SE is of

rank one, S−1
W SE is also of rank one. Thus, the eigenvalue decomposition of S−1

W SE leads to

only one non-zero eigenvalue, and hence FDA can only reduce to dimension d = 1.

3.3.3 Heteroscedastic Discriminant Analysis

HDA has been recently proposed as a new LDR technique for normally distributed classes

[18], which takes the Chernoff distance in the original space into consideration to minimize

the error rate in the transformed space. It can be seen as a generalization of FDA to consider

heteroscedastic classes, and the aim is to obtain the matrix A that maximizes the function:
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JHDA(A) = tr
{
(ASW At)−1 [ASEAt
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]}
(3.3)

where the logarithm of a matrix M, log(M), is defined as:

log(M), Φ log(Λ)Φ−1 . (3.4)

with Φ and Λ representing the eigenvectors and eigenvalues of M, respectively.

The solution to this criterion is given by computing the eigenvalue decomposition of:

SHDA = S−1
W[

SE −S
1
2
W

p1 log(S
− 1
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− 1
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S
1
2
W

]
(3.5)

and choosing the d eigenvectors whose corresponding eigenvalues are the largest ones.

3.3.4 Chernoff discriminant analysis

Cheroff Discriminant Analysis criterion is a type of LDR method that has been recently

proposed. The aim of the criteria is to maximize the separability of the distributions in

the transformed space measured by distance between two classes. CDA assumes that the

classes are normally distributed in the original and also in the transformed spaces by maxi-

mizing the following criteria [26]:

JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}
(3.6)
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where SW = p1S1 + p2S2, SE = (m1 −m2)(m1 −m2)
t .

In [26] it has been shown that for any normally distributed random vectors, x1 and x2,

there always exists an orthogonal matrix Q, where QQt = I, such that JCDA(A) = JCDA(Q)

for any A or rank d. Thus we can assume that A is an orthogonal matrix. A gradient-based

algorithm was proposed in [26] that maximizes the function (4.9) in an iterative way. The

algorithm starts with an arbitrary orthogonal matrix A(1). At the step k+1 the orthogonal

matrix is computed as follows:

A(k+1) = A(k)+αk∇JCDA(A(k)) (3.7)

where the gradient for JCDA is:

∂JCDA
∂A = ∇JCDA(A) = 2p1 p2

[
SEAt(ASW At)−1

−SW At(ASW At)−1(ASEAt)(ASW At)−1]t

+2
[
SW At(ASW At)−1 − p1S1At(AS1At)−1

−p2S2At(AS2At)−1]t

For the above mentioned gradient algorithm let the the learning rate is αk. To make sure that

the gradient algorithm converges, the learning rate needs to be maximized. In the Rueda et.

al. study [26], to maximize this function the secant method is proposed:

ϕk(α) = JCDA(A(k)+α∇JCDA(A(k))) (3.8)
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The initial value of learning rate starts with α(0) and α(1). The value of the learning rate

α( j+1) at time j+1 is as follows:

α( j+1) = α( j)+
α( j)−α( j−1)

dϕk
dα (α( j))− dϕk

dα (α( j−1))

dϕk

dα
(α( j)) (3.9)

where

dϕk

dα
(α) = [∇JCDA(A(k)+α∇JCDA(A(k)))] ·∇JCDA(A(k)) (3.10)

The dot product between two matrices is represented by the operator “·”. It is computed

for any two matrices C and D, as C ·D = tr{C D}. By replacing A for (A+α∇JCDA(A))

in the equation (3.8) the value of ∇JCDA(A(k)+α∇JCDA(A(k))) is computed.

With the definition of dϕk
dα (α), equation (3.9) can be solved, and the gradient algorithm

continues with the next iteration. The full complete algorithm is found in [26]. One of the

key aspects of the algorithm is the initialization of the matrix A. In this thesis for our study

we have performed ten different random initializations and then have chosen the solution

for A which yields the maximum Chernoff distance.

3.4 Classifier

In pattern recognition classification is the procedure of identifying unknown new samples

on the basis of training set of known samples. The classification problem is known as
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supervised learning in pattern recognition. In supervised learning, the algorithm analyzes

the training data and produces an inferred function. This inferred function; if its output is

discrete it is called classifier. This classifier should predict the correct output value for any

valid input object.

To do the classification classifiers are fed by training data. The training data set needs

to be representative of the real-world use of the function. The accuracy of the classifier

depends on how the training data is represented. If the training dataset is too large, it will

face the problem of the curse of dimensionality [5] and for that reason we have to pre-

process the training data with feature extraction methods as explained above. On the basis

of the representation of the input data the algorithm will generate the learned function.

After that, the accuracy of the generated learned function is evaluated on a test set that is

separate from the training set. There are several types of classifiers available [5]:

1. Linear classifiers

2. Quadratic classifiers

3. Support Vector Machines

4. Kernel estimation

5. Decision trees

6. Neural Networks

7. Hidden Markov Models

Among these for our study we have used support vector machine, linear classifier and

quadratic classifier.
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3.4.1 Support vector machine

SVM is a supervised learning algorithm in machine learning that constructs a hyperplane

or a set of hyperplanes in a high dimensional space which can be used as a separator to sep-

arate different classes. Let xi where i =1,2,3.....n, be the feature vectors of the training set

X. These belong to either of the two classes ω1 and ω2, which are assumed to be linearly

separable. The goal of the SVM is to design a hyperplane that classifies all the training

vectors

g(x) = ωT x+ω0 (3.11)

This kind of hyperplane is not unique; the simple form perceptron algorithm may con-

verge to any one of the possible solutions. But the SVM chooses the best classifier that

has least risk of causing an error when operating with unknown data. This is known as the

generalization of the performance of the classifier [5]. It chooses the hyperplane that leaves

the maximum margin from both classes. The distance of a point from a hyperplane is given

by

z =
|g(x)|
||ω||

(3.12)
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If for each xi we denote the corresponding class indicator by yi (+1 for ω1, -1 for ω2).

The SVM algorithm find the best hyperplane by computing the parameters ω, ω0 of the

hyperplane so that to minimize

J(ω) =
1
2
||ω||2 (3.13)

subject to

yi(ωT xi +ω0)≥ 1, i = 1,2, ....N (3.14)

SVM can also be tuned to do a non-linear classification by applying the kernel trick to

maximum-margin hyperplanes. The effectiveness of SVM depends on the selection of the

kernel, the selection parameters and the soft margin [5].

3.4.2 Quadratic classifier

In Pattern Recognition Quadratic classifier is an algorithm used to separate two classes

of objects by a quadratic boundary. The surface of separating two classes for a quadratic

classifier would be a conic section (a line, a circle, an ellipse, a parabola, a hyperbola).

Bayesian classifier for normally distributed classes is an example of quadratic classifier [5].

One of the most popular probability density functions in practice is the Gaussian or nor-

mal density function, because of its computational tractability and the fact that it models
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adequately a large number of cases. Now we are assuming that the likelihood functions of

the ωi with respect to x in the n-dimensional feature space follows the general multivariate

normal density [5].

p(x|ωi) =
1

(2π)n/2|Σin
1
2

exp(−1
2
(x−µi)

T Σ−n
i (x−µi)) (3.15)

i = 1, ...,M, where µi = E[x] is the mean value of the ωi class and Σi is the n × n co-

variance matrix. |Σi| denotes the determinant of Σi and E[.] the mean value of a random

variable. Sometimes, the symbol η(µ,Σ) is used to denote a Gaussian probability den-

sity function with mean value µ and covariance Σ. Now the discriminant functions of the

Bayesian classifier can be achieved in a nonlinear quadratic form. For example the case of

n = 2 the discriminant functions becomes [5]

gi(x) =− 1
2σ2

i
(x2

1 + x2
2)+

1
σ2

i
(µi1x1 +µi2x2)−

1
2σ2

i
(µ2

i 1+µ2
i 2)+ lnP(ωi)+ ci (3.16)

and the decision curves gi(x)−g j(x)= 0 are quadrics (ellipsoids, parabolas, hyperbolas,

pair of lines). In this case, the Bayesian classifier is a quadratic classifier, in the sense that

the partition of the feature space is performed via quadric decision surface [5].
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3.4.3 Linear classifier

Linear classifier is nothing but a specialized form of the above mentioned quadratic clas-

sifier where the decision boundary is achieved by a straight line. Perceptron, naive bayes

classifier, logistic regression, Fisher’s linear discriminant analysis are different examples of

linear classifiers. For the above mentioned Quadratic Bayesian classifier when gi(x) is a

linear function of x, then that Bayesian classifier is a linear classifier.

3.5 m-fold cross validation

In statistical pattern recognition cross-validation is a method for assessing the accuracy

of the predictive model will perform in practice. Every fold of cross validation involves

partitioning the data into different subsets, use one part of the subset as the training set for

the classifier and the other part of the subset as the testing set for the classifier. To reduce

the variance we have performed ten rounds of cross using different partitions. Thus, the

dataset is randomly partitioned in ten subsets. Among these ten subsets one subset is used

for testing and the other remaining nine subsets are used as training data. This procedure is

repeated ten times with each of these ten subsets is used exactly once as testing data. Then,

we have averaged these ten results to produce a single evaluation. The advantage of using

ten fold cross validation is that all subsets are used for both testing and training, and each

subset is used for testing exactly once.

3.6 Prediction evaluation

In pattern recognition the confusion matrix is a matrix in supervised learning. In this ma-

trix, each column of the matrix represents the instances in a predicted class, while each row
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represents the instances in an actual class. We have created the confusion matrix for each

prediction, and from that confusion matrix we have created different measurements such

as Accuracy, Specificity and Sensitivity to evaluate our prediction. We have computed the

accuracy of the prediction by this formula [5]

Accuracy =
T P+T N

T P+FP+T N +FN
(3.17)

We have computed Specificity by this formula [5]

Speci f icityorTrueNegativeRate =
T N

FP+T N
(3.18)

For calculating of Sensitivity from the Confusion Matrix we have used this formula [5]

SensitivityorTruePositiveRate =
T P

T P+FN
(3.19)

Where T P is the number of True Positives, T N is the number of True Negatives, FP

is the number of False Positives and FN is the number of False Negatives. For the case of

biological-crystal packing classification, T P is the number of correctly classified biological

samples and T N is the correctly identified crystal packing samples. For the case of obligate-
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nonobligate classification T P is the correctly identified obligate complex and T N is the

correctly identified nonobligate complex.

3.7 Receiver operating characteristic curve

In statistical pattern recognition a receiver operating characteristic curve is a graphical plot

of True Positive Rate (TPR) vs False Positive Rate (FPR) for a binary classifier system. True

Positive Rate is known as sensitivity and False Positive Rate is known as (1−Speci f icity).

True Positive Rate of a classifier is calculated from the confusion matrix by this formula [5]

TruePositiveRateorSensitivity =
T P

T P+FN
(3.20)

and False Positive Rate of a classifier is calculated from confusion matrix by this formula

[5]

FalsePositiveRateor(1−Speci f icity) =
FP

FP+T N
(3.21)

In the receiver operating characteristic curve the True Positive Rate is plotted along the Y-

axis and the False Positive Rate is plotted along X-axis. The whole space in the graph is

called receiver operating characteristic space. The receiver operating characteristic space

is divided by a diagonal. A curve above diagonal represents a good classification result,

any point below diagonal represents a poor classification results. True Positive Rate de-

termines a classifier’s performance on classifying positive instances correctly among all

positive samples available. False Positive Rate determines a classifier’s performance on
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Figure 3.2: Receiver Operating Characteristic Curve for Biological-NonBiological classifi-
cation with CDA Quadratic Classifier for 44 features

classifying incorrect positive results among all negative samples. The perfect prediction

would yield a point in the upper left corner or coordinate (0,1) of the Receiver Operating

Characteristic space. This kind of prediction represents 100 percent sensitivity that means

no False Negatives and also 100 percent specificity that means no False positives.
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3.8 Matthews’ correlation coefficient

In pattern recognition Matthews’ correlation coefficient is used as a measure of the quality

of a binary classification. It considers true and false positives and negatives and is generally

considered as a balanced measure which can be used even the two classes are of different

sizes. It is a correlation coefficient between the observed and predicted binary classifica-

tions. The range of values of the Matthews correlation coefficient is between −1 to +1,

where a value of +1 represents perfect prediction, 0 is considered as an average random

prediction and −1 as an inverse prediction. The Matthews correlation coefficient can be

calculated directly from the confusion matrix by using this formula [5]

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(3.22)

Where T P is the number of True Positives, T N is the number of True Negatives, FP is

the number of False Positives and FN is the number of False Negatives. While there is no

perfect way of describing the confusion matrix by a single value, the Matthews Correlation

Coefficient is considered as being one of the best such measures. Another kind of measure-

ment such as proportion of correct prediction that we know as accuracy are not very useful

when the two classes are of very different sizes.

3.9 Multi class classification

In Pattern Recognition multiclass classification is a statistical classification of classifying

more than two different classes or events. In this study we have used multi-staged LDR to
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Figure 3.3: Multi class classification.

predict three different types of classes. In this study we have a 3 class problem; the three

classes are crystal packing interactions, obligate interactions, non-obligate interactions. To

successfully predict these 3 classes we have used multi-stage linear dimensionality reduc-

tion. In the first stage of multi-stage we have discriminated between two classes’ biological

interactions with crystal packing interactions. In the second stage of multi-stage we have

discriminated between obligate interactions with non-obligate interactions.



Chapter 4

Methodology

4.1 Procedure for feature generation

To predict different types of protein complexes that participate in different types of inter-

actions, we have first generated their physio-chemical features by different methods. We

have generated different features from the protein-protein interaction’s interface properties.

Among these generated features the first six features were same as the Zhu et. al. [35]

study. We have also proposed 40 new derived features from the interface property. They

are number based amino acid composition and area based amino acid composition.

4.2 Calculation of interface area and interface area ratio

After automatically downloading protein three-dimensional structure files from Protein

Data Bank database, we have executed NACCESS [7], the input of NACCESS is the PDB

file and the corresponding PDB ID and the interacting chain names. We have automated

the procedure from downloading to NACCESS computation. NACCESS [7] calculates

47
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Figure 4.1: Solvent Accessible Surface Area (SASA) diagram of 1AHJ A B. Diagram
prepared through GRASP, a molecular visualization package.

the Solvent Accessible Surface Area (SASA) of each residues within the protein complex,

NACCESS outputs the calculated result in RSA files. SASA values are calculated to ob-

tain the interface area of protein-protein interactions. A residue is considered as being part

of the interface if its SASA value decreases by more than 1 Å2 upon the formation of the

complex [30]:

From the SASA value that is outputted by NACCESS we have calculated the first fea-

ture of NOXClass [35] that is Interface Area by this formula [35]:
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Inter f aceArea =
1
2
(SASAa +SASAb −SASAab) (4.1)

and the second feature Interface Area Ratio by this formula [35]:

Inter f aceAreaRatio =
Inter f aceArea

min(SASAa,SASAb)
(4.2)

4.3 Proposed 40 new features

We are proposing 40 new derived features from the interface property of different protein-

protein interactions. There are several studies have been done previously to differentiate

obligate and non-obligate protein-protein interactions on the basis of protein-protein inter-

action interface properties. Among them NOXClass [35] had taken into account the amino

acid composition of the interface. But they had not taken into account different types of

amino acid composition of the protein-protein interaction interface such as number based

amino acid composition and area based amino acid composition.
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Table 4.1: 20 standard amino acids
Alanine ALA
Arginine ARG
Asparagine ASN
Aspartic acid ASP
Cysteine CYS
Glutamic acid GLU
Glutamine GLN
Glycine GLY
Histidine HIS
Isoleucine ILE
Leucine LEU
Lysine LYS
Methionine MET
Phenylalanine PHE
Proline PRO
Serine SER
Threonine THR
Tryptophan TRP
Tyrosine TYR
Valine VAL

4.3.1 Number based amino acid composition of the interface

The number based amino acid composition of the interface is defined as the frequency of

each type of 20 standard amino acids in the protein-protein interface. Amino acids have

critical function to life such as metabolism, and they also serve as the building blocks of the

proteins. Amino acids can be linked together in varying sequences to form a vast variety

of proteins. Twenty amino acids are naturally incorporated into polypeptides and are called

standard amino acids. These 20 standard amino acids and their three letter acronyms that

are mentioned in their corresponding PDB file to show the structure of the protein complex

are shown in Table:4.1.

To calculate number based amino acid composition or the frequency of each type of

the above mentioned 20 standard amino acids in the protein-protein interaction interface,

we first downloaded the PDB files of the protein complex from the Protein Data Bank

(http://www.pdb.org/pdb/home/home.do) website. The data stored in the Protein Data Bank

database is typically obtained by X-ray Crystallography and NMR Spectroscopy and sub-
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mitted by biochemists. Currently, Protein Data Bank has structural data of more than 68000

proteins (ref: http://www.rcsb.org/pdb/statistics/holdings.do). There are three kinds of for-

mat files are available from Protein Data Bank .PDB format .mmCIF(macromolecular Crys-

tallographic Information file) format and .PDBML(XML version) format. We have down-

loaded .PDB file format, this file format has 80 characters per line. Each protein structure

published in PDB receives a four character alphanumeric identifier. We have applied our

model of classification on two different collections ( namely Zhu dataset [35] and Mintseris

dataset [20]) of this type of alphanumeric characters.

After downloading protein structure files from PDB, we have executed NACCESS [7],

the input of NACCESS is the PDB file and the corresponding PDB ID and the interacting

chain names. NACCESS [7] calculates the Solvent Accessible Surface Area values of each

residues within the protein complex, NACCESS outputs the calculated result in RSA files.

From these RSA files we have calculated the frequency of each 20 standard amino acid

in the protein-protein interaction interface, and that results in 20 features of that protein-

protein interaction. These features are small integers for our experimented datasets.

4.3.2 Area based amino acid composition of the interface

By weighting each residue with it’s ∆ SASA, we have calculated the area based amino acid

compositions. It is also calculated from the RSA file. For 20 amino acids we have got 20

area based amino acid composition values. The calculation of 20 standard amino acids can

be obtained by this formula:

va,i=1,...,20 =
1

2 Inter f ace Area
Σr,type(r)=i∆SASA(r) (4.3)
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Figure 4.2: PDB file for 1AHJ A B downloaded from PDB.
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Figure 4.3: RSA file for 1AHJ A B, output of NACCESS.
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After calculation of 20 number based amino acid composition values of the interface

and 20 area based amino acid composition values of the interface from RSA file, we have

calculated ∆v distance between these two vectors where ∆v = v -v′ for each residue by this

formula [35]:

(∆v)2 =
1

19
Σ20

i=1(vi − vi′)2 (4.4)

4.4 Calculation of Pearson’s correlation coefficient

In statistics, Pearson’s correlation coefficient between two variables X and Y is defined as

the covariance of the two variables divided by the product of their standard deviations.

r =
Σ1

n(Xi − X̄)(Yi − Ȳ )
√

Σ1
n(Xi − X̄)2

√
Σ1

n(Yi − Ȳ )2
(4.5)

In their study [34], Ofran et. al. showed that the amino acid composition of the bi-

ological interface to be significantly different from that of the rest of the protein surface.

We can expect that amino acid composition of the crystal packing interface to be similar
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that of the rest of the protein surface. Thus, it can be a good distinguishable feature to dis-

criminate between biological and non-biological interaction types. For that reason we have

calculated the Pearson correlation coefficient of amino acid composition of the interface

and the protein surface. To calculate the coefficient we have first calculated the amino acid

composition of the interface and then amino acid composition of the surface by the above

mentioned procedure.

4.5 Calculation of conservation score of the interface

To calculate the Conservation score of the interface we have downloaded .grades file from

the Consurf-DB. ConSurf-DB provides evolutionary conservation profiles for proteins of

known structure in the PDB. Amino acid sequences similar to each sequence in the PDB

were collected and multiply aligned using PSI-BLAST and MUSCLE, respectively. The

evolutionary conservation of each amino acid position in the alignment was calculated

using the Rate4Site algorithm, implemented in the ConSurf web-server. The algorithm

takes explicitly into account the phylogenetic relations between the aligned proteins and

the stochastic nature of the evolutionary process. Rate4Site assigns a conservation level for

each residue using empirical Bayesian inference.

For each protein complex and for each chain, we have calculated the conservation score

of each complex. After obtaining the conservation score we have weighted conservation

score of each residue by its ∆ SASA. After that we have calculated the area based con-

servation score of the interface by taking average of these weighted residue conservation

score.
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Figure 4.4: Conservation score file or .grades file of the complex 1AHJ A B downloaded
from Consurf DB.



CHAPTER 4. PROPOSED METHODOLOGY 57

4.6 Crystal packing contacts feature generation

We have received PDB files for crystal packing interactions from Dr. Hongbo Zhu (

hzhu@mpi-sb.mpg.de ) of Max-Planck Institute of Germany. They were divided into ”MODEL

0” and ”MODEL 1” format; in these two different models they had two different interacting

chains of the protein complex. To calculate SASA values of these protein complexes we

had to run NACCESS on them. As the input of NACCESS is a single PDB file, we had to

merge these two different models into a single file.

After merging those two different model files we ran NACCESS on them to obtain

SASA values and calculated interface area and interface area ratio property as the previ-

ously mentioned procedure. We also obtain number based amino acid composition, area

based amino acid composition and amino acid composition features by applying the previ-

ously mentioned procedure. We also calculated Pearson’s correlation coefficient of amino

acid composition of the interface and of the protein surface. The conservation score of

the interface property was not calculated for crystal packing contacts as these crystal pack-

ing complexes do not have any .grades files in Consurf-DB server. Thus, finally we have

computed 44 features for each crystal packing complex.

4.7 Singularity problem

As we have mentioned previously that LDR is used to reduce a dataset of large dimension to

a lesser dimension dataset by making sure that the two classes are as separable as possible.

This feature extraction procedure is applied prior to classification to make sure that the

classifier does not suffer from the problem of curse of dimensionality. There are different

LDA criteria that we have explained before to reduce the dimension of the dataset.
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But when the original dimensions of feature vector of the LDR is very large the columns

of the feature vectors become linearly dependent on each other resulting lower rank ma-

trices. In linear algebra, the column rank of a matrix is found by calculating maximum

number of linearly independent column vectors in that matrix. If the features for samples

in our dataset or the columns of our feature vectors become large the dependency between

the columns increases. That results in a lower rank matrix, and this low rank matrix creates

nearly singular matrices during the calculation of the CDA criteria [26].

JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}
(4.6)

A square matrix that does not have a matrix inverse is called a singular matrix. A

matrix is singular if and only if its determinant is 0. In our case the matrix is not singular,

but is nearly singular. That means that the determinant is not 0 but it is very near 0 and a

very small number. If we want to found the inverse of this nearly singular matrix it would

generate complex numbers in the reduced feature vector. If we want to feed this reduced

feature vector that contains complex numbers to our classifier, our classifier would produce

unexpected results.

In our protein-protein interaction study we have encountered very large input feature

vectors that contains even up to 646 features. When we ran our Linear Dimensionality Re-

duction to these kinds of large datasets we have encountered nearly singular matrix genera-

tion in the middle of the calculation and we have encountered complex numbers in reduced

feature set and consequently erratic behavior from our classifier.
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Figure 4.5: An example of large feature vector. In protein-protein interaction we have
encountered up to 646 features.
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4.8 Proposed solution for the Singularity problem

To solve the problem of this nearly singular matrix generation and subsequent effects of

that, we applied singular value decomposition of each matrix of which we have to take the

inverse of and substitute those (those values are lower than the threshold) singular values

with our threshold. After replacing the values with threshold we have taken the inverse of

the matrix.

4.8.1 Singular Value Decomposition

In linear algebra singular value decomposition is a factorization of the real or complex ma-

trix. The singular value decomposition of a m × n real matrix M is a factorization of the

form

M =UΣV ′ (4.7)

1. U is a mXm real or complex unitary matrix

2. Σ is a mXn diagonal matrix with non-negative real numbers on the diagonal

3. V ′ that is a conjugate transpose of V is a nXn real or complex unitary matrix

In the above representation U is a m × m real or complex unitary matrix, Σ is a m × n

diagonal matrix with non-negative real numbers on the diagonal and V ′ that is a conjugate

transpose of V is a n × n real or complex unitary matrix. The diagonal values Σi, j in the
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matrix Σ are known as the singular values of the matrix M. The m columns of U and n

columns of V are called the left singular vectors and the right singular vectors of the matrix

M respectively.

Singular value decomposition has lots of applications in linear algebra. Among them

the most popular one is that they can be used to compute the pseudo inverse of a matrix.

The pseudo inverse of the matrix M is

M+ =UΣ+V ′ (4.8)

Where is Σ+ is the pseudo inverse of Σ, which is formed by replacing every nonzero

diagonal entry by its reciprocal and transposing the resulting matrix. For our problem M is

a square matrix and for that reason U and V are square too. We have used this feature of sin-

gular value decomposition to address the singularity matrix issue of linear dimensionality

reduction.

4.8.2 Linear dimensionality reduction- singular value decomposition

As per the proposed solution for the nearly singular matrices problem with Linear Dimen-

sionality Reduction we have first decomposed all the matrices of those we have to take an

inverse of in this CDA criterion.



CHAPTER 4. PROPOSED METHODOLOGY 62

JCDA(A) = tr{p1 p2ASEAt(ASW At)−1

+ log(ASW At)− p1 log(AS1At)− p2 log(AS2At)}
(4.9)

We have decomposed all of the matrices that we have to take the inverse of. Decom-

posing the matrix generated the right singular vector, left singular vector and the singular

values of the matrix. Here is an example of how a singular value of a matrix that we have

dealt with look like.

Σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.5×10−2 0 0 0 0

0 .5×10−11 0 0 0

0 0 .5×10−22 0 0

0 0 0 .5×10−30 0

0 0 0 0 .5×10−45

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we have set the threshold of this singular value matrix by dividing the 1st element

of the matrix by 10−10. The purpose of setting up the threshold is that we can replace all

values in the singular matrix that are less than threshold by the threshold. This is because

when we are going to take the pseudo inverse of the matrix we have to take reciprocal of

all the singular values of the matrix. If the singular values of that matrix are near zero or

very small the reciprocal of them is going to yield near infinity values. In computer binary

language that is an IEEE Not A Number (NAN) value. To avoid that problem we have

replaced all the nonzero diagonals of the singular matrix that are less than our threshold

by the threshold value. Thus our purpose here is that to use an acceptable singular value

that computer can do reciprocals and would not generate NAN value as a result of the
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reciprocals of the value. To set up the acceptable threshold, we have tried with different

values and taken the first value of the singular value matrix and divide it by 10−10. This has

produced the most generic and efficient solution for our classification system.

Thus after replacing the nonzero diagonal values those are less than our threshold with

the threshold that is the first value divided by 10−10 will look like as follows:

Σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.5×10−2 0 0 0 0

0 .5×10−11 0 0 0

0 0 .5×10−12 0 0

0 0 0 .5×10−12 0

0 0 0 0 .5×10−12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In the above mentioned matrix we can see as the second singular value in the singular

value matrix is not less than our threshold that is .512, for that reason it was not replaced.

But the third, fourth, fifth singular values in the singular value matrix were less than our

accepted threshold. If they were left untreated, we would have taken the pseudo-inverse

of the matrix their reciprocals would have cause a generation of NAN values. Thus, we

have replaced them with our threshold value that is not as near to zero as these values were

previously, by making sure that the reciprocals of these values would not generate NAN

values.

The singular value decomposition of an unitary matrix have a computational complex-

ity of O(nω) where ω’s value is greater than 2 and less than 2.376. So the computational

complexity of singular value decomposition is O(n2.376). As we know singular value de-

composition is the most computationally expensive step of different Linear Discriminant

Analysis criteria, we can say the computational complexity of different LDA criteria are

O(N2.376). In the previously mentioned singularity problem solution we are only replacing
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Figure 4.6: Flow diagram of solution model for singularity problem (LDR-SVD).

the singular values of a unitary matrix by our threshold. The computational complexity

of this step is O(n) linear. So from here we can say that adding the singularity problem

solution to the different LDA criteria does not increase the computational complexity of the

criteria. From here we can conclude that our solution is also computationally efficient.

4.8.3 Flow diagram of singularity problem solution model

In the flow diagram here the solution model to solve singularity problem is shown in (Figure

4.6).
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4.9 Classification and prediction evaluation

After generating feature vectors from the three-dimensional structure files of protein com-

plexes, we have considered them as input of the LDR-SVD program to reduce the large

feature dimensions to lower feature dimensions. We have implemented the Linear Dimen-

sionality Reduction-SVD in MATLAB.

After the reduction of features to a lower dimension we have classified different protein

complexes by a quadratic Bayesian classifier and a linear Bayesian classifier. After the

classification, we have calculated the prediction evaluation from the confusion matrix. We

have calculated accuracy, sensitivity and specificity of our classifier. We have also generated

the receiver operating characteristic (ROC) curve for our prediction model. Also to measure

the effectiveness of our classification model we have calculated the Matthews correlation

coefficient for our classification.

4.10 Holistic view of the methodology

Step 1: Downloading PDB files

Download the Protein Data Bank three-dimensional structure files for all the complexes for

different datasets (Mintseris and Zhu) from: http://www.pdb.org/pdb/home/home.do

If it is crystal packing contact, then merge those two different models in to one PDB file

Step 2: Pre-processing of the PDB files

Pre-process the PDB files by removing all unnecessary information for our feature genera-

tion.

Keep only those lines that have information about the ATOM of the complexes.
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Step 3: Calculating Solvent Accessible Surface Area

Run Naccess for each PDB files of the complex

Step 4: Calculating Interface Property features

Calculate Interface Area and Interface Area Ratio of the interface features from the NAC-

CESS generated SASA values

Calculate Number Based Amino Acid Composition of the interface feature from the RSA

file

Calculate Area Based Amino Acid Composition of the interface feature from the RSA file

Calculate Amino Acid Composition of the interface or ∆ V feature by using the NOXClass

formula

Step 5: Calculating Pearson’s Correlation Coefficient between AA Compositions of in-

terface and Protein surface

Calculate Number Based Amino Acid Composition of the protein surface feature from the

RSA file

Calculate Area Based Amino Acid Composition of the protein surface feature from the

RSA file

Calculate Amino Acid Composition of the protein surface or ∆ V feature by using the NOX-

Class formula

Calculate Pearson’s Correlation Coefficient between the previously calculated Amino Acid

Composition of the interface and the Amino Acid composition of the protein surface.
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Step 6: Calculating Conservation Score of the interface

Download the .grades file from Consurf-DB.

Calculate the Conservation score of each complex by summing up the conservation scores

of each atom.

Weight Conservation Score of each complex by their ∆ SASA value

Step 7: Feature Extraction

Apply LDR with different criteria (FDA, CDA, HDA) to reduce feature dimensions.

Step 8: Classification

Classify with a Quadratic Bayesian Classifier and a Linear Bayesian Classifier.

Calculate Accuracy, Specificity and Sensitivity for each classification.

Step 9: Prediction Evaluation

Generate ROC Curve and Matthews Correlation Coefficient to evaluate the effectiveness of

the prediction.
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Figure 4.7: Flow diagram of the whole process of prediction of different types of protein-
protein interactions.



Chapter 5

Results and Discussion

5.1 Protein-protein interaction dataset description

Protein Data Bank (PDB) (http://www.pdb.org/pdb/home/home.do) is a database of three

dimensional structural data of proteins and nucleic acids. The data stored in the Protein Data

Bank database is typically obtained by X-ray Crystallography and NMR Spectroscopy and

submitted by biochemists. Each protein structure published in PDB receives a four char-

acter alphanumeric identifier. We have applied our classification model on two datasets.

The first one is compiled by Zhu et. al. [35], and contains three different types of protein-

protein interaction complexes (those are represented by four character alphanumeric iden-

tifier) namely obligate complexes, non-obligate complexes and crystal packing complexes.

The second dataset on that we have applied our classification model is compiled by

Mintseris et. al. [20] and has two different types of interaction types namely obligate

and non-obligate. Every protein complex here is represented by the four character alpha-

numeric character of their PDB name.

69
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Table 5.1: Obligate Zhu dataset (75 complexes).
1ahj A:B 1bjn A B 1qax A B
1b34 A B 1bo1 A B 1qbi A B
1dce A B 1brm A B 1qfe A B
1efv A B 1byf A B 1qfh A B
1gux A B 1byk A B 1qor A B
1h2a L S 1c7n A B 1qu7 A B
1luc A B 1cli A B 1smt A B
1pnk A B 1cmb A B 1sox A B
1req A B 1cnz A B 1spu A B
1tco A B 1coz A B 1trk A B
2aai A B 1cp2 A B 1vlt A B
1a0f A B 1dor A B 1vok A B
1a4i A B 1f6y A B 1wgj A B
1afw A B 1gpe A B 1xik A B
1aj8 A B 1hgx A B 1xso A B
1ajs A B 1hjr A C 1ypi A B
1aom A B 1hss A B 1yve I J
1aq6 A B 1isa A B 2ae2 A B
1at3 A B 1jkm A B 2hdh A B
1b3a A B 1kpe A B 2hhm A B
1b5e A B 1msp A B 2nac A B
1b7b A C 1nse A B 2pfl A B
1b8a A B 1one A B 2utg A B
1b8j A B 1pp2 L R 3tmk A B
1b9m A B 1qae A B 4mdh A B

5.2 Experimental results

We have tested our classification model with Mintseris et. al. [20] and Zhu et. al. [35] PDB

datasets. In the subsection below we first present efficiency of our proposed 40 features

from experimental results for different classifiers such as SVM and LDR coupled with a

Bayesian classifier. After that we show test results of LDR-SVD with datasets that have

large number of features with many zeroes in them as the input feature vectors. After that,

we present different prediction evaluation method that we have implemented to show our

classifier’s prediction effectiveness.
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Table 5.2: Non-Obligate Zhu dataset (62 complexes).
1ava A C 1dow A B
1avw A B 1euv A B
1bvn T P 1i2m A B
1cse I E 1i8l A C
1eai C A 1kac A B
1f34 A B 1pdk A B
1fss A B 1qav A B
1gla F G 1tx4 A B
1kxq H A 1c0f S A
1smp I A 1zbd A B
1tab I E 1ak4 A D
1tgs I Z 1d09 A B
2ptc I E 1cqi A B
2sic I E 1fin A B
4sgb I E 1dhk A B
1agr E A 1bi7 A B
1atn A D 1wq1 R G
1b6c A B 1rrp A B
1bkd R S 1cc0 A E
1buh A B 1eg9 A B
1a4y A B 1tmq A B
1avz B C 1stf E I
1frv A B 1emv A B
3hhr A B 1uea A B
1ycs A B 1qbk B C
1cvs A C 1hlu A P
1aro L P 1itb A B
1cmx A B 1eth A B
1bml A C 1jtd A B
2pcb A B 1lfd A B
1f60 A B 1dn1 A B
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Table 5.3: Crystal Packing Zhu dataset (106 complexes).
1k55 1kli 1mh9
1ual 1eyv 1ed9
1mxr 1j24 1dtd
1j98 1h1y 1ld8
1e9g 1ijy 1jlt
1iup 1exq 1ct4
1is3 1lw6 1nsz
1gy7 1m7y 1iq6
1jzl 1n3l 1i2m
1jke 1nms 1lqp
1km1 1pe0 1lqv
1ihr 1f6b 1n2e
2btc 1jp3 1i12
1eq9 1kqp 1ubk
1qf8 1j79 1g8q
1k8u 1mxi 1e87
1m7g 1my7 1jl0
1p5z 1k4i 1jr8
1e19 1jat 1qip
1k75 1f1m 1nf9
1iat 1jd0 1g60
1m9f 1nrv 1uaq
1ht9 1mvo 1ozu
1hqs 1m2d 1dmh
1b8z 1f7z 1eye
1lc5 1gyo 1i52
1gs5 1fs8 1fjj
1gve 1b67 1b16
1k20 1kzk 1e4m
1i4u 1nxm 3lyn
1k9u 1k94 1ock
1e58 1i0r 1icr
1es9 1euv 1i0d
1qkm 1ql0 1jtg
1j8b 1g2y 1elu
1kic
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Table 5.4: Obligate Mintseris dataset (115 complexes).
1b4u A:B 1fcd A:C 1kqf B:C
1dkf A:B 1eg9 A:B 3pce A:M
1fs0 E:G 1eex A:G 1gka A:B
1h2v C:Z 2kau A:C 1fxw A:F
1go3 E:F 1jkj A:B 1h8e A:D
1eex A:B 1ffu A:C 1hr6 A:B
1ccw A:B 1sgf A:B 1vcb A:B
1qdl A:B 1ffv A:B 1g8k A:B
1gpw A:B 1ldj A:B 3gtu A:B
1dtw A:B 1be3 C:A 1ytf B:D
1hsa A:B 1ezv C:F 1ktd A:B
1aui A:B 1ezv D:H 1jmz A:B
1qla A:B 2mta H:L 2kau B:C
1qlb B:C 1tbg A:E 1e9z A:B
1fm0 D:E 1h2r L:S 1qgw A:C
1mro B:C 1jb0 A:C 1li1 A:C
1mro A:C 1jb0 C:E 2ahj A:B
1e6v A:B 1jb0 C:D 1jro A:B
1ld8 A:B 1hfe L:S 1spp A:B
1l7v A:C 1k8k A:B 1vkx A:B
1dii A:C 1jwh A:C 1k8k C:G
1l9j C:H 1a6d A:B 1hxm A:B
1jmx A:G 1ir1 A:S 1req A:B
1k8k A:E 4rub A:T 1kfu L:S
1dm0 A:B 1lti A:D 1jb0 A:D
1jv2 A:B 1luc A:B 1jk0 A:B
1e50 A:B 1hzz A:C 2min A:B
1k3u A:B 1dce A:B 1raf A:B
1k28 A:D 1efv A:B 1b8m A:B
1h4i A:B 1ihf A:B 1e8o A:B
1ep3 A:B 1jb0 A:E 1jb7 A:B
1c3o A:B 1b7y A:B 1prc C:H
1k8k B:F 1dj7 A:B 1hcn A:B
1k8k D:F 1jnr A:B 1poi A:B
1k8k C:F 1kqf A:B 1f3u A:B
1jk8 A:B 1h32 A:B 1cpc A:B
1mro A:B 1mjg A:M 1dxt A:B
1m2v A:B 1n98 A:B 1exb A:E
1nbw A:B
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Table 5.5: NonObligate Mintseris dataset (211 complexes).
1wq1 G:R 1d5x A:C 1bi8 A:B
1icf A:I 1i4e A:B 1buh A:B
1fle E:I 1ib1 A:E 1qo0 A:D
2prg B:C 1kyo O:W 1ugh E:I
1h59 A:B 2mta A:C 1df9 B:C
1fbv A:C 2pcc A:B 1jiw I:P
1c4z A:D 1f3v A:B 1f93 A:E
1tmq A:B 1eja A:B 1noc A:B
1bkd R:S 1lpb A:B 1es7 A:B
1evt A:C 1dtd A:B 1k5d A:C
1dn1 A:B 1eer A:B 1hwg A:B
1xdt R:T 1ibr A:B 1fg9 A:C
1t7p A:B 1i7w A:B 1ebp A:C
1zbd A:B 1f60 A:B 1du3 A:D
1go4 A:G 1itb A:B 1cmx A:B
1fbi H:X 1ay7 A:B 1euv A:B
1ar1 A:C 1dx5 A:I 1he1 A:C
1qfw A:I 1kkl A:H 1kcg A:C
1i85 B:D 4sgb E:I 1efx A:D
1osp H:O 1dev A:B 1de4 C:A
1fsk A:B 1l0o A:C 1m10 A:B
1kxt A:B 1smf E:I 1ghq A:B
1bqh A:G 1a2k A:C 1flt V:X
1jma A:B 1dfj E:I 1gxd A:C
1kac A:B 1avg H:I 1kzy A:C
1hez A:E 1k90 A:D 1ycs A:B
1sbb A:B 1g4y B:R 1gla F:G
1e6j H:P 1jch A:B 1cxz A:B
1wej F:H 1ebd A:C 2sic E:I
1bgx H:T 1e6e A:B 1jsu A:C
1fns A:H 1gaq A:B 1lb1 A:B
1ahw A:C 1f80 A:E 1is8 A:K
2jel H:P 1buv M:T 1doa A:B
1akj A:D 4htc H:I 2mta A:H
1qfu A:H 1stf E:I 1b9y A:C
2hmi A:C 2tec E:I 1gp2 A:B
1i9r A:H 1acb E:I 1g0y I:R
1a14 H:N 1e96 A:B 1ijk A:B
1bzq A:L 1qav A:B 1i4d A:D
1nsn H:S 1f02 I:T 1k5d A:B
1lk3 A:H 1tab E:I 1n2c A:E
1ezv E:X 2ptc E:I 1mah A:F
1iqd A:C 1gl1 A:I 1gcq B:C
1dee C:G 1ezx A:C 1www V:X
1ao7 A:D 1toc A:R 1i2m A:B
1gc1 C:G 1cgi E:I 1kgy A:E
1bj1 H:V 1eai A:C 1c1y A:B
1k4c A:C 1avx A:B 1gl4 A:B
1f51 A:E 1azz A:C 1d2z A:B
1bdj A:B 1bml A:C 3ygs C:P
1eay A:C 2btc E:I 1grn A:B
1kmi Y:Z 1gh6 A:B 1cs4 A:C
7cei A:B 1iod A:G 1ki1 A:B
1clv A:I 1agr A:E 1efu A:B
1ava A:C 1avz B:C 3sgb E:I
1dhk A:B 1rlb A:E 1fqv A:B
1bvn P:T 1aro L:P 1k3z A:D
1i1a A:C 1awc A:B 1m4u A:L
1l6x A:B 1fqj A:C 1m2o A:B
1qkz A:H 1ak4 A:D 1mbu A:C
1iis A:C 1i3o A:E 1fc2 C:D
1f34 A:B 1kxp A:D 1ml0 A:D
1dpj A:B 1d4x A:G 1gvn A:B
1im3 A:D 2btf A:P 1o6s A:B
1g73 A:C 1hx1 A:B 1h2k A:S
1f83 A:B 1atn A:D 1m1e A:B
1fak H:T 1dkg A:D 1o94 A:C
1jw9 B:D 1fq1 A:B 1nf5 A:B
1jtg A:B 1fin A:B 1gzs A:B
1jtd A:B 1b6c A:B 1nbf A:D
1mr1 A:D
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5.2.1 Comparison between NOXClass features and the proposed fea-

tures

As we have explained in the methodology, we have proposed 40 new interface property

features. As shown in the Table:5.6 it increased classification accuracy for both Zhu [35]

and Mintseris [20] dataset.

In the NOXClass [35] paper, Zhu et. al. predicted obligate and non-obligate complexes

with 75.2 % accuracy for 6 features with a SVM classifier. By classifying them with our

Fisher’s LDA coupled with a Quadratic Bayesian classifier we have obtained an accuracy

of 78.27 % accuracy (Table:5.6). Adding the newly proposed 40 features, our CDA with a

linear classifier achieved 81.83 % accuracy (Table:5.6). Thus, we can see for Zhu dataset

adding our 40 newly proposed features have increased the accuracy by 6.63 %. The SVM

classifier was applied with a radial basis kernel and optimized for the best values of C

and Gamma. In the Table:5.6 6 features means original features that were proposed by

Zhu et. al. and 26 features means after adding number based amino acid composition

features. The slight decrease in accuracy is reported while adding number based amino

acid composition features; this is expected because these 20 features are very small integer

numbers that lower the column rank of the feature vector. Because by adding these features

increase the dependency of columns among each other, this phenomenon results in slightly

lower classification accuracy. In the table, 46 features means adding area based amino

acid composition features. The highest accuracy achieved for each number of features are

underlined in the accuracy Table :5.6.

In [20], Mintseris et al. predicted their compiled dataset with 75% accuracy with des-

olvation energy features. We have used their compiled dataset that we are referring to as

Mintseris dataset. We have generated interface properties features from their dataset. In
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Table 5.6: Comparison between NOXClass features and newly proposed features for Zhu
dataset Obligate-NonObligate.

Quadratic Linear
NumberofFeatures SVM FDA HDA CDA FDA HDA CDA

6 75.2 78.27 70.85 70.85 78.27 68.04 68.04
26 75.06 77.88 76.03 76.03 74.80 74.41 78.09
46 79.68 63.08 72.95 72.95 63.08 81.83 81.83

this Mintseris dataset there were some protein complexes that have multiple chains such as

1qfw AB:IM. But for our study we have taken only the first chains such as 1qfw A:I and

discarded the other chains. We have generated different number of features. In the Table:5.7

6 features means NOXClass [35] proposed features. Then we have added 20 number based

amino acid composition of the interface features that resulted in 26 features. After this

we have added area based amino acid composition of the interface features that resulted in

46 features. In the Table:5.7 it is shown that for 6 features FDA with a Quadratic classifier

achieved the highest accuracy 77.96%, with 26 features CDA with linear classifier achieved

77.54 % accuracy. The slight decrease in accuracy is reported while adding number based

amino acid composition features. This is expected because these 20 features are very small

integer numbers that lower the column rank of the feature vector because by adding these

features increase the dependency of columns among each other. This phenomenon results

in slightly lower classification accuracy. For 46 features HDA and CDA with a Quadratic

classifier achieved the highest accuracy of 79.25%. We have seen 1.29% increase in accu-

racy from 6 features to 46 features. From these results it can be concluded that our proposed

40 features have helped to predict obligate and nonobligate protein-protein interactions with

higher accuracy.

We have predicted biological and crystal packing interactions with upto 92.61 % accu-

racy with FDA coupled with a Quadratic Bayesian classifier. We have shown the result in
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Table 5.7: Comparison between NOXClass features and newly proposed features for
Mintseris dataset Obligate-NonObligate.

Quadratic Linear
NumberofFeatures SVM FDA HDA CDA FDA HDA CDA

4 76.43 77.96 77.32 76.35 77.29 76.01 74.74
24 76.32 77.25 77.25 76.91 75.95 77.22 77.54
44 78.34 74.37 79.25 79.25 75.02 76.01 76.97

Table 5.8: Comparison between NOXClass features and newly proposed features for Zhu
dataset Biological-Crystal Packing.

Quadratic Linear
Number of Features SVM FDA HDA CDA FDA HDA CDA

4 90.9 91.83 84.82 87.16 91.83 89.49 89.49
24 90.68 91.44 87.94 87.94 91.05 91.05 91.05
44 91.87 92.61 90.27 90.27 92.22 92.22 92.22

the table Table:5.8 are for Zhu [35] dataset’s pre-classified complexes with different num-

ber of features. We have shown that the classification accuracy increases from 90.9 % to

92.61 % from the NOXClass [35] reported results. We have shown that the prediction ac-

curacy increases from 4 features(the best is 91.83%) to 44 features upto 92.61 %. Thus,

from the results in the Table:5.8 we conclude that our proposed 40 features (number based

amino acid composition and area based amino acid composition) have contributed to a bet-

ter prediction of biological and crystal packing interactions. These features are proved to

be efficient to predict not only obligate-nonobligate interactions but also biological-crystal

packing interactions. We have predicted with different classifiers such as SVM with a Ra-

dial Basis Function Kernel optimized for C and Gamma and also with LDR coupled with

Bayesian classifiers. The best accuracy 92.61 % Table:5.8 have been achieved is with FDA

coupled with a Quadratic Bayesian Classifier.
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5.2.2 Linear dimensionality reduction-SVD large datasets

As we have explained in methodologies, we have solved the LDR’s singulairty matrix gen-

eration problem. If we used large dataset that contains many zeros as an input feature

vector for LDR, it used to produce IEEE NAN values. Large dataset with many zero values

would have lowered the column rank of the matrix, because of their column dependability.

To avoid the problem, we have taken singular value decomposition of all the matrices that

we have to take inverse of and replace their singular values with our calculated threshold

values. Then, we have taken the pseudoinverse of the matrices and solved the singulairty

matrix generation problem of linear disciminant analysis. To prove our solution we have

tested with large datasets, the results, as reported in [19] are shown in Table:5.9. In this

table, we have desolvation energies features for different dataset Mintseris [20] and Zhu

[35] datasets and they contain up to 210 columns as the input feature vector. More details

about these features can be found in [19]. During the execution of the program there was

no singularity matrix generation problem arises. Also in the reduced feature set we have

not obtained any complex numbers. From this experiment Table:5.9 we can conclude that

LDR-SVD have solved the issue of singularity matrix generation problem in different LDA

criteria and their subsequent effects such as complex number generation problem in the

reduced feature set. In the Table:5.9 the column marked with ”Name” describes the name

of the dataset, column that marked with ”NOF” declares Number of features in the dataset,

and the column marked with ”S.Problem” declares that if any singularity problem happens

with the dataset or not during the execution. All these input feature vectors are reduced to

dimension 20 prior to classification.
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Table 5.9: Linear Dimensionality Reduction-SVD with Large Datasets Stress test.
Quadratic Linear

Name NOF S.Problem FDA HDA CDA FDA HDA CDA
mintAtomNosasaOao 171 NO 69.16 79.31 79.31 72.22 80.08 80.08

mintAtomSasaOao 171 NO 68.77 77.97 77.59 70.50 78.16 78.35
mintResidueNosasaOao 210 NO 68.97 72.99 75.29 70.31 78.74 78.74

mintResidueSasaOao 210 NO 69.92 77.97 77.97 68.77 72.41 72.22
zhuAtomNosasa 171 NO 51.82 57.66 80.29 54.01 50.36 74.45

zhuAtomSasa 171 NO 50.36 56.93 77.37 55.47 51.82 72.99
zhuResidueNosasa 210 NO 64.96 67.88 56.93 67.88 70.07 74.45

zhuResidueSasa 210 NO 55.47 60.58 57.66 56.93 58.39 70.07

5.2.3 Prediction evaluation different tools

As we have explained in the methodology section we have evaluated our classifier effi-

ciency by different measurement such as specificity, sensitivity and Matthews correlation

coefficient. In the specificity table Table:5.10 it is shown that for 24 features and for FDA

and CDA criteria coupled with Linear Classifier have achieved the highest specificity of

97.48 %. In the sensitivity Table:5.11 it is shown that for 44 features HDA and CDA

criteria coupled with linear classifier achieved the highest sensitivity for the classifier pre-

dicting biological and crystal packing interactions. In the Matthews correlation coefficient

Table:5.12 it is shown that for 44 features FDA criteria coupled with a Quadratic Bayesian

classifier have achieved the highest Matthews correlation coefficient. We also presented the

ROC curve for different number of features and for CDA criteria coupled with a Quadratic

Bayesian classifier.
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Table 5.10: Comparison between NOXClass features and newly proposed features for Zhu
dataset Biological-Crystal Packing Specificity.

Quadratic Linear
Number of Features FDA HDA CDA FDA HDA CDA

4 95.31 93.40 91.94 95.31 94.35 94.35
24 96.00 93.40 91.41 97.48 96.72 97.48
44 94.70 93.70 93.91 94.66 93.33 93.33

Table 5.11: Comparison between NOXClass features and newly proposed features for Zhu
dataset Biological-Crystal Packing Sensitivity.

Quadratic Linear
NumberofFeatures FDA HDA CDA FDA HDA CDA

4 88.37 79.14 82.71 88.37 84.96 84.96
24 87.12 90.48 90.48 85.93 85.93 85.93
44 90.40 88.33 88.00 89.68 90.98 90.98

Table 5.12: Comparison between NOXClass features and newly proposed features for Zhu
dataset Biological-Crystal Packing Matthews Correlational Coefficient.

Quadratic Linear
NumberofFeatures FDA HDA CDA FDA HDA CDA

4 0.08 0.07 0.07 0.08 0.08 0.08
24 0.08 0.08 0.08 0.08 0.08 0.08
44 0.09 0.08 0.08 0.08 0.08 0.08
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Figure 5.1: Receiver Operating Characteristic Curve for biological-nonbiological classifi-
cation with CDA quadratic classifier for 4 features.
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Figure 5.2: Receiver Operating Characteristic Curve for biological-nonbiological classifi-
cation with CDA quadratic classifier for 24 features.
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Figure 5.3: Receiver Operating Characteristic Curve for biological-nonbiological classifi-
cation with CDA quadratic classifier for 44 features.



Chapter 6

Conclusions and future works

6.1 Summary of contributions

In this thesis, we have investigated interface properties to predict different types of protein-

protein interactions. We have proposed 40 new interface property features of protein-

protein interactions. The first 20 proposed features are number based amino acid com-

positions and the next 20 features are area based amino acid composition. We have shown

an increased prediction accuracy for predicting obligate and nonobligate interactions for

Zhu’s dataset up to 81.83 %, that is, a 6.63 % increase in accuracy from NOXClass’s re-

ported result. From here it can be concluded that our newly proposed 40 interface property

features are efficient to predict obligate and non obligate interactions. We have also shown

an increase in prediction accuracy for obligate and non obligate interactions for Mintseris’s

dataset. With the newly proposed 40 features HDA criteria with a Quadratic classifier pre-

dicted obligate and non-obligate interactions with 79.25 % classification accuracy, which is

higher than that of 4 features (77.96 %).

We have also shown increased prediction accuracy for biological and crystal packing
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interactions. For Zhu’s dataset for 46 features, our classifier have predicted biological and

crystal packing interactions with 92.61 % accuracy that is an increase from NOXClass’s

90.9 % accuracy. We have used multi-stage LDR and multi-stage SVM to solve this 3 class

classification problem, on the first step we predicted biological and crystal packing com-

plexes and in the second step we have predicted Obligate and Non-Obligate interaction.

The results on two datasets of Zhu and Mintseris of pre classified obligate and nonobli-

gate complexes show that the LDR schemes coupled with a Quadratic Bayesian classifier

achieves the best overall classification performance, even better than an SVM kernel with C

and Gamma optimized. The result on Zhu’s dataset for pre classified biological and crystal

packing complexes show that the FDA coupled with quadratic Bayesian classifier predicts

biological and nonbiological interactions with the best accuracy.

In this thesis we have also solved singularity matrix problem of LDR. We have pro-

posed a solution that performs singular value decomposition of each matrix that we have

to take the inverse of within different LDA criteria. This scheme solves the problem of

singularity matrix generation for heteroscedastic discriminant analysis and Chernoff dis-

criminant analysis and do not produce any complex number in the reduced feature set. We

have also implemented some prediction evaluation tool such as receiver operating charac-

teristic curve, Matthews’ correlation coefficient to evaluate and visualize the effectiveness

of our classification model.

6.2 Future work

The prediction approach that is discussed in the thesis can be applied to predict other types

of protein-protein interaction classification mechanism. Another problem that deserves in-

vestigation is to devise a strategy to discriminate more than two classes with multi-class
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LDR. Other interesting problems that deserve investigation are the use of this approach

in different protein-protein interaction classification problems including intra and inter do-

mains, homo and hetero oligomers, and the use of other features such as geometric features

such as shape of the structure of the interface, planarity and roughness, and other statisti-

cal and physiochemical properties such as residue and atom vicinity, secondary structure

elements and domains, hydrophobicity, salt bridges are among others.
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