
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2012

A Generalized Neural Network Approach to Mobile Robot A Generalized Neural Network Approach to Mobile Robot

Navigation and Obstacle Avoidance Navigation and Obstacle Avoidance

Seyyed Hamid Dezfoulian
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Dezfoulian, Seyyed Hamid, "A Generalized Neural Network Approach to Mobile Robot Navigation and
Obstacle Avoidance" (2012). Electronic Theses and Dissertations. 102.
https://scholar.uwindsor.ca/etd/102

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/102?utm_source=scholar.uwindsor.ca%2Fetd%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Generalized Neural Network Approach to
Mobile Robot Navigation and Obstacle Avoidance

by

Hamid Dezfoulian

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2011

© 2011 Hamid Dezfoulian

A Generalized Neural Network Approach to Mobile Robot Navigation and Obstacle

Avoidance

by

Hamid Dezfoulian

APPROVED BY:

__
Dr. Jonathan Wu

Department of Electrical and Computer Engineering

__
Dr. Alioune Ngom

School of Computer Science

__
Dr. Imran Ahmad, Co-Advisor
School of Computer Science

__
Dr. Dan Wu, Advisor

School of Computer Science

__
Dr. Yung H. Tsin, Chair of Defense

School of Computer Science

September 16, 2011

 iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

 iv

ABSTRACT

In this thesis, we tackle the problem of extending neural network navigation

algorithms for various types of mobile robots and 2-dimensional range sensors. We

propose a general method to interpret the data from various types of 2-dimensional range

sensors and a neural network algorithm to perform the navigation task. Our approach can

yield a global navigation algorithm which can be applied to various types of range

sensors and mobile robot platforms. Moreover, this method allows the neural networks to

be trained using only one type of 2-dimensional range sensor, which contributes

positively to reducing the time required for training the networks. Experimental results

carried out in simulation environments demonstrate the effectiveness of our approach in

mobile robot navigation for different kinds of robots and sensors. Therefore, the

successful implementation of our method provides a solution to apply mobile robot

navigation algorithms to various robot platforms.

v

DEDICATION

This thesis is dedicated to my parents who taught me the value of education and

for their endless love, support and encouragement. I am deeply indebted to them for their

continued support and unwavering faith in me.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor, Dr. Dan Wu for

giving me an opportunity to pursue a Master's program and for his support, guidance and

patience throughout this project whilst allowing me the room to work in my own way. I

would also like to express my thanks to Dr. Imran Ahmad for accepting to be my co-

supervisor and for his guidance and motivation throughout this research project and

lavishly, providing the primers.

Gratitude is also expressed to my committee: Dr. Alioune Ngom for his

invaluable support and guidance during my first steps into the field of machine learning

and pattern recognition and Dr. Jonathan Wu for his detailed and constructive comments.

Finally, I am eternally grateful to my father for his support, guidance and help in

all the time of research and writing of this thesis. With his help in countless ways it was

possible for me to complete this research project.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ...x

CHAPTER 1

1. INTRODUCTION .. 1

1.1 Motivation .. 1
1.2 Contributions ... 4
1.3 Guide to the Thesis .. 5

2. BACKGROUND KNOWLEDGE .. 7

2.1 Artificial Neural Networks .. 7
2.1.1 Typical Architectures ...11
2.1.2 Backpropagation Neural Net ...14

2.2 Feature Extraction .. 17
2.2.1 Principal Component Analysis (PCA) ...18
2.2.2 Principal Component Neural Networks (PCNN) ..22
2.2.3 Non-negative Matrix Factorization (NMF) ...24

2.3 Support Vector Machine (SVM) Classification .. 25
2.4 Mobile Robot Navigation and Obstacle Avoidance .. 27

2.4.1 Neural Networks for Interpretation of the Sensor Data29
2.4.2 Neural Networks for Obstacle Avoidance ...31
2.4.3 Neural Networks for Path Planning ...32

3. DESIGN AND METHODOLOGY... 34

3.1 Problem Statement ... 37
3.2 The Proposed Method .. 39
3.3 Explanations of Proposed Method ... 44
3.4 Summary .. 52

viii

4. IMPLEMENTATION AND ANALYSIS OF RESULTS 53

4.1 Implementation Details .. 53
4.1.1 Simulation Environment ..53

4.1.1.1 Sensor Simulation ...55
4.1.1.2 Robot Simulation ..57

4.1.2 Programming Environment ...60
4.1.3 Sensor Data Visualization ..62
4.1.4 Algorithm Implementation ..65
4.1.5 Robot Controller ..71

4.2 Experimental Results ... 73
4.2.1 Training ..73
4.2.2 Testing ...87

5. CONCLUSIONS AND FUTURE WORKS ... 108

5.1 Conclusion ... 108
5.2 Future Work ... 108

APPENDICES ... 111

Backpropagation Training Algorithm.. 111

REFERENCES ...115

VITA AUCTORIS ...123

ix

LIST OF TABLES

TABLE 1: COMMON ACTIVATION FUNCTIONS IN USE WITH NEURAL NETWORKS. [17,22] 10

TABLE 2: EXAMPLES OF SENSOR READINGS OF DIFFERENT SENSORS FROM THREE DIFFERENT

MOBILE ROBOTS. .. 75

TABLE 3: EXAMPLES OF TRAINING PATTERNS FOR TRAINING A) THE ACTION-SVM, AND B)

THE DIRECTION-SVM... 79

TABLE 4: COMPARISON OF THREE FEATURE EXTRACTION METHODS FOR TRAINING ANN-A,

ANN-B AND ANN-C USING THE AVERAGE VALUE OF 10 PERFORMANCE TRAININGS. 81

x

LIST OF FIGURES

FIGURE 1: A SIMPLE (ARTIFICIAL) NEURON [17] .. 8

FIGURE 2: A VERY SIMPLE NEURAL NETWORK [17] .. 9

FIGURE 3: A) A SINGLE-LAYER NEURAL NET. B) A MULTI-LAYER NEURAL NET.[17] 12

FIGURE 4: BACKPROPAGATION NEURAL NETWORK WITH ONE HIDDEN LAYER.[17] 16

FIGURE 5: CHOOSING THE HYPERPLANE THAT MAXIMIZES THE MARGIN [55] 26

FIGURE 6: RELATIONSHIPS BETWEEN MOBILE ROBOT RESEARCH AREAS. [63] 28

FIGURE 7: A) MODIFIED PCA NEURAL NETWORK TOPOLOGY. B) WORKSPACE SEGMENTS.

[18] .. 34

FIGURE 8: TOPOLOGY OF MULTI-LAYER PERCEPTRON. [18] .. 35

FIGURE 9: FOUR-LAYER NEURAL NETWORK FOR ROBOT NAVIGATION. [20,21] 36

FIGURE 10: MONODA MODULAR SYSTEM. [8] ... 36

FIGURE 11: A) LOCALISATION OF NOMAD 200™ SENSORS. B) NOMAD MOBILE ROBOT. C)

MODULAR ARCHITECTURE. [8] .. 37

FIGURE 12: FLOWCHART OF PROPOSED METHOD .. 39

FIGURE 13: EXAMPLE OF SCENARIOS OF WALL-FOLLOWING, OBJECT-AVOIDANCE AND

TARGET-SEEKING TASKS .. 41

FIGURE 14: PATHS SHOWING TWO DIFFERENT DIRECTIONS CHOSEN WHEN ENCOUNTERING A

WALL. .. 41

FIGURE 15: PATH OF A WALL-FOLLOWING TASK PERFORMED BY A MOBILE ROBOT ONLY IN

KEEP-LEFT DIRECTION. ... 42

FIGURE 16: EXAMPLES OF THREE DIFFERENT SITUATIONS FOR OBJECT-AVOIDANCE (A, B

AND C) AND A SITUATION FOR WALL-FOLLOWING (D). ... 43

xi

FIGURE 17: A) EXAMPLE OF VISUALIZING THE DATA FROM A LASER RANGE FINDER INTO A

BINARY IMAGE. B) EXAMPLE OF VISUALIZING THE DATA FROM 8 SONAR SENSORS INTO

A BINARY IMAGE. ... 45

FIGURE 18: PROPOSED NEURAL NETWORK ARCHITECTURES FOR A) ANN-A, B) ANN-B AND

ANN-C .. 47

FIGURE 19: CONCEPT OF THE MOTION CONTROLLER WITH RESPECT TO STEERING ANGLES. 51

FIGURE 20: A MOBILE ROBOT WITH 8 SONAR SENSORS... 56

FIGURE 21: A MOBILE ROBOT WITH A RANGESCANNER (LASER RANGE FINDER). [91] 57

FIGURE 22: A) MECHANICAL P2AT. B) SIMULATED P2AT. [89] .. 58

FIGURE 23: A) MECHANICAL P2DX. B) SIMULATED P2DX. [89] 58

FIGURE 24: A) MECHANICAL ATRVJR. B) SIMULATED ATRVJR. [89] 58

FIGURE 25: A) MECHANICAL ZERG. B) SIMULATED ZERG. [89] ... 59

FIGURE 26: A) MECHANICAL TRANTULA. B) SIMULATED TRANTULA. [89] 59

FIGURE 27: A) MECHANICAL TALON. B) SIMULATED TALON. [89] 60

FIGURE 28: PROGRAMMING STRUCTURE SCHEMA ... 61

FIGURE 29: A) ENVIRONMENT SAMPLE B)RANGESCANNER VISUALIZATION C) SONAR

SENSOR VISUALIZATION .. 63

FIGURE 30: A) ENVIRONMENT SAMPLE B)RANGESCANNER VISUALIZATION C) SONAR

SENSOR VISUALIZATION .. 64

FIGURE 31: FLOWCHART OF ALGORITHM IMPLEMENTED IN MATLAB. 65

FIGURE 32: 3-LAYER ARTIFICIAL NEURAL NETWORK (ANN-A) 67

FIGURE 33: LINEAR TRANSFER FUNCTION ... 68

FIGURE 34: TAN-SIGMOID TRANSFER FUNCTION ... 68

xii

FIGURE 35: MOBILE ROBOT'S PATH A) WITHOUT A WALL-FOLLOWING ALGORITHM B) WITH A

WALL-FOLLOWING ALGORITHM, WHEN ENCOUNTERING A U-SHAPED OBSTACLE. 70

FIGURE 36: TWO OBSTACLE-AVOIDANCE EXAMPLES IN MOBILE ROBOT MOTION CONTROL.

A) 90° ROTATION TO THE RIGHT B) 45° ROTATION TO THE RIGHT. 71

FIGURE 37: DIFFERENT SENSOR DISTRIBUTIONS. A) LASER RANGE SCANNER. B) 8 SONAR

SENSORS. C) 5 SONAR SENSORS. ... 74

FIGURE 38: AN EXAMPLE OF ROBOTS VIEW IN AN ENVIRONMENT. 74

FIGURE 39: A 2D TOP VIEW OF OUR TRAINING ENVIRONMENT FOR OBJECT-AVOIDANCE. ... 76

FIGURE 40: A 3D VIEW OF OUR TRAINING ENVIRONMENT FOR OBJECT AVOIDANCE. 76

FIGURE 41: A 2D TOP VIEW OF OUR TRAINING ENVIRONMENT FOR WALL-FOLLOWING. 78

FIGURE 42: A 3D VIEW OF OUR TRAINING ENVIRONMENT FOR WALL-FOLLOWING 78

FIGURE 43: REGRESSION PLOTS FOR TRAINING ANN-A WITH 3000 TRAINING SAMPLES AND

3000 SAMPLES FOR TESTING AND VALIDATION. ... 82

FIGURE 44: PERFORMANCE PLOT FOR TRAINING ANN-A ... 83

FIGURE 45: REGRESSION PLOTS FOR TRAINING ANN-B WITH 1500 TRAINING SAMPLES AND

1500 SAMPLES FOR TESTING AND VALIDATION. ... 84

FIGURE 46: REGRESSION PLOTS FOR TRAINING ANN-C WITH 1500 TRAINING SAMPLES AND

1500 SAMPLES FOR TESTING AND VALIDATION. ... 85

FIGURE 47: PERFORMANCE PLOT FOR TRAINING ANN-B ... 86

FIGURE 48: PERFORMANCE PLOT FOR TRAINING ANN-C ... 86

FIGURE 49: FOUR ENVIRONMENTS USED FOR TESTING OUR ALGORITHM 87

FIGURE 50: EXPERIMENTAL AND SIMULATION RESULTS FROM [19] IN ENVIRONMENT 1 89

FIGURE 51: SIMULATED ENVIRONMENT #1 IN UNREAL TOURNAMENT ENGINE. 89

xiii

FIGURE 52: SIMULATION RESULTS FOR P2AT USING THREE DIFFERENT SENSORS IN

ENVIRONMENT 1... 90

FIGURE 53: SIMULATION RESULTS FOR TALON USING THREE DIFFERENT SENSORS IN

ENVIRONMENT 1... 90

FIGURE 54: SIMULATION RESULTS FOR ZERG USING THREE DIFFERENT SENSORS IN

ENVIRONMENT 1... 91

FIGURE 55: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING LASER RANGE

SCANNER IN ENVIRONMENT 1. .. 91

FIGURE 56: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 8-SONAR SENSORS

IN ENVIRONMENT 1. ... 92

FIGURE 57: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 5-SONAR SENSORS

IN ENVIRONMENT 1. ... 92

FIGURE 58: SIMULATION RESULT FROM [19] IN ENVIRONMENT #2 94

FIGURE 59: SIMULATED ENVIRONMENT #2 IN UNREAL TOURNAMENT ENGINE 94

FIGURE 60: SIMULATION RESULTS FOR P2AT USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #2... 95

FIGURE 61: SIMULATION RESULTS FOR TALON USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #2... 95

FIGURE 62: SIMULATION RESULTS FOR ZERG USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #2... 96

FIGURE 63: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING LASER SCANNER IN

ENVIRONMENT #2... 96

xiv

FIGURE 64: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 8-SONAR SENSORS

IN ENVIRONMENT #2 .. 97

FIGURE 65: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 5-SONAR SENSORS

IN ENVIRONMENT #2 .. 97

FIGURE 66: SIMULATION RESULT FROM [19] IN ENVIRONMENT #2 99

FIGURE 67: SIMULATED ENVIRONMENT #3 IN UNREAL TOURNAMENT ENGINE 99

FIGURE 68: SIMULATION RESULTS FOR P2AT USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #3... 100

FIGURE 69: SIMULATION RESULTS FOR TALON USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #3... 100

FIGURE 70: SIMULATION RESULTS FOR ZERG USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #3... 101

FIGURE 71: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING LASER SCANNER IN

ENVIRONMENT #3... 101

FIGURE 72: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 8-SONAR SENSORS

IN ENVIRONMENT #3 .. 102

FIGURE 73: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 5-SONAR SENSORS

IN ENVIRONMENT #3 .. 102

FIGURE 74: SIMULATION OF ENVIRONMENT #4 IN UNREAL TOURNAMENT ENGINE 104

FIGURE 75: SIMULATION RESULTS FOR P2AT USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #4... 104

FIGURE 76: SIMULATION RESULTS FOR TALON USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #4... 105

xv

FIGURE 77: SIMULATION RESULTS FOR ZERG USING THREE DIFFERENT SENSORS IN

ENVIRONMENT #4... 105

FIGURE 78: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING LASER RANGE

SCANNER IN ENVIRONMENT #4 ... 106

FIGURE 79: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 8-SONAR SENSORS

IN ENVIRONMENT #4 .. 106

FIGURE 80: SIMULATION RESULTS FOR P2AT, TALON AND ZERG USING 5-SONAR SENSORS

IN ENVIRONMENT #4 .. 107

1

Chapter 1

Introduction
1.1 Motivation

Navigation is one of the most important problems in designing and developing

intelligent mobile robots. Staying operational, i.e. avoiding dangerous situations such as

collisions and staying within safe operating conditions (temperature, radiation, exposure

to weather, etc.) comes first. But if any tasks are to be performed that relate to specific

places in the robot environment, navigation is a must.

Robot navigation is defined by the ability of a mobile robot to determine its own

position in its frame of reference and then to plan a path towards some goal location [1].

In order to navigate in an environment, the mobile robot requires representation, i.e. a

map of the environment, and the ability to interpret that representation. Therefore

navigation can be defined as the combination of the three fundamental abilities [1]:

 Self-Localisation

 Path Planning

 Map-Building and Map-Interpretation

In this context, map represents any mapping of the environment onto an internal

representation. Moreover, Robot localization indicates the ability of the robot to establish

its own position and orientation within the frame of reference.

Path planning is effectively an extension of localization, in that it requires the

determination of the robot's current position and a position of a goal location, both within

the same frame of reference or coordinates. If the environment is unknown to the robot,

then the path planning stage has no sense. In this case, the navigation strategy is purely

2

2

reactive. The inputs to the mobile robot navigator are the target position and the sensor

system data. If there are no obstacles between the robot and its target, the navigation path

is just a straight line between them. If an obstacle is detected, some avoidance strategy is

required. Potential function based methods [2,3], neural networks [4-9], and fuzzy logic

based controllers [10-13], trained with a heuristic database of rules, are among the

possibilities.

Finally, Map-Building can be in the form of a metric map or any notation

describing locations in the frame of reference.

In the past few years, neural networks including feedforward neural network, self-

organizing neural network, principal component analysis (PCA), dynamic neural

network, support vector machines (SVM), neuro-fuzzy approach, etc., [14,15] have been

extensively used in mobile robot navigation field [16]. This is due to their assets such as

nonlinear mapping, ability to learn from examples, good generalization performance,

massively parallel processing, and ability to approximate any function given adequate

number of neurons.

Sensors are necessary for a robot to know where it is or how it got there, or to be

able to reason about where it has to go. The sensors may be roughly divided into two

classes: internal state sensors, such as accelerometers, gyroscopes, and external state

sensors, such as laser sensors, infrared sensors, sonar, and visual sensors. The data from

internal state sensors are used for estimating the position of the robot in a 2-dimensional

space. The data from external state sensors provide information that can be used to

recognize obstacles or a situation, or to build a map of the environment. The laser,

infrared, and sonar sensors can provide distant and directional information about an

3

3

object. Due to the inevitable sensor noise, in most cases, the sensor readings are

inaccurate and unreliable. Therefore, it is essential for the navigation algorithm to process

the sensor data with noises. Since neural networks have many processing nodes, each

with primarily local connections, they may provide some degree of robustness or fault

tolerance for interpretation of the sensor data. [16]

However, most of the current research addresses one particular type of sensor or

robot platform. The main issue with neural network approaches is the training of the

network. Collecting sufficient, yet valuable, samples from the environment to train the

network can sometimes be frustrating and very time consuming [17]. In addition, apart

from the effort that has to be put to collect valuable samples, the training time of a

network can be significantly high [17]. In any neural network navigation algorithm, if the

robot platform or the type or number of the sensors are changed or altered, the network

architecture requires some modifications to accommodate with the new amount of sensor

data. Moreover, new training samples need to be gathered as the previous samples will

not be as much useful for the new robot platform. In other words, when a network

structure is designed for a specific type of sensor, it cannot be used for other types or

different numbers of sensors. By changing the structure of the network, therefore, new

training samples are required and the network needs to be trained from the beginning.

This presents challenge and opportunity to develop a general method to interpret sensor

data from different types of sensors that can yield a global navigation algorithm which

can be applied to various types of sensors and robot platforms.

4

4

1.2 Contributions
This thesis is concerned with the problem of generalizing the interpretation of

sensory data and mobile robot navigation. The contributions of this thesis are as follows:

The primary contribution of this thesis is to develop a general method for

interpretation of different types of sensors, such as laser and ultrasonic sensors. Our

approach extends the work done by Janglová [18] for determining the free-spaces by

applying PCA Neural Network (PCNN). We study the problem of how current neural

network navigation approaches are limited to one type of sensor and the kinematic

constraints of a mobile robot. Our approach however is extendable to various 2-

dimensional sensors and mobile robots. On the other hand, this approach allows the

neural networks to be trained using only one type of sensor which contributes positively

to reducing the training time. Experimental results, carried out in simulated

environments, demonstrate that our approach can be positively affective in mobile robot

navigation for different kinds of robots and sensors, when compared to previous works.

Therefore, the successful implementation of our method provides a solution to apply

navigation algorithms to various robot platforms.

The second important contribution of this thesis is to implement an algorithm to

perform the navigation task using our interpretation of sensory data. Our approach is

inspired by the works done by Parhi and Singh [19-21] for neural network robot

navigation. Parhi and Singh introduced a real-time obstacle avoidance approach, solving

each of the target-seeking, obstacle-avoidance, and wall-following tasks with separate

neural networks. However, it is our belief that a multilayer neural network is capable of

solving both target-seeking and object-avoidance tasks at the same time. Therefore,

5

5

instead of using two separate networks, we introduce a structure which uses only one

network for this purpose. Yet, the wall-following task will require a more complex

structure to accommodate with both directions of rotation. Therefore, our proposed

method for mobile robot navigation can yield significant navigation results for various

sensors and robots – at less training time and lower sensor costs.

The third contribution of this thesis is that we develop a software application to

carry out the proposed approach. The experimental results obtained through this

application indicate feasibility of our approach in simulation robots.

1.3 Guide to the Thesis
This thesis is organized as follows.

Chapter 2: Background Knowledge. This chapter provides an introduction to

the subjects that the proposed method builds upon. After explaining the concept of

artificial neural networks and backpropagation algorithm, some methods of feature

extraction and classification will be given. The Principal Component Neural Network

(PCNN) method and Support Vector Machine (SVM) algorithms are specifically

emphasized, since they constitute the core of the proposed approach. The attention then

moves to the discussion of mobile robot navigation and its current applications.

Chapter 3: Design and Methodology. The proposed interpretation of sensory

data and mobile robot navigation method based on neural networks is presented in detail

in this chapter. First the definition of the problem is described, followed by detailed

presentation of the proposed approach.

Chapter 4: Implementation and Experiments. The detailed information of the

implementation and the experimental results will be described in this chapter. In the

6

6

results section, experiments carried out for training and experiments done for testing on

simulation robots are described. Finally, these experimental results are compared with

experimental results from previous methods and the evaluations are obtained.

Chapter 5: Conclusion and Future Work. This final chapter brings conclusion

of the thesis and presents a sketch of possible future work.

7

Chapter 2

Background Knowledge
This chapter provides the background knowledge on which the proposed method

is based on. After explaining Artificial Neural Networks (ANN), feature extraction

methodology, specifically Principal Component Analysis (PCA), is described.

Consequently, a method of classification, Support Vector Machines (SVM), is illustrated.

Finally, current robot navigation and obstacle avoidance algorithms are reviewed with a

view to the applications of artificial neural networks in robot navigation and obstacle

avoidance.

2.1 Artificial Neural Networks
Artificial neural networks are information-processing systems which have certain

performance characteristics in common with biological neural networks [22]. Artificial

neural networks have been evolved as generalizations of mathematical models of human

cognition or neural biology, based on the following four assumptions [17]:

1. "Information processing occurs at many simple elements called neurons."

2. "Signals are passed between neurons over connection links."

3. "Each connection link has an associated weight, which, in a typical neural net,

multiplies the signal transmitted."

4. "Each neuron applies an activation function (usually nonlinear) to its net input (sum

of weighted input signals) to determine its output signal."

A neural network can be characterized, firstly, by its structure of connections

between the neurons (known as its architecture), additionally by its method of

8

8

determining the weights on the connections (called its training, or learning, algorithm),

and finally, its activation function.

Neural networks are structured from a large number of simple processing

components called neurons, units, cells, or nodes. Each neuron is connected to other

neurons through directed communication links, each with a weight associated to it (as

shown in Figure 1). The weights correspond to information being processed by the

network to solve a problem. Neural networks can be applied to a wide selection of

problems, such as storing and recalling data or patterns, grouping similar patterns,

performing general mappings from input patterns to output patterns, classifying patterns,

or finding solutions to constrained optimization problems.[17,22]

Figure 1: A simple (artificial) neuron [17]

The internal state of a neuron is known as its activation or activity level, which is

a function of the inputs it has received. Typically, activation is sent as a signal from one

neuron to several other neurons. However, only one signal can be sent from each neuron

at the same time, although that signal can be broadcast to several other neurons. For

example, consider neuron 𝑌, shown in Figure 1, that receives inputs from neurons 𝑋1, 𝑋2,

and 𝑋3. The activations (output signals) of these neurons are 𝑥1, 𝑥2, and 𝑥3, respectively.

In addition, the weights on the connections from 𝑋1, 𝑋2, and 𝑋3 to neuron 𝑌 are 𝑤1, 𝑤2,

9

9

and 𝑤3, respectively. The net input, 𝑦_𝑖𝑛, to neuron 𝑌 is the sum of the weighted signals

from neurons 𝑋1, 𝑋2, and 𝑋3, that is:

𝑦_𝑖𝑛 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

The activation 𝑦 of neuron 𝑌 is given by some function of its net input,

𝑦 = 𝑓(𝑦_𝑖𝑛), for example, the logistic sigmoid function (an S-shaped curve)

𝑓(𝑥) =
1

1 + e−x

or any of a number of other activation functions (see Table 1 for a number of common

activation functions in use with neural networks).

Further, suppose that neuron 𝑌 is connected to neurons 𝑍1, and 𝑍2, with weights

𝑣1, and 𝑣2, respectively, as depicted in Figure 2. neuron 𝑌 sends its signal 𝑦 to each of

these units. However, generally, the values received by neurons 𝑍1, and 𝑍2 will be

different. Since each signal is scaled by the appropriate weight, 𝑣1 or 𝑣2. As shown in

this simple example, in a typical network, the activations 𝑧1 and 𝑧2 of neurons 𝑍1, and 𝑍2

would depend on inputs from several neurons and not just one. [17]

Figure 2: A very simple neural network [17]

Even though the neural network in Figure 2 is very simple, the presence of an

intermediate unit 𝑌 (also known as the hidden unit), together with a nonlinear activation

function, gives the network the capability to solve many more problems than can be

10

10

solved by a network with only input and output units. However, the difficulty to train

(i.e., find optimal values for the weights) a net with hidden units is more than a network

with no hidden units.

Table 1: Common activation functions in use with neural networks. [17,22]

 Function Definition Range

a) Identity 𝑥 (−∞, +∞)

b) Binary
Sigmoid

1
1 + 𝑒−𝑥

 (0, +1)

c) Bipolar
Sigmoid

1 − 𝑒−𝑥

1 + 𝑒−𝑥
 (−1, +1)

d) Hyperbolic 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (−1, +1)

e) - Exponential 𝑒−𝑥 (0, +∞)

f) Softmax
𝑒𝑥

∑ 𝑒𝑥𝑖𝑖
 (0, +1)

g) Unit sum
𝑥

∑ 𝑥𝑖𝑖
 (0, +1)

h) Square root √𝑥 (0, +∞)

i) Sine sin(𝑥) [0, +1]

j) Ramp �
−1 𝑥 ≤ −1
𝑥 − 1 < 𝑥 < +1
+1 𝑥 ≥ +1

� [−1, +1]

k) Step �0 𝑥 < 0
+1 𝑥 ≥ 0� [0, +1]

11

11

2.1.1 Typical Architectures

Often, it is more convenient to visualize neurons arranged in layers. Normally,

neurons that are in the same layer behave in the same manner. The key factors in

determining the behaviour of a neuron are activation function and the pattern of weighted

connections. Within each layer, neurons typically have the same activation function and

the same pattern of connections with other neurons.

The arrangement of neurons into layers and the connection patterns within and

between layers is known as the network architecture [17]. Many neural networks have an

input layer in which the activation of each unit is equal to an external input signal. The

network presented in Figure 2 consists of three input units, two output units, and one

hidden unit (a unit that is neither an input unit nor an output unit).

Neural networks are typically classified into two categories; single layer and

multilayer. Since no computation is performed by the input units, they are not counted as

a layer when determining the number of layers. Similarly, the number of layers in the

network can be defined as the number of layers of weighted interconnected links between

the layers of neurons. This point of view is motivated by the fact that the weights in a

network have extremely important information [17]. The network depicted in Figure 2

has two layers of weights.

Illustrated in Figure 3 are examples of single-layer and multilayer feedforward

networks—networks in which the signals flow in a forward direction from the input units

to the output units.

12

12

Figure 3: a) A single-layer neural net. b) A multi-layer neural net.[17]

For pattern classification, each output unit corresponds to a particular category to

which an input vector may or may not belong. Note that in a single-layer net, the weights

of output units will not be influenced by the weights of other output units. For pattern

association, the same architecture can be used; however the overall pattern of output

signals gives the response pattern associated with the input signal that caused it to be

produced. These two examples illustrate that depending on the interpretation of the

response of the network, the same type of network can be used for different problems.

Alternatively, for more complicated mapping problems a multilayer network maybe

required. The problems that require multilayer networks may still represent classification

or association of patterns. Although the type of problem affects the choice of architecture,

but it does not exclusively determine it.

A multilayer neural network is a network with one or more layers of nodes

(hidden units) between the input units and the output units. Usually, there is a layer of

13

13

weights between two adjacent layers of units (input, hidden, or output). Multilayer

networks can solve more complex problems than single-layer networks can, but training

may be more complicated. Nevertheless, in some cases, training may be more successful,

since it is possible to solve problems that single-layer networks cannot be trained to

perform correctly at all. [22]

In addition to the architecture, the method of setting the values of the weights

(training) is an important distinguishing attribute of various neural networks. Typically,

neural networks are distinguished by two types of training—supervised and

unsupervised; furthermore, there are networks whose weights are fixed without an

iterative training process. [17,22]

Various tasks that neural nets can be trained to carry out fall into areas such as

mapping, clustering, and constrained optimization. Pattern classification and pattern

association may be considered special forms of the more general problem of mapping

input vectors or patterns to the specified output vectors or patterns. [22]

Possibly, in the most standard neural network setting, training is achieved by

introducing a series of training vectors, or patterns, each with an associated target output

vector. Then based on a learning algorithm the weights are adjusted. This process is

called supervised training [17]. Some of the simplest neural networks are designed to

perform pattern classification that is to classify an input vector as either it belongs to or

does not belong to a given category. In this type of neural network, the output is a

bivalent element, say, either 1 (if the input vector belongs to the category) or −1 (if it

does not belong to the category). For more complex classification problems, a multilayer

14

14

networ k, such as that trained by back propagation may be better as will be described in

the next section.

Pattern association is another special form of a mapping problem, where in which

the desired output is not just a "yes" or "no", but rather a pattern. Associative memory

[17] is a neural network which is trained to associate a group of input vectors with a

corresponding group of output vectors. If the desired output vector is the same as the

input vector, the network is called an auto-associative memory [17]; moreover, if the

output target vector is different from the input vector, the network is a hetero-associative

memory [17]. Following training, an associative memory can recall a stored pattern when

it is provided an input vector that is adequately similar to a vector it has learned.

Multilayer neural networks can be trained to perform a nonlinear mapping from an 𝑛-

dimensional space of input vectors (𝑛-tuples) to an 𝑚-dimensional output space—i.e., the

output vectors are 𝑚-tuples.[22]

On the other hand, in unsupervised training, self-organizing neural networks [22]

group similar input vectors together without using training data to specify what a typical

member of each group looks like or to which group each vector belongs. A series of input

vectors is provided, but no target vectors are specified. The network adjusts the weights

so that the most similar input vectors are assigned to the same output (or cluster) unit.

Hence, the neural network will produce an exemplar (representative) vector for each

cluster formed.

2.1.2 Backpropagation Neural Net

In the 1970s, there was a decline of interest in neural networks due to the

illustration of the limitations of single-layer neural networks. The discovery and

15

15

extensive spreading of an effective general method for training a multilayer neural

network [23-26] played a major role in the comeback of neural networks as a tool for

solving a wide variety of problems.

The backpropagation network is a multilayer feedforward network trained by

backpropagation which can be used to solve problems in many areas. Applications using

such networks can be found in almost any area that uses neural networks to solve

problems involving mapping a given set of inputs to a particular set of target outputs, i.e.

networks that use supervised training. The aim in most neural networks is to train the

network to attain a balance between the capability to respond correctly to the input

patterns that are used for training (memorization) and the capability to give reasonable

(good) responses to input that is similar, but not identical, to that used in training

(generalization). [17]

Training a network with backpropagation comprises of three stages: the

feedforward of the input training pattern, the calculation and backpropagation of the

associated error, and the adjustment of the weights [17]. Subsequent to training,

application of the network involves only the computations of the feedforward phase. A

trained network can produce its output very fast even if training is slow. While a single-

layer network is very limited in the mappings it can learn, a multilayer network (with one

or more hidden layers) can learn any continuous mapping to any desired accuracy. For

some applications more than one hidden layer may be beneficial, however one hidden

layer is usually adequate [22].

A multilayer neural network with one layer of hidden units (the 𝑍 units) is shown

in Figure 4. The output neurons (𝑌 neurons) and the hidden neurons (𝑍 neurons) may also

16

16

have biases. The bias on a standard output unit 𝑌𝑘 is denoted by 𝑊0𝑘; the bias on a typical

hidden unit 𝑍𝑦 is denoted 𝑉0𝑗. These bias terms function like weights on connections

from units whose output is always 1 [17]. Only the direction of information flow for the

feedforward phase is shown. During the backpropagation phase of learning, signals are

sent in the reverse direction. The algorithm in APPENDIX A is presented for one hidden

layer, which is adequate for a large number of applications.

Figure 4: Backpropagation neural network with one hidden layer.[17]

An activation function for a backpropagation network should have several

important characteristics: It should be continuous, differentiable, and monotonically non-

decreasing. In addition, for computational efficiency, it is beneficial that its derivative be

easy to compute. For the most frequently used activation functions, some of which

illustrated in Table 1, the value of the derivative, at a particular value of the independent

variable, can be denoted in terms of the value of the function (at that value of the

independent variable). Typically, the function is expected to saturate, i.e., approach finite

17

17

maximum and minimum values asymptotically [17]. The binary sigmoid function,

illustrated in Table 1 (b) is one of the most typical activation functions; another common

activation function is the bipolar sigmoid function (Table 1 (c)). Note that the bipolar

sigmoid function is closely related to the hyperbolic function (Table 1(d)).

The mathematical basis for the backpropagation algorithm is the optimization

technique called the gradient descent. The gradient of a function (in the case of

backpropagation, the function is the error and the variables are the weights of the

network) gives the direction in which the function increases more rapidly; the negative

value of the gradient gives the direction in which the function decreases most rapidly

[27]. The derivation clarifies the reason why the weight updates described in APPENDIX

A should be done after all of the 𝛿𝑘 and 𝛿𝑗 expressions have been calculated, rather than

during backpropagation.

2.2 Feature Extraction
In pattern recognition and image processing, feature extraction is a particular type

of dimensionality reduction.

When the data is too large to be processed by an algorithm and it is also suspected

to be extremely redundant, the input data can be transformed into a reduced

representation set of features (also called features vector) by feature extraction methods.

If the extracted features are carefully chosen, it is expected that the features set will

extract the important information from the data in order to perform the desired task with

this reduced representation instead of the entire data.

Feature extraction comprises of reducing the amount of resources required to

describe a large data set. One of the major problems when performing analysis of

18

18

complex data rises from the number of variables involved. Analysis with a large number

of variables typically requires large amount of memory and computation power or a

classification algorithm which usually over fits the training samples and generalizes

poorly to new patterns. Feature extraction is used as a general term for methods for

constructing combinations of variables to get around these problems while still describing

the data with sufficient accuracy.

Best results are attained when an expert constructs a set of application-dependent

features. Nonetheless, if no such expert knowledge is available general dimensionality

reduction techniques may be of assistance [28-34].

2.2.1 Principal Component Analysis (PCA)

The most commonly used approach for extracting features from a set of observed

variables is perhaps Principal Components Analysis (PCA). PCA is a mathematical

procedure where an orthogonal transformation is used to convert a set of observations of

possibly correlated variables into a set of values of uncorrelated variables known as

principal components [34,35]. The number of extracted principal components is less than

or equal to the number of original variables. The transformation of the data is defined in

such a way that the first principal component has the highest variance possible i.e.,

constitutes as much of the variability in the data as possible. Moreover, each subsequent

component in turn has as high a variance as possible under the constraint that it be

orthogonal to (uncorrelated with) the preceding components. If the data set is jointly

normally distributed, principal components are guaranteed to be independent. However,

PCA is sensitive to the relative scaling of the original variables.[36]

19

19

PCA was invented in 1901 by Karl Pearson [37]. PCA has a wide range of

applications some of which include data compression, image processing, visualization,

exploratory data analysis, pattern recognition, and time series prediction. A complete

discussion of PCA can be found in [22,38]. Usually after mean centering the data for

each attribute, PCA can be achieved by eigenvalue decomposition of a data covariance

matrix or singular value decomposition of a data matrix. Typically, the results of a PCA

are discussed in terms of component scores (the transformed variable values

corresponding to a particular case in the data) and loadings (the weight by which each

standardized original variable should be multiplied to get the component score). [36,39]

The popularity of PCA appears from three important assets. First, it is the optimal

(in terms of mean squared error) linear scheme for compressing a set of high dimensional

vectors into a set of lower dimensional vectors and then reconstructing the original set.

Second, the model parameters can be computed directly from the data - for example by

diagonalizing the sample covariance matrix. Third, given the model parameters,

compression and decompression are simple operations to perform where they require

only matrix multiplication. [36,39,40]

Perhaps, PCA's operation is better thought as exposing the internal structure of the

data in a way which best explains the variance in the data. If a multivariate dataset is

visualised as a set of coordinates in a high-dimensional data space (1 axis per variable),

PCA can supply the user with a lower-dimensional picture [36,39]. This is achieved by

using only the first few principal components so that the dimensionality of the

transformed data is reduced.

20

20

PCA is mathematically defined as an orthogonal linear transformation [40] which

transforms the data to a new coordinate system such that the largest variance by any

projection of the data comes to lie on the first coordinate (known as the first principal

component), the second largest variance on the second coordinate, and so on.

To calculate the principal components we define a data matrix, 𝑋𝑇, with zero

empirical mean (the sample mean of the distribution is subtracted from the data set),

where each of the 𝑛 rows stands for a different repetition of the experiment, and each of

the 𝑚 columns provides a particular kind of datum e.g., the results from a particular

probe. The singular value decomposition of 𝑋 is 𝑋 = 𝑊Σ𝑉𝑇, where the 𝑚 × 𝑚 matrix 𝑊

is the matrix of eigenvectors of 𝑋𝑇𝑋, the matrix Σ is an 𝑚 × 𝑛 rectangular diagonal

matrix with nonnegative real numbers on the diagonal, and the 𝑛 × 𝑛 matrix 𝑉 is the

matrix of eigenvectors of 𝑋𝑇𝑋. The PCA transformation that preserves dimensionality

i.e., gives the same number of principal components as original variables is then given

by:

𝑌𝑇 = 𝑋𝑇𝑊

= 𝑉Σ𝑇

In the usual case when 𝑀 < 𝑛 − 1, 𝑉 is not uniquely defined. However, 𝑌 will

usually still be uniquely defined. Since 𝑊 (by definition of the SVD of a real matrix [41])

is an orthogonal matrix where each row of 𝑌𝑇 is simply a rotation of the corresponding

row of 𝑋𝑇. The first column of 𝑌𝑇 is created from the scores of the instances with respect

to the principal component; the next column has the scores with respect to the second

principal component, and so on.

21

21

If a reduced-dimensionality representation is required, we can project 𝑋 down into

the reduced space defined by only the first 𝐿 singular vectors, 𝑊𝐿:

𝑌 = 𝑊𝐿
𝑇𝑋 = Σ𝐿𝑉𝐿𝑇

The matrix 𝑊 of singular vectors of 𝑋 is equivalently the matrix 𝑊 of

eigenvectors of the matrix of observed covariance 𝐶 = 𝑋𝑋𝑇,

𝑋𝑋𝑇 = 𝑊ΣΣ𝑇𝑊𝑇

The first principal component corresponds to a line that passes through the

multidimensional mean and minimizes the sum of squares of the distances of the points

from the line provided a set of points in Euclidean space. The second principal

component relates to the same concept after all correlation with the first principal

component has been subtracted out from the points. The singular values (in Σ) are the

square roots of the eigenvalues of the matrix 𝑋𝑋𝑇. Each eigenvalue is proportional to the

portion of the variance that is correlated with each eigenvector. More correctly they are

proportional to the portion of the sum of the squared distances of the points from their

multidimensional mean. The sum of all the eigenvalues is equal to the sum of the squared

distances of the points from their multidimensional mean. Basically, PCA rotates the set

of points around their mean in order to align with the principal components. This moves

as much of the variance as possible, by using an orthogonal transformation, into the first

few dimensions. Therefore, the values in the remaining dimensions tend to be small and

may be ignored with minimal loss of information. PCA is often used in this manner for

dimensionality reduction. Therefore, it has the distinction of being the optimal orthogonal

transformation for keeping the subspace that has largest variance. [35,36,40]

22

22

2.2.2 Principal Component Neural Networks (PCNN)

Since the original work of Oja and his research group, principal component

analysis by neural networks and its extensions have become an important research field

(a partial list of references is given by [41-47]) both for the interesting implications on

unsupervised learning theory and applications to neural information processing [48].

The algorithms considered in this section are based on Oja's principal component

neuron described by 𝑧(𝑡) = 𝒒𝑇(𝑡)𝒙(𝑡), where 𝒙(𝑡) ∈ ℛ𝑝 represents the stationary

multivariate random process whose first principal component is looked for, 𝒒(𝑡) ∈ ℛ𝑝 is

the neuron's weight vector, and 𝑧(𝑡) ∈ ℛ is the neuron's output signal. Oja's learning rule

[47] is:

𝒒(𝑡 + 1) = 𝜂𝒙(𝑡)𝑧(𝑡) + 𝒒(𝑡)[1 − 𝜂𝑧2(𝑡)]

where 𝜂 is a small learning rate and 𝑡 indicates discrete time. This expression clearly

reveals the presence of the Hebbian term +𝒙(𝑡)𝑧(𝑡) [49] and of a stabilizing term, thus it

is also referred to as stabilized Hebbian learning equation.

The Generalized Hebbian Algorithm by Sanger [49] is one among the best known

learning algorithms that allow a linear neural network to extract a selected number of

principal components from a stationary or quasi-stationary multivariate random process.

It applies to a single-layered feedforward neural network described by 𝒛(𝑡) = 𝑸𝑇(𝑡)𝒙(𝑡),

where 𝒙(𝑡) ∈ ℛ𝑝, 𝒛(𝑡) ∈ ℛ𝑚, thus 𝑸(𝑡) ∈ ℛ𝑝×𝑚. The GHA rule writes:

𝑸(𝑡 + 1) = 𝜇𝒙(𝑡)𝒛𝑇(𝑡) + 𝑸(𝑡)(𝑰𝑚 − 𝜇𝐿𝑇[𝒛(𝑡)𝒛𝑇(𝑡)])

where 𝑚 is a small positive learning rate, the operator 𝐿𝑇[⋅] returns the lower-triangular

part of the matrix contained within, and 𝑰𝑚 denotes the identity matrix of size 𝑚. This

23

23

rule is an extension of Oja's rule, where the neurons are forced to encode different

features by means of intrinsic Gram-Schmidt orthogonalization [50].

Kung and Diamantaras developed a learning rule (Laterally-Connected Network

and Apex Rule) for Rubner-Tavan's principal component neural network [51] described

by the following input-output relationships:

𝒛(𝑡) = 𝑸𝑇(𝑡)𝒙(𝑡),

𝒚(𝑡) = 𝒛(𝑡) + 𝑯𝑇(𝑡)𝒚(𝑡).

where the input vector 𝒙(𝑡) ∈ ℛ𝑝, the output vector 𝒚(𝑡) ∈ ℛ𝑚 (with 𝑚 ≤ 𝑝, arbitrarily

fixed), the direct-connection weight-matrix 𝑸(𝑡) ∈ ℛ𝑝×𝑚 and the lateral-connection

strictly upper-triangular weight-matrix 𝑯(𝑡) ∈ ℛ𝑚×𝑚 are evaluated at the same time. The

Kung-Diamantaras' APEX learning rule for the weight-matrix 𝑸 and the inhibitory

weight-matrix 𝑯 recasts from [48] in matrix notation:

𝑸(𝑡 + 1) = 𝜇𝑿(𝑡)𝒀�(𝑡) + 𝑸(𝑡)�𝑰𝑚 − 𝜇𝒀�2(𝑡)�

𝑯(𝑡 + 1) = −𝜇𝑆𝑈𝑇�𝒀(𝑡)𝒀�(𝑡)� + 𝑯(𝑡)[𝑰𝑚 − 𝜇𝒀�2(𝑡)]

where 𝑚 is a small positive learning rate, matrices 𝑿 ∈ ℛ𝑝×𝑚, 𝒀 ∈ ℛ𝑚×𝑚, and 𝒀� ∈

ℛ𝑚×𝑚 are defined by:

𝑿 ≜ [𝐱 𝐱 ⋅⋅⋅ 𝐱]�������
𝑚

,𝒀 ≜ [𝐲 𝐲 ⋅⋅⋅ 𝐲]�������
𝑚

,𝒀� ≜ diag(y1, y2, … , ym)

and operator 𝑆𝑈𝑇 [⋅] returns the strictly upper-triangular part of the matrix contained

within. Kung-Diamantaras' rule has been heuristically derived by applying Oja's rule to

direct-connection weight-vectors, and its anti-Hebbian version to lateral-connection

weight-vectors. [48]

24

24

2.2.3 Non-negative Matrix Factorization (NMF)

Unsupervised learning algorithms such as principal component analysis can be

known as factorizing a data matrix subject to different constraints. Based on the

employed constraints, the resulting features can be shown to have very different

representational properties. [34,52,53].

NMF is described as to find non-negative matrix factors 𝑊 and 𝐻, given a non-

negative matrix 𝑉, such that:

𝑉 ≈ 𝑊𝐻

NMF can be used for the statistical analysis of multivariate data in the following

approach: Given a series of multivariate 𝑛-dimensional data vectors, the vectors are

placed in the columns of an 𝑛 × 𝑚 matrix 𝑉 where 𝑚 is the number of samples in the

dataset. Matrix 𝑉 is then approximately factorized into an 𝑛 × 𝑟 matrix 𝑊 and an 𝑟 × 𝑚

matrix 𝐻. Typically, 𝑟 is chosen to be smaller than 𝑛 or 𝑚, so that 𝑊 and 𝐻 are smaller

than the original matrix 𝑉. This results in a compressed form of the original data matrix

[53].

The significance of approximating 𝑉 ≈ 𝑊𝐻 is that it can be rewritten column by

column as 𝑣 ≈ 𝑊ℎ, where 𝑣 and ℎ are the corresponding columns of 𝑉 and 𝐻. More

formally, each data vector 𝑣 is approximated by a linear combination of the columns of

𝑊, which is weighted by the components of ℎ. Hence, 𝑊 can be considered as to contain

a basis that is optimized for the linear approximation of the data in 𝑉. Since relatively

small amount of basis vectors are used to represent many data vectors, high quality

approximation can only be attained if the basis vectors discover structure that is latent in

the data [34,52,53].

25

25

2.3 Support Vector Machine (SVM) Classification
Classification, in machine learning and pattern recognition, refers to an

algorithmic procedure for assigning a set of input data to one of a given number of

categories [15]. An example would be predicting the species of a flower given petal and

sepal measurements [54]. An algorithm that implements classification, particularly in a

solid implementation, is called a classifier [15]. The term "classifier" sometimes also

refers to the mathematical function, implemented by a classification algorithm, which

maps input data to a category.

Typically, classification refers to a supervised procedure, i.e. a procedure that

learns to classify new samples based on learning from a training set of instances that have

been properly labelled with the correct classes by hand. The corresponding unsupervised

method is known as clustering. This procedure involves grouping data into different

classes based on some measure of inherent similarity [14] (e.g. the distance between

instances, considered as vectors in a multi-dimensional vector space).

The support vector machine (SVM) [55-58] is a training algorithm for learning

classification and regression rules from data. For instance SVM can be used to learn

polynomial, radial basis function (RBF) and multi-layer perceptron (MLP) classifiers

[58]. In the 1960s, Vapnik first suggested SVMs for classification. Recently, support

vector machines have become an area of extreme research mainly because of the

developments in the techniques and theory joined with extensions to regression and

density estimation.

SVMs were born from statistical learning theory [57]; the goal was to solve only

the problem of interest without having to solve a more difficult problem as an

26

26

intermediate step [58]. SVMs are based on the structural risk minimisation principle

which is closely related to regularisation theory. This principle features capacity control

to prevent over-fitting and therefore is a partial solution to the bias-variance trade-off

dilemma [59].

In the implementation of SVM, there are two main components; techniques of

mathematical programming and kernel functions. The parameters are found by solving a

quadratic programming problem with linear equality and inequality constraints; rather

than by solving a non-convex, unconstrained optimisation problem [56]. SVM is able to

search a wide variety of hypothesis due to the flexibility of the kernel functions. The

geometrical interpretation of support vector classification (SVC) is that the algorithm

searches for the optimal separating surface (hyperplane) that is, in a sense, equidistant

from the two classes [55] (see Figure 5). Statistical properties of this optimal separating

hyperplane are available at [57].

Figure 5: Choosing the hyperplane that maximizes the margin [55]

27

27

Without requiring a separate validation set during training, the SVM parameters

can be optimized using generalisation theory. As SVM is based on solid statistical and

mathematical foundations concerning generalisation and optimisation theory, hence, it

has been proven to outperform existing techniques on a wide variety of real world

problems [56]. SVMs and related methods are also being increasingly applied to real

world data mining. An up-to-date list of such applications can be found at [60].

2.4 Mobile Robot Navigation and Obstacle Avoidance
In the past few years, mobile robots have been widely used in various fields, such

as space exploration, industrial and military industries, under water survey, and service

and medical applications, hence attracting the attention from researchers. Mobile robots

require the capabilities of autonomy and intelligence, therefore, researchers are forced to

deal with important issues such as uncertainty (in both sensing and action), reliability,

and real-time response [61]. As a result, one of the major challenges in robotics is

designing algorithms to allow the robots to function autonomously in unstructured,

dynamic, partially observable, and uncertain environments [62]. Figure 6 shows the

position of motion control (for obstacle avoidance) and exploration (navigation)

compared to other mobile robot research areas.

28

28

Figure 6: Relationships between mobile robot research areas. [63]

The problem of mobile robot navigation, includes three fundamental matters; map

building, localization and path planning. This problem refers to planning a path to a

specified target, executing this plan based on sensor readings, and is the key to the robot

performing some particular tasks. Artificial Neural networks are increasingly being used

in various fields of machine learning, including pattern recognition, speech production

and recognition, signal processing, medicine, and business. In the recent years, artificial

neural networks, including feedforward neural network, self-organizing neural network,

principal component analysis (PCA), dynamic neural network, support vector machines

(SVM), neuro-fuzzy approach, etc., have been extensively employed in the field of

mobile robot navigation because of their properties such as nonlinear mapping, ability to

learn from examples, good generalization performance, massively parallel processing,

and ability to approximate an arbitrary function given sufficient number of neurons

[16,17].

29

29

2.4.1 Neural Networks for Interpretation of the Sensor Data

For a mobile robot to identify where it is or how it got there, or to be able to

reason about where it has gone, sensors are necessary. For measuring the distance that

wheels have traveled along the ground and for measuring inertial changes and external

structure in the environment, the sensors can be flexible and mobile. The sensors can be

generally divided into two categories: internal state sensors, and external state sensors.

The internal state sensors such as accelerometers and gyroscopes, provide the internal

information about the robot’s movements. The external state sensors, such as laser,

infrared sensors, sonar, and visual sensors, provide the external information about the

environment. The data from internal state sensors can be used to estimate the position of

the robot in a 2-dimensional space; however, cumulative error is inevitable. The data

from external state sensors can be applied for recognizing a place or a situation, or be

used to construct a map of the environment. Laser, infrared, and sonar sensors can obtain

distant and directional information about an object. Visual sensors can also provide rich

information of the environment, but can be very expensive to process. In most cases,

because of the available noises, the sensor readings are imprecise and unreliable. Thus, it

is inevitable for the mobile robot navigation algorithm to process the sensor data with

noises. Given that neural networks have many processing units, each with primarily local

connections, they may provide some degree of robustness or fault tolerance for

interpretation of the sensor data [16].

Feedforward multi-layer perception neural network, trained by the back-

propagation algorithm, has been applied for pattern classification, pattern recognition and

function approximation. In [64], Thrun has employed a feedforward neural network to

30

30

"translate" the readings of sonar sensors into occupancy values of each grid cell for

building metric maps. Meng and Kak proposed a NEURO-NAV system for mobile robot

navigation [65]. In the NEURO-NAV, in order to drive the robot to move in the middle

of the hallway, a feedforward neural network, which is driven by the cells of the Hough

transformation of the corridor guidelines in the camera image, is used to obtain the

approximate relative angles between the heading direction of the robot and the orientation

of the hallway [65]. self-organizing Kohonen neural networks are well known for their

capability to carry out classification, recognition, data compression and association in an

unsupervised manner [66]. In [67], self-organizing Kohonen neural networks are applied

to recognize landmarks using the measurements from laser sensors in order to provide

coordinates of the landmarks for triangulation.

As mentioned before, PCA is a statistical technique, which has been applied to

machine learning fields such as data compression and pattern recognition, and is known

as one of the effective techniques to extract the principal features from high-dimension

data and reduce the dimension of the data [40]. In [68], Vlassis et al. presented an

approach for mobile robot localization where PCA was used to reduce the dimensions of

sonar sensor data. Crowley et al. proposed an approach to estimate the position of a

mobile robot based on the PCA of laser ranger sensor data [69]. In [70,71], PCA has been

used to extract features of images for mobile robot localization. PCA Neural Network

(PCNN) was applied for navigation to determine the "free space" in front of a mobile

robot using ultrasound range finder data in order to construct a collision-free path for the

mobile robot in [18].

31

31

2.4.2 Neural Networks for Obstacle Avoidance

There are always static, as well as non-static obstacles in the environment. Hence,

robots need to autonomously navigate themselves in environments by avoiding obstacles.

The neural networks, which have been designed for obstacle avoidance by mobile robots,

should take the sensor data from the environment as their inputs, and output the direction

for the robot to proceed. In [72], Fujii et al. presented a multilayered neural network

model through reinforcement learning for collision avoidance of a mobile robot. Silva et

al. proposed the MONODA (MOdular Network for Obstacle Detection and Avoidance)

architecture for obstacle avoidance and detection of a mobile robot in unknown

environments [8]. This model consists of four three-layered feedforward neural network

modules where each module detects the probability of obstacles in one direction of the

robot. In [73], Ishii et al. developed an obstacle avoidance method based on self-

organizing Kohonen neural networks for underwater vehicles. Gaudiano and Chang

proposed an approach for obstacle avoidance by employing a neural network model of

classical and operant conditioning based on Grossberg’s conditioning circuit [7,74]. Parhi

and Singh introduced a real-time obstacle avoidance approach to solve each of the target-

seeking, obstacle-avoidance, and wall-following tasks using separate neural networks

[19-21]. In their approach, based on certain criteria one of the networks is selected at

each time step to control the mobile robot allowing it to move safely in a crowded real-

world and unknown environment and to reach a specified target while avoiding static as

well as dynamic obstacles.

32

32

2.4.3 Neural Networks for Path Planning

The path planning problem may consist of two sub-problems; path generation and

path tracking. This problem refers to determining a path between an initial pose of the

mobile robot and a final pose such that the robot does not collide with any objects in the

environment and that the planned motion is consistent with the kinematic constraints of

the vehicle. The existing path planning methods include A* algorithm [75], potential

fields [2], and methods using intelligent control technique such as neural networks and

neuro-fuzzy. Methods using intelligent control do not plan global paths for mobile robots

and can be employed in unknown environments. The input pattern of the neural networks

employed for path planning of mobile robots should consider the following data: robot’s

actual position and velocities; robot’s previous positions and velocities; target position

and sensor data, and then output commands to drive the robot to follow a path towards

the target by avoiding obstacles according to these data [16].

Kozakiewicz and Ejiri have used a human expert to train a feedforward neural

network that reads inputs from a camera and outputs the appropriate commands to the

actuators [76]. In [77], Sfeir et al. presented a path generation technique for mobile robot

using memory neuron network proposed by Sastry et al. [78]. The memory neuron

network is a feedforward neural network that uses memory neurons. A memory neuron is

a combination of a classic perception and unit delays, which gives the network memory

abilities. If a mobile robot is totally insensitive to context, it will often get trapped in

oscillations in front of wide objects. Pal and Kar employed a notion of memory into the

network to overcome the oscillation problem [79]. In [6], Glasius, Komoda, and Gielen

presented a Hopfield-type neural network for dynamic trajectory formation without

33

33

learning. Fierro and Lewis proposed a control structure which integrates a kinematic

controller with a feedforward neural network computed-torque controller for non-

holonomic mobile robots, where the neural network weights are adjusted on-line, with no

"off-line learning phase" needed [80-82]. Yang and Meng studied a biologically inspired

neural network approach for motion planning of mobile robots [83-85]. This model is

inspired by Hodgkin and Huxley’s membrane model [86] for a biological neural system

and Grossberg’s shutting model [87]. The proposed model by Yang and Meng plans

motions for mobile robots without any prior knowledge of the environment, without

explicitly searching over the free workspace or the collision path, and without any

learning procedure.

34

Chapter 3

Design and Methodology
As reviewed in chapter2, Janglová [18] introduced an intelligent controller for

solving the motion-planning problem in mobile robots using two neural networks. The

first neural network is a modified principal component analysis network (Figure 7(a))

used to extract the features (𝑉𝑖 segments) of the workspace determining the free space

using the data from ultrasound range finders (𝑑𝑖) as shown in Figure 7(b). These

segments (𝑉𝑖) are used as inputs to the second neural network along with direction of the

goal (𝑆𝑖). The second network is a multilayer perceptron (Figure 8), which successfully

finds a safe direction (𝑂𝑖), from the segments extracted from the first network, for the

robot's next step to navigate towards the target in a collision-free environment while

avoiding obstacles.

Figure 7: a) Modified PCA Neural Network Topology. b) Workspace Segments. [18]

35

35

Figure 8: Topology of Multi-Layer Perceptron. [18]

Parhi and Singh [20,21] proposed a real-time obstacle avoidance method to solve

the main problems of navigation using three neural networks. This approach was later

improved by them to optimize the path of the mobile robot [19]. In their approach, three

identical four-layer feedforward neural networks have been used (see Figure 9). Each

network is trained separately with different training samples so that each network can

solve one of the problems of navigation; target-seeking, object-avoidance, or wall-

following. The inputs to their proposed neural controller consist of the signals from the

sensors (in this case, the distance from the left, right and front obstacle with respect to the

robot's position) and the direction of the target (goal). The output of the networks is the

steering angle which provides real-time collision-free motion planning for mobile robots

in a real world dynamic environment. The neural networks are trained by presenting them

with 200 patterns representing typical scenarios.

36

36

Figure 9: Four-layer neural network for robot navigation. [20,21]

In [8] Silva et al. presented the MONODA (modular network for obstacle

detection and avoidance) architecture for obstacle detection and avoidance for controlling

the NOMAD autonomous mobile robot in an unknown environment (see Figure 10). As

depicted in Figure 11(c), this model consists of four three-layered feedforward neural

network modules (each detects the probability of obstacle in one direction of the robot).

The convention in neural networks is to use architectures as small as possible to obtain

better generalisation.

Figure 10: MONODA modular system. [8]

37

37

Figure 11: a) Localisation of Nomad 200™ sensors. b) Nomad mobile robot.

c) Modular architecture. [8]

With modular networks generalisation is improved, because each one of the

network modules is easier to train well. Due to the modular architecture, usually, the

number of weights is less than in a fully connected MLP. Therefore, the overall training

time of the networks is also significantly reduced.

3.1 Problem Statement
Although all the described methods have been successful to some extent in their

specific applications, however, most of the current approaches address one particular type

of sensor or robot platform. The main problem with neural network approaches is the

training of the network. In supervised training collecting sufficient, yet valuable, samples

from the environment to train the network can sometimes be frustrating and very time

38

38

consuming [17]. In addition, apart from the effort to collect valuable samples, the training

time of a network can be significantly high [17].

Moreover, in any neural network navigation algorithm, if the robot platform or the

type or number of the sensors are changed or altered, the network architecture requires

some modifications to accommodate with the new amount of sensor data. In other words,

same network architecture cannot be used for different robot platforms with dissimilar

types or different numbers of range sensors. Therefore, these network structures will only

be effective for the mobile robots that they have been designed for and are not extendable

to other sensor configurations. For example, if a neural network is designed to have eight

inputs from eight ultrasonic sensors, then this network is not operational for a robot

which has only four ultrasonic sensors. Same situation occurs with different types of

sensors. For instance, a network which is designed to function with one type of sensor

(e.g. a laser scanner) cannot be applied to robots with other types of sensors (e.g.

ultrasonic sensors). As a result, the structure of the network needs to be changed and new

samples need to be gathered in order to accommodate with the new configurations.

In other words, in neural network navigation systems, the data from the sensors

usually form the inputs of the network. Hence, if there are any changes to the sensors, the

architecture of that network requires to be altered and the entire training process

(collecting samples and training the network) has to be carried out all over again.

Therefore, the problem with current neural network navigation approaches is that they

cannot be extended to various robot platforms with different sensors.

To overcome this problem, so that a neural network algorithm can be employed

for various robots and sensors, we propose a new method of sensor data interpretation.

39

39

We interpret data from different types of sensors in a general form and introduce a global

neural network algorithm to perform the navigation task by using the interpreted data.

3.2 The Proposed Method
In this section, we propose an approach to address the problem of extending

neural network navigation algorithms for various robots and sensors. In order to

overcome this problem, we have introduced a new structure, illustrated in Figure 12, to

interpret different types of 2-dimensional sensor data and a global navigation algorithm

that can be applied to various types of sensors and robot platforms.

Figure 12: Flowchart of proposed method

40

40

To have a global algorithm that can be applied to all kinds of 2-dimensional range

sensors, the sensory data needs to be interpreted in such way that same number of input

units for the network can be extracted for different types or numbers of sensors. As

mentioned earlier in this chapter, Janglová [18] introduced a feature extraction method

employing PCNN to find the subspaces using sonar sensors. In addition, the MONODA

architecture, proposed by Silva et al. [8], proved to reduce the overall training time and

also improve generalization. However, if the number of sensors changes, then the

structure of the networks introduced in these methods needs to be altered and training

needs to be performed from the beginning. In order to solve this issue, before presenting

the sensory data to the networks, we developed a general form of representation of the

sensory data so that different types or number of 2-dimensional range sensors will have

the same number of features. Therefore, we can design a network with constant number

of inputs units for any type or number of sensors.

Parhi and Singh [19-21] successfully solved the navigation problem, by assigning

different multilayer neural networks to solve each of the navigation tasks—target-

seeking, object-avoidance, and wall-following. Figure 13 illustrates a simple example of

these three scenarios. However, it is our belief that a multilayer neural network is capable

of solving both target-seeking and object-avoidance tasks at the same time. Therefore,

instead of using two separate networks, which will only lead to consuming more time and

resources on training and gathering training samples, we introduce a structure which uses

only one network for this purpose. Yet, the wall-following task will require a more

complex structure to accommodate with both directions of rotation.

41

41

Figure 13: Example of scenarios of wall-following, object-avoidance and target-seeking tasks

For example, as illustrated in Figure 14, when the mobile robot encounters a wide object,

or a wall, while moving towards the target, it needs to decide which direction to take (left

or right) to get passed the object. In addition, if the object in front of the robot is a U-

shaped object, then it will require keeping to only one direction, at all times, in order to

safely navigate out of the U-shaped object. For Example, Figure 15 shows a robot’s path

which has performed a wall-following task after encountering a wall shaped obstacle. In

this image we can see that the robot has kept the wall to its right at all times.

Figure 14: Paths showing two different directions chosen when encountering a wall.

42

42

Figure 15: Path of a wall-following task performed by a mobile robot only in keep-left direction.

Therefore, we introduced two networks; one network for navigating while the

wall is on the right side of the robot, and another for keeping the wall on the left side of

the mobile robot.

We can divide our proposed method, illustrated in Figure 12, into five sections:

 Visualization (Figure 12(b))

 Dimensionality Reduction or Feature Extraction (Figure 12(d))

 Classification (Figure 12(c, e))

 Prediction (Figure 12(f))

 Controller (Figure 12(g)).

We introduce a method to generate a general representation of the raw sensory

data for all types of 2-dimensional range sensors so that different types, or numbers, of

sensors can be processed in the same way. The visualization algorithm is implemented to

produce binary images, visualizing the distance of the obstacles in front of the mobile

robot, with same dimensions for any type of 2-dimensional sensor. Therefore, at each

time step, by employing the visualization algorithm, the readings of the sensors are

converted into binary images. Subsequently, using the goal direction, an SVM classifier,

43

43

classifies the binary images to either object-avoidance or wall-following. In case of

object-avoidance three scenarios can be portrayed. First, the robot is moving towards the

target with no obstacles in its path (Figure 16 (a)). Second, the robot encounters a not

very large obstacle while navigating towards the target (Figure 16 (b)). Finally, the target

is in the range of the robot and there are no obstacles in the path of the robot to the target,

so the robot can change its heading towards the target (Figure 16 (c)). The last scenario

usually happens after the robot has navigated around an obstacle or a wall, now it needs

to change its path back towards the target. An image is classified as wall-following only

when the robot encounters a wall shaped, or a very large or wide, obstacle while

navigating towards the target (Figure 16 (d)). However, in this scenario the robot needs to

decide on which direction (left or right) to follow the wall. Hence, we use another SVM

algorithm to classify the image patterns to keep-left or keep-right directions. If the former

is selected, the robot moves alongside the wall while maintaining a safe distance from it

and keeping the wall to the left side, and vice versa for keep-right.

Figure 16: Examples of three different situations for object-avoidance (a, b and c) and a situation for

wall-following (d).

44

44

Given that, multilayer neural networks can be very slow when introduced with too

many input units [22], it is necessary to reduce the dimensions of the inputs. Therefore,

before any other process can be done, the dimensions of the images need to be reduced.

By using a feature extraction method like PCNN, we can extract as many features

(principal components) required from the images. To keep the general representation for

the patterns, we extract the same number of features from all of the images. Additionally,

three similar multilayer neural networks are designed and separately trained using the

supervised learning. The neural networks will provide driving directions for the robot to

perform the aforementioned tasks. The driving direction is then passed to the controller to

navigate the robot.

3.3 Explanations of Proposed Method
In section 3.2, we divided our proposed method to smaller subsections and

explained each part very briefly. In this section a more detailed review of the proposed

algorithm is provided.

The visualization section (Figure 12(b)) is the first and most essential section in

our proposed method. It is very important to have a general representation of the raw

sensory data for all types of 2-dimensional range sensors so that different types, or

numbers, of sensors can be processed in the same manner. Therefore, if the networks are

trained to perform the navigation task using one type of sensor, e.g. laser sensor, then

they will also be able to extend to other types of sensors, such as sonar sensors, to

navigate in the environment without requiring any further training. In this part, the data

retrieved from the sensors are converted into binary images, visualizing the distance of

the obstacles in front of the mobile robot. These generated images will have the same

45

45

dimensions regardless of the number of sensor inputs. For example, an image depicted

from a laser range finder (SICK) (Figure 17 (a)) has the same dimensions (number of

pixels) as an image created from 8 sonar sensors mounted in front of a robot (Figure 17

(b)). Therefore, this will allow us to have the same number of features for the inputs of

the neural networks.

Figure 17: a) Example of visualizing the data from a laser range finder into a binary image.

b) Example of visualizing the data from 8 sonar sensors into a binary image.

However, if we apply the plain images as the inputs by means of using each pixel

as an input unit to the networks, the training process could be very slow due to the large

46

46

number of pixels. In a very simple scenario where we have images as small as 50×50

pixels (each pixel will be either black or white), the neural networks will have to process

2500 input units of zeros and ones which represent black and white pixels respectively.

Since, multilayer neural networks can be very slow when introduced with too many input

data [22], it is compulsory to reduce the dimensions of the inputs. This can be done by

extracting the most relevant and important features from the images using feature

extraction methods such as GHA, APEX or NMF. Therefore, the second part of the

algorithm (Figure 12(d)) consists of a dimensionality reduction algorithm to reduce the

dimensions of the images. One of the best known learning algorithms is the Generalized

Hebbian Algorithm (GHA) [49], which can extract a selected number of principal

components from a stationary or quasi-stationary multivariate random process. It applies

to a single-layered feed-forward neural network described by 𝒛(𝑡) = 𝑸𝑇(𝑡)𝒙(𝑡), where

𝒙(𝑡) ∈ ℛ𝑝, 𝒛(𝑡) ∈ ℛ𝑚, thus 𝑸(𝑡) ∈ ℛ𝑝×𝑚. The GHA rule writes:

𝑸(𝑡 + 1) = 𝜇𝒙(𝑡)𝒛𝑇(𝑡) + 𝑸(𝑡)(𝑰𝑚 − 𝜇𝐿𝑇[𝒛(𝑡)𝒛𝑇(𝑡)])

where 𝑚 is a small positive learning stepsize, the operator 𝐿𝑇[⋅] returns the lower-

triangular part of the matrix contained within, and 𝑰𝑚 denotes the identity matrix of size

𝑚. In addition, to maintain the general representation for the patterns, we extract the

same number of features from all of the images. However, there is always a trade off

between speed and performance when deciding on the number of extracted features.

The classification (Figure 12(c,e)) and prediction (Figure 12(f)) sections compose

our proposed navigation algorithm. Using the classification segments we decide on which

action to take at each step. The first SVM classifier (Figure 12(c)) classifies the images as

object-avoidance or wall-following action, given an image and the direction of the target.

47

47

If the wall-following action is selected, the other SVM classifier (Figure 12(e)) uses only

the extracted features of the images to choose a direction to follow the wall.

However, the prediction section is the core of our proposed navigation algorithm.

In which, three multilayer neural networks (Artificial Neural Networks A, B and C) are

trained by using supervised learning with backpropagation algorithm to provide driving

directions. The chosen number of layers and units in each layer were found empirically to

facilitate training. These networks are trained only by samples generated using the laser

range scanner and sonar sensors are used for validation and testing purposes only.

Figure 18: Proposed neural network architectures for a) ANN-A, b) ANN-B and ANN-C

In the object-avoidance module, an artificial neural network (Figure 18 (a) ANN-

A) is trained to navigate the mobile robot towards the target while avoiding static as well

as dynamic obstacles. This part of the algorithm will make sure that the mobile robot will

safely reach its target with no collisions. Since, the network will provide driving

directions at each sensor reading, this will provide a safe path for the robot to avoid both

static and dynamic obstacles while maintaining the bearing of the target. During training

48

48

and normal operation, the input patterns provided to neural network A comprise the

following components:

𝑦𝑛
{1} = Extracted features from the binary image.

𝑦𝑛+1
{1} = Target bearing from the robot’s location.

where 𝑛 is the number of extracted features. These input values are distributed to the

hidden units which generate outputs by

𝑦{𝑙} = 𝑓 �𝑉𝑗
{𝑙}�

where

𝑉𝑗
{𝑙} = �Wji

{l}.𝑦𝑖
{𝑙−1}

i

where 𝑙 = layer number (2 or 3); 𝑗 = label for 𝑗th unit in hidden layer {𝑙}; 𝑖 = label for

𝑖th unit in hidden layer {𝑙 − 1}; Wji
{l} = weight of the connection from unit 𝑖 in layer

{𝑙 − 1} to unit 𝑗 in layer {𝑙}; 𝑓(⋅) = activation function, chosen in this work as hyperbolic

tangent sigmoid:

𝑛 =
2

1 + 𝑒−2×𝑛 − 1

During training, the network output 𝜃𝑎𝑐𝑡𝑢𝑎𝑙 may differ from the desired output 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 as

specified in the training pattern presented to the network. A measure of the performance

of the network is the mean squared difference between 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 and 𝜃𝑎𝑐𝑡𝑢𝑎𝑙 for the set of

presented training patterns.

𝐸𝑟𝑟 =
1
𝑛
�(𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙)2
𝑛

𝑖=1

49

49

where n is the number of training patterns. The error is then back propagated to the

previous layers using the backpropagation method to train the network. In order to

determine the appropriate weight adjustments to reduce error, this method requires the

computation of local error gradients. For the output layer, the error gradient 𝛿{4} is

𝛿{4} = 𝑓′ �𝑉1
{4}� (𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙)

The local gradient for units in the hidden layer {𝑙} is provided by

𝛿𝑗
{𝑙} = 𝑓′ �𝑉𝑗

{𝑙}��𝛿𝑘
{𝑙+1}𝑊𝑘𝑗

{𝑙+1}

𝑘

The synaptic weights are updated according to the following expressions

𝑊𝑖𝑗(𝑡 + 1) = 𝑊𝑖𝑗(𝑡) + Δ𝑊𝑖𝑗(𝑡 + 1)

and

Δ𝑊𝑖𝑗(𝑡 + 1) = 𝛼Δ𝑊𝑖𝑗(𝑡) + Δ𝜂𝛿𝑗
{𝑙}𝑦𝑖

{𝑙−1}

where 𝛼 = momentum coefficient; 𝜂 = learning rate and 𝑡 = iteration number. Every

iteration is composed of presentation of a training pattern and correction of the weights.

The final output from the neural network is

𝜃𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑓(𝑉14)

where

𝑉14 = �𝑊1𝑖
{4}𝑦𝑖

{3}

𝑖

However, this will only ensure a collision free path to the target, which will not

provide a solution for navigating around deadlocks and U-shaped objects or for instance

going from one room to another. Therefore, a wall-following algorithm is a necessity.

50

50

In the wall-following section of the algorithm, first the features of the sensory

images are extracted. Then using a pre-trained SVM classifier (Figure 12(e)) a wall-

following direction (keep-left or keep-right) is selected. In this section, two identical

artificial neural networks (Figure 18 (b)) are separately trained. These will provide

driving directions for keeping left or keeping right respectively at all times. The

architecture of these two networks (ANN-B and ANN-C) differ from the object-

avoidance network (ANN-A) in the input layer. During training and normal operation,

the input patterns provided to the wall-following neural networks consist of only the

extracted features from the binary image (𝑦𝑛
{1}, 𝑛 being the number of extracted features).

In other words, these networks provide an output regardless of the direction of the goal.

Therefore, allowing the robot to safely move out of U-shaped objects and other situations

such as deadlocks without getting stuck. Besides the difference in the number of units in

the input layer, the process for backpropagating the error and calculating the output also

applies to these networks.

The output, which we will note as driving direction or the steering angle, from the

neural networks is then passed to the controller (see Figure 12(g)). The robot controller

calculates the velocity of the left wheel (𝑉𝑙𝑒𝑓𝑡) and right wheel (𝑉𝑟𝑖𝑔ℎ𝑡), and then sends

commands to drive the robot. A positive output is translated as rotation to the right, and

vice versa. Based on this assumption the velocities are calculated as

𝑉𝑟𝑖𝑔ℎ𝑡
𝑉𝑙𝑒𝑓𝑡

=
𝑟1
𝑟

where 𝑉𝑟𝑖𝑔ℎ𝑡 is the velocity of the right wheels, 𝑉𝑙𝑒𝑓𝑡 is the velocity of the left

wheels, 𝑟 is the radius of the curvature of the outside wheels (in this case left wheels) of

51

51

the robot and 𝑟1 = 𝑟 − 𝑟2 is the inside wheels curvature radius (see Figure 19). The radius

of the curvature is determined from

𝑟 =
𝑟2 × 𝑥

|𝜃|

where 𝑥 is an arbitrary value, 𝑟2 is the width of the robot, 𝜃 is the steering angle (driving

direction). The width of the robot is known, therefore 𝑥 is used to determine the total

curvature desired for rotating the robot.

Figure 19: Concept of the motion controller with respect to steering angles.

52

52

The velocity of the left wheel (𝑉𝑙𝑒𝑓𝑡) is set to an arbitrary value which determines

the movement speed of the mobile robot. The same equations apply when steering to the

left (steering angle is less than zero). But in this case the velocities are inverted

𝑉𝑙𝑒𝑓𝑡
𝑉𝑟𝑖𝑔ℎ𝑡

=
𝑟1
𝑟

This approach is proved in experiments to positively affect the robot’s movement

resulting in smooth and continuous movements while navigating towards the target.

3.4 Summary
In this chapter, we proposed a general method for interpretation of different types

of sensors, such as laser range scanner and ultrasonic sensors. We also proposed a new

algorithm to perform the navigation task using our interpretation of sensory data.

According to the analysis, it is expected that our approach can provide a generalized

representation of the sensor’s data for different types and numbers of sensors. On the

other hand, it is also expected that this approach provides driving directions for mobile

robots to safely plan a path to their destination while avoiding obstacles for different

types and numbers of 2-dimensional sensors while trained with only one kind of 2-

dimensional range sensor. In the next chapter, we will demonstrate the above analysis.

The detailed implementations of the above proposed approach and the experimental

results will also be presented in the following chapter.

53

Chapter 4

Implementation and Analysis of Results
In this chapter, we present the implementation details of our experiments in

section 4.1, which includes simulation environment and its details, programming

environment, and implementation of our proposed algorithm. The experimental results

are given in section 4.2.

4.1 Implementation Details

4.1.1 Simulation Environment

USARSim (Unified System for Automation and Robot Simulation) [88,89] has

been designed as a highly reliable simulation of urban search and rescue (USAR) robots

and environments which is intended as a research tool for the study of human-robot

interaction (HRI) and multirobot coordination. Since its initial release, it has been

expanded to support many diverse environments including highway robots, the DARPA

urban challenge, robotic soccer, submarines, humanoids, and helicopters. USARSim is

designed as a simulation companion to the National Institute of Standards’ (NIST)

Reference Test Facility for Autonomous Mobile Robots for Urban Search and Rescue

[90]. The NIST USAR Test Facility is a standardized disaster environment consisting of

three scenarios: Yellow, Orange, and Red physical arenas of progressing difficulty. The

USAR task focuses on robot behaviours, and physical interaction with standardized but

disorderly unstructured environments. USARSim supports HRI by accurately rendering

user interface elements (particularly camera video), accurately representing robot

54

54

automation and behaviour, and accurately representing the remote environment that links

the operator’s awareness with the robot’s behaviours. [88,89]

Full effort of USARSim is dedicated to the robotics-specific tasks of modeling

platforms, control systems, sensors, interface tools and environments. This is done by

offloading the most difficult portions of simulation to a high volume commercial

platform, which provides superior visual rendering and physical modeling. High

reliability, at low cost, is made possible by constructing the simulation on top of a game

engine (Unreal Tournament 2004). The robotics-specific tasks are in turn, accelerated by

the advanced editing and development tools integrated with the game engine leading to a

virtuous spiral in which a widening range of platforms can be modeled with greater

reliability in less time. [88,89]

The current release of the simulation consists of: various environmental models

(levels), models of commercial and experimental robots, and sensor models. For full

documentation, please see [89].

The protocol used for communication by Unreal engine is proprietary. This makes

it difficult for other applications to access Unreal Tournament. Hence, researchers have

built a modification to Unreal Tournament (Gamebots) to connect Unreal engine with

outside applications. It opens a TCP/IP connection in Unreal engine to exchange

information with the outside. Some changes are applied to Gamebots to support

USARSim control commands and messages which enables Gamebots to communicate

with the controllers. [89]

55

55

4.1.1.1 Sensor Simulation

In robot control, sensors are very important. Three kinds of sensors are simulated

in USARSim through checking the state of the object or some calculations in the Unreal

engine: [89]

 “Proprioceptive sensors” (These include battery state and headlight state)

 “Position estimation sensors” (These include location, rotation, and velocity

sensors.)

 “Perception sensors” (These include sonar, laser, pan-tilt-zoom (ptz) camera,

touch sensor, and RFID tag reader.)

All of the sensors in USARSim are configurable and a sensor can be easily

mounted on a robot by adding a line into the robot’s configuration file. When mounting a

sensor to a robot, the sensor’s name, type, position (where it is mounted), and the

direction it will face can be specified. For every type of sensor, certain properties can be

configured. Examples of these properties include the maximum range of the sonar, the

resolution of the laser and FOV (field of view) of the camera. [89]

Range Sensor

The range sensors are used to detect distances from objects and walls in the

environment. There are two types of range sensor in USARSim; sonar and Infra Red (IR).

Essentially, the range sensor is simulated by emitting a line from the position of the

sensor along its direction in the Unreal world. The first point reached by the line is the hit

point. Therefore, the distance between the hit point and the sensor is returned as the range

value for that sensor. If the range is beyond the range which the sensor can detect, the

maximum detection range will be returned. To simulate random noise, a random number

56

56

is added to the range value before the data is sent back. In addition, to simulate the real

range sensor, a distortion curve is employed to interpolate the range data. [89]

For sonar sensors, it tries to emit several lines from the sensor within its beam

cone instead of emitting just one line (see Figure 20). Therefore, the range value in sonar

sensors is the shortest distance detected by the lines. For Infra Red (IR) sensor, only one

line is used. However the line can cross through transparent materials (glass).

Figure 20: A mobile robot with 8 sonar sensors.

Range Scanner Sensor

In USARSim, the range scanner sensor is very similar to the range sensor as it is

treated as a series of range sensors. The data for the range scanner sensor is obtained by

rotating the range sensor from the start direction to the end direction in a fixed step where

the step interval is calculated from the resolution. [89]

There are two types of range scanners; IRScanner and RangeScanner (also known

as the laser range scanner). The IR scanner uses the IR sensor (which the detection line

can cross transparent materials) to scan the environment. While the RangeScanner sensor

uses the range sensor (only emits one detection line) to scan the environment (see Figure

21).

57

57

Figure 21: A mobile robot with a RangeScanner (Laser Range Finder). [91]

4.1.1.2 Robot Simulation

By employing the Karma rigid-body physics engine embedded in Unreal

Tournament 2004, a robot model can be built to simulate a real world mechanical robot.

The robot model comprises of “chassis, parts (tires, linkage, camera frame etc.), and other

auxiliary items such as cameras, headlights, etc”. All the chassis and parts are connected

to each other by means of simulated joints that are driven by torques. Three kinds of joint

control are supported in the robot model; the zero-order control, which makes the joint

rotate by a specified angle; the first-order control, which lets the joint rotate under the

specified rotational speed; finally, the second-order control which applies the specified

torque on the joint.[89]

A list of USARSim robots is displayed below. Images of real world mechanical

robots and the simulated versions of them are also shown.

 P2AT is a 4-wheel drive all-terrain pioneer robot from ActivMedia Robotics, LLC

[92].

58

58

Figure 22: a) Mechanical P2AT. b) Simulated P2AT. [89]

 P2DX is the 2-wheel drive pioneer robot from ActivMedia Robotics, LLC [92].

Figure 23: a) Mechanical P2DX. b) Simulated P2DX. [89]

 ATRV-Jr is a 4-wheel drive outdoor all terrain robot vehicle developed by iRobot

[93].

Figure 24: a) Mechanical ATRVJr. b) Simulated ATRVJr. [89]

59

59

 Zerg is a 4WD (4-wheeled) robot, which also has been developed and deployed by

the team “Rescue Robots Freiburg” [94] during RobotCup05. The simulation model

was also developed at University of Freiburg, and has been further improved and

merged into USARSim by the University of Pittsburgh. [89]

Figure 25: a) Mechanical Zerg. b) Simulated Zerg. [89]

 Tarantula is a toy-based robot which was first turned into a robot platform named

"Lurker" by the team "Rescue Robots Freiburg" [94]. They used the modified version

in the Rescue Robot League during the RoboCup 2005 competition. The Tarantula

model, which is now part of the USARSim package, was originally developed at the

University of Freiburg and has been further improved and merged into USARSim by

the University of Pittsburgh [89].

Figure 26: a) Mechanical Trantula. b) Simulated Trantula. [89]

60

60

 Talon is a lightweight tracked vehicle built by Foster-Miller for missions ranging

from reconnaissance and weapons delivery to rescue.

Figure 27: a) Mechanical Talon. b) Simulated Talon. [89]

For the convenience of our project we have only used some of these robots.

4.1.2 Programming Environment

A schema of our programming structure can be seen in Figure 28. Typically, a

controller is the user side application that is used for research, such as robotics study,

team cooperation study, human robot interaction study etc. Usually, the controller works

in a way that it first connects with the Unreal server. Then it sends commands to

USARSim to spawn a robot. After the robot is created on the simulator, the controller

listens to the sensor data (sent every third of a second from the server) and sends

commands to control the robot.

61

61

Figure 28: Programming Structure Schema

To reduce the complexity of programming, we have used MATLAB and its

powerful toolboxes to implement the core decision making part of our algorithm. In order

to connect to the USARSim server and to send and receive commands, Microsoft .Net

(C#) is used. Therefore, we use MATLAB as an automation server from C# using the

engine interface via com automation. This allows us to simultaneously debug our

application from both the C# side and the MATLAB side, using debuggers on each side.

As depicted in Figure 28, after a sensor reading is retrieved from the USARSim

server, the sensory data is visualized into a binary image in the “Sensor Visualization”

section of the .Net Environment. This image is then be converted into a vector of zeros

and ones and sent to MATLAB along with the goal direction. In MATLAB, firstly we

decide which action to take based on the data introduced from C#. If the object-avoidance

action is selected, then the features of the binary image are extracted and introduced to a

62

62

pre-trained neural network (ANN-A). We have trained the networks to provide the

steering direction to the controller to safely navigate the mobile robot in the environment.

On the other hand, if the first SVM decides that a wall-following action is required, then

after extracting the features of the image, another SVM decides on the direction of the

wall-following. A brief overview of the algorithm implemented in MATLAB is given in

section 3.3 and is explained in details in the following sections.

4.1.3 Sensor Data Visualization

As mentioned in Chapter 3, the visualization part is the most important part of our

algorithm. By visualizing the sensors’ data retrieved from the server, the whole structure

will have the ability to generalize for different types of sensors. In other words, if the

networks are trained to perform the navigation task using one type of sensor, e.g.

RangeScanner, then they will also be functional for other types of sensors, e.g. Sonar,

without requiring any further training.

For this purpose the data from different sensors are visualized in 50×50 pixels

bitmaps covering a 25 meter area (5×5 meters). Figure 17 and Figure 29 illustrate

examples of how the sensor readings are visualized into images. Therefore, each pixel of

the image represents 10 centimetres in the simulation environment (1:10 scale factor).

Typically, for local navigation and obstacle avoidance, 5 meters of distance is sufficient.

Unless objects are closer than 5 meters there is no need to change the bearing of the

mobile robot to avoid them. Moreover, for detecting obstacles on either sides of the

mobile robot, 2.5 meters will be satisfactory as the robot will only need the side sensors

to safely rotate in both directions.

63

63

Figure 29: a) Environment Sample b)RangeScanner Visualization c) Sonar Sensor Visualization

For the RangeScanner, the server returns 181 values at every sensor reading,

representing the distance of obstacles in 180 degrees in front of the robot (0° −180°).

Therefore, this sensor can be visualized by drawing white lines, on a black image, from

the origin of the sensor with a length equal to the distances in their corresponding

directions (see Figure 29(b) and Figure 30(b)). Note that the data from the sensors needs

to be scaled to match the 1:10 scale factor mentioned above. The maximum range of

obstacles detected with the laser range finder is 20 meters. Thus, any object that is

detected outside of the 5 meter range will be ignored as it will not affect the obstacle

avoidance algorithm.

Visualization of the sonar sensor is somewhat different than the laser range finder.

Each value from the sonar sensors represents the distance from the closest object in a 20°

cone in the orientation of that sensor. Therefore, in the direction of each sonar sensor we

have to draw a 20° pie, where the length of each pie will be a scaled value of the distance

from the detected object. Figure 29(c) and Figure 30(c) depict visualizations of the

environments in Figure 29(a) and Figure 30(a) respectively, using 8 sonar sensors

64

64

mounted in front of the robot. The sonar sensors we use can detect obstacles up to 5

meters. Due to the noise in their values, the accuracy of the detected objects is not as high

as laser range scanners. Therefore, there are some errors, specially, when objects are

farther than 3 meters. For example, in Figure 30(c), the obstacle on almost 45° to the left

side of the robot has not been detected even though there are two sonar sensors pointing

in that direction. A similar distribution of the sonar sensors which has been used to

generate this image can be seen in Figure 20 on page 56.

Figure 30: a) Environment Sample b)RangeScanner Visualization c) Sonar Sensor Visualization

The binary image is a 2-dimensional representation of safe (white pixels) and

unsafe (black pixels) areas in the environment. In other words, Black represents

obstacles, walls (in general any non-traversable area) and unknown areas, and,

alternatively, traversable areas are represented by white. Before introducing these images

to the next level, we need to convert them to vectors of values so they can be processed.

To do this, in a 50×50 matrix we assign the values of 0 and 1 to represent black and

white pixels respectively. Eventually, we can collapse the matrix to collect the row

contents into a vector of 2500 binary values. This vector, along with the goal direction,

65

65

which has also been retrieved from the server, is passed to the MATLAB environment for

further processing.

4.1.4 Algorithm Implementation

To benefit from the toolboxes implemented in MATLAB and simplicity of

programming, a major part of the algorithm has been implemented using MATLAB

2010b and its neural network and machine learning toolboxes.

Figure 31: Flowchart of algorithm implemented in MATLAB.

A support vector machine (SVM) is trained by introducing it with 150 training

samples gathered from the simulation environment using the laser range scanner. A

Radial Basis Function (RBF) with sigma value equal to 10 is used for the kernel of this

66

66

SVM. It is noteworthy to mention the configurations and settings of separate components

are found empirically. This SVM will classify any new sample to either object-avoidance

or wall-following at each time step. The algorithm implemented in this section can be

pictured as two modules; object-avoidance and wall-following (see Figure 31).

Object-Avoidance

The object avoidance module has the responsibility of producing a safe driving

direction for the mobile robot to navigate towards the target while avoiding any obstacles

in its path. For this purpose a multi-layer neural network is trained using Levenberg-

Marquardt backpropagation algorithm in MATLAB (trainlm) to produce the steering

direction. trainlm is a network training function that updates weight and bias values

according to Levenberg-Marquardt optimization [95]. Validation vectors are used to stop

training early if the network performance on the validation vectors fails to improve or

remains the same for maximum fail epochs (number of iterations) in a row. Test vectors

are used as a further check that the network is generalizing well, but do not have any

effect on training. The network's performance is measured according to the mean of

squared errors (mse function in MATLAB). The learning rate (𝜂) and momentum (𝛼)

were found empirically to be 0.3 and 0.06 respectively.

However, when the number of input units of a neural network is too large, the

training time will significantly increase. Therefore, in our case, where we have 2501

input units (2500 units for the image vector and 1 unit for the target direction), which is

considered to be a very high number, we need to reduce the dimension of the data. For

this, we have used a Principal Component Neural Network (PCNN), trained using the

Generalized Hebbian learning Algorithm (GHA), to reduce the dimension from 2500 to

67

67

100 features (for more details about GHA see section 2.2.2). The PCNN has been trained

using 100 training patterns from the laser range scanner of the P2AT mobile robot. Other

algorithms such as Adaptive Principal component EXtractor (APEX) have also been

tested but haven’t performed as well as GHA in general. As mentioned in the previous

chapter, there is a trade off between performance and speed when selecting the number of

extracted principal components. Through experiments, we came to believe that 100

features are sufficient for our proposed method, which maintains a reasonable training

speed and at the same time a high accuracy. Therefore, these 100 features (principal

components) with the goal direction will form the inputs of our multi-layer neural

network ANN-A (in Figure 31). A detailed structure of ANN-A is illustrated in Figure

32. This network consists of one input layer with 101 units, two hidden layers and an

output layer. The output unit uses a linear transfer function (purelin function in

MATLAB) where it just transfers the sum of its input values to the output (Figure 33).

Figure 32: 3-layer Artificial Neural Network (ANN-A)

68

68

Figure 33: Linear Transfer Function

 The first and second hidden layers are composed of 4 and 6 neurons respectively

with a hyperbolic tangent sigmoid transfer function (Figure 34). In [96] the 𝑡𝑎𝑛𝑠𝑖𝑔 is

defined as

𝑎 =
𝑒𝑛 − 𝑒−𝑛

𝑒𝑛 + 𝑒−𝑛

However, a look on the MathWorks homepage with the keyword tansig will show that

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) calculates its output according to:

𝑎 =
2

1 + 𝑒−2×𝑛 − 1

This is mathematically equivalent to 𝑡𝑎𝑛ℎ(𝑛). It differs in that it runs faster than the

MATLAB implementation of 𝑡𝑎𝑛ℎ, but the results can have very small numerical

differences. This function is a good trade off for neural networks, where speed is

important and the exact shape of the transfer function is not.

Figure 34: Tan-Sigmoid Transfer Function

69

69

Wall-Following

As mentioned before, in order to move around large objects or navigate from one

room to another, a wall following method is required. In some cases, such as when the

robot encounters U-shaped objects or should navigate to another room to reach its target,

the mobile robot needs to drive in the opposite direction of the target. This is possible if

the direction of the goal is not considered in the wall following method. Therefore, in this

module the target’s direction does not affect the decision made by the neural networks.

Upon reaching a wall or a wide obstacle a left or right direction is selected for navigating

around the wall. Until the object avoidance action is not triggered again, the direction of

wall-following will be maintained. For example, if the robot is following the wall and

keeping right (the walls will always be on the right side of the robot), then it will never

change the wall-following direction unless the object-avoidance action is required. In

other words, the direction to follow the wall is decided only at the time of changing from

object-avoidance to wall-following.

In the wall following module same PCNN and neural network structures as in the

object avoidance module have been used. Except that in this case we are not concerned

with the goal direction. As a result, we extract the same number of features from the

image vectors, as we did in object avoidance module, using PCNN trained by GHA. The

PCNN in this section is trained using 300 training patterns, 150 patterns for each

direction of wall-following, from the laser range scanner of a P2AT mobile robot.

An SVM is also trained with 200 training patterns to classify the new samples into

keep-right or keep-left classes. When a robot is moving alongside a wall, while

70

70

maintaining a certain distance from the wall and keeping the wall on its left or right, we

declare that it’s keeping-left or keeping-right respectively.

Two neural networks, ANN-B and ANN-C, provide driving directions to keep-left

and keep-right respectively, regardless of the goal direction. This ensures that, if required,

the robot drives away from the target in order to go around large objects or move from

one room to another without getting trapped in a deadlock (see Figure 35). Both these

networks are trained by providing them with 1500 training patterns. Their network

structure is similar to the structure of ANN-A with a difference in the number of input

neurons. In the two wall-following neural networks (ANN-B and ANN-C) only the

extracted features from the PCNN algorithm form the input layer. As mentioned before,

the direction of the target has no affect on the final output of the network. Therefore, we

do not consider it in our network structure. The transfer functions in different layers and

the performance measurement of the whole network are the same as ANN-A. However,

through empirical observation we found the learning rate (𝜂) equal to 0.001 and

momentum equal to 0.05.

Figure 35: Mobile robot's path a) without a wall-following algorithm b) with a wall-following

algorithm, when encountering a U-shaped obstacle.

71

71

After the driving direction has been calculated by the neural networks, the output

value is passed back to the .Net environment. Using C#, a robot controller has been

implemented to provide necessary commands to the server to drive the robot based on the

driving direction.

4.1.5 Robot Controller

The robot controller calculates the velocity of the left wheel (𝑉𝑙𝑒𝑓𝑡) and right

wheel (𝑉𝑟𝑖𝑔ℎ𝑡) based on the driving directions received from the MATLAB part of the

algorithm, and then sends commands to the USARSim server to drive the robot. The

output of the network has to be converted in a meaningful way into velocities for the left

and right wheels. Figure 36 shows two situations where the robot has encountered an

obstacle in front of it while moving towards the target. From the neural networks, driving

directions of 90 degrees and 45 degrees have been calculated for Figure 36(a) and Figure

36(b) respectively.

Figure 36: Two obstacle-avoidance examples in mobile robot motion control.

a) 90° rotation to the right b) 45° rotation to the right.

72

72

If the output angle is greater than zero which means the robot has to rotate to the

right, the velocities are calculated as

𝑉𝑟𝑖𝑔ℎ𝑡
𝑉𝑙𝑒𝑓𝑡

=
𝑟1
𝑟

where 𝑉𝑟𝑖𝑔ℎ𝑡 is the velocity of the right wheels, 𝑉𝑙𝑒𝑓𝑡 is the velocity of the left wheels, 𝑟

is the curvature of the outside (in this case left side) wheels of the robot and 𝑟1 = 𝑟 − 𝑟2

is the inside wheels curvature of the robot. The radius of the curvature is determined from

𝑟 =
𝑟2 × 𝑥

|𝜃|

where 𝑥 is an arbitrary value, 𝑟2 is the width of the robot, 𝜃 is the steering angle (driving

direction). The width of the robot is known, therefore 𝑥 is used to determine the total

curvature desired for rotating the robot. In our case we have 𝑥 = 90𝑐𝑚. Hence, if the

steering angle (𝜃) is equal to 90°, we will have 𝑟 = 𝑟2, therefore, 𝑟1 = 0. This means that

the velocity of the right wheel is zero (𝑉𝑟𝑖𝑔ℎ𝑡 = 0). The velocity of the left wheel (𝑉𝑙𝑒𝑓𝑡)

is set to an arbitrary number which can be changed during the simulation. This value

determines the movement speed of the mobile robot.

The same equations apply when steering to the left (steering angle is less than

zero). But in this case the velocities have to be inverted

𝑉𝑙𝑒𝑓𝑡
𝑉𝑟𝑖𝑔ℎ𝑡

=
𝑟1
𝑟

Note that the left hand side of the equation has been inverted. The equation to calculate 𝑟

and 𝑟1 is the same as rotating to the right.

By looking at the image and the given equations if 𝑟1 = 1
2
𝑟2, then 𝑟 will be

smaller than 𝑟2 which in this case the velocity of the right wheel will obtain a negative

73

73

value. Therefore, the robot will rotate in its current position without moving forward.

This is mainly used when we want the robot to completely turn around or to avoid

collision with very close obstacles.

Figure 19 on page 51 shows how the mobile robot steers, given different steering

angles (driving directions). As the steering angle gets closer to zero, the curvature

becomes straighter. This will positively affect the robot’s movement to not to make

sudden changes when it is approaching the target. On the other hand, when the steering

angle gets closer to 180 degrees the circle becomes smaller and smaller, therefore

affecting the robot to rotate on a very smaller curve.

This approach will positively affect the robot’s movement resulting in smooth and

continuous movements while navigating towards the target.

4.2 Experimental Results
In this section we present experiments conducted with the simulated robots. The

central question driving our experiments is: to what extent can mobile robots successfully

navigate to their targets without any collisions, when the algorithm is trained using a

different type of sensor from another robot or the same robot.

In the following experiments we use USARSim server which is installed on top of

the Unreal Tournament game engine. Under the help of this tool, we can test our

proposed method in a variety of scenarios. We can also track the path traversed by a

mobile robot within the environment.

4.2.1 Training

Our experiments were conducted with three different simulated robots; P2AT,

Zerg, and Talon (see section 4.1.1.2 for details about these robots). Furthermore, three

74

74

different configurations of two types of sensors (laser range scanner and ultrasound

sensor) have been used to perform navigation in different environments as shown in

Figure 37. Because of the physical availability of actual robots and various sensors we

have limited our research to the simulation environment. However, as previous

experiments have shown, neural networks trained in simulation environments can also be

applied to real world robots to perform navigation tasks [19-21].

Figure 37: Different sensor distributions. a) laser range scanner.

b) 8 sonar sensors. c) 5 sonar sensors.

Figure 38 shows an example of the view area of a mobile robot which is used for

the navigation and obstacle avoidance purpose.

Figure 38: An example of robots view in an environment.

75

75

The generated image from the sensor readings which is covered by the view port will be

used as the input to our algorithm. To demonstrate the differences between the three

robots and their sensor settings, Table 2 depicts the sensor readings of the robots with

three different configurations of sensors from the position shown in Figure 38.

Table 2: Examples of sensor readings of different sensors from three different mobile robots.

 Sensors
Robot

(dimensions) Laser 8 Sonars 5 Sonars

P2AT

Length=0.5239m
Width=0.4968m
Height=0.2914m

Talon

Length=0.9117m
Width=0.5903m
Height=0.3654m

Zerg

Length=0.3112m
Width=0.4154m
Height=0.1211m

For training purposes, only the laser sensor readings and the P2AT mobile robot

have been used. To train the object-avoidance network (ANN-A), 3000 training patterns

are gathered from the environment shown in Figure 39 (Figure 40 shows the 3D view of

the same environment) by manually navigating the robot from the starting positions to the

target and saving the sensor readings, the target’s direction and the robot’s current

steering angle at a certain time step (1 second).

76

76

Figure 39: A 2D top view of our training environment for object-avoidance.

Figure 40: A 3D view of our training environment for object avoidance.

77

77

When training a Neural Network, in order to avoid overfitting, generalization is

an important feature to consider. Overfitting may occur when the error on the training set

is reduced to a very small value. Hence, the network will perform very well for that

specific training set because it has memorized the training examples. However it cannot

learn to adapt to new situations. In other words it is not generalized. [17,22]

There are several methods in which the generalization of the network can be

improved without sacrificing accuracy [17,22,96]. A commonly used method is known as

Early Stopping. This method employs validation to stop the training process when the

network starts to overfit the data. By passing a validation set, the training function will

test this new data set at certain points in the training phase to understand how the network

is responding for other inputs. The training will stop when the error of the validation set

starts to increase which generally indicates overfitting.

Thus, for testing and validation of our network, we used 3000 patterns collected

using only the sonar sensors to prevent the networks from overfitting.

To train the wall-following network, ANN-B, we used a different environment, as

shown in Figure 41. A 3D view of the simulated environment in Unreal Tournament can

also be seen in Figure 42. For this purpose the robot was driven manually in this

environment only following the wall and keeping-left. 1500 laser scanner readings from

P2AT robot were collected. These data were gathered by navigating to the target from

different starting positions moving alongside the wall and keeping-right at all times.

Moreover, 1500 patterns from the sonar sensors were gathered for testing and validation

purposes. The same environment, but mirrored, was used for collecting same amount of

training data for ANN-C (keep-right).

78

78

Figure 41: A 2D top view of our training environment for wall-following.

Figure 42: A 3D view of our training environment for wall-following

79

79

The action-SVM, which decides on which action to take at each time step, has

been trained by providing it with 150 patterns; 75 patterns for object-avoidance and 75

patterns for wall-following. To train the direction-SVM, we have introduced it with 200

patterns (100 samples for each class) to classify keep-left and keep-right. A few examples

of these training patterns are depicted in Table 3. Table 3(a) shows some training samples

used for training the action-SVM. Table 3(b) also shows a few examples of patterns used

for training the direction-SVM. Note that the direction of the target is not considered in

the classification of the patterns in the direction-SVM. Due to the fact that keep-left and

keep-right directions are opposite of each other, therefore mirrored patterns of keep-left

patterns can be used for keep-right training patterns.

Table 3: Examples of training patterns for training a) the action-SVM, and b) the direction-SVM.

(a) (b)

Action Sample
Target’s
Direction

 Direction Sample

Object
Avoidance

27°

Keep
Left

45°

10°

-55°

Wall
Following

-1°

Keep
Right

1°

4°

-5°

80

80

Table 4 compares performances and training times of three feature extraction

methods, GHA, APEX and NMF, for training object avoidance and wall following neural

networks, ANN-A, ANN-B and ANN-C. The values in the table illustrate the mean of 10

performance tests carried out for each network and each feature extraction method. The

performance columns show the mean squared error for training the neural networks. So,

lower values in the performance columns show better performances of the trained neural

networks. Also the regression columns describe the relationship between predictor and

response variables. The bold values in the table highlight the best performances and

training times for the networks using different feature extraction methods.

As shown in the table, the training speed of NMF is noticeably faster than the

other two methods. The extracted features, using this method, even have some affects on

reducing the training time of the neural networks. However, as there is always a trade-off

between speed and accuracy, compared to the other methods, the NMF method has the

lowest training performance. Typically, we are looking for a feature extraction method

that extract features which can result in higher training performances with a view to

better generalization. In our case the training time does not affect the overall performance

of our proposed method. Therefore, based on our experiments shown in Table 4, we have

chosen GHA for testing our algorithm in different environments. As it can be seen from

the table, the GHA method has the highest performance in training the networks and

generalizes very well to the validation set. The APEX method is not considered due to the

fact that its performance is not as good as GHA and it also has a higher training time.

81

81

Table 4: Comparison of three feature extraction methods for training ANN-A, ANN-B and ANN-C

using the average value of 10 performance trainings.

R
eg

re
ss

io
n V

al
id

at
e

0.
73

33

0.
72

34

0.
35

75

0.
81

93

0.
81

7

0.
66

44

0.
81

23

0.
79

07

0.
70

48

T
es

t

0.
74

1

0.
73

4

0.
35

1

0.
82

7

0.
82

0

0.
67

9

0.
81

8

0.
80

2

0.
71

6

T
ra

in

0.
82

65

0.
82

18

0.
56

85

0.
93

1

0.
92

44

0.
90

6

0.
92

66

0.
92

09

0.
91

52

Pe
rf

or
m

an
ce

(m

ea
n

sq
ua

re
d

er
ro

r)
 O

ve
ra

ll

41
0.

80

42
4.

12

82
1.

79

21
0.

57

21
5.

37

32
6.

12

22
0.

82

23
6.

44

31
5.

18

T
es

t

49
1.

48

51
3.

47

92
8.

42

31
3.

30

31
0.

29

51
2.

20

32
2.

63

35
4.

03

50
1.

75

V
al

id
at

e

48
3.

81

49
9.

04

93
9.

22

30
1.

55

30
3.

62

48
3.

70

31
0.

12

33
4.

12

48
3.

90

T
ra

in

33
4.

25

34
2.

29

71
0.

19

11
6.

83

12
6.

73

15
9.

79

12
8.

34

13
2.

26

14
3.

23

T
ra

in
in

g
Ti

m
e

(s
ec

on
ds

) N
N

T

ra
in

in
g

14
.8

2

12
.3

1

10
.1

8

8.
07

6

6.
95

6

7.
38

1

8.
18

6

7.
76

2

6.
85

6

Fe
at

ur
e

E
xt

ra
ct

io
n

11
4.

19

16
4.

24

20
.2

54

59
.5

11

80
.1

60

20
.0

17

61
.7

17

89
.8

54

13
.7

99

F.
 E

.
M

et
ho

d

G
H

A

A
PE

X

N
N

M
F

G
H

A

A
PE

X

N
N

M
F

G
H

A

A
PE

X

N
N

M
F

A
N

N

A

B

C

82

82

Figure 43 and Figure 44 depict the regression and error plots for training ANN-A

from our algorithm. As it can be seen from Figure 44, the mean squared error of the

validation and test samples start to increase after epoch 13. Therefore to prevent the

network from over fitting the training samples and to be able to generalize to new

samples, training is halted at epoch 13. The regression plots in Figure 43 show the results

of the networks outputs for the training patterns compared to the actual targets at step 13.

Figure 43: Regression plots for training ANN-A with 3000 training samples and 3000 samples for

testing and validation.

83

83

Figure 44: Performance plot for training ANN-A

Regression and performance plots of training results for keep-left and keep-right

wall following networks are shown in Figure 45 through Figure 48. Based on the

performance plots we can see that the networks have obtained the best validation

performance for training ANN-B and ANN-C at epochs 16 and 12 respectively. The plots

show very good results for the laser scanner patterns (training samples). Although the

accuracy in comparison to the validation and testing patterns are a bit lower than the

training samples, the final result is satisfying. As we will see further in this chapter,

navigation results of different types of sensors are very satisfying. This shows the fact

that our algorithm has the ability to generalize for different types of sensors.

84

84

Figure 45: Regression plots for training ANN-B with 1500 training samples and 1500 samples for

testing and validation.

85

85

Figure 46: Regression plots for training ANN-C with 1500 training samples and 1500 samples for

testing and validation.

86

86

Figure 47: Performance plot for training ANN-B

Figure 48: Performance plot for training ANN-C

87

87

4.2.2 Testing

To test our algorithm, we have conducted experiments in several environments as

shown in Figure 49. Three environments have been replicated from [19] (Figure 49(a-c)),

comparing their results to ours. Another environment created by ourselves (Figure 49 (d))

to show the wall following and object avoidance actions in a more difficult environment.

Experiments are done using three different robots (P2AT, Talon and Zerg). Three

different sensors (laser range scanner, 8-sonar sensors and 5-sonar sensors) have been

mounted on to each robot. The orientations of the sensors are the same in all three robots.

However, due to dissimilarity in the robots’ dimensions, the locations of the mounted

sensors are different.

Figure 49: Four environments used for testing our algorithm

88

88

Environment 1: Figure 50 shows the first environment selected for our

experiments. This figure shows the experimental result and simulation result conducted

by Parhi and Singh in [19]. We have simulated this environment in Unreal Tournament’s

engine as shown in Figure 51. The dimensions of this environment are width=12.4m and

height=9.2m. Figure 52 through Figure 57 show our simulation results for the three

robots in the first environment. In this environment only the object avoidance action is

used, as there are no wall shaped objects or very large obstacles in the path of the robot.

Figure 52, Figure 53 and Figure 54 display the navigation results (paths) from

starting position to the target for all three sensor types for P2AT, Talon and Zerg

respectively. As it can be seen from these images, the navigation paths of laser scanner

and 8-sonar sensors are very similar. The path traversed while using 5-sonar sensors is to

some extend different from the other two sensors. However, it still has a successful

navigation from the starting point to the goal.

Figure 55, Figure 56 and Figure 57 show navigation paths of all three mobile

robots using laser range scanner, 8-sonar sensors and 5-sonar sensors respectively. In

these images we compare the paths generated using one type of sensor for different

mobile robots. The results show how paths traversed by different types of robots using

one kind of sensor are very similar regardless of the dimensions of the robots and how the

sensors are mounted on the mobile robots.

89

89

Figure 50: Experimental and simulation results from [19] in environment 1

Figure 51: Simulated environment #1 in Unreal Tournament engine.

90

90

Figure 52: Simulation results for P2AT using three different sensors in environment 1.

Figure 53: Simulation results for Talon using three different sensors in environment 1.

91

91

Figure 54: Simulation results for Zerg using three different sensors in environment 1.

Figure 55: Simulation results for P2AT, Talon and Zerg using laser range scanner in environment 1.

92

92

Figure 56: Simulation results for P2AT, Talon and Zerg using 8-sonar sensors in environment 1.

Figure 57: Simulation results for P2AT, Talon and Zerg using 5-sonar sensors in environment 1.

93

93

Environment 2: Figure 58 shows the simulation path conducted by Parhi and

Singh in [19] in the second environment. Figure 59 depicts the simulation of the second

environment in Unreal Tournament’s engine. The dimensions of this environment are

width=8m and height=9.2m. Figure 60 through Figure 65 show our simulation results for

the three robots in the second environment. This environment is designed to test the

ability of the robot in wall following in a very simple scenario.

Figure 60, Figure 61 and Figure 62 display the navigation results (paths) from

starting position to the target for all three sensor types for P2AT, Talon and Zerg

respectively. As it can be seen from these images, the navigation paths of laser scanner

and 8-sonar sensors are very similar. The path traversed while using 5-sonar sensors is to

some extend different from the other two sensors. However, it still has a successful

navigation from the starting point to the goal. From these results we can see that the

navigation path using different sensors are very different. As it can be seen the paths

traversed using the laser sensors are shorter than the other two sensors.

Figure 63, Figure 64 and Figure 65 show navigation paths of all three mobile

robots using laser range scanner, 8-sonar sensors and 5-sonar sensors respectively. In

these images we compare the paths generated using one type of sensor for different

mobile robots. Same as the previous environment, these results also show how paths

traversed by different types of robots using one kind of sensor are almost the same

regardless of the dimensions of the robots and how the sensors are mounted on them.

94

94

Figure 58: Simulation result from [19] in environment #2

Figure 59: Simulated environment #2 in Unreal Tournament engine

95

95

Figure 60: Simulation results for P2AT using three different sensors in environment #2

Figure 61: Simulation results for Talon using three different sensors in environment #2

96

96

Figure 62: Simulation results for Zerg using three different sensors in environment #2

Figure 63: Simulation results for P2AT, Talon and Zerg using laser scanner in environment #2

97

97

Figure 64: Simulation results for P2AT, Talon and Zerg using 8-sonar sensors in environment #2

Figure 65: Simulation results for P2AT, Talon and Zerg using 5-sonar sensors in environment #2

98

98

Environment 3: Figure 66 shows the navigation path of the experiment

performed by Parhi and Singh in [19] in the third environment. Figure 67 illustrates the

simulation of the third environment in Unreal Tournament’s engine. The dimensions of

this environment are width=16m and height=16.2m. Figure 68 through Figure 73 show

our simulation results for the three robots in the third environment. This environment is

designed to test the ability of the robot in wall following in a more complicated scenario

than the last one.

Figure 68, Figure 69 and Figure 70 display the navigation results (paths) from

starting position to the target for all three sensor types for P2AT, Talon and Zerg

respectively. By comparing the paths of laser range scanner, 8 sonar sensors and 5 sonar

sensors in these images, we can see that the results are not very similar as it was the case

in the previous two environments. This illustrates the fact that the size and complicity of

the environment has a direct affect on the paths traversed using different sensors.

However, we can still see a successful navigation from the starting point to the target.

From these results we can conclude that the navigation path using different sensors are

very different. Also this might cause different navigation routes as depicted in Figure 70.

Figure 71, Figure 72 and Figure 73 show navigation paths of all three mobile

robots using laser range scanner, 8-sonar sensors and 5-sonar sensors respectively. In

these images we compare the paths generated using one type of sensor for different

mobile robots. Contrary to what is seen in the previous environments, these results show

paths traversed by different types of robots in large and complicated environments which

are not that similar. In fact, the dimensions of the robots and how the sensors are mounted

on them have some affects in these kinds of environments.

99

99

Figure 66: Simulation result from [19] in environment #2

Figure 67: Simulated environment #3 in Unreal Tournament engine

100

100

Figure 68: Simulation results for P2AT using three different sensors in environment #3

Figure 69: Simulation results for Talon using three different sensors in environment #3

101

101

Figure 70: Simulation results for Zerg using three different sensors in environment #3

Figure 71: Simulation results for P2AT, Talon and Zerg using laser scanner in environment #3

102

102

Figure 72: Simulation results for P2AT, Talon and Zerg using 8-sonar sensors in environment #3

Figure 73: Simulation results for P2AT, Talon and Zerg using 5-sonar sensors in environment #3

103

103

Environment 4: We have designed a more complex scenario where the robot

constantly needs to switch between wall-following and object-avoidance actions in order

to safely reach its destination. Figure 74 shows a 3D view of the simulated environment

in Unreal Tournament’s engine. The dimensions of this environment are 16m (width) by

16.2m (height). Figure 75 through Figure 80 show our simulation results for the three

robots in this environment.

Figure 75, Figure 76 and Figure 77 display the navigation paths of P2AT, Talon

and Zerg respectively, from the starting position to the target for all three sensor types.

By comparing the paths of laser range scanner, 8 sonar sensors and 5 sonar sensors in

these images, we can see similar results as in previous environments. Also a successful

navigation can be seen for all three types of robots. It is noteworthy to mention that as

depicted in Figure 77, we can notice that the Zerg robot tends to take different routes than

the other two mobile robots while using sonar sensors.

Figure 78, Figure 79 and Figure 80 show navigation paths of all three mobile

robots using laser range scanner, 8-sonar sensors and 5-sonar sensors respectively. In

these images we compare the paths generated by the three mobile robots using one type

of sensor for each image. Similar to what we saw in the previous environment, these

results also show that paths traversed by different types of robots in large and

complicated environments are not very alike.

104

104

Figure 74: Simulation of environment #4 in Unreal Tournament engine

Figure 75: Simulation results for P2AT using three different sensors in environment #4

105

105

Figure 76: Simulation results for Talon using three different sensors in environment #4

Figure 77: Simulation results for Zerg using three different sensors in environment #4

106

106

Figure 78: Simulation results for P2AT, Talon and Zerg using laser range scanner in environment #4

Figure 79: Simulation results for P2AT, Talon and Zerg using 8-sonar sensors in environment #4

107

107

Figure 80: Simulation results for P2AT, Talon and Zerg using 5-sonar sensors in environment #4

108

Chapter 5

Conclusions and Future Works
5.1 Conclusion

In this thesis, a general approach for interpretation of different types of sensors,

such as laser range scanner and ultrasonic sensors has been developed. A system for

navigation of mobile robots using these interpretations has also been developed. Existing

neural network navigation approaches only deal with one kind of robot and a specific

sensor. Therefore, they will lead to different network structures for each type of sensor or

robot and high overall training times. In our approach we proposed a generalized method

to interpret different kinds of 2-dimensional- sensors. Instead of training the networks for

all types of sensors, our approach only trains the networks using one of the most accurate

2-dimensional sensors. Therefore, it avoids unnecessary training periods and the

necessity to gather training samples for different kinds of sensors.

Experimental results, carried out in simulated environments, demonstrate that our

approach can be positively affective in mobile robot navigation for different kinds of

robots and sensors, when compared to previous works. Therefore, our proposed

globalized navigation algorithm can yield significant navigation results – at less training

time and lower sensor costs.

5.2 Future Work
The most difficult part of these experiments proved to be the gathering of the

training samples. This is a very time consuming and frustrating task and requires very

accurate definitions of the navigation problems. Rather than manually gathering the

109

109

training samples from the environment and introducing all the training patterns to the

network at once, one could use online learning algorithms [97,98]. In online learning, the

aim is to predict labels for samples. The main defining feature of online learning is that

after a prediction is made, the true desired output of the sample is discovered. This

information, therefore, can then be used to enhance the prediction hypothesis used by the

algorithm. Another characteristic of online algorithm is that it can process inputs in the

order that they are provided to the algorithm, one fraction at a time in a serial fashion,

without having the entire input available from the start. Presently, our networks produce

outputs based on offline learning where we provide all the training samples at the

beginning. Hence, an enhancement to our algorithm can be improving the neural network

structures to comply with online learning algorithms.

Another possible solution for automatically training the networks would be

reinforcement learning [99]. In reinforcement learning, data are normally generated by

the interactions of an agent with the environment. At each point in time, the environment

generates an observation and an immediate cost, according to some (usually unknown)

dynamics based on the actions that a robot performs. The main goal is to discover a rule

for deciding on which actions to select which will minimize expected cumulative cost

which is some measure of a long-term cost. Therefore, instead of offline or online

learning, employing reinforcement learning for training the neural networks will be an

improvement to our proposed method.

However, neural networks have also some drawbacks. For instance, a neural

network cannot explicitly explain its results. Furthermore, convergence to an optimal

solution may not be guaranteed by the learning algorithms. Hybrid approaches, which

110

110

combine neural networks with other artificial intelligence algorithms such as fuzzy logic,

knowledge-based systems and genetic algorithms, have proved to be more affective in

some cases. Therefore these methods can also be tried as an improvement to our

proposed navigation algorithm.

In this thesis we have only used three kinds of simulation robots and three types

of sensors and configurations. Therefore, one objective for future research is to extend

our algorithm to real world environments using real robots and sensors. Furthermore,

other types of 2-dimensional sensors and robots can be put to test.

Another limitation of the current approach arises from the fact that the direction

of the target must be known. In our experiments, we have only used scenarios that the

target’s direction is known. There might be cases in real world experiments that the robot

is not able to recognize its target’s direction. For example, assuming that there are signals

being received from the target’s location, which is determining the direction of that

target, these signals can be blocked or interrupted by certain objects in the environment.

Such limitations can be overcome by remembering the last bearing of the target. In case

the target’s signal is lost, then the robot will try to navigate to the last bearing of the

target until it can receive the signals again. Also, the target’s bearing needs to be updated

based on the movement and rotations of the robot.

Despite these limitations, our approach does provide a good basis for a

generalized interpretation of 2-dimensional sensors, and experimental results illustrate its

effectiveness in practice. These results show that robots will perform very good

navigation tasks even though the algorithm has not been trained specifically for that

robot.

111

APPENDICES

APPENDIX A

Backpropagation Training Algorithm

Nomenclature

The nomenclature used in the training algorithm for the backpropagation net is as

follows:

𝑥 Input training vector: 𝑥 = (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛)

𝑡 Output target vector: 𝑡 = (𝑡1, … , 𝑡𝑘, … , 𝑡𝑚).

𝛿𝑘 Portion of error correction weight adjustment for 𝑤𝑗𝑘 that is due to an error

at output unit 𝑌𝑘; also, the information about the error at unit 𝑌𝑘 that is

propagated back to the hidden units that feed into unit 𝑌𝑘.

𝛿𝑗 Portion of error correction weight adjustment for 𝑣𝑖𝑗 that is due to the

backpropagation of error information from the output layer to the hidden unit

𝑍𝑗.

𝛼 Learning rate.

𝑋𝑖 Input unit 𝑖:

For an input unit, the input signal and output signal are the same, namely, 𝑥𝑖.

𝑣0𝑗 Bias on hidden unit 𝑗.

𝑍𝑗 Hidden unit 𝑗:

The net input to 𝑍𝑗 is denoted 𝑧_𝑖𝑛𝑗 :

𝑧_𝑖𝑛𝑗 = 𝑣 + 0𝑗 + �𝑥𝑖𝑣𝑖𝑗
𝑖

112

The output signal (activation) of 𝑍𝑗 is denoted 𝑧𝑗:

𝑧𝑗 = 𝑗(𝑧_𝑖𝑛𝑗)

𝑤0𝑘 Bias on output unit 𝑘.

𝑌𝑘 Output unit 𝑘:

The net input to 𝑌𝑘 is denoted 𝑦_𝑖𝑛𝑘:

𝑦_𝑖𝑛𝑘 = 𝑤0𝑘 + �𝑧𝑗𝑤𝑗𝑘
𝑗

The output signal (activation) of Yk is denoted Yk:

𝑦𝑘 = 𝑓(𝑦_𝑖𝑛𝑘)

Algorithm [17]

Step 0. Initialize weights. (Set to small random values).

Step 1. While stopping condition is false, do Steps 2-9.

Step 2. For each training pair, do Steps 3-8.

Feedforward:

Step 3. Each input unit (𝑋𝑖, 𝑖 = 1, . . . ,𝑛) receives input signal 𝑥𝑖 and

broadcasts this signal to all units in the layer above (the hidden

units).

Step 4. Each hidden unit (𝑍𝑗 , 𝑗 = 1 , . . . ,𝑝) sums its weighted input

signals,

𝑧_𝑖𝑛𝑗 = 𝑣0𝑗 + �𝑥𝑖𝑣𝑖𝑗

𝑛

𝑖=1

applies its activation function to compute its output signal,

𝑧𝑗 = 𝑓�𝑧_𝑖𝑛𝑗�

113

and sends this signal to all units in the layer above (output units).

Step 5. Each output unit (𝑌𝑘, 𝑘 = 1, . . . ,𝑚) sums its weighted input

signals,

𝑦_𝑖𝑛𝑘 = 𝑤0𝑘 + �𝑧𝑗𝑤𝑗𝑘

𝑝

𝑗=1

and applies its activation function to compute its output signal,

𝑦𝑘 = 𝑓(𝑦_𝑖𝑛𝑘)

Backpropagation of error:

Step 6. Each output unit (𝑌𝑘,𝑘 = 1, . . . ,𝑚) receives a target pattern

corresponding to the input training pattern, computes its error

information term,

𝛿𝑘 = (𝑡𝑘 − 𝑦𝑘)𝑓′(𝑦_𝑖𝑛𝑘)

calculates its weight correction term (used to update 𝑊𝑗𝑘 later),

Δ𝑤𝑗𝑘 = 𝛼𝛿𝑘𝑧𝑗

calculates its bias correction term (used to update 𝑊0𝑘 later),

Δ𝑤0𝑘 = 𝛼𝛿𝑘

and sends 𝛿𝑘 to units in the layer below.

Step 7. Each hidden unit (𝑍𝑗 , 𝑗 = 1 , . . . ,𝑝) sums its delta inputs (from

units in the layer above),

𝛿_𝑖𝑛𝑗 = �𝛿𝑘𝑤𝑗𝑘

𝑚

𝑘=1

multiplies by the derivative of its activation function to calculate

its error information term,

114

𝛿𝑗 = 𝛿_𝑖𝑛𝑗 𝑓′�𝑧_𝑖𝑛𝑗�

calculates its weight correction term (used to update 𝑣𝑖𝑗 later),

Δ𝑣𝑖𝑗 = 𝛼𝛿𝑗𝑥𝑖

and calculates its bias correction term (used to update 𝑉0𝑗 later),

Δ𝑣0𝑗 = 𝛼𝛿𝑗

Update weights and biases:

Step 8. Each output unit (𝑌𝑘,𝑘 = 1 , . . . ,𝑚) updates its bias and weights

(𝑗 = 0, . . . ,𝑝):

𝑤𝑗𝑘(𝑛𝑒𝑤) = 𝑤𝑗𝑘(𝑜𝑙𝑑) + Δ𝑤𝑗𝑘

Each hidden unit (𝑍𝑗 , 𝑗 = 1, . . . ,𝑝) updates its bias and weights

(𝑖 = 0, . . . , 𝑛):

𝑣𝑖𝑗(𝑛𝑒𝑤) = 𝑣𝑖𝑗(𝑜𝑙𝑑) + Δvij

Step 9. Test stopping condition.

An epoch is one cycle through the entire set of training vectors. Typically many

epochs are required for training a backpropagation neural net. The foregoing algorithm

updates the weights after each training pattern is presented. A common variation is batch

updating, in which weight updates are accumulated over an entire epoch (or some other

number of presentations of patterns) before being applied. [17]

115

REFERENCES

[1] R. Siegwart and I.R. Nourbakhsh, Introduction to autonomous mobile robots, The
MIT Press, 2004.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
The international journal of robotics research, vol. 5, 1986, p. 90.

[3] J. Borenstein and Y. Koren, “Histogramic in-motion mapping for mobile robot
obstacle avoidance,” Robotics and Automation, IEEE Transactions on, vol. 7,
1991, pp. 535-539.

[4] S. Nagata, M. Sekiguchi, and K. Asakawa, “Mobile robot control by a structured
hierarchical neural network,” Control Systems Magazine, IEEE, vol. 10, 1990, pp.
69-76.

[5] M. Meng and A.C. Kak, “Mobile robot navigation using neural networks and
nonmetrical environmental models,” Control Systems Magazine, IEEE, vol. 13,
1993, pp. 30-39.

[6] R. Glasius, A. Komoda, and S.C.A.M. Gielen, “Neural network dynamics for path
planning and obstacle avoidance,” Neural Networks, vol. 8, 1995, pp. 125–133.

[7] P. Gaudiano and C. Chang, “Adaptive obstacle avoidance with a neural network
for operant conditioning: experiments with real robots,” Computational
Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997
IEEE International Symposium on, IEEE, 1997, pp. 13–18.

[8] C. Silva, M. Crisostomo, and B. Ribeiro, “MONODA: a neural modular
architecture for obstacle avoidance without knowledge of the environment,”
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for
the New Millennium, 2000, pp. 334-339 vol.6.

[9] C.E. Thorpe and T. Foreword By-Kanade, Vision and Navigation: The Carnegie
Mellon Navlab, Kluwer Academic Publishers, 1990.

[10] S.G. Goodridge and R.C. Luo, “Fuzzy behavior fusion for reactive control of an
autonomous mobile robot: MARGE,” Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on, 1994, pp. 1622-1627.

[11] H. Beom and H. Cho, “A sensor-based obstacle avoidance controller for a mobile
robot using fuzzy logic and neural network,” Intelligent Robots and Systems,
1992., Proceedings of the 1992 lEEE/RSJ International Conference on, IEEE,
1992, pp. 1470–1475.

116

[12] O. Azouaoui, M. Ouaaz, a Chohra, a Farah, and K. Achour, “Fuzzy ArtMap neural
network (FAMNN) based collision avoidance approach for autonomous robotic
systems (ARS),” Proceedings of the Second International Workshop on Robot
Motion and Control. RoMoCo’01 (IEEE Cat. No.01EX535), 2001, pp. 285-290.

[13] D.R. Parhi, “Neuro-Fuzzy Navigation Technique for Control of Mobile Robots,”
Analysis.

[14] C.M. Bishop, Pattern recognition and machine learning, Springer New York,
2006.

[15] T.M. Mitchell, Machine learning, Burr Ridge, IL: McGraw Hill, 1997.

[16] A.-min Zou, Z.-guang Hou, S.-yao Fu, and M. Tan, “Neural Networks for Mobile
Robot Navigation : A Survey,” Science And Technology, 2006, pp. 1218-1226.

[17] L.V. Fausett, Fundamentals of neural networks: architectures, algorithms, and
applications, Prentice-Hall Englewood Cliffs, NJ, 1994.

[18] D. Janglová, “Neural Networks in Mobile Robot Motion,” Advanced Robotic, vol.
1, 2004, pp. 15-22.

[19] M.K. Singh and D.R. Parhi, “Path optimisation of a mobile robot using an artificial
neural network controller,” International Journal of Systems Science, vol. 42,
2011, pp. 107-120.

[20] M.K. Singh and D.R. Parhi, “Intelligent neuro-controller for navigation of mobile
robot,” Proceedings of the International Conference on Advances in Computing,
Communication and Control, ICAC3’09, 2009, pp. 123-128.

[21] D.R. Parhi and M.K. Singh, “Real-time navigational control of mobile robots using
an artificial neural network,” Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, 2009,
pp. 1713-1725.

[22] S. Haykin, Neural networks: a comprehensive foundation, Prentice hall, 1999.

[23] J. McClelland, “Explorations in Parallel Distributed Processing-IBM version,”
1988.

[24] D.E. Rumelhart, Learning internal representations by error propagation, 1985.

[25] D. Rumelhart and G. Hintont, “Learning representations by back-propagating
errors,” Nature, 1986, pp. 323:533-536.

117

[26] D.E. Rumelhart and J.L. McClelland, “Parallel distributed processing,” vol. 1,
1986, pp. 318-362.

[27] K.V. Price, R.M. Storn, and J.A. Lampinen, Differential evolution: a practical
approach to global optimization, Springer Verlag, 2005.

[28] H. Wold, “Partial least squares,” 1985.

[29] K.Q. Weinberger and L.K. Saul, “Unsupervised learning of image manifolds by
semidefinite programming,” International Journal of Computer Vision, vol. 70,
2006, pp. 77-90.

[30] H. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, “A survey of multilinear
subspace learning for tensor data,” Pattern Recognition 44, 2011, pp. 1540-1551.

[31] J.A. Lee and M. Verleysen, Nonlinear dimensionality reduction, Springer Verlag,
2007.

[32] A. HyvArinen, J. Karhunen, and E. Oja, Independent component analysis, Wiley-
interscience, 2001.

[33] S.T. Dumais, “Latent semantic analysis,” Annual Review of Information Science
and Technology, vol. 38, 2004, pp. 188-230.

[34] I.T. Joliffe, Principal component analysis, Springer-Verlag New York, 1986.

[35] J.E. Jackson and J. Wiley, A user’s guide to principal components, Wiley Online
Library, 1991.

[36] M.E. Tipping and C.M. Bishop, “Probabilistic principal component analysis,”
Journal of the Royal Statistical Society. Series B, Statistical Methodology, 1999,
pp. 611-622.

[37] K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,”
Philosophical Magazine Series 6, vol. 2, 1901, pp. 559–572.

[38] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, wiley New York:,
2001.

[39] P.J.A. Shaw, “Multivariate statistics for the environmental sciences,” A Hodder
Arnold Publication, 2003, pp. 92-116.

[40] I. Jolliffe, “Principal component analysis,” Springer-Verlag New York, 2002, pp.
29-62.

118

[41] A. Weingessel and K. Hornik, “Svd algorithms: Apex-like versus subspace
methods,” Neural Processing Letters, vol. 5, 1997, pp. 177-184.

[42] F. Palmieri, J. Zhu, and C. Chang, “Anti-Hebbian learning in topologically
constrained linear networks: A tutorial,” Neural Networks, IEEE Transactions on,
vol. 4, 1993, pp. 748-761.

[43] K. Hornik and C.M. Kuan, “Convergence analysis of local feature extraction
algorithms,” Neural Networks, vol. 5, 1992, pp. 229-240.

[44] P.F. Baldi and K. Hornik, “Learning in linear neural networks: A survey,” Neural
Networks, IEEE Transactions on, vol. 6, 1995, pp. 837-858.

[45] J. Karhunen, “Optimization criteria and nonlinear PCA neural networks,” Neural
Networks, 1994. IEEE World Congress on Computational Intelligence., 1994
IEEE International Conference on, IEEE, 1994, pp. 1241–1246.

[46] L. Xu, “Theories for unsupervised learning: PCA and its nonlinear extensions,”
Neural Networks, 1994. IEEE World Congress on Computational Intelligence.,
1994 IEEE International Conference on, 1994, p. 1252a--1253.

[47] E. Oja, “Principal components, minor components, and linear neural networks,”
Neural Networks, vol. 5, 1992, pp. 927-935.

[48] K.I. Diamantaras and S.Y. Kung, Principal component neural networks: theory
and applications, John Wiley & Sons, Inc., 1996.

[49] T.D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward
neural network,” Neural networks, vol. 2, 1989, pp. 459-473.

[50] L.N. Trefethen and D. Bau, Numerical linear algebra, Society for Industrial
Mathematics, 1997.

[51] J. Rubner and P. Tavan, “A self-organizing network for principal-component
analysis,” EPL (Europhysics Letters), vol. 10, 1989, pp. 693-698.

[52] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of cognitive
neuroscience, vol. 3, 1991, pp. 71-86.

[53] D.D. Lee and H.S. Seung, “Algorithms for non-negative matrix factorization,”
Advances in neural information processing systems, vol. 13, 2001.

[54] R.A. Fisher, “The use of multiple measurements in taxonomic problems. Annual
Eugenics 7 (part II): 179-188. Reprinted in Contributions to Mathematical
statistics, 1950,” 1936.

119

[55] C.J.C. Burges, “A tutorial on support vector machines for pattern recognition,”
Data mining and knowledge discovery, vol. 2, 1998, pp. 1-47.

[56] N. Christianini and S.J. Taylor, “An introduction to support vector machines (and
othre kernel-based learning methods),” 2000.

[57] V. Vapnik, Statistical learning theory, Wiley-Interscience, 1998.

[58] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training and
applications,” 1997.

[59] C.M. Bishop, Neural networks for pattern recognition, Oxford university press,
1995.

[60] “SVM Application List” Available:
http://www.clopinet.com/isabelle/Projects/SVM/applist.html.

[61] D. Kortenkamp, R.P. Bonasso, and R.R. Murphy, Artificial intelligence and mobile
robots: case studies of successful robot systems, AAAI Press/MIT Press, 1998.

[62] G.S. Sukhatme and M.J. Mataric, “Robots: Intelligence, Versatility, Adaptivity-
Introduction,” Communications of the ACM-Association for Computing
Machinery-CACM, vol. 45, 2002, pp. 30–32.

[63] C. Stachniss, D. Hahnel, and W. Burgard, “Exploration with active loop-closing
for FastSLAM,” Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, 2004, pp. 1505-1510.

[64] S.B. Thrun, “Exploration and model building in mobile robot domains,” Neural
Networks, 1993., IEEE International Conference on, 1993, pp. 175-180.

[65] M. Meng and A.C. Kak, “Fast vision-guided mobile robot navigation using neural
networks,” Systems, Man and Cybernetics, 1992., IEEE International Conference
on, 1992, pp. 111-116.

[66] R.P. Lippmann, “An introduction to computing with neural nets,” ARIEL, vol. 209,
1987, pp. 115-245.

[67] H. Hu and D. Gu, “Landmark-based navigation of mobile robots in
manufacturing,” Emerging Technologies and Factory Automation, 1999.
Proceedings. ETFA’99. 1999 7th IEEE International Conference on, 1999, pp.
121-128.

[68] N. Vlassis, Y. Motomura, and B. Kröse, “Supervised dimension reduction of
intrinsically low-dimensional data,” Neural Computation, vol. 14, 2002, pp. 191–
215.

120

[69] J.L. Crowley, F. Wallner, and B. Schiele, “Position estimation using principal
components of range data,” Robotics and Autonomous Systems, vol. 23, 1998, pp.
267–276.

[70] S.K. Nayar, H. Murase, and S.A. Nene, “Learning, positioning, and tracking visual
appearance,” Robotics and Automation, 1994. Proceedings., 1994 IEEE
International Conference on, IEEE, 1994, pp. 3237–3244.

[71] M. Artac, M. Jogan, and A. Leonardis, “Mobile robot localization using an
incremental eigenspace model,” Robotics and Automation, 2002. Proceedings.
ICRA’02. IEEE International Conference on, IEEE, 2002, pp. 1025–1030.

[72] T. Fujii, Y. Arai, H. Asama, and I. Endo, “Multilayered reinforcement learning for
complicated collision avoidance problems,” Robotics and Automation, 1998.
Proceedings. 1998 IEEE International Conference on, IEEE, 1998, pp. 2186–
2191.

[73] K. Ishii, S. Nishida, K. Watanabe, and T. Ura, “A collision avoidance system
based on self-organizing map and its application to an underwater vehicle,” 7th
International Conference on Control, Automation, Robotics and Vision, 2002.
ICARCV 2002., 2002, pp. 602-607.

[74] S. Grossberg and D.S. Levine, “Neural dynamics of attentionally modulated
Pavlovian conditioning: blocking, interstimulus interval, and secondary
reinforcement,” Applied Optics, vol. 26, 1987, pp. 5015-5030.

[75] N.J. Nilsson, Principles of artificial intelligence, Springer Verlag, 1982.

[76] C. Kozakiewicz and M. Ejiri, “Neural network approach to path planning for two
dimensional robot motion,” Intelligent Robots and Systems’ 91.'Intelligence for
Mechanical Systems, Proceedings IROS'91. IEEE/RSJ International Workshop on,
1991, pp. 818-823.

[77] J. Sfeir, H. Kanaan, and M. Saad, “A neural network based path generation
technique for mobile robots,” Mechatronics, 2004. ICM’04. Proceedings of the
IEEE International Conference on, IEEE, 2004, pp. 176–181.

[78] P.S. Sastry, G. Santharam, and K.P. Unnikrishnan, “Memory neuron networks for
identification and control of dynamical systems,” IEEE transactions on neural
networks / a publication of the IEEE Neural Networks Council, vol. 5, Jan. 1994,
pp. 306-319.

[79] P.K. Pal and A. Kar, “Mobile robot navigation using a neural net,” Robotics and
Automation, 1995. Proceedings., 1995 IEEE International Conference on, IEEE,
1995, pp. 1503–1508.

121

[80] R. Fierro and F.L. Lewis, “Control of a nonholonomic mobile robot using neural
networks,” Neural Networks, IEEE Transactions on, vol. 9, 1998, pp. 589-600.

[81] R. Fierro and F.L. Lewis, “Practical point stabilization of a nonholonomic mobile
robot using neural networks,” Decision and Control, 1996., Proceedings of the
35th IEEE, 1996, pp. 1722-1727.

[82] R. Fierro and F.L. Lewis, “Control of a non-holonomic mobile robot using neural
networks,” Intelligent Control, 1995., Proceedings of the 1995 IEEE International
Symposium on, pp. 415-421.

[83] S.X. Yang and M. Meng, “An efficient neural network approach to dynamic robot
motion planning,” Neural networks : the official journal of the International
Neural Network Society, vol. 13, Mar. 2000, pp. 143-148.

[84] S.X. Yang and M. Meng, “An efficient neural network method for real-time
motion planning with safety consideration,” Robotics and Autonomous Systems,
vol. 32, Aug. 2000, pp. 115–128.

[85] S.X. Yang and M.H. Meng, “Real-time collision-free motion planning of a mobile
robot using a Neural Dynamics-based approach.,” IEEE transactions on neural
networks / a publication of the IEEE Neural Networks Council, vol. 14, Jan. 2003,
pp. 1541-1552.

[86] A.L. Hodgkin and A.F. Huxley, “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” The Journal of
physiology, vol. 117, 1952, pp. 500-544.

[87] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Networks, vol. 1, 1988, pp. 17-61.

[88] S. Carpin, M. Lewis, and J. Wang, “USARSim: a robot simulator for research and
education,” Robotics and, 2007, pp. 1400-1405.

[89] S. Balakirsky and F. Proctor, “USARSim.”

[90] A. Jacoff, E. Messina, and J. Evans, “Reference test courses for autonomous
mobile robots,” Proceedings of SPIE, 2001, p. 341.

[91] Microsoft, “Microsoft Robotics” Available: http://msdn.microsoft.com/en-
us/library/bb483042.aspx.

[92] ActivMedia, “ADEPT mobile robots” Available: http://www.activrobots.com.

[93] iRobot, “Robots that Make a Difference” Available: http://www.irobot.com/.

122

[94] A. Kleiner, V.A. Ziparo, D. Meyer-Delius, B. Steder, M. Ruhnke, R. Kümmerle,
C. Dornhege, and B. Nebel, “RescueRobots Freiburg” Available:
http://gkiweb.informatik.uni-freiburg.de/~rescue/robots/index.php.

[95] J. More, “The Levenberg-Marquardt algorithm: implementation and theory,”
Numerical analysis, 1978, pp. 105-116.

[96] M.T. Hagan, H.B. Demuth, M.H. Beale, and others, Neural network design, PWS
Boston, MA, 1996.

[97] D. Saad, On-line learning in neural networks, Cambridge Univ Pr, 1998.

[98] A. Borodin and R. El-Yaniv, Online computation and competitive analysis,
Cambridge University Press New York, 1998.

[99] R.S. Sutton and A.G. Barto, Reinforcement learning: An introduction, Cambridge
Univ Press, 1998.

123

VITA AUCTORIS

NAME Seyyed Hamid Dezfoulian

PLACE OF BIRTH Hamedan, Iran

YEAR OF BIRTH 1985

EDUCATION Computer Engineering Department

Payame-Noor University

Hamedan, Iran

2004 – 2009 B.Eng.

School of Computer Science

University of Windsor

Windsor, Ontario, Canada

2009 – 2011 M.Sc. (Co-op)

	A Generalized Neural Network Approach to Mobile Robot Navigation and Obstacle Avoidance
	Recommended Citation

	Master thesis

