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Abstract

For its unique advantages of preventing the loss of user identification, biometrics authen-

tication is being increasingly used on mobile devices to meet the demand of access con-

trol and electronic transactions. Biometric community has been working on different ap-

proaches to improve reliability of security systems, multimodal authentication has attracted

a lot of attention for its advantages over uni-modal biometric matchers. Nevertheless, errors

caused by noises existing in real-world circumstances have become a major fact that slows

down its acceptance in mobile computing.

Aimed at improving the reliability of biometric authentication, current practice uses

score-level fusion to combine normalized outputs of multiple classifiers. By investigat-

ing the performance of different score-level fusion methods with normalization techniques

in different noise conditions, this work develops an algorithm to analyze the individual

biometric matching scores in different noise conditions and dynamically select the combi-

nations of normalization and fusion methods that are adequate for different working envi-

ronments.
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Chapter 1

Introduction

New technologies are designed to make our life easier and safer; however, they are often

not secure enough. One of the most common identification methods is a Personal Identifi-

cation Number (PIN), which can be easily eavesdropped by other people or forgotten by the

user. This is why researchers have started to work on biometric methods as a way to iden-

tify people. Biometrics offers a natural and reliable solution to certain aspects of identity

management by utilizing fully automated or semi-automated schemes to recognize individ-

uals based on their inherent physical and/or behavioral characteristics [24]. A biometric

system is a pattern recognition system that requires biometric data from an individual, such

as a fingerprint, iris, face, hand, or voice etc. Identification systems that are based on these

human characteristics have many advantages over the traditional authentication techniques

based on what one knows or what one possesses [9, 24].

A wide variety of systems require person identification in order to confirm or determine

the identity of an individual requesting to use said services. The purpose of such a system

is to ensure that only legitimate users can access the service. One such system that needs

security access is a mobile device (e.g., cellular phone). Nowadays, the new technology of

1



CHAPTER 1. INTRODUCTION 2

mobile devices allows us to connect to the internet, do banking transactions, maintain online

address books, online shopping, send personal information, and do many other things.

Performance is a big issue in multi-biometric authentication for mobile devices when

the authentication takes place under various environmental scenarios (e.g., on a dark, noisy

street). Score-level fusion with different normalization techniques is a popular practice to

increase the reliability of biometric authentication systems by combining the outputs of

multiple classifiers. This thesis presents a new approach to the robust design of multimodal

biometric systems on mobile devices. This approach uses the technique of Design of Exper-

iments to systematically evaluate the performance of multimodal biometric systems under

the influence of noise [46]. By examining the performance of different combinations of

fusion methods and normalization techniques with a range of errors corresponding to real

environmental noises, this thesis develops an algorithm to dynamically select the most suit-

able combination for optimized performance of user authentication on mobile devices in a

given condition of usage.

Our goal is to build a biometric authentication system that works on face and voice

samples taken by a camera and microphone already built into a mobile device. Images that

are taken by a mobile phone are usually poor quality because most cameras in mobile de-

vices are not equipped with a flash light. Images can be taken in different environments:

outdoors, in an office with daylight, fluorescent, or incandescent light, or in a dark environ-

ment. In the same way, voice recordings are taken place in different noisy environments:

in quiet offices, in mildly noisy hallways or at a busy street intersection with passing ve-

hicles. We show that our multimodal biometric system selects the optimal normalization

and fusion method combinations in different illumination and acoustic noise scenarios and

obtains the higher accuracy compared to other authentication methods proposed so far.
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In this thesis, we systematically analyzed the performance of multimodel biometric au-

thentication systems for mobile devices under different noise conditions to select the com-

bination of normalization techniques and fusion methods that produce the optimal perfor-

mance than other combinations under every noise scenarios. The two main contributions

of this thesis are 1) introducing the idea of applying different normalization and fusion

methods in different environmental scenarios in multimodal biometric authentication to en-

sure the legitimacy of the user accessing various services over the internet from a mobile

device, and 2) demonstrating the feasibility and performance of the method by means of

experimentation and comparison with other approaches. Thorough investigation of face

recognition and speaker recognition methods is beyond the scope of this thesis.

The remainder of this thesis has been organized into the following chapters. Chapter

2 provides an overview of the field of biometrics and multibiometrics. It describes the

architecture, as well as biometric applications. Chapter 3 first provides a literature review of

the existing approaches of biometrics based authentication for mobile computing, describes

the method of systematic performance evaluation, and then presents the new system for the

dynamic selection of biometric techniques according to different working environments for

optimized user authentication. Data description, experimental results and analysis are then

presented in Chapter 4. Finally, Chapter 5 gives conclusions and directions for future work.



Chapter 2

Overview of Biometric System

The etymology of the word biometrics comes from the ancient Greek words: bios life

and metros measure. It is well-known the humans use inputs such as face, voice or gait to

recognize each other. Recognition of people based their characteristics is important in many

emerging technologies. These days, biometrics is used in a wide variety of applications that

require the identification or verification schemes to confirm the identity of an individual. In

this chapter, we present an overview of biometric methods and its applications.

2.1 Biometric Systems

Biometrics is a constantly evolving field that is becoming more widespread in the indus-

try. The term biometrics is described as an automatic personal recognition system based on

physiological or behavioral characteristics [9, 25, 41]. Biometrics use biological properties

of a human, such as fingerprints, iris, voice recognition, face recognition, and hand geome-

try to identify individuals. Figure 2.1 shows examples of the biological properties used for

biometrics [24].

4
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Figure 2.1: Biological properties used for biometrics
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Nowadays, biometrics is no longer confined to criminal law enforcement. In addition,

more businesses use biometrics to regulate access to buildings and information. Govern-

ments are considering including biometric identifiers in passports, drivers licenses, and

possibly in a future national ID card. Also, digital video surveillance has already been

spread in private and public places.

A biometric system is basically a pattern recognition system that can recognize a person

based on specific physiological or behavioral features. A biometric system usually runs in

two modes:

(1) Verification mode, where the system validates a persons identity by comparing the

captured biometric characteristic with individuals biometric template, which is stored

in the system database. Identity verification is typically used for positive recognition,

where the aim is to prevent different people from using the same identity [41, 57].

(2) Identification mode, the system recognizes an individual by searching the entire tem-

plate database for a match. The system conducts a one-to-many comparison to estab-

lish an individuals identity. Identification is a critical component of negative recog-

nition applications, in which the system establishes whether the person is who he/she

claims to be [41, 57]. The purpose of negative recognition is to prevent a single

person from using multiple identities.

However, each biometric system regardless if it operates on verification or identification

mode contains the following parts:

• A sensor unit that represents the interface between the user and the machine. This is

the point where the biometric trait is acquired.
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Figure 2.2: Diagrams identifying system modules within various application context modes
[24]
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• A processing unit where the acquired biometric is sampled segmented and features

are being extracted. It also includes quality assurance to determine if the quality of

the biometric is good enough to be used further in the process. If the quality of the

acquired biometric is poor, the user may be asked to present the biometric again.

• A database unit where all the enrolled biometric templates are being stored and where

the templates are being retrieved from in the authentication process.

• A matching unit that compares the newly acquired biometric template with the tem-

plate stored in the database and based on decision rules determines either if the pre-

sented biometric is a genuine/impostor or if the user is identified or not.

Figure 2.2 shows the enrolment and recognition process flow in a biometric system.

Physiological biometrics is based on measurements and data derived from direct mea-

surement of a part of human body. Here we list some example of those biometrics:

• DNA: Deoxyribonucleic acid: Except for the identical twins, it is the one-dimensional

ultimate unique code for one individual. DNA is currently used mostly in the forensic

applications for person recognition.

• Ear recognition: It is based on matching the distance of salient points on the pinna

from a landmark location on the ear. The evidence from two studies [22, 25] sup-

ports the hypothesis that the ear contains unique physiological features, since in both

studies all examined ears were found to be unique though identical twins were found

to have similar, but not identical, ear structures especially in the Concha and lobe ar-

eas. Having shown uniqueness, it remains to ascertain if the ear provides biometrics

which are comparable over time.
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• Facial, hand, and hand vein infrared thermogram: The pattern of heat radiated by

the human body is a characteristic of an individual and can be captured by an infrared

camera in an unobtrusive way much like a regular (visible spectrum) photograph [42].

• Fingerprint: This is one of the most commonly used features that have been used

to identify humans. Prior to the advent of biometric tools, fingerprints (captured on

paper using ink marks) have been used extensively in forensics for the identification

and verification of criminals. Provided the advent of new technologies, fingerprints

are now captured using optical, capacitive or ultrasonic sensors, that measure the

ridges, valleys and islands in a fingerprint [33].

• Palmprint: The palms of human hands contain patterns of ridges and valleys much

like the fingerprints. The area of the palm is much larger than the area of a finger and

as a result, palmprints are expected to be even more distinctive than the fingerprints.

Some of palmprint techniques distinguish between identical twins [29].

• Retina recognition: The retinal vasculature is rich in structure and is supposed to be

a characteristic of each individual and each eye. It is claimed to be the most secure

biometric since it is not easy to change or replicate the retinal vasculature. Retina is

unique for each individual, even for identical twins [25].

• Hand and finger geometry: Hand geometry recognition systems are based on a

number of measurements taken from the human hand, including its shape, size of

palm, and lengths and widths of the fingers. The geometry of a hand and fingers it

is not very distinctive, and cannot be used for systems requiring identification of an

individual from a large population [25].

• Iris recognition: Iris recognition systems scan the surface of an iris in order to com-
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pare patterns. Each iris is distinctive and, like fingerprints and retinas, even the irises

of identical twins are different [15].

• Face recognition: Humans are conditioned to recognize each other based on fa-

cial features. Consequently, facial features can be considered an ”inherent” modality

since it is widely used for recognition amongst humans. Captured usually as an im-

age, facial features are normally used for identification or verification in a multimodal

biometric system. Commonly used algorithms that support this process include mea-

suring the distance between the facial features. Another approach employs scalar

comparison between parts of the face using the sample image and the template set.

Face recognition involves computer recognition of personal identity based on geo-

metric or statistical features derived from face images [7, 27, 39, 52, 58].

Behavioral characteristics are based on an action taken by a person. On the other hand,

behavioral biometrics are based on measurements and data derived from an action and

indirectly measure characteristics of the human body. The following are the examples of

biometric techniques based on behavioral characteristics:

• Gait: Gait is the way one walks and is a complex spatio-temporal biometric. Gait is

not supposed to be very distinctive, but is sufficiently discriminatory to allow verifi-

cation in some low-security applications [25].

• Signature recognition: The way a person signs his/her name is known to be a charac-

teristic of that individual. Signatures change over a period of time and are influenced

by physical and emotional conditions of the signatories [35].

• Voice recognition: Voice recognition systems use the characteristics of the voice in

order to recognize a person. The behavioral part of the speech of a person changes
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over time due to age, medical conditions (such as common cold), emotional state,

etc; therefore, voice is not very distinctive and may not be appropriate for large-scale

identification [11].

• Keystroke: It is hypothesized that each person types on a keyboard in a character-

istic way. It is not unique to each individual but it offers sufficient discriminatory

information to permit identity verification [34].

There are seven factors defined by Jain, Bolle, and Pankanti [25] that determine the

suitability of a physical or a behavioral trait to be used in a biometric application.

1. Universality: each person accessing the application should posses the trait.

2. Uniqueness: the given trait should be sufficiently different across individuals com-

prising the population.

3. Permanence: the characteristic should be sufficiently invariant with respect to the

matching criterion over a period of time.

4. Collectability: the characteristic should be measured quantitatively.

5. Performance: the recognition accuracy and the resources required to achieve that

accuracy should meet the constraints imposed by the application.

6. Acceptability: individuals in the target population that will utilize the application

should be willing to present their biometric trait to the system.

7. Circumvention: this reflects how easily the system can be fooled using fraudulent

methods.

Table 2.1 presents a brief comparison of the physiological and behavioral biometric tech-

niques based on these seven factors described above.
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Biometrics U
ni

ve
rs

al
ity

U
ni

qu
en

es
s

Pe
rm

an
en

ce

C
ol

le
ct

ab
ili

ty

Pe
rf

or
m

an
ce

A
cc

ep
ta

bi
lit

y

C
ir

cu
m

ve
nt

io
n

Face HIGH LOW MEDIUM HIGH LOW HIGH LOW
Finger print MEDIUM HIGH HIGH MEDIUM HIGH MEDIUM HIGH
Hand geometry MEDIUM MEDIUM MEDIUM HIGH MEDIUM MEDIUM MEDIUM
Keystrokes LOW LOW LOW MEDIUM LOW MEDIUM MEDIUM
Hand veins MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM HIGH
Iris HIGH HIGH HIGH MEDIUM HIGH LOW HIGH
Retinal scan HIGH HIGH MEDIUM LOW HIGH LOW HIGH
Signature LOW LOW LOW HIGH LOW HIGH LOW
Voice MEDIUM LOW LOW MEDIUM LOW HIGH LOW
Facial thermograph HIGH HIGH LOW HIGH MEDIUM HIGH HIGH
Odor HIGH HIGH HIGH LOW LOW MEDIUM LOW
DNA HIGH HIGH HIGH LOW HIGH LOW LOW
Gait MEDIUM LOW LOW HIGH LOW HIGH MEDIUM
Ear Canal MEDIUM MEDIUM LOW MEDIUM MEDIUM HIGH MEDIUM

Table 2.1: Comparison of biometric technologies [24]

2.1.1 Biometric Applications

Several biometric characteristics are in use in various applications. These applications of

biometrics can be divided into three main groups [41, 48]:

1. Commercial applications, such as computer network login, electronic data secu-

rity, ecommerce, internet access, ATM, credit card, physical access control, cellular

phone.

2. Government applications, such as national ID card, correctional facility, drivers li-

cense, social security, welfare-disbursement, border control, passport control, etc.

3. Forensic applications, such as corpse identification, criminal investigation, missing

children, etc.
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Traditionally, commercial applications have used knowledge-based systems, such as

PIN and passwords; however, these methods are not secure enough because passwords or

PINs are easy to crack and easy to forget. In addition, the password can be shared by

the user with his/her colleagues and then there is no way for the system to know who

the actual user is. Government applications have used token-based systems, such as ID

cards and badges. These systems have their problems as well. Firstly, the token or ID

card can be stolen, shared, duplicated or lost; whereas, biometrics cannot be stolen, lost

or forgotten. Only forensic applications have relied on human experts to match biometric

features. These days, biometric methods are also used more often for security purposes.

The first airport that applied biometrics for passengers verification was the Schipol airport in

Amsterdam (Netherlands). This airport is equipped with iris scans that validate passengers

(Privium) [5]. The border passage identifies a passenger using iris recognition. It is safe

and considerably faster compared with manual passport control. Such a system also exists

in Canada (CANPASS) [6] at the airports in the following cities: Edmonton, Winnipeg,

Calgary, Halifax, Ottawa, Montreal, Toronto and Vancouver.

2.1.2 Biometrics and Mobile Device

Biometric systems can be integrated with mobile devices such as cell phones in two ways

[40]: As a biometric collecting device or as a stand-alone system in order to protect unau-

thorized use of the mobile device such as cell phone. In the first, case Mobile devices are

used as collecting the biometric and then they are passing it via internet a remote location

(e.g., server) where it is processed and matched. This proves the usefulness for remote

transactions when the identity of the user has to be proven. As an example, the user log in

to the his bank account through the mobile web browser or through a banking software to
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make a transaction; he is going to introduce himself as Saifur Rahim and in order to verify

his identity he is asked to recite a pass phrase. The voice recording is done at the mobile

device and then sends to the server to be processed and compared with the sample that was

collected when the user enrolled in the system. Face, signature or key stroke are other bio-

metric traits that todays mobile devices have the capabilities to collect and transfer them to

remote location.

The other implementation of biometric system on mobile devices is that the entire bio-

metric authentication system resides on the mobile device and it serves the purpose of

preventing unauthorized access to the mobile devices functions and data.

Todays implementations of biometric systems on mobile devices include face recogni-

tions, voice recognitions, gait recognitions, signature recognitions and keystroke recogni-

tions for unimodal or multimodal authentication [40].

2.1.3 Limitation of Unimodal Biometric Systems

In real world applications there are several problems with unimodal biometric systems

which operate on a single biometric modality. The limitations of unimodal biometric sys-

tems are as follows [24]:

• Noise in sensed data: Noise can be present in the acquired biometric data mainly

due to defective or improperly maintained sensors. For example, accumulation of

dirt or the residual remains on a fingerprint sensor can result in a noisy fingerprint

image. Failure to focus the camera appropriately can lead to blurring in face and iris

images.

• Intra-class variations: Biometric data acquired from an individual during an authen-

tication session may be different from the data that was used to generate the template
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during enrollment. The variations may be due to improper interaction of the user with

the sensor (e.g., changes due to rotation, translation and applied pressure when the

user places his finger on a fingerprint sensor, changes in pose and expression when

the user stands in front of a camera, etc.), use of different sensors during enrollment

and verification, changes in the ambient environmental conditions (e.g., illumination

changes in a face recognition system) and inherent changes in the biometric trait

(e.g., appearance of wrinkles due to aging or presence of facial hair in face images,

presence of scars in a fingerprint, etc.).

• Distinctiveness: While a biometric trait is expected to vary significantly across indi-

viduals, there may be large inter-class similarities in the feature sets used to represent

these traits. This limitation restricts the discrimination power provided by the bio-

metric trait. Inter-user similarity refers to the overlap of the biometric samples from

two different individuals in the feature space.

• Non-universality: While every user is expected to possess the biometric trait being

acquired, in reality it is possible that some users do not possess that particular bio-

metric characteristic. The National Institute of Standards and Technology (NIST) has

reported that it is not possible to obtain a good quality fingerprint from approximately

two percent of the population (people with hand-related disabilities, manual workers

with many cuts and bruises on their fingertips, and people with very oily or dry fin-

gers) [3]. Hence, such people cannot be enrolled in a fingerprint verification system.

Similarly, persons having long eye-lashes and those suffering from eye abnormali-

ties or diseases like glaucoma, cataract, aniridia, and nystagmus cannot provide good

quality iris images for automatic recognition [4].
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• Spoof attacks: An individual may attempt to fake the biometric trait. It is easy for

behavioral characteristics, such as when signature and voice are used as an identifier.

Some of the limitations imposed by unimodal biometric systems can be overcome by

using multiple biometric modalities [8, 10, 28]. Multibiometric systems are described

in the next section.

2.2 Multimodal Biometric Systems

As the name suggests, multimodal biometric systems combine biometric information from

multiple sources to establish the authenticity of a person. As identified in [45], multimodal

biometric systems resolve, to a degree, the issue posed by non-universality. This is done

by taking into account multiple biometric traits that can better identify a person when used

in conjunction as opposed to a single modality. Multimodal biometric systems also act as

deterrent to spoof attacks by making it more difficult to replicate the information since any

illegitimate use will require the subject to imitate multiple features. More details have been

provided in the following sub-section.

2.2.1 Necessity of Multimodal Biometric Systems

In section 2.1.3, some limitations of biometric systems relying on a single trait or modality

have been identified. Multimodal biometric systems counter these limitations and present

an improvement in the authentication performance. These improvements have been listed

below:

• The noise present in the data due to factors such as defective equipment, alteration in

the biometric trait or limitations in the physical environment have a lesser probability
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of affecting multiple hardware and multiple traits. Hence, a multimodal biometric

system ensures improved performance.

• Intra-class variations are mitigated provided any degree of difference in user’s inter-

action with a particular component of a multimodal system is distributed over the

entire system during the authentication process, therefore, lessening its effects. The

probability of change in hardware throughout the system is also less compared to a

single modality biometric system.

• Inter-class variations are also mitigated provided the commonality in physical or psy-

chological traits within individuals is of much lesser probability than a single trait.

• Non-universality is addressed in multimodal biometric systems due to the increased

size of the biometric traits’ set. The probability of finding a biometric trait to authen-

ticate a user increases with an increase in the number of modalities.

• Spoof attacks are also limited in multimodal biometric systems, simply owing to the

number of biometric traits that must be imitated to carry out such an attack.

Multimodal biometric systems, consequently, provide an improved performance over uni-

modal systems in their ability to authenticate a user in presence of various limiting factors

discussed above. In addition, multimodal biometric systems also provide improved security

within the systems themselves.

2.2.2 Multimodal Biometric Systems−Schemes

As described in previous sections, a multimodal biometric system is created by combin-

ing various unimodal systems. The information retrieved in these individual systems is
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combined to create a multimodal system. According to Figure 2.3, in such systems, the

information can be combined through [36]:

1. Multi-sensor, in this system a single biometric trait is imaged using multiple sensors

in order to extract information from registered images. For instance, the face images

of an individual obtained using a thermal infrared camera and a visible light camera

[14].

2. Multi-modal, these systems combine the evidence presented by different body traits

for establishing identity. The cost of these systems is high since new sensors must be

added [13, 20, 37, 43].

3. Multi-instance, these systems use multiple instances of the same body trait. For

example, the left and right index fingers. These systems are cost-effective, because

they require neither new sensors nor new algorithms for feature extraction [24].

4. Multi-algorithm, in this system the same biometric data is processed using multiple

algorithms. This system does not require the use of new sensors and therefore is cost-

effective. For example, a texture-based algorithm and minutiae based algorithm can

operate on the same fingerprint image [24].

5. Multi-sample, in these systems a single sensor is used to obtain multiple samples

of the same biometric trait. For example, face pictures, frontal profile, left and right

profiles.
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Figure 2.3: Sources of multiple evidence in multimodal biometric systems [36]. In the first
four scenarios, multiple sources of information are derived from the same biometric trait.
In the fifth scenario, information is derived from different biometric traits
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2.2.3 Fusion in Biometrics

Combining information within multimodal biometric systems is referred to as the process of

fusing information. The information captured from various sources following the schemes

mentioned in the previous section can be fused at any of the following levels [16]:

Feature extraction level: Fusion at the feature extraction level stands for immediate

data integration at the beginning of the processing chain. The information extracted from

the different sensors is encoded into a joint feature vector, which is then compared to an en-

rollment template (which itself is a joint feature vector stored in a database) and is assigned

a matching score as in a single biometric system (see Figure 2.4).

Decision level: In this level, a separate authentication decision is made for each bio-

metric trait. These decisions are then combined into a final vote, as shown in Figure 2.5.

Methods proposed in the literature for decision level fusion include AND and OR rules

[2], majority voting [31], weighted majority voting [30], Bayesian decision fusion [60], the

Dempster-Shafer theory of evidence [60] and behavior knowledge space [29].

Matching score level: This level is also known as confidence level or measurement

level. Fusion at this level is much more effective than fusion at the decision level. Matching

score is a measure of similarity between features derived from a presented sample and a
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Figure 2.6: Block diagram of fusion at the matching score level

stored template. Each unimodal biometric system measures and calculates its own matching

score and these matching score are fused to reach a final match/non match decision based

on a certain decision threshold.

There are two approaches for consolidating the scores obtained from different matchers.

One approach is to formulate it as a classification problem where each biometric modality a

feature vector is constructed using the matching scores. This feature vector is then classified

into one of two classes: Accept (genuine user) or Reject (impostor user). In general the

classifier used in this scenario has the ability to learn the decision boundary irrespective

of generation of feature vector. The output scores of the different modalities can be non-

homogeneous (distance or similarity metric, different numerical ranges, etc). They are not
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required to be processed before being fed into the classifier.

The second approach combines the individual matching scores to generate a single

scalar score, which is then used to make the final decision. Since the matching scores

from the different modalities, normalization is required to transform the scores into a com-

mon domain. Snelick et el. [51] analyzed the advantages of fusion at matching score level

in several aspects. Firstly, matching score fusion does not affect the existing proprietary

biometric systems, allowing for a common middleware layer to handle the multimodal ap-

plication but with a small amount of common information. These existing and proprietary

unimodal biometric systems can be easily combined into a multimodal biometric system

given some basic information provided. Secondly, the data from prior evaluations of single-

modal biometric systems can be reused. This avoids live testing or re-running individual

biometric algorithms.

Another advantage is that the matching scores output by the matchers contain the second

richest information about the input pattern next to the feature vectors; however it is much

easier to access and to combine the scores generated by the different matchers compares to

fusion at the feature extraction level.

Consequently, integration of information at the matching score level is the most com-

mon approach in multimodal biometric systems nowadays.

2.3 Combination Approach to Score Level Fusion

When comparing two approaches for score level fusion, experiments indicate that the com-

bination approach performs better than the classification approach [44]; we will therefore

discuss more about combination approach to score level fusion.
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Prior combining score of different matchers into a single score, several issues need to

be considered. First of all, the match scores generated by the individual matchers may not

be compatible. For example, one matcher may output a distance (dissimilarity) measure

while another may output a similarity measure. Furthermore, the outputs of the individual

matchers may have different numerical scales (range). For example, one matcher may

output the interval within (0, 1) while another output the interval within (0, 100). Finally,

the match scores may follow different probability distributions. Normalization technique is

then used to address these problems.

2.3.1 Normalization methods

To address the problem of incomparable classifier output scores in different combination

classification systems, normalization methods are used to change the location and scale

parameters of the matching score distributions at the outputs of the individual matchers. In

such a way, various matching scores of different matchers are converted into a common

domain and can be combined later on [26].

It is highly desirable that the normalization of the location and scale parameters of the

matching score distribution must be robust and efficient. Huber [21] defines robustness as

insensitivity to the optimal estimate when the distribution of the data is known. Huber also

argues even though many techniques can be used for score normalization, the challenging

work is to identify a technique that can be both robust and efficient.

Below we discussed a list of normalization methods that are commonly used and their

robustness and efficiency have been examined [61]. We donate a raw matching score set

{Sk} of all the scores for a matcher, and the corresponding normalized score set as {S
′
k}.
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1. Min-max normalization: Min-max is the simple normalization technique. It is best

suited for the case where the bounds (maximum and minimum values) of the matcher

are known. In this case, we can easily shift the minimum scores to 0 and 1, respec-

tively. Min-max normalization keeps the original distribution of score except for a

scaling factor and transforms all the scores into a common range [0, 1].

The normalized score is give by

S
′
k =

Sk −min
max−min

,

We can estimate the minimum and maximum values for a set of matching score from

the training set even if the matching scores are not bounded. But the method is

not robust in the case as it is highly sensitive to outliers in the training set used for

estimation.

2. Decimal scaling normalization: Decimal scaling can be applied when the scores of

different matchers are on a logarithmic scale. For example, if one matcher has scores

in the range [0;1] and the other has scores in the range [0;100], the following normal-

ization could be applied.

S
′
k =

Sk

10n ,

Where n=log10max(si).

The problem with this approach is lack of robustness and the assumption that the

scores of different matchers vary by a logarithmic factor [26]. If the matching scores

of the modalities are not distributed on a logarithmic scale, then this normalization
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technique cannot be applied.

3. Z-score normalization: Z-score is one of the most commonly used score normaliza-

tion technique. The normalized score is calculated using the arithmetic mean and

standard deviation of the given data. If we have known the nature of the matching

algorithm, it will work well by using the scheme, otherwise we have to estimate the

average score and score variations of the matcher from a given set of matching scores.

The normalized scores are given by

S
′
k =

Sk −µ
σ

,

Where µ is the arithmetic mean and σ is the standard deviation of the given data.

4. Median and median absolute deviation (MAD) normalization: The median and me-

dian absolute deviation (MAD) is insensitive to outliers and the points in the extreme

trails of the distribution. Hence, median and MAD method are robust and is given by

S
′
k =

Sk −median
MAD

,

Where MAD = median (|Sk - median|).

5. Tanh-estimators normalization: The tanh-estimators introduced by Hampel et al. [17]

are robust and highly efficient.

The normalization is given by

S
′
k =

1
2

{
tanh

(
0.01

(
Sk −µGH

σGH

))
+1

}
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Where µGH and σGH are the mean and standard deviation estimates, respectively, of

the genuine score distribution as given by Hampel estimators.

Hampel estimators are used to reduce the influence of outliers in the distribution

based on the influence (ψ) - function below

ψ(u) =



u 0 ≤ |u|< a,

a∗ sign(u) a ≤ |u|< b,

a∗ sign(u)∗
(

c−|u|
c−b

)
b ≤ |u|< c,

0 |u| ≥ c.

The Hampel influence function can reduce the influence of the points at the tails of

the distribution (identified by a, b, and c) during the estimation of the location and

scale parameters, this method is therefore insensitive to outliers. However, tradeoff

between the robustness and efficiency of this method should be decided cautiously,

if too many points from the tail of the distributions are removed, estimation becomes

robust but not efficient. Otherwise efficiency increases and robustness goes down

when points from the tail are kept as many as possible. Practically parameters (a, b,

and c) are chosen depending on the amount of noise in the training data set because

it decides the extent of robustness the system requires.

2.3.2 Fusion Methods

In the famous theoretical framework [28] for consolidating the evidence obtained from

multiple classifiers, Kittler et al. offer a number of fusion schemes including Min rule, Max

rule, Sum rule and Product rule. These techniques can be applied to the system only if due

output of each modality is in the form of P(genune|X),where X is the input pattern. That is,
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what to be fused in the system is the posteriori probability of user being genuine given the

input biometric sample X However, practically most biometric systems output a matching

score s.

One solution is approximating P(genuine|X) by P(genuine|s) which can be calculated

from the matching scores. But Jain et al. [24] argue that without corresponding confidence

measure, the calculated value of P(genuine|s) is not a good estimate of P(genuine|X) and

this can result in poor recognition performance. Hence, when consolidating the matching

scores of individual modalities which dont offer confidence measure, it would be better to

combine the matching scores directly using an appropriate method without converting them

into probabilities.

In [61], the author has discussed the following commonly used fusion methodologies to

combine multiple modalities at the matching scores level.

If Si, is the matching score from ith modality, S represents the resulting fused score.

1. The Simple Product Rule combines the scores by multiplying all of the individual

scores,

S = S1 ∗S2 ∗ . . .∗Sn

2. The Simple Sum Rule combines the scores as a linear transformation.

S = (a1s1 −b1)+ . . .+(ansn −bn)

ai and bi represents the weights and biases, respectively, which can be specified by

the user.
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3. The Simple Max Rule is the maximum score from the different modalities.

S = Max(S1,S2, . . . ,Sn)

4. The Simple Min Rule is the minimum score from the different modalities.

S = Min(S1,S2, . . . ,Sn)

5. Biometric Gain against Impostor (BGI)/Likelihood Ratio of Genuine to Impos-

tor (LRGI)

The BGI is a very useful concept. It is a measurement about how many times more

likely we believe it that the claimant is an impostor, after having made biometric

measurements, than we believed it beforehand. Its mathematical definition is the

ratio of the a posteriori to the a priori probabilities of the claimant being an impostor

[48].

BGI =
Probability of being an imposter, given the biometric evidence too

Probability of being an impostor, given only prior knowledge

The modified BGI as the Likelihood Ratio of Genuine to Impostor (LRGI) is a very

good approximation to the BGI during most of the time.

BGI ≈ LRGI =
Probability of seeing evidence from an impostor

Probability of seeing it from the expected genuine subject

Every score that comes out of the biometric devices is transformed to the LRGI scale.

This is a score normalization process. Then the various scores are combined by mul-
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tiplication or by addition of log likelihood ratios. This characteristic of BGI/LRGI

fusion method exempts itself from score normalization in the sense it can normalize

and fuse the matching scores together and no normalization is needed when using

this fusion method.

Due to the fact some biometric traits can not be reliably obtained in some cases (e.g.,

good quality faces can not be obtained from users with dry faces), Jain and Ross

[23] have proposed the use of user specific weights for computing the weighted sum

of scores from the different modalities. For the example of dry face users, a lower

weight can be assigned to the face score while raising the weight to the scores of the

other modalities. The same scheme can be applied to threshold. Jain [24] has shown

that the use of user specific weights and thresholds can improve the performance by

approximately 3% and 2%, respectively. However, this method requires learning of

user-specific weights from the training scores available for each user.

2.4 Disadvantages of Multimodal Biometric Systems

Multibiometric systems also have a few disadvantages when compared to unibiometric sys-

tems. They are more expensive and require more resources for computation and storage

than unibiometric systems. Multibiometric systems generally require additional time for

user enrollment, causing some inconvenience to the user; however multibiometric systems

achieve better accuracies.



Chapter 3

Optimal Score Fusion Strategy

This chapter describes the approach that was implemented for this thesis research, including

systematic performance analysis, matching performance metrics and dynamic technique

selection in multimodal biometrics. Section 3.1 deals with the performance evaluation of

multimodal biometric systems with performance measurable. The next section provides a

literature review of the existing approaches of biometrics based authentication for mobile

computing. Section 3.3 first describes the method of systematic performance evaluation,

and then presents the new system for dynamic selection of biometric techniques according

to different noise conditions for optimized user authentication.

3.1 Performance Evaluation of Biometric Systems

Biometrics-based authentication has started to find its way into mobile computing for its

unique ability to prevent the theft, loss, and forgotting of user identification. The usage

of mobile devices, however, usually involves situations in which there is no control over

conditions such as lighting (e.g., indoor or outdoor, in sunny or cloudy days) and levels of

30
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Biometrics EER (%) FAR (%) FRR (%) Subjects Comments Reference

Face n/a 1 10 37437 Varied lighting, indoor/outdoor FRVT (2002)

Fingerprint n/a 1 0.1 25000 US Government operational data FpVTE (2003)

Fingerprint 2 2 2 100 Rotation and exaggerated skin distortion FVC (2004)

Hand geometry 1 2 0.1 129 With rings and improper placement (2005)

Iris <1 0.94 0.99 1224 Indoor environment ITIRT (2005)

Iris 0.01 0.0001 0.2 132 Best conditions NIST (2005)

Keystrokes 1.8 7 0.1 15 During months period (2005)

Voice 6 2 10 310 Text independent, multilingual NIST (2004)

Table 3.1: Error Rates of Biometric Systems using Standard Measurable

noise (e.g., at a bus stop or in a hotel lobby). The uncontrolled environment of usage re-

sults in unstable performance, and real-world circumstances have become major factors in

slowing down the acceptance of biometrics-based authentication in mobile computing. The

performance of biometric systems is an important issue not only in high security applica-

tions in government organizations, like forensics in crime analysis, but also in commercial

applications like mobile computing [38].

Table 3.1 is a comparison table that lists the error rates based upon different modalities

using different reference databases [53]. (EER, FAR and FRR are measurable units for

biometric systems explained in the following sections)

3.1.1 FAR (False Accept Rate)

FAR represents the frequency with which a given biometric system identifies an impostor

as a genuine subject. Mathematically, the FAR is the ratio of successful fraudulent attempts

and the total number of fraudulent attempts. This is denoted by

FAR(n) =
successful fraudulent attempts made for identity n

all fraudulent attempts made for identity n

where n is a unique identity.
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The overall FAR of a biometric system can be calculated as an average using the formula

FAR(n) =
1
N

N

∑
n=1

FAR(n).

where N represents all identities being evaluated by the system. The FAR represents a

statistical value, and therefore is dependent on the size N of the identities against which the

biometric system is tested as well as the number of fraudulent attempts made.

3.1.2 FRR (False Reject Rate)

The FRR represents the frequency with which a biometric system rejects a genuine user,

failing to correctly match the provided biometric input with the stored template. Essentially,

the FRR is the ratio of the number of failed authentication attempts for genuine users and

the total number of authentication attempts made by genuine users. The formula for the

FRR is denoted by

FAR(n) =
rejected genuine attempts made for identity n

all genuine attempts made for identity n

where n is a unique identity in the system. The overall FRR of a biometric system can be

calculated by finding the average through the formula,

FRR(n) =
1
N

N

∑
n=1

FRR(n).

where N represents all identities within the biometric system.

Similar to the FAR, the FRR represents a statistical value dependent on the size N
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of the identities against which the biometric system is tested as well as the number of

authentication attempts made.

3.1.3 GAR (Genuine Accept Rate)

The GAR represents the frequency in which a biometric system accepts genuine users as

authentic. The GAR is related to the FRR through the formula

GAR = 1−FRR

To measure the performance of a biometric system, the FAR is usually mapped against the

GAR in an ROC curve.

3.1.4 EER (Equal Error Rate)

The FAR and the FRR are both performance measures that rely on the chosen threshold

values. On the other hand the Equal Error Rate, EER, on the other hand is independent

of the threshold. In general, the EER is the value on the ROC curve where the FAR and

FRR are equal. A low value of EER is considered to represent a biometric system with

highly accurate performance. A trade-off between FAR and FRR is achieved by varying

the acceptance threshold, so that as errors of one type decreases, errors of the other type

increases. Thus, EER is a common way of evaluating the performance of a biometric

system. Figure 3.1 is a representative ROC curve identifying the EER.
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Figure 3.1: ROC curve indicating the Equal Error Rate (EER), where EER = FRR = FAR

3.2 Prior Work and Motivation

At the current stage of development, several multimodal biometric systems have been pro-

posed for mobile and hand held devices, but most of them perform poorly in the presence

of various noises. To improve the performance of multimodal biometric authentication sys-

tem on handheld and mobile devices, H. Shaber proposed a simple mobile phone security

system using biometrics for voice and finger print recognition [49]. Unfortunately, he did

not present any experiments that could show the effectiveness of the proposed system.

In the approach presented in [40] by Pocovnicu, several biometric traits were proposed

for mobile phone authentication, including finger prints, facial features, and handwritten

signatures. This system has limited use in mobile computing as it requires the use of a

fingerprint scanner, which is only available on very few mobile devices.

Vildjiounaite et al. proposed a method in [54] for the authentication of frequent mobile

device users, and tested it in offline experiments on a database of 31 persons. The database
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contained voice clips recorded at different noise levels and gait data with three placements

of accelerometer module - in hand, in the breast pocket, and in the hip pocket. Experiment

results showed that performance was significantly improved in comparison to performances

using individual modalities. However, gait recognition works only when the user is in

motion, and therefore has a limited use in practice.

Using face and voice, Hazen et al. developed a user verification system on an iPAQ

handheld computer [18, 19]. This system showed good performance in experiments with

a database of 35 persons in a strictly controlled low-noise environment. The system also

conducted experiments with faces under different lighting conditions but with front images

only. The authors acknowledged that the rotation of faces presents additional challenges

compared to the recognition of frontal images, but they expect that users will cooperate with

the system during the identification process and will generally be looking at the handheld

computer screen while using it.

In addition, mobile devices are often used under noisy conditions in which voice recog-

nition does not produce reliable results. For example, Lee et al. reported in [32] that the

measured SNR inside a car can vary between plus 15 and minus 10 dB. Similar situations

may occur in places where there is heavy traffic, e.g. at intersections, or other machinery

in the vicinity. The performance of face recognition also depends on lighting/illumination

conditions.

Though the performance of recognition with voice under noisy conditions and with

face under changed illumination is not satisfying, a combined approach may produce better

results. However, actual results depend on the chosen metric techniques and on the perfor-

mance of each modality. If one of the modalities is significantly worse than the others, the

performance of the multimodal system can even be poorer than that of the best modality
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[45].

Despite continuous efforts made by different researchers to combine different biomet-

rics techniques, there is a clear shortage of systematic studies of the outcome from com-

binations of relevant techniques, especially in real life conditions. The next section fills

in the blanks, and presents a new system for the dynamic selection of fusion methods and

normalization techniques based upon joint performance scores in different noise scenarios.

3.3 Proposed Approach

This section first presents a method for the systematic evaluation of performance in combi-

nations of normalization and fusion techniques under the influence of noises. An authen-

tication system is then proposed to dynamically select optimal combinations for different

noisy environments.

3.3.1 Systematic Performance Evaluation

In an authentication system for handheld or mobile devices, the selection of fusion and

normalization techniques is controlled by the system, but the condition of noise is uncon-

trollable as it depends on the usage of the device. For the purpose of systematic perfor-

mance analysis and dynamic selection of biometric techniques, an evaluation matrix can be

constructed with both controllable technical factors and uncontrollable noise factors [61].

As shown in Table 3.2, this matrix consists of three regions. The left region contains u

controllable technical factors (cf), n combinations of the controllable factors (cfc), and an

n× u array of their combination values (c f v). Similarly, the upper-right region contains v

uncontrollable noise factors (nf), m combinations of the uncontrollable factors (nfc), and a
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ncf1 … ncfm  

nfv1,1 … nfv1,m nf1 

… … … … 

nfvl,1  nfvl,m nfl 

 

… … … … 

 cf1 … cfu nfvv,1 … nfvv,m nfv 

cfc1 cfv1,1 … cfv1,u r1,1 … r1,m 

… … … … … … … 

cfci cfvi,1 … cfvi,u ri,1 … ri,m 

… … …  … … … 

cfcn cfvn,1 … cfvn,u rn,1 … rn,m 

 

 

Table 3.2: Evaluation matrix for multimodal biometric systems

v×m array of their combination values (n f v).

The lower right region of the matrix is the array R whose elements ri, j, 1 ≤ i ≤ n and

1 ≤ j ≤ m, record experiment results. The impact of operational precision is studied by

conducting experiments on the configurations that associate all combinations of the con-

trollable technical selections with all combinations of the uncontrollable noise influence.

This procedure simulates the variation in performance of multimodal biometric systems in

practical situations, and the results fill the evaluation matrix in its two arrays [c f vi,l] and

[n f vk, j], where 1 ≤ i ≤ n, 1 ≤ l ≤ v, 1 ≤ k ≤ u, and 1 ≤ j ≤ m. When the combination of

different noise conditions is too large for the evaluation matrix to handle, statistical analysis

offers the mechanism to help reduce the size of arrays with orthogonal arrays [46].

Using the combinations of controllable and uncontrollable factors in the evaluation ma-
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trix, experiments can be conducted to produce results according to pre-determined per-

formance metrics for typical Genuine Accept Rate (GAR) or False Accept Rate (FAR).

Experiment results are then filled into the elements of array R. As each column of R relates

to a specific scenario of noise condition, experiment results based upon the chosen metrics

then provide the information about which combination of normalization and fusion methods

performs the best in a particular environment of usage for the mobile device, thus allow-

ing the proposed authentication system to make the best choice for optimal performance in

practice.

3.3.2 Dynamic Selection of Optimal Combinations

Figure 3.2 illustrates the proposed algorithm that uses simple arithmetic to determine differ-

ent noise scenarios for the individual matcher from trained data for individual modalities,

such as face and voice. Environmental noise conditions can be determined by the matching

score generated by the matchers under that noise scenario. Each biometric classifier gen-

erates a distinctly separable matching score in different noise scenarios. The mean value

of matching score indicates the particular noise condition. There are four actions for the

system at the training stage:

1. Enroll users with biometric traits acquired in noise free condition.

2. Authenticate users in different noise conditions separately.

3. Calculate the average (mean) of genuine scores in each noise condition.

4. Follow 1-3 for each modality.

The mean values distinguish noise scenarios by the similarity of the matching score with

the mean value in a noise condition.
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Algorithm Biometric Technique Selector 

Input:  
  n: Number of matchers 

  S: Array containing matching scores from biometric matchers {s1, s2, .... sn} 

  A: Array containing mean values in different noise conditions of every matcher 

 {M 1, M2, M3, ....., Mn} 

Where, M i = Array of mean values in different noise conditions for the i
th

 matcher 

  HN-F: Hash table of normalization-fusion combination  

Output: Selected Normalization-Fusion Combination 
   

  for i = 1 to n 

        min_value = max_possible {Contains minimum value for matcher i} 

        for j = 1 to Mi.length 

              min_value = min(min_value, CalculateDistance(Si, Mi[j]) 

         end for 

        NoiseCondition[i] = FindNoiseCondition(Mi, min_value) 

   end for 

    optimal-combination = SelectNormFusion(HN-F, noiseCondition)  

    return optimal-combination

End Algorithm 

1

2

3

6

4

5

7

8

9

Figure 3.2: Algorithm for dynamic selection of biometric techniques

The inputs of the algorithm are the matching scores S from each of the classifiers,

calculated mean values A = {M1,M2, . . . ,Mn} (where, Mi contains the mean values for

ith matcher ) during the training stage of every noise condition for each modality. Hash

table HN-F contains robust fusion methods with normalization techniques that were se-

lected after analyzing the evaluation matrix result. At the time of authentication: for each

modality, the matching score is compared with every mean values in Mi of the correspond-

ing modality i in order to find the minimum distance and stores in min value. Function

FindNoiseCondition uses this minimum distance min value with the mean value array

Mi (for ith matcher) and identifies the noise condition for that modality. The same steps
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are repeated for every modality and noise conditions are stored in array NoiseCondition.

The SelectNormFusion function then uses this array NoiseCondition containing all the

determined noise conditions to select the normalization and fusion combination from the

hashtable HN −F .

Time Complexity

For every modality, the algorithm iterates through all corresponding mean values in Mi.

There are n modalities and let, m = max(length(M1), length(M2), ....length(Mn)). Thus

the running time is T (n) : O
(
n×m

)
.

Shown in Figure 3.3 is the block diagram of the proposed system. In the diagram, mul-

timodal biometric traits are acquired by the mobile device, and sent over the network to the

remote server where feature vectors F1,F2, . . ., FN are extracted. At the server, these fea-

ture vectors are employed to generate matching scores s1,s2, . . ., sn from the corresponding

templates acquired during the registration. The proposed system then follows the algorithm

in Figure 3.2 to analyze the individual matching score and to identify the noise condition

of the mobile device that is acquiring the biometric trait. The dynamic selection of normal-

ization and fusion techniques finally takes place in correspondence with their performance

of authentication during training for different noise conditions in real-life scenarios.
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Figure 3.3: Proposed system: Dynamic selection of score-level fusion with normalization



Chapter 4

Experiments and Discussions

To verify the presented concepts, we constructed a multimodal face and speaker identifica-

tion system and conducted experiments on an offline database in two parts. The first part

performs a systematic analysis and identifies the best combinations of fusion methods and

normalization techniques in different noise scenarios. The second part of the experiment

evaluates the performance of the proposed system of multimodal biometric authentication

in different illumination and acoustic noise scenarios and compares the results with existing

techniques using the Equal Error Rate (EER).

4.1 Database Selection and Description

For our experiment’s purpose, the following two databases were selected:

(a) Pose Illumination Expression (PIE) database: The CMU Pose, Illumination, and Ex-

pression (PIE) database [50] contains facial images (640x486 pixels) of 68 people

acquired across different poses, under different illuminations/lightings, and with dif-

ferent facial expressions. There are 384 images of each person in different illumina-

42
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Figure 4.1: A sample image from CMU PIE database

tions/lighting conditions. The main reason for the selection of the CMU PIE database

was that it has been extensively used to analyze facial images under different illumi-

nations and in different poses and to benchmark the development of facial recognition

algorithms to handle such distortions. Figure 4.1 is a sample image from the CMU

PIE database.

(b) The MIT Mobile Device Speaker Verification (MIT MDSVC) Corpus: The MIT Mo-

bile Device Speaker Verification Corpus [59] contains two sessions. Each session

consists of the same 48 speakers with 54 speech samples per user. Data was collected

in three different locations (a quiet office, a mildly noisy lobby, and a busy street

intersection) as well as with two different type of microphones (the built-in internal

microphone of the handheld device and an external earpiece headset) leading to six

distinct test conditions with nine speech samples in every condition. Table 4.1 shows

a sample list of the phrases spoken in each session during the time of data collection.
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Office Lobby Intersection
alex park alex park alex park
peppermint stick pralines and cream chunky monkey
ken steele ken steele ken steele
peppermint stick pralines and cream chunky monkey
thomas cronin thomas cronin thomas cronin
peppermint stick pralines and cream chunky monkey
sai prasad sai prasad sai prasad
peppermint stick pralines and cream chunky monkey
trenton young trenton young trenton young

Table 4.1: A sample list of phrases spoken in each session

4.1.1 Generation of the Multimodal Database

Two separate multimodal databases were constructed for our experiments by merging the

two databases (of 48 users each) described above. The databases were constructed as fol-

lows: 15 facial images (of 5 for each illumination/lighting condition: normal, dark and

bright) and 15 voice samples recorded by an internal microphone (of 5 for each location:

a quiet office, a mildly noisy lobby and a busy street intersection). In our databases, facial

images were not confined only to frontal images in [18, 19] or to the same expression. The

mutual independence assumption [44] of biometric traits allowed us to randomly pair the

users from the two sets. In this way, a multimodal database consisting of 48 virtual users

was constructed with each user having 15 (5 for each noise condition) biometric templates

for each modality. The biometric data captured from each user is compared with that of all

other users in the database under the same noise condition (e.g., mildly lobby) leading to

one genuine score vector and 47 impostor scores for each distinct input. Thus, 240 (48 x 5)

genuine score vectors and 11280 (48 x 5 x 47) impostor score vectors were obtained from

this database under each noise condition.

The first database was used to systematically evaluate multimodal biometric authenti-
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cation systems in order to identify the best combination of normalization techniques and

fusion methods and also to train our proposed authentication system. The later database

was used for evaluating the performance of our proposed system.

4.2 Experimental Setup

All of the experimental results were collected using the same hardware configuration for

both the systematic performance evaluation and the proposed system for all experiments: a

laptop with an AMD TurionTMX2 processor running at a speed of 2.00GHZ and containing

3 GB of RAM. The developed application is in C#, Java and Matlab R2009b.

4.2.1 MUBI Off-line- Analysis Tool

MUBI is an offline multimodal biometric analyzer tool that can be downloaded from the

Center for Identification Technology Research (CITeR) web site run by the department of

Computer Science and Electrical Engineering at West Virginia University

http://Www.citer.wvu.edu/downloads/software.php

MUBI was developed as an independent multimodal biometrics system analysis tool in

a great effort to empower biometric system designers to evaluate different normalization

and fusion methods and to choose the the best integration techniques in the context of their

application [47].

The inputs of the MUBI tool are the genuine and the impostor scores for each modality.

Several modalities (for our experiment: face matching scores and voice matching scores)

can be added to make up a multimodal biometrics system so as to evaluate the performance

of this hypothetical system. After the modalities have been added to the system, the densi-

http://Www.citer.wvu.edu/downloads/software.php
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ties of genuine and impostor scores for each modality can be plotted, the data partitioning

of a chosen method can be created and a number of normalization and fusion methods can

then be employed. A ROC curve will eventually be plotted for the system designer to study

the performance of the selected combination of techniques using the GAR and the FAR.

4.2.2 Selection of Noise Factors

For the selection of the combination of normalization and fusion method in different noise

scenarios, we selected the following illumination and acoustic noise scenarios to mimic the

real world scenarios when the authentication will take place on the mobile device:

(a) For the face database:

(i) Normal lighting condition.

(ii) Bright lighting condition (Low contrast).

(iii) Dark (High contrast).

(b) For the voice database:

(i) Office (Quiet).

(ii) Lobby (Mild noise).

(iii) Busy Street Intersection (Loud noise).

Therefore, in total we had the following nine different combinations of illumination and

acoustic noise scenarios:

1. Normal lighting condition, Office (Quiet).

2. Normal lighting condition, Lobby (Mild noise).
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3. Normal lighting condition, Busy Street Intersection.

4. Bright lighting condition (Low contrast), Office (Quiet).

5. Bright lighting condition (Low contrast), Lobby (Mild noise).

6. Bright lighting condition (Low contrast), Busy Street Intersection.

7. Dark (High contrast), Office (Quiet).

8. Dark (High contrast), Lobby (Mild noise).

9. Dark (High contrast), Busy Street Intersection.

4.2.3 Selection of Controllable Factors

The following normalization and fusion methods were selected as controllable factors [61]

for the systematic performance evaluation:

A. Normalization:

1. Min-Max.

2. Decimal Scaling.

3. Z-Score.

4. MAD.

5. Tanh.

B. Fusion:

1. Simple Sum.
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2. Simple Product.

3. Simple Maximum.

4. Simple Minimum.

5. BGI.

4.2.4 Evaluation Matrix

There are a total of 21 different controllable factors: 20 combinations created by pairing

the first four fusion methods with all of the different normalization techniques and BGI,

which uses its own normalization. A hold-out partition scheme [47] was selected for cross

validation in the MUBI tool. Table 4.2 was the evaluation matrix we used to identify the

best combination of normalization and fusion methods under our selected noise conditions.

4.2.5 Face Detection & Recognition

Identifying people from images of their faces is a widely studied problem. A thorough

review of the literature on this topic is available in [62]. In this section, we discuss only the

technologies used in our experiments.

Before face recognition techniques are applied, the face must first be detected and lo-

cated within a given image. The Viola-Jones face detection algorithm (which is based on

a boosted cascade of feature classifiers) is a commonly used approach which we have used

as our face detection algorithm [55].

We used 40 components based Eigenface coefficients to represent features of the facial

image [52] for face identification. The Euclidean distance between the Eigenface coeffi-

cients of the face template and that of the inputted face was used as the matching score.
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1 2 3 4 5 6 7 8 9 No  

1 1 1 2 2 2 3 3 3 a 

No A B 1 2 3 1 2 3 1 2 3 b 

1 1 1          

2 1 2          

3 1 3          

4 1 4          

5 2 1          

6 2 2          

7 2 3          

8 2 4          

9 3 1          

10 3 2          

11 3 3          

12 3 4          

13 4 1          

14 4 2          

15 4 3          

16 4 4          

17 5 1          

18 5 2          

19 5 3          

20 5 4          

21 * 5          

 

 

Table 4.2: Evaluation matrix for face and voice multimodal biometric systems
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4.2.6 Speaker Recognition

Our speaker recognition was text-independent and was performed using the widely known

MASV (Munich Automatic Speaker Verification) environment [1]. MASV uses a Gaussian

Mixture Models (GMM) classifier and allows changes to be made in many of the input

parameters, including the number of GMM components and the feature set based on Mel

Frequency Cepstrum Coefficients (MFCC). The GMM in our verifier used 32 components

and the feature vector contained 39 components. The world model was generated from a

small subset of the training samples.

4.2.7 Training

The face and speaker recognition systems were trained on the enrollment data for 48 users

from the first database and the second database was used for evaluation. During the training

phase, a hold out partition (2:3) was used for enrollment and threshold traiting on the devel-

opment dataset. The threshold for multi-biometric authentication was selected with respect

to 1% FAR. For evaluation purpose, face identification scores from the testing dataset were

pairwise combined with speaker identification scores under different lighting and acoustic

noise scenarios to imitate the practical working environments.

4.3 Results and Analysis

Our experiments demonstrate the benefits of dynamically selecting and applying different

combinations of normalization and fusion methods in different noise scenarios. After 181

experiments were carried out using the MUBI tool [47], the results were recorded in the

evaluation matrix as seen in Table 4.3.
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1 2 3 4 5 6 7 8 9 No 

1 1 1 2 2 2 3 3 3 a 

No A B 1 2 3 1 2 3 1 2 3 b 

1 1 1 99.842 97.842 96.514 98.571 96.28 96.012 97.224 96.885 94.221 

2 1 2 95.101 95.891 94.783 95.01 94.451 94.236 95.891 94. 257 93.942 

3 1 3 86.15 87.551 85.12 85.447 84.521 83.265 85.447 84.4 49 83.221 

4 1 4 95.121 93.379 93.987 93.678 93.454 93.334 94.234 94 .965 93.798 

5 2 1 88.02 87.01 86.453 83.464 87.464 84.454 83.654 86.6 53 83.024 

6 2 2 95.541 94.579 86.454 82.756 84.453 85.234 83.456 86 .234 83.024 

7 2 3 90.234 90.01 84.453 83.454 85.464 78.443 84.464 78. 675 78.012 

8 2 4 87.354 87.031 83.454 84.343 83.245 84.264 87.235 86 .454 83.157 

9 3 1 99.421 97.225 96.456 96.343 96.343 95.342 96.645 95 .454 94.789 

10 3 2 94.247 94.278 94.342 94.454 94.343 94.353 94.324 93 .245 89.386 

11 3 3 84.915 84.783 85.342 84.645 84.343 83.343 84.342 83 .234 82.541 

12 3 4 99.051 96.865 93.234 94.234 94.243 93.234 95.676 96 .754 89.241 

13 4 1 99.354 97.012 97.531 96.354 96.968 96.024 96.552 97.025 95.01 

14 4 2 98.022 96.893 96.243 96.23 96.01 96.01 96.23 92.78 89.521 

15 4 3 98.334 96.037 96.464 96.575 96.234 95.365 96.454 96 .236 94.637 

16 4 4 97.983 95.769 95.354 95.465 95.745 95.33 94.343 96. 345 95.842 

17 5 1 99.542 96.022 94.157 95.236 96.327 97.152 92.841 95.573 96.421 

18 5 2 99.01 94.541 94.533 96.256 95.243 94.453 92.75 96.5 6 90.02 

19 5 3 99.212 93.247 95.865 95.354 95.345 95.675 96.364 96 .365 90.24 

20 5 4 99.234 93.247 93.543 93.567 93.676 93.867 93.686 93 .454 92.341 

21 * 5 98.101 97.542 97.021 97.051 97.741 95.542 98.112 97.237 95.015 

A1--A5: Min-Max/ Decimal Scaling/ Z-Score/ Median a nd MAD/ Tanh-Estimators 
B1--B5: Simple Sum/ Simple Product/ Simple Minimum/ Simple Maximum/ BGI 
a1--a3: Normal lighting / Bright lighting  (Low contrast)/ Dark (High contrast).
b1--b3: O!ce (Quiet)/ Lobby (Mild noise)/ Busy Street Intersection. 

Table 4.3: Experiment results of performance evaluation (GAR (%) at 1% FAR)
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No. Noise Scenarios Normalization-Fusion

1 normal lighting, office (quiet) Min-Max, Simple Sum

2 normal lighting, lobby (mild noise) Min-Max, Simple Sum

3 normal lighting, busy street intersection Median and MAD, Simple Sum

4 bright lighting (low contrast), office (quiet) Min-Max, Simple Sum

5 bright lighting (low contrast), lobby (mild noise) BGI

6 bright lighting (low contrast), busy street intersection Tanh, Simple Sum

7 dark (high contrast), office (quiet) BGI

8 dark (high contrast), lobby (mild noise) Median and MAD, Simple Sum

9 dark (high contrast), busy street intersection Tanh, Simple Sum

Table 4.4: Selected normalization techniques and fusion methods from evaluation matrix

In the table, the fusion-normalization combination that produces the best performance

under each of the nine noise conditions is highlighted. The combinations are Min-Max,

Simple Sum for the first, second, and forth; MAD, Simple Sum for the third and eighth;

Tanh, Simple Sum for the sixth and ninth; and BGI for the fifth and seventh noise condi-

tions.Table 4.4 lists these selected combinations from the evaluation matrix.

The second part of the experiment evaluates the performance of the proposed system of

multimodal biometric authentication in different illumination and acoustic noise scenarios,

and compares the results with existing techniques using EER.

Since our face and speaker recognition systems were trained with a fairly small amount

of data, their performances were not as good as the top results achieved in face recogni-

tion [56] or in speaker recognition [12], although a comparison with state-of-the-art ex-

periments is difficult because the databases are different. In our experiments the EER for

face recognition under normal lighting was 2.23% and the performance under bright/dark

conditions is shown in Table 4.5. The EER for clean speech in an office environment was

8.635% and the performance under noisy conditions is shown in Table 4.6.
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Authentication Location Normal Lighting Bright Lighting Dark Lighting

GAR 97.04% 94.13% 92.4%

FAR 1.8% 1.87% 2.10%

EER 2.23% 4.12% 4.85%

Table 4.5: GAR/FAR/EER for face recognition under different lighting conditions

Authentication Location Office Lobby Intersection

GAR 85.98% 78.98% 64.57%

FAR 3.25% 4.28% 6.25%

EER 8.635% 12.65% 17.84%

Table 4.6: GAR/FAR/EER for speaker recognition under different noise conditions

Table 4.7 provides the results for combined face and voice recognition in which the

combination of fusion methods and normalization techniques has been dynamically se-

lected as the one with the best performance in training. Figures 4.2-4.4 further put the two

approaches together graphically for comparison.

No. Lighting Recording GAR (%) FAR (%) EER (%)

1 normal lighting office 98.684 0.924 1.12

2 normal lighting lobby 98.564 0.944 1.19

3 normal lighting street 97.57 1.025 1.73

4 bright lighting office 96.465 0.925 2.23

5 bright lighting lobby 95.612 0.952 2.67

6 bright lighting street 94.47 1.13 3.83

7 dark office 94.274 0.974 3.35

8 dark lobby 92.833 0.993 4.08

9 dark street 92.705 1.245 4.27

Table 4.7: Combined Performance of Proposed system.
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Figure 4.2: Performance in EER (%) of the combined face and speaker recognition classi-
fiers at different lighting and acoustic noises by comparison with face and speaker recogni-
tion alone
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tion alone
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Figure 4.4: Performance in FAR (%) of the combined face and speaker recognition classi-
fiers at different lighting and acoustic noises by comparison with face and speaker recogni-
tion alone
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Table 4.8: Comparison of dynamically selected combination with all other combinations in
noise condition No.1 (normal, office)
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No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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Table 4.9: Comparison of dynamically selected combination with all other combinations in
noise condition No.2 (normal, lobby)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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Table 4.10: Comparison of dynamically selected combination with all other combinations
in noise condition No.3 (normal, street)
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No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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Table 4.11: Comparison of dynamically selected combination with all other combinations
in noise condition No.4 (bright, office)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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Table 4.12: Comparison of dynamically selected combination with all other combinations
in noise condition No.5 (bright, lobby)
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Table 4.13: Comparison of dynamically selected combination with all other combinations
in noise condition No.6 (bright, street)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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Table 4.14: Comparison of dynamically selected combination with all other combinations
in noise condition No.7 (dark, office)



CHAPTER 4. EXPERIMENTS AND DISCUSSIONS 59

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

A 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 * 

B 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 

G
A

R
(
%

)
 

8
6
.8

8
5

 

9
0
.2

5
7

 

8
4
.1

4
9

 

8
8
.9

6
 

8
5
.5

3
 

8
5
.2

3
4

 

7
8
.7

5
 

8
5
.5

4
 

8
4
.5

4
 

8
9
.4

5
7
 

8
3
.2

4
 

8
6
.5

4
 

9
2
.8

3
3
 

8
4
.7

8
1
 

8
6
.3

6
 

8
6
.4

5
1
 

8
5
.7

3
 

8
6
.1

5
6

 

8
6
.3

6
5

 

9
0
.4

5
4

 

9
0
.3

7
8
 

F
A

R
(
%

)
 

1
.0

2
5

 

1
.3

5
1

 

1
.0

2
3

 

1
.0

3
7

 

1
.0

3
7

 

1
.0

1
2

 

1
.3

2
1

 

1
.2

1
2

 

1
.2

4
7

 

1
.1

4
7

 

1
.2

5
5

 

1
.2

6
4

 

0
.9

9
3

 

1
.2

4
 

1
.1

2
 

1
.1

8
 

1
.0

2
3

 

1
.2

9
5

 

1
.0

2
4

 

1
.0

4
5

 

1
.2

3
 

E
E

R
(
%

)
 

7
.0

7
 

5
.5

4
7
 

8
.4

3
7
 

6
.0

3
9
 

7
.7

5
4
 

7
.8

8
9
 

1
1

.2
8
6
 

7
.8

3
6
 

8
.3

5
4
 

5
.8

4
5
 

9
.0

0
8
 

7
.3

6
8
 

4
.0

8
 

8
.2

3
 

7
.3

8
 

7
.3

6
5
 

7
.6

4
7
 

7
.5

7
 

7
.3

3
 

5
.2

9
6
 

5
.4

2
6
 

 

Table 4.15: Comparison of dynamically selected combination with all other combinations
in noise condition No.8 (dark, lobby)

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
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Table 4.16: Comparison of dynamically selected combination with all other combinations
in noise condition No.9 (dark, street)
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In examining the results, first of all, experiment results in Table 4.3 provide clear ev-

idence of the need for the dynamic selection of normalization-fusion combinations, as no

single combination works the best in all noise conditions. The results in Figure 4.2 demon-

strate that the proposed system produces significant performance improvement over indi-

vidual modality. The best EER achieved in a normal lighting, quiet office environment was

1.12%, but under dark, lobby and dark, noisy street environment the EER rose up to 4.08%

and 4.27% respectively.This degradation in normalized and fused performance is due to a

higher EER for face and voice modality in noisy environment. This result is consistent with

the observation made in Chapter 2 about poor combined performance due to the poor per-

formance of a modality. However, combined performance is always better than individual

recognition performance alone. The performance in GAR (%) is shown in Figure 4.3. The

combined approach always outperforms the individual modality alone.

Figure 4.4 also shows the significant improvement of FAR compared to face and speaker

recognition alone. FAR is an important metric for a multimodal biometric authentication

system performance as lower FAR reduces the chance of impostors being identified as

legitimate users by the system.

Figures 4.8-4.16 show the comparison of the dynamically selected combinations that

were selected during training with the other combinations in every noise condition. From

these tables, we can observe that the the dynamically selected combination always out

performs other combinations as it is the best in performance among all.

Tables 4.17 and 4.18 show the performance of the proposed biometric technique selec-

tion algorithm in terms of the number of correct noise condition identification.

Also, our proposed authentication scheme will use limited processing power in a mobile

device. Facial image of and voice sample from the claimant will be acquired in the mobile
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Lighting condition Correct identification
normal 98.47%
bright 95.878%
dark 97%

Table 4.17: Lighting condition selection performance of the algorithm

Acoustic noise condition Correct identification
office (quiet) 99.5%
lobby (mild noise) 98.6%
busy street intersection 98.2%

Table 4.18: Acoustic noise condition selection performance of the algorithm

device. The size of voice sample is on average 50KB. The face detection will be done in the

mobile device, that significantly reduces the size of a face image, on average 3KB for our

image database. These facial image and voice recording will be then transmitted over the

internet to the authentication server where the preprocessing of data, feature extraction and

actual identification will take place. The identification result will then be sent back to the

mobile device. Due to the small size of the image and the recorded voice, our authentication

system can be implemented for those mobile devices that use not only WIFI and 3G but also

a low speed EDGE network.

Though it is difficult to make comparison between different multimodal biometric au-

thentication techniques based on different modalities, algorithms and databases, here we

just compared the performance achieved by a gait and speaker based authentication system

[54]. In a clean speech environment, this system achieved an EER of 2.19% at best when the

accelerometer device was in the breast pocket while our system achieved an EER of 1.12%

under normal lighting and quiet office environment. When the authentication took place in

a bright lighting, quiet office environment or in a dark, quiet office environment, the EER
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of our system rose up to 2.23% and 3.35% respectively. However, a frequently encountered

urban noise type is mild city noise and busy street noise (e.g., car noise). In both cases, our

system achieved better performance than the multibiometric gait and speaker authentica-

tion system where the best EER for those two conditions based on the accelerometer device

position were 4.91% and 8.44% respectively.



Chapter 5

Conclusions and Future Works

Multimodal biometrics refers to an automatic recognition of a person based on more than

one of his/her behavioral and/or physiological characteristics. Many businesses/government

organizations have already applied multimodal biometric methods in practice, mostly for

identification or authentication purposes; however, more of work is left to improve the ac-

curacy rates in various environmental noise scenarios. Multimodal biometrics has been

adopted in a variety of large scale identification applications, such as border control, crimi-

nal investigations and security.

In this thesis, we proposed a new approach of user authentication for use on handheld

and mobile devices. In this approach, a systematical method played an important role in per-

formance evaluation of different combinations of fusion methods and normalization tech-

niques in different noise scenarios. The systematic performance evaluation made possible

for the development of an algorithm and the construction of an authentication system to dy-

namically select combinations of biometrics techniques that produces optimal performance

in environments where user authentication takes place in practice. The key contributions of

the thesis can be summarized as follows:

63
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• We extended the previous research that uses the technique of Design of Experiments

to show the importance of investigating and systematically analyze the performance

of different score-level fusion methods with normalization techniques in different

noise scenarios for the purpose of the designing a robust multimodal biometric au-

thentication system for mobile or handheld devices that will be operated in different

noise scenarios.

• We developed an algorithm to dynamically select the most suitable normalization

and fusion method combination in different noise scenarios in multimodal biomet-

ric authentication for ensuring the legitimacy of the user accessing various services

over the internet from a mobile or handheld device, and demonstrated the feasibility

and performance of the method by means of experiments and comparison with other

methods.

The system presented here is highly customizable in terms of selecting noise scenarios

where the biometric traits (e.g. facial image, key stroke, voice) will be collected by the mo-

bile device, combination of normalization techniques and fusion methods and the decision

threshold. Hence, the system can be improved significantly by selecting robust recogni-

tion algorithms that show better performance in different noise scenarios. As our face and

voice database were relatively small, we could not use leave-one-out cross-validation that

divides the dataset to n-1 training samples and 1 testing sample, for N different times. The

N results from the folds then can be averaged (or otherwise combined) to produce a single

performance estimation. Including this partitioning method for validation and other newly

developed biometric techniques, recognition algorithms in performance evaluation, use of

other databases for more experiments and development of a fully automatic realtime user

authentication system for mobile or handheld devices is left for future research.



Bibliography

[1] Masv, http://www.bas.uni-muenchen.de/bas/sv/. Availabe online.

[2] Combining multiple biometrics, http://www.cl.cam.ac.uk/ jgd1000/combine/combine.html,

2000. Availabe online.

[3] Nist report to the united states congress. summary of nist stan-

dards for biometric accuracy, tamper resistance, and interoperability.

ftp://sequoyah.nist.gov/pub/nist internal reports/nistapp nov02.pdf, 2002. Available

online.

[4] Bbc news. long lashes thwart id scan trial.

http://news.bbc.co.uk/2/hi/uk news/politics/3693375.stm, 2004. Available online.

[5] Privium - fast border passage with iris scan, http://www.cbsa-

asfc.gc.ca/travel/canpass/menu-e.html, 2007. Available online.

[6] Canpass: Streamlines customs clearance for frequent travellers, http://www.cbsa-

asfc.gc.ca/travel/canpass/menu-e.html, 2007. Available online.

[7] P. Belhumer, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: Recog-

nition using class specific linear projection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 19(7):711–720, 1997.

65



BIBLIOGRAPHY 66

[8] E. Bigun, J. Bigun, and S. Fisher. Expert conciliation for multimodal person authen-

tication systems using baysian statistics. In Proceedings of the International Confer-

ence on Audio and Video-Based Biometric Person Authentication, volume 1206, pages

291–300. Springer Berlin, 1997.

[9] R. M. Bolle, J. H. Connell, S. Pankanti, N. K. Ratha, and A. W. Senior. Guide to

Biometrics. Springer-Verlag, New York, 2004.

[10] R. Brunelli and D. Falavigna. Person identification using multiple cues. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 17(10):955–966, 1995.

[11] J. Campbell. Speaker recognition: a tutorial. Proceedings of the IEEE, 85(9):1437–

1462, Sep 1997.

[12] J. P. Campbell, D. A. Reynolds, and R. B. Dunn. Fusing high- and low-level features

for speaker recognition. In Proceeding of the 8th European Conference on Speech

Communication and Technology, pages 2665–2668, Geneva, Switzerland, 2003.

[13] C. H. Chen and C. T. Chu. Fusion of face and iris features for multimodal biometrics.

In ICB, pages 571–580, 2006.

[14] X. Chen, P. J. Flynn, and K. W. Bowyer. Ir and visible light face recognition. Comput.

Vis. Image Underst., 99(3):332–358, 2005.

[15] J. Daugman. How iris recogntion works? IEEE Transactions on Circuits and Systems

for Video Technology, 14(1):21–30, 2004.

[16] M. Faundez-Zanuy. Data fusion in biometrics. IEEE Aerospace and Electronic Sys-

tems Magazine, 20:34–38, 2005.



BIBLIOGRAPHY 67

[17] F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, and W. A. Stahel. Robust Statistics:

The Approach based on Influence Functions. John Wiley & Sons, 1986.

[18] T. Hazen, E. Weinstein, R. Kabir, A. Park, and B. Heisele. Multimodal face and

speaker identification on a handheld device. In Proceedings of the Workshop on Mul-

timodal User Authentication, pages 113–120, Dec 2003.

[19] T. Hazen, E. Weinstein, and A. Park. Towards robust person recognition on handheld

devices using face and speaker identification technologies. In Proceedings of the 5th

international conference on Multimodal interfaces, pages 289–292, Nov 2003.

[20] L. Hong and A. K. Jain. Intergrating faces and fingerprints for personal identifica-

tion. IEEE transactions on Pattern Analysis and Machine Intelligence, 20:1295–1307,

1998.

[21] P. Huber. Robust Statistics. John Wiley & Sons, 1981.

[22] A. Iannarelli. Forensic Identification Series. Paramont Publishing Company, Fremont,

California, 1989.

[23] A. Jain and A. Ross. Learning user-specific parameters in a multibiometric system.

In Proceedings of International Conference on Image Processing, volume 1, pages

57–60, 2002.

[24] A. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recognition. IEEE

Transactions on Circuits and Systems for Video Technology, 14(1):4–20, Jan 2004.

[25] A. K. Jain, R. Bolle, and S. Pankanti. Biometrics, Personal Identification in Networked

Society: Personal Identification in Networked Society. Kluwer Academic Publishers,

Norwell, MA, USA, 1998.



BIBLIOGRAPHY 68

[26] A. K. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal biomet-

ric systems. Pattern Recognition, 38(12):2270–2285, 2005.

[27] T. Kanade. Picture processing by Computer Complex and Recognition of Human-

Faces. PhD thesis, Kyoto University, 1973.

[28] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 20(3):226–239, 1998.

[29] A. Kong, D. Zhang, and G. Lu. A study of identical twins’ palmprints for personal

verification. Pattern Recognition, 39:2149–2156, 2006.

[30] L. Kuncheva. Combining Pattern Classifiers - Methods and Algorithms. Wiley, 2004.

[31] L. Lam and S. Suen. Application of majority voting to pattern recognition: an analysis

of its behavior and performance. IEEE Transactions on Man and Cybernetics Systems,

Part A: Systems and Humans, 27(5):553–568, 1997.

[32] B. Lee, M. Hasegawa-johnson, C. Goudeseune, S. Kamdar, S. Borys, M. Liu, and

T. Huang. Avicar: Audio-visual speech corpus in a car environment. In Proceedings

of Conference on Spoken Language, pages 2489–2492, 2004.

[33] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Handbook of Fingerprint Recog-

nition. Springer-Verlag, 2003.

[34] F. Monrose and A. Rubin. Authentication via keystroke dynamics. In Proceedings

of the 4th ACM conference on Computer and communications security, pages 48–56.

ACM, 1997.



BIBLIOGRAPHY 69

[35] V. Nalwa. Automatic on-line signature verification. Proceedings of the IEEE, 85(2):

215–239, 1997.

[36] K. Nandakumar. Integration of multiple Cues in Biometric Systems. PhD thesis,

Michigan State University, 2005.

[37] C. Park, T. Choi, Y. Kim, S. Kim, J. Namkung, and J. Paik. Multi-modal human

verification using face and speech. In Proceedings of the Fourth IEEE International

Conference on Computer Vision Systems, pages 54–60, 2006.

[38] H.-A. Park, J. W. Hong, J. H. Park, J. Zhan, and D. H. Lee. Combined authentication-

based multilevel access control in mobile application for dailylifeservice. IEEE Trans-

actions on Mobile Computing, 9(6):824–837, 2010.

[39] P. Penev and J. Atick. Local feature analysis: A general statistical theory for object

representation. Network: Comput. Neural Syst, 7(3):47–500, 1996.

[40] A. Pocovnicu. Biometric security for cell phones. Informatica Economica Journal,

13(1):57–63, 2009.

[41] S. Prabhakar, S. Pankanti, and A. Jain. Biometric recognition: security and privacy

concerns. Security Privacy, IEEE, 1(2):33–42, Mar-Apr 2003.

[42] F. Prokoski. Disguise detection and identification using infrared imagery. In Proceed-

ings of SPIE, Optics, and Images in Law Enforcement II, pages 27–31, 1982.

[43] J. Rokita, A. Krzyzak, and C. Y. Suen. Cell phones personal authentication systems

using multimodal biometrics. In ICIAR ’08: Proceedings of the 5th international

conference on Image Analysis and Recognition, pages 1013–1022, Portugal, 2008.



BIBLIOGRAPHY 70

[44] A. Ross and A.K.Jain. Information fusion in biometrics. Pattern Recognition Letter,

24(13):2115–2125, 2003.

[45] A. Ross and A. Jain. Multimodal biometrics: An overview. In Proceedings of 12th

European Signal Processing Conference, pages 1221–1224, 2004.

[46] P. Ross. Taguchi Techniques for Quality Engineering. McGraw-Hill, 1995.

[47] N. Samoska. Evaluation and performance prediction of multimodal biometric sys-

tems. PhD thesis, West Virgina University, 2006.

[48] N. Sedgwich. The Need for Standardization of Multi-Modal Biometric Combination.

Business/technical presentation, Cambridge Algorithmica Limited, New York, 2004.

[49] H. Shabeer and P. Suganthi. Mobile phones security using biometrics. In International

Conference on Computational Intelligence and Multimedia Applications, volume 4,

pages 270 –274, 2007.

[50] T. Sim, S. Baker, and M.Bsat. The CMU pose, illumination, and expression (PIE)

database. In Proceedings of the 5th International Conference on Automatic Face and

Gesture Recognition, 2002.

[51] R. Snelick, M. Indovina, J. Yen, and A. Mink. Multimodal biometrics: Issues in

design and testing. In Proceedings of Fifth International Conference on Multimodal

Interfaces, pages 68–72. National Institute of Standards and Technology, 2003.

[52] M. Turk and A. P. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro-

science, 3(1):71–86, 1991.



BIBLIOGRAPHY 71

[53] A. Ulery, A. Hicklin, C. Watson, W. Fellner, and P. Hallinan. Studies of biometric

fusion. Technical Report 7346, National Institute of Standards and Technology, 2006.

[54] E. Vildjiounaite, S.-M. Makela, M. Lindholm, R. Riihimaki, V. Kyllonen, J. Manty-

jarvi, and H. Ailisto. Unobtrusive multimodal biometrics for ensuring privacy and

information security with personal devices. In Pervasive, pages 187–201, 2006.

[55] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple

features. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, volume 1, pages 511–518, 2001.
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