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Abstract

The Virasoro algebra (Vir) has important applications to the study of infinite dimensional
Lie algebras, and specifically to areas of theoretical physics modeled by conformal field the-
ories. The positive-energy representations of Vir play a key role in string theory. A vital
piece of information is the signature of the positive-energy representations. The physicist
Adrian Kent calculated the characters of the signatures of these positive-energy represen-
tations in his paper [Ken91].

In this thesis, we will provide mathematical proofs for Kent’s signature formulas for all
possible values of the central charge and lowest weight. Furthermore, we simplify Kent’s
formulas by adopting a different approach to viewing the formulas. An important conse-
quence is a clean reformulation in the minimal model case, which is of tremendous interest
to theoretical physicists who wish to understand the modular group action in order to apply
Kent’s formulas to the study of non-unitary conformal field theories. We discuss how to
compute the modular group action.
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Chapter 1

Introduction

1.1 Thesis Problem

In this thesis, we compute signatures of invariant Hermitian forms on irreducible highest

weight modules over the Virasoro algebra. Such formulas were stated in [Ken91] without

rigorous proof. We provide rigorous proofs and significantly simplify some of Kent’s for-

mulas, the most important simplification being in what is called the minimal model case.

Mathematical physicists would like to use Kent’s formulas in order to study non-unitary

conformal field theories; however, in order to do so, they require the understanding of

the modular group action on the signature formulas. The simplification should lead to a

complete understanding of the modular group action.

1.2 Motivation

The Virasoro algebra is an infinite dimensional Lie algebra that naturally arises in numerous

problems in theoretical physics. The Witt algebra models the differential operators on the

unit circle and the Virasoro algebra is its (unique) central extension. It plays an important

role in the study of Lie algebras with applications to theoretical physics. Of particular in-

terest are the unitary representations of the Virasoro algebra. The unitary representations

were classified by Friedan-Qui-Shenker, Kac- Wakimoto, and Goddard-Kent-Olive in the

1980s ([FQS84], [KW86], [GKO86]). In the 1991 paper [Ken91], the physicist Adrian Kent

expanded upon the results by computing signatures of all representations admitting invari-

ant Hermitian forms (the unitary representations are those for which the form is positive

1



definite). It is desirable to physicists to use Kent’s formulas to study non-unitary conformal

field theories–however, in order to do so, the action of the modular group on signature

characters must be understood.

1.3 Methodology

In order to compute our signature characters, we will be computing the change to the

signature as we cross a single reducibility curve. We start from a unitary region where the

signatures are known (possibly as a limiting case) and compute the signature of irreducible

Verma modules as a sum of all of the changes over all of the reducibility curves crossed in

other regions. We will then use these signatures to compute the signatures of irreducible

highest weight modules corresponding to reducible Verma modules.

1.4 Outline

• In chapters 2-5, we discuss the background mathematics required for this thesis.

• In chapter 6, we discuss the invariant Hermitian form attached to a Verma module

and define the reducibility curves that bound the irreducible regions of the c, h plane.

• In chapter 7, we discuss the submodule structure of Verma modules and also discuss

the Jantzen filtration. We note how the Janzten filtration can be used to determine

how the signature changes as we cross a reducibility curve.

• In chapter 8, we break down the c, h plane into specific regions and give signature

formulas for irreducible Verma modules for each region. However, in order to fully

define the formulas, we will need to compute some unknowns, denoted by ε, which

will be computed in chapter 9.

• In chapter 9, we explicitly compute ε for c > 1 and conjecture ε for c < 1. We will

detail how to compute ε in our final chapter.

• In chapter 10, we prove the equivalency of our formulas (for irreducible Verma mod-

ules) with those of Kent ([Ken91]).

• In chapter 11, we compute the signature character for the irreducible quotient for the

reducible Verma modules by proving Kent’s averaging formula.

2



• In chapter 12, we discuss partial results for the modular group action on signature

characters.

• In chapter 13, we conclude by outlining the methodology to prove our conjectured

formula for ε for c < 1. We discuss future work arising from this thesis.

3



Chapter 2

Introduction to Representation

Theory

In this chapter, we review concepts in algebra and representation theory required for this

thesis.

2.1 Groups

Groups are one of the most basic and fundamental algebraic structures.

Definition 2.1.1. ([DF04], p.16) A group is defined as a set X with a binary operation ·
(multiplication) satisfying ∀a, b, c ∈ X :

1. Closure: a · b ∈ X

2. Identity: ∃ 1 ∈ X such that a · 1 = 1 · a = a

3. Inverse: ∃ a−1 ∈ X such that a−1 · a = a · a−1 = 1

4. Associativity: (a · b) · c = a · (b · c)

Example 2.1.2. The unit circle S1 (in the complex plane) can be viewed as a group with

the normal multiplication of complex numbers.

Definition 2.1.3. ([DF04], p.16) Group multiplication is commutative if a ·b = b ·a. The

elements are said to commute. The group may also be called an abelian group.

4



In the previous example S1 was commutative. However, it should be noted that groups

are not necessarily abelian.

Example 2.1.4. An example of a non-abelian group which is frequently studied is GLn(C):

the set of invertible n× n matrices with the usual matrix multiplication operation (or more

generally composition of linear maps). The identity element of the group is the identity

matrix.

Groups are fundamental in the study of physics as interactions between particles can be

modelled by the binary operation ·.

2.2 Topologies

Definition 2.2.1. ([Run05], p. 61) A topology on a set X consists of a set τ ⊆ P(X ) of

subsets of X which satisfies the following three conditions:

1. X and ∅ are in τ .

2. ∀A,B ∈ τ,A ∩B ∈ τ .

3. ∀A = {Ai : i ∈ I} ⊆ τ, ⋃i∈I Ai ∈ τ .

The elements of τ are the open sets of the topology.

Example 2.2.2. In the usual topology on the real line, the open sets are all possible unions

of open intervals.

Topologies act as generalized algebraic constructs that allow definitions of continuity for

different structures. The elements of τ are the open sets allowing us to extend the definitions

of continuity to maps between abstract sets; a map is continuous if the pre-image of any

open set is also open. Generalizing the notion of continuity allows us to examine how

continuity can be extended to different objects (in this case, extended to groups).

2.3 Lie Groups

Definition 2.3.1. ([War71], p. 81) A Lie group G is a group and a differentiable manifold

that satisfies:

5



1. The binary operation · : G×G→ G is smooth.

2. The inverse operation i : g 7→ g−1 is smooth.

Because a Lie group is equipped with group operations and a topology arising from the

manifold structure, it is ideal for describing interactions between particles (group opera-

tions). Lie groups, however, do not take advantage of much of the mathematics of algebras

and so we look towards representations to study Lie groups.

2.4 Group Actions and Representations

Definition 2.4.1. ([DF04], p.112) A (left) group action (.) of a group G acting on a

set X consists of maps for each g ∈ G:

g : X → X

x 7→ g.x

satisfying: ∀ g, h ∈ G, x ∈ X

1. g.(h.x) = (gh).x

2. 1.x = x.

Example 2.4.2. The element g of the group S1 acts on z ∈ C by g.z = gz. In other words,

the unit circle acts on the complex plane by rotation (eiθ rotates by θ counterclockwise).

Definition 2.4.3. ([DF04], p.840,843) A representation of a group is a group action

on a vector space V (over a field F) preserving linearity: i.e.

g.(av + bw) = a(g.v) + b(g.w) ∀g ∈ G; v, w ∈ V ; a, b ∈ F.

In other words, one has a map from G to GL(V ) = {invertible linear maps from V → V }
preserving group structure. A representation can therefore be defined as a group homo-

morphism π from G to GL(V ). That is, ∃π(g) in GL(V ) such that: g.v = π(g)v ∀ v ∈ V
satisfying for all g, h ∈ G:

1. π(gh) = π(g)π(h)

6



2. π(1) = Id

3. π(g−1) = π(g)−1.

For a Lie group representation, the group homomorphism π must also be continuous.

2.5 Algebras

Definition 2.5.1. ([DF04], p.342) An algebra is defined to be a pair (A, ∗), where A is a

vector space over F and ∗ : A×A→ A is bilinear:

a ∗ (b+ c) = a ∗ b+ a ∗ c

(a+ b) ∗ c = a ∗ c+ b ∗ c

(fa) ∗ b = f(a ∗ b) = a ∗ (fb)

for all a, b, c ∈ A and f ∈ F. If a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ A, then the algebra

and its multiplication are said to be associative.

Example 2.5.2. ([EW06], p.6) End(V ), which is defined to be the set of linear maps

V → V along with the composition operation as multiplication, is an associative algebra.

Definition 2.5.3. ([EW06], p.173) Given an associative algebra (A, ∗), a representation

on vector space V is a homomorphism of associative algebras. That is,

π : A → End(V ) is a linear map satisfying

π(a ∗ b) = π(a) ◦ π(b).

Definition 2.5.4. Given an algebra (A, ∗), a subspace I ⊂ A is said to be a left (respec-

tively right) ideal if A∗ I ⊂ I (respectively I ∗A ⊂ I). If I is both a left and a right ideal,

then it is said to be a two-sided ideal.

2.6 Lie Algebras

Definition 2.6.1. ([Hum78], p.1) A Lie algebra is an algebra (L, [·, ·]) that in addition

to the usual conditions also satisfies:

7



1. Anticommutativity: [a, b] = −[b, a]

2. Jacobi Identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c ∈ L. The operation [·, ·] is called the Lie bracket.

Definition 2.6.2. ([Hum78], p.1) A Lie subalgebra of a Lie algebra (L, [·, ·]) is a subspace

K ⊂ L such that [K,K] ⊂ K.

Example 2.6.3. An important example of a Lie algebra, particularly for finite dimensional

Lie algebras, is sl2(C): the trace zero 2× 2 matrices. The Lie bracket for the algebra is:

[A,B] = AB −BA.

Example 2.6.4. ([Ken91]) The Virasoro algebra V ir is an infinite dimensional Lie

algebra over C with basis {Lm}m∈Z ∪ {z} with the following defining relations:

[Ln, Lm] = (n−m)Ln+m + δn,−m
n(n2 − 1)

12
z

[Ln, z] = 0

for n,m∈ Z and where δ is the Kronecker delta function.

Example 2.6.5. ([Jac79], p.6) One can construct a Lie algebra form any associative algebra

has an associated Lie algebra by simply replacing the multiplication operation ∗ with a

bracket operation: [A,B] = A ∗ B − B ∗ A. A commonly used Lie algebra is gl(V ) which

arises from the associative algebra End(V ) so that [A,B] = AB−BA for all A,B ∈ gl(V ).

([Hum78], p.2)

Definition 2.6.6. ([Hum78], p.6) Given a Lie algebra (L, [·, ·]), the Lie algebra (or the Lie

bracket) is said to be commutative or abelian if [X,Y ] = 0 for all X,Y ∈ L.

Example 2.6.7. By anticommutativity, any one-dimensional Lie algebra is abelian.

Definition 2.6.8. ([Hum78], p.6) An ideal I of a Lie algebra L is a subspace of L that

satisfies: [x, y] ∈ I ∀x ∈ I, y ∈ L.

Definition 2.6.9. ([Hum78], p.6) A non-abelian Lie algebra whose only ideals are 0 and

itself is a simple Lie algebra.

8



Definition 2.6.10. ([Hum78], p.10) The derived series of L is the series of ideals L(n)

where L(0) = L and L(i) = [L(i−1), L(i−1)] for i ∈ Z+. L is solvable if for some n, L(n) = 0.

Definition 2.6.11. ([Hum78], p.11) The radical of L is the maximal solvable ideal of L.

L is semisimple if its radical is 0.

Lie algebras and Lie groups are related–for example the tangent space at the identity of

any Lie group is a Lie algebra and may be thought of as a vector space approximation of

the Lie group at the identity ([War71], p.86)–but there are many advantages of using Lie

algebras. Algebras are vector spaces, and so the many tools of linear algebra are available

to us.

2.7 Lie Algebra Representations

Definition 2.7.1. ([Hum78], p.8) Similar to a Lie group, a Lie algebra can also act on a

vector space V. A representation of a Lie algebra L is a Lie algebra homomorphism

from L to gl(V ).

A Lie algebra homomorphism is a linear map π: L→ gl(V ) that satisfies:

π([x, y]) = [π(x), π(y)].

We may use action notation and write X.v = π(X)(v) for X ∈ L, v ∈ V .

A representation of L is also called an L-module.

Remark 2.7.2. Although [x, y] may not be as simple as xy − yx, working within a repre-

sentation allows us to use a simple formula for the Lie bracket: [π(x), π(y)] = π(x)π(y) −
π(y)π(x) ∈ gl(V ).

Example 2.7.3. ([Hum78], p.8) It can be shown using the Jacobi identity that given a Lie

algebra L, the map ad : L→ gl(L) where

adX(Y ) = [X,Y ] for every X,Y ∈ L

is a representation of L on the vector space V = L. It is called the adjoint representation

of L.
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Example 2.7.4. Given a Lie algebra L over C, the trivial representation of L on V = C

sends every element of L to 0 ∈ gl(C). Observe that the Lie bracket of any two elements of

gl(C) is zero by anticommutativity.

Example 2.7.5. The natural representation π of sl2(C) on the vector space C2 is matrix

multiplication:

π(A)v = Av for all A ∈ sl2(C), v ∈ C2.

Definition 2.7.6. ([Jac79], p.19) A submodule W is a subspace of an L-module (π, V )

that is closed under π; that is: π(x)(W ) ⊂ W for all x ∈ L. (Note: submodules are also

called subrepresentations.) Another way to state this is to say that W is closed under

the action of L, i.e. x.W ⊂W ∀x ∈ L.

Example 2.7.7. Given a representation V of the Lie algebra L, {0} ⊂ V is the trivial

submodule. V is also a submodule of itself.

Definition 2.7.8. ([Hum78], p.25) A module is irreducible (or simple) if its only two

submodules are the trivial submodule and itself.

2.8 Constructing Representations

Definition 2.8.1. ([Jac79], p.19) Given two L-representations (π1, V1) and (π2, V2), the

direct sum is also a representation:

π := π1 ⊕ π2 : L→ gl(V1 ⊕ V2)

where π(X)(v1, v2) = (π1(X)v1, π2(X)v2).

Definition 2.8.2. ([Hum78], p.26) Given two vector spaces U and V over the field F, the

tensor product U ⊗ V is the vector space generated by terms of the form u⊗ v for every

u ∈ U, v ∈ V . The tensor product ⊗ : U × V → U ⊗ V is bilinear:

1. (au)⊗ v = u⊗ (av) = a(u⊗ v) for all a ∈ F, u ∈ U , v ∈ V ;

2. (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v for all u1, u2 ∈ U , v ∈ V ;

3. u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2 for all u ∈ U , v1, v2 ∈ V .
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Definition 2.8.3. ([Hum78], p.26) Given two representations (π1, V1) and (π2, V2) of the

Lie algebra L, the tensor product V1 ⊗ V2 is also a representation of L:

π1 ⊗ π2(X)(v1 ⊗ v2) = (π1(X)(v1))⊗ v2 + v1 ⊗ (π2(X)(v2)) for all X ∈ L, vi ∈ Vi

i.e. X.(v1 ⊗ v2) = (X.v1)⊗ v2 + v1 ⊗ (X.v2)

Definition 2.8.4. ([EW06], p.57) Given an L-representation π on the vector space V

containing a subrepresentation U , the quotient V/U := {v + U : v ∈ V } has the natural

structure of a representation π̄:

π̄(X)(v + U) = π(X)(v) + U.

This is well-defined since U is a submodule.

Remark 2.8.5. Note that there may not be a submodule W so that V = U ⊕W as L-

representations. We will see examples of this when we study Verma modules.

2.9 Jordan-Hölder Series

Because representations may not be expressed necessarily as direct sums of irreducible

subrepresentations, decomposing a representation into irreducible constituents requires the

consideration of quotients.

Definition 2.9.1. ([Jac79], p.48) Given a Lie algebra L and an L-representation V , a

Jordan-Hölder series (or composition series) for the representation V is a series of

submodules:

V = V1 ⊃ V2 ⊃ · · · ⊃ Vn = {0}

such that Vi/Vi+1 is irreducible for i = 1, 2, . . . , n − 1. The Vi/Vi+1 are called the compo-

sition factors of V .

Our first method of understanding the structure of a representation is then to under-

stand:

1. What irreducible representations appear as composition factors?

2. How many times does each irreducible representation occur?
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We will study this for Verma modules over the Virasoro algebra in Chapter 5.
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Chapter 3

Weight Theory

Weight theory is another means of understanding the structure of a Lie algebra represen-

tation. In linear algebra, for a square matrix representing a linear transformation from a

vector space to itself, we decompose the vector space into eigenspaces where the behaviour

of the linear transformation is easy to understand: it is simply scalar multiplication by the

corresponding eigenvalue. Weight theory is the application and generalization of this theory

to Lie algebras and their representations.

Definition 3.0.2. ([Hum78], p.11,80) A Cartan subalgebra H of a Lie algebra L is a

Lie subalgebra such that:

1. the normalizer of H is H: {X : [X,Y ] ∈ H ∀ Y ∈ H} = H

2. H is nilpotent: defining H1 = [H,H] and H i = [H,H i−1] for i ≥ 2, Hn must be

zero for some n ∈ Z+.

In many situations, Cartan subalgebras are maximal commutative subalgebras (eg. for

simple Lie algebras over fields of characteristic 0 [Hum78] p. 80, the Virasoro algebra).

Example 3.0.3. Consider the Virasoro algebra. Let H = span{L0, z}. Then H is a Cartan

subalgebra of V ir.

Proof. We note that H is nilpotent since [L0, z] = 0 whence [H,H] = 0.

Recall that we had the basis {Ln}n∈Z ∪ {z} of V ir. From the commutation relations

[L0, Ln] = −nLn

[z, Ln] = 0
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we note that the basis vectors are eigenvectors for adz and adL0 where Ln has eigenvalue

−n for adL0 and eigenvalue 0 for adz.

Assume Z is in the normalizer of H and let Z =
∑

n∈Z anLn + bz for some scalars

an, b ∈ C, finitely many of which are non-zero. Then [L0, Z] =
∑

n∈Z−nanLn ∈ H.

Therefore, nan = 0 for all n 6= 0. Thus, Z = a0L0 + bz. Therefore Z ∈ H so the normalizer

of H is H.

Observe that H is commutative since z is central, i.e. commutes with all of V ir.

Example 3.0.4. Let x =

 0 1

0 0

, y =

 0 0

1 0

, and let h =

 1 0

0 −1

. The set

{x, y, h} is a basis of sl2(C) and is called the standard triple.([CM93], p.35) Observe that:

[h, x] = 2x

[h, h] = 0

[h, y] = −2y.

Therefore, viewing x, y, h as eigenvectors for adh as in the previous example, H := Ch is

self-normalizing and nilpotent and thus is a Cartan subalgebra of sl2(C).

Observe in our previous two examples that the Cartan subalgebras are commutative and

the bases that we have selected are eigenvectors for adh for all h ∈ H. Given any square

matrices A and B, if A and B commute then A and B preserve each other’s eigenspaces.

This can be seen by looking any eigenvector x (of A). Let Ax = ax for some scalar a.

Then A(Bx) = (AB)x = (BA)x = B(Ax) = B(ax) = a(Bx). Therefore, Bx is also in the

a-eigenspace of A. Similarly A also preserves B’s eigenspaces.

Definition 3.0.5. ([Hum78], p.35) A subalgebra H of a Lie algebra L is said to be a

maximal toral subalgebra if it is maximal with respect to the property that the elements

act diagonalizably under the adjoint action. Maximal toral subalgebras are abelian ([Hum78],

p. 35).

Since Cartan subalgebras are often maximal toral subalgebras and since commuting

operators preserve each other’s eigenspaces, we like to study joint eigenspace decompositions

of the Cartan subalgebra. Given a representation (π, V ) of the Lie algebra L and a Cartan
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subalgebra H of L, consider

Vµ := {v ∈ V | ∃µ(h) : H → F such that π(h)(v) = µ(h)v ∀h ∈ H}

where µ : H → F is the function which, at h, is equal to the eigenvalue of π(h) for the

eigenvector v. For this joint eigenspace, the linear map π(h) : V → V has eigenvalue µ(h)

on Vµ. Since π(h1 + h2) = π(h1) + π(h2), therefore µ(h1 + h2) = µ(h1) + µ(h2) for all

h1, h2 ∈ H. Similarly, µ(ah) = aµ(h) for all a ∈ F, h ∈ H. Therefore µ : H → F is a linear

map. In other words, µ ∈ H∗, the dual space of H. This motivates the definition:

Definition 3.0.6. ([Hum78], p.107) Let L be a Lie algebra and H a maximal toral subal-

gebra of H. For µ ∈ H∗, the vector space

Vµ := {v ∈ V : h · v = µ(h)v ∀h ∈ H}

is called the µ weight space of V . If Vµ 6= {0}, µ is called a weight of V . When equality

holds,

V =
⊕
µ∈H∗

Vµ

is the weight space decomposition of V .

A particular example of immense importance is the case when the representation is the

adjoint representation of L.

Definition 3.0.7. ([Hum78], p.35) Let L be a Lie algebra and H a maximal toral subalgebra.

A root is a non-zero linear map α : H → F such that Lα 6= 0. (Note that L0 = H since H

is maximal abelian.) The set of roots with respect to H is denoted by ∆(L,H). The root

space decomposition of L is

L = H ⊕
⊕

α∈∆(L,H)

FLα.

The elements of each Lα are called root vectors.

Note that weight space decompositions and root space decompositions are analogous to

eigenspace decompositions.
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Proposition 3.0.8. ([Hum78], p.107) Let L be a Lie algebra, (π, V ) a representation of

L, and µ be a weight of V for the Cartan subalgebra H. Let α ∈ ∆(L,H). Observe that

µ+ α ∈ H∗. For every Xα ∈ Lα and v ∈ Vµ, Xα.v ∈ Vµ+α.

Proof. Let h ∈ H. Since [π(h), π(Xα)] = π(h)π(Xα) − π(Xα)π(h), we have π(h)π(Xα) =

[π(h), π(Xα)] + π(Xα)π(h). Therefore,

π(h)(π(Xα)v) = [π(h), π(Xα)]v + π(Xα)(π(h)v)

= π([h,Xα])v + π(Xα)(µ(h)v)

= π(α(h)Xα)v + µ(h)π(Xα)v

= α(h)π(Xα)v + µ(h)π(Xα)v

= (α(h) + µ(h))π(Xα)v

= (α+ µ)(h)π(Xα)v

Therefore, h.(Xα.v) = (α+ µ)(h)(Xα.v) for all h ∈ H, so Xα.v has weight α+ µ.

Thus, we see as mentioned, weight theory provides us with our second means of under-

standing the structure of a module. The proposition above shows us how we may apply

root vectors to move between weight spaces. To better understand the structure, we ask:

given a representation, what is the dimension of each weight space? We can record the

information as a formal sum called the character.

Definition 3.0.9. ([Hum78], p.124) Let V be a representation of the Lie algebra L admit-

ting a weight space decomposition with respect to the Cartan subalgebra H. If each weight

space is finite-dimensional, then the (formal) character of V is the formal sum

charV =
∑
µ∈H∗

dim(Vµ)eµ.
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Chapter 4

The Universal Enveloping Algebra

In this chapter, we discuss the universal enveloping algebra. It is useful for discussing

repeated Lie algebra actions and it will be used later in the definition of Verma modules.

The universal enveloping algebra U(L) of a Lie algebra L has the useful property that

representations of the associative algebra U(L) are in one to one correspondence with Lie

algebra representations of L. Elements of the universal enveloping algebra are in bijection

with polynomials in L; however, multiplication in U(L) and in the polynomial algebra may

be different.

4.1 Building a Universal Enveloping Algebra

Definition 4.1.1. ([Hum78], p.89) Given a vector space V over C (could be over any field)

we can build the tensor algebra by constructing “polynomials”:

T 0V = C

T 1V = V

T 2V = V ⊗ V
...

TnV = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

...
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We define the tensor algebra to be the direct sum of all TnV as a set:

T ·V =
⊕
n=0

TnV.

Now T ·V has the standard addition operation as well as ⊗ for multiplication which is

easily seen to be associative so that, for example, (a⊗ b)⊗ (c⊗ d⊗ e) = a⊗ b⊗ c⊗ d⊗ e.
Thus (T ·V,⊗) is an algebra. We can see that this multiplication even increases the degree

as expected: T iV ⊗ T jV = T i+jV .

Definition 4.1.2. ([Hum78], p.91) Construct the tensor algebra T ·V in the case where

V is already an algebra–specifically, V = L is a Lie algebra (and therefore has its own

multiplication [·, ·]). In this case, generate a two sided ideal I by the elements of the form

{x⊗ y − y ⊗ x− [x, y]} for all x, y ∈ L.

We then define the universal enveloping algebra of L as U(L) := T ·L/I. Multipli-

cation in U(L) descends from ⊗ on T ·(L) to U(L).

We use the notation x⊗ y, x⊗ y + I, xy interchangeably.

It should be noted that whether or not L was associative, U(L) is associative since the

tensor product is associative.

Proposition 4.1.3. ([EW06],p.173) If V is an L-representation, then V is also a U(L)-

representation and vice versa.

Proof. Suppose V is an L-representation.

Let π : L → gl(V ). Since π is a Lie algebra homomorphism, we have π([x, y]) =

[π(x), π(y)] for all x, y ∈ L.

We wish to show that V is a U(L)-representation. Let us take the map:

Π : U(L) → End(V )

x1 ⊗ x2 ⊗ · · · ⊗ xn 7→ π(x1)π(x2) · · ·π(xn)

since for Π to be a homomorphism of associative algebras, it has to respect multiplication.

In order for this map to be well-defined, Π(x⊗ y)− Π(y ⊗ x) = Π([x, y]) since U(L) =
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T ·(L)/I. However,

Π(x⊗ y)−Π(y ⊗ x) = Π([x, y])

⇔ π(x)π(y)− π(y)π(x) = π([x, y])

⇔ [π(x), π(y)] = π([x, y])

and the last statement is true since π is a Lie algebra homomorphism. Therefore, (Π, V ) is

a U(L)-representation.

Conversely, let (Π, V ) be a U(L)-representation. Then Π : U(L)→ End(V ) is an algebra

homomorphism, and thus

Π(x⊗ y) = Π(x) ◦Π(y). (4.1)

Since Π is well-defined with respect to the quotient by I, we have:

Π(x⊗ y − y ⊗ x) = Π([x, y]). (4.2)

To define an L-representation (π, V ) from (Π, V ), let us restrict Π from U(L) to T 1(L) = L)

π : L → gl(V )

x 7→ Π(x).

In order for (π, V ) to be an L-representation, it must satisfy [π(x), π(y)] = π([x, y]) for

all x, y ∈ L. Now,

Π(x⊗ y)−Π(y ⊗ x) = Π([x, y]) by (4.2)

⇔ Π(x)Π(y)−Π(y)Π(x) = π([x, y]) by (4.1)

⇔ π(x)π(y)− π(y)π(x) = π([x, y])

⇔ [π(x), π(y)] = π([x, y])

Therefore, (π, V ) is an L-representation.
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4.2 The Poincaré - Birkhoff - Witt Theorem

If L is a Lie algebra over the field C, there is a canonical linear map h : L→ U(L). We can

use this map to extend a (totally ordered) basis of L to a (totally ordered) basis of U(L).

Theorem 4.2.1. The Poincaré - Birkhoff - Witt Theorem ([Hum78] p. 92).

If L has basis {xi : i ∈ I} then U(L) has a basis

{xa1i1 x
a2
i2
· · ·xanin | a1, . . . , an, n ∈ Z+, i1 < i2 < · · · < in} ∪ {1}.

The PBW Theorem allows us to view elements of the universal enveloping algebra as

polynomials in L. The ordering that the PBW-Theorem provides is natural: first by degree

then by ordering in the basis.

Example 4.2.2. If L is n dimensional and abelian, L = Span{x1, x2, . . . , xn}. Since L

is abelian, [x, y] = 0 so taking the quotient by the ideal generated by x ⊗ y − y ⊗ x − [x, y]

is equivalent to taking the quotient by the ideal generated by x ⊗ y − y ⊗ x. Therefore,

x⊗ y = y ⊗ x and ⊗ is commutative in U(L) and so U(L) ∼= C[x1, x2, ..., xn] the algebra of

polynomials in the variables x1, . . . , xn.

Example 4.2.3. If L is V ir then U(L) = Span{Li1Li2 ...Lin |ij ≤ ik if j < k}.
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Chapter 5

Verma Modules

In this chapter, we introduce Verma modules which are the main focus of this thesis. They

arise naturally from studying weight theory and are the basic building blocks for important

categories of modules.

5.1 Positive and Negative Roots

Recall that

L = H ⊕
⊕

α∈∆(L,H)

Lα.

A well known result for semisimple Lie algebras is that if α is a root of L, −α is also a

root ([Hum78] p.37). Now, V ir is not semisimple, however, the Witt algebra is simple (and

thus semisimple). We conclude that the result holds for the Witt algebra. Since V ir is

the unique central extension of the Witt algebra by z and z ∈ H, our choice of Cartan

subalgebra for V ir, α(z) = 0 for every root α ∈ ∆(V ir,H). Therefore, just as for the Witt

algebra, if α is a root, −α is also a root.

Proposition 5.1.1. ([Hum78], p.48) If for the Lie algebra L and the Cartan subalgebra H,

1. if α is a root, then −α is a root;

2. there exists a fixed h0 ∈ H so that for every α ∈ ∆(L,H), α(h0) 6= 0;
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then we can divide ∆(L,H) into positive and negative roots as follows:

∆+(L,H) := {α : α(h0) > 0}

∆−(L,H) := {α : α(h0) < 0}.

Observe that ∆−(L,H) = −∆+(L,H).

Example 5.1.2. Consider the Virasoro algebra where we selected H = span{L0, z}. The

roots are αn(aL0 + bz) := −an for n ∈ Z. Fix h0 = L0. Then the corresponding positive

and negative roots are:

∆+(V ir,H) = {αn : n ∈ Z−} ∆−(V ir,H) = {αn : n ∈ Z+}.

Definition 5.1.3. ([Hum78] p. 47) Given two elements λ, µ ∈ H∗, we say that µ is less

than λ, written µ ≺ λ, if and only if λ− µ is a sum of positive roots.

This assigns a partial ordering to H∗.

5.2 Verma Modules M(λ)

Definition 5.2.1. Define

• N = span{xi|xiis a root vector for a positive root}

• N− = span{xi|xiis a root vector for a negative root}

• B = H ⊕N.

Proposition 5.2.2. ([Hum78], p.110) Given λ ∈ H∗, we can define a one-dimensional

representation (πλ,Cλ) of B with basis vector vλ satisfying:

1. h.vλ = λ(h)vλ

2. n.vλ = 0

for all h ∈ H and n ∈ N .

Proof. This is a B-representation as can be seen by observing that for all h1, h2 ∈ H and

n1, n2 ∈ N :
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1. It is linear:

((h1+n1)+(h2+n2)).vλ = λ(h1+h2)vλ = λ(h1)vλ+λ(h2)vλ = (h1+n1).vλ+(h2+n2).vλ

2. Since

(a) [h1, h2] = 0

(b) [h1, xα] = α(h1)xα for all xα ∈ Lα so that [h1, n1] ∈ N and

(c) [n1, n2] ∈ N

therefore πλ([h1 + n1, h2 + n2]) = πλ(n) = 0 for n = [h1 + n1, h2 + n2] ∈ N . Since

[πλ(h1 + n1), πλ(h2 + n2)] = 0 since Cλ is one-dimensional, we see that πλ is indeed a

Lie algebra homomorphism from B to gl(Cλ).

We can take a B-representation and create an L-representation as follows.

Definition 5.2.3. Given a B-module X,

U(L)
⊗
U(B)

X

has the structure of an L-representation.

In more detail, our previous tensor products allowed for scalars to be transferred over

the tensor product. Implicitly, U ⊗ V meant U ⊗C V . However, in this case, we would like

the B-action to commute across the tensor product.

U(L) may be viewed as a right B-module as follows (our previous definitions were left

modules). By the PBW theorem, all of U(L),U(B) and U(N−) can be viewed as polynomials

in L,B and N−, respectively. We can choose the ordering of the basis of L appropriately

so that N− variables appear on the left and the B variables appear on the right. Then we

can express

U(L) = U(N−)⊗ U(B)

which is a right B-module: x.b = x⊗ b for x ∈ U(L), b ∈ B. This is a Lie algebra action as

x.[b1, b2] = x.b1.b2 − x.b2.b1 due to the quotient by the two-sided ideal I (of U(L)).
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We have a right B module structure on U(L) and a left B-module structure on X.

Therefore, we also have U(B)-module structures on both U and X. Now for a left U(B)-

module X, if we define U(L)
⊗
U(B)

X by

(u.b)⊗U(B) x = u⊗U(B) (b.x) for u ∈ U(L), x ∈ X, b ∈ U(B),

then we have formed a U(L)-module. For u ∈ U(L), v⊗x ∈ U(L)⊗UBX, u.(v⊗x) = (uv)⊗x.

Definition 5.2.4. ([Dix96], p.232) The Verma module of highest weight λ is defined

as

M(λ) := U(L)
⊗
U(B)

Cλ.

What this gives us is a U(L) module that is constructed on the highest weight vector

vλ. Note that λ is the highest weight of M(λ) since by the PBW Theorem and the tensor

product over U(B), we may view M(λ) = U(N−)⊗Cλ as vector spaces. Viewing elements

of U(N−) as polynomials in a basis of root vectors for N− (the negative roots), we note

that all weights of M(λ) are of the form λ−µ where µ is a (possibly empty) sum of positive

roots, whence we call λ the highest weight. Applying a positive root vector Xα ∈ Lα to vλ

gives us a weight vector of weight λ+α. This can only happen if Xα.vλ = 0. Thus applying

a positive root vector will kill vλ (gives 0). All elements of the Verma module belong to

U(N−).vλ.([Hum78], p.110)

Example 5.2.5. Recall that for sl2 we had the standard triple {x, y, h} and we chose the

Cartan subalgebra Ch. Recall that x and y were eigenvectors for the action of adh. Let α

be the root corresponding to x. Since [h, x] = α(h)x = 2x, we must have α(h) = 2. Observe

that y is a root vector for the root −α. Choosing positive and negative roots relative to h,

we see that ∆+(sl2(C), H) = {α} and ∆−(sl2(C), H) = {−α}. We set B = span{h, x},
N− = span{y}. Then a basis for M(λ) = U(sl2(C))⊗U(B) Cλ is {yk.vλ : k ∈ Z≥0}.

To better understand how U(L) acts on M(λ), let’s compute x.(y2.vλ). We have [x,y]=h=xy-
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yx, so xy=h+yx. Likewise, hy=yh-2y. Using these relations:

xyy.vλ = hy.vλ + yxy.vλ

= yh.vλ − 2y.vλ + yh.vλ + yyx.vλ

= λ(h)y.vλ − 2y.vλ + λ(h)y.vλ + 0

= −2y.vλ + 2λ(h)y.vλ.

Example 5.2.6. For V ir, given a highest weight λ, we have the basis vectors {Li1Li2 ...Lin .vλ|ij ≤
ik < 0 if j < k} for M(λ).

5.3 Kostant’s Partition Function

As we observed before, the PBW-theorem gives us a basis for a Verma module M(λ) =

U(N−).vλ:

Let {xi}i∈I , where I indexes the negative roots, be a basis of root vectors for N− where xi

is a root vector for the negative root αi. Then

{xa1i1 x
a2
i2
· · ·xakik vλ| a1, . . . , ak, k ∈ Z+, i1 < i2 < · · · < ik ∈ I} ∪ {vλ}

is a basis of M(λ).([Hum78], p.110)

We also know that the weight of the basis vector on the left side is simply λ+
k∑
j=1

ajαij

since each time you act by xij , the weight changes by αij . Thus simple combinatorial

counting determines the dimension of a given weight space: i.e. given a weight λ+µ of M(λ),

how many ways can µ =
∑k

j=1 ajαij where the coefficients aj are positive integers? This

number is referred to as Kostant’s partition function. Multiplying µ by -1 and, equivalently,

counting the number of ways of expressing the result as a sum of positive roots, Kostant’s

partition function is defined by:

Definition 5.3.1. ([Hum78], p.136) Kostant’s partition function is a map P : Λ+
r → Z

satisfying:

P (µ) := #{{ai1 , . . . , aik} : aij ∈ Z+, i1 < i2 < · · · < ik ∈ I, ai1αi1 + · · ·+ ainαin = µ}.
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Proposition 5.3.2. ([Hum78], p.136) Let Λ+
r := Z≥0 − span∆+(L,H). Then

chM(λ) =
∑
µ∈Λ+

r

P (µ)eλ−µ.

Example 5.3.3. For V ir, recall from Example 5.1.2 that ∆−(V ir,H) = {αn : n ∈ Z+}
where αn(aL0 + bz) = −an. Therefore αn = nα1. We specify weights λ using pairs c, h:

λ(L0) = h, the highest weight (abuse of notation since we only consider the eigenvalue of

L0), and λ(z) = c the central charge. We write M(c, h) in place of M(λ). Then a basis of

M(c, h) is:

{La1i1 · · ·L
ak
ik
vc,h : 1 ≤ i1 < · · · < ik, k ∈ Z+, ai ∈ Z+} ∪ {vc,h}.

Observe that La1i1 · · ·L
ak
ik
vc,h has weight λ+ a1αi1 + · · ·+ akαik = λ+ (

∑k
j=1 aj · ij)α1. We

define the nth level of the Verma module to be the λ+nα1 weight space (often we decompose

by the eigenvalues of L0 and ignore the action of z since it is central and abbreviate this

to the h + n weight space or simply consider the nth weight space of U(N−)). From our

formula, we observe that in fact P (n) in this case is the (positive integer) partition function:

([DFMS97], p.204)

P (n) = # ways of expressing n as a sum of positive integers.

= P (n) = [tn]
∞∏
j=1

1

(1− tj)

The character of M(c, h) is thus:

chM(c, h) =
∑
n∈Z≥0

P (n)eλ+nα1 = th
∑
n∈Z≥0

P (n)tn = th
∞∏
j=1

1

(1− tj)

where t = eα1.

Remark 5.3.4. Although technically our choice of positive and negative roots make our

M(c, h) a highest weight module, it is more natural to make the opposite choice; i.e. ∆−(L,H) =

{αn : n ∈ Z−}. Then our Verma modules are lowest weight modules.
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5.4 Unique Irreducible Quotient

In the study of modules, we would like to classify irreducible modules. Verma modules

are not necessarily irreducible, but they have a unique irreducible quotient (by taking the

quotient by the unique maximal proper submodule). ([Hum78], p.108)

5.4.1 Unique Maximal Proper Submodule

If A and B are both submodules of V then A+B is also a submodule of V . (A and B are

both invariant under L-actions.)

Let M(λ) be a Verma module with highest weight vector vλ. Consider the set defined

by W = {W |W is a proper submodule of M(λ)}. Any submodule can be expressed as the

direct sum of its weight spaces ([Hum78] p 108). Let J(λ) = 〈W |W ∈ W〉, the subspace

generated by all proper submodules. Note that vλ cannot be in any W (since vλ generates

M(λ) and the λ weight space is one-dimensional, any non-zero vector in the λ weight space

can generate M(λ), and W is proper). Therefore, λ is not a weight of W , and hence, is not

a weight of J(λ). J(λ) is therefore proper and so is the unique maximal proper submodule

of M(λ).

Definition 5.4.1. ([Hum78], p.109) We define the unique irreducible quotient to be:

L(λ) := M(λ)/J(λ) by L(λ). It is called the irreducible highest weight module of highest

weight λ.

Example 5.4.2. We can now see that if J(λ) is not trivial, then M(λ) is not J(λ) ⊕W
for some submodule W . Suppose there exists some W such that M(λ) = J(λ)⊕W . As we

saw in the previous paragraph, J(λ) cannot have weight λ and since submodules of Verma

modules have weight space decompositions, vλ must be in W . But then U(L).W = M(λ)

which means J(λ) must have been trivial–a contradiction.

This is an example of a module that cannot be expressed as a direct sum of irreducible

submodules. See 2.8.5.
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Chapter 6

Invariant Hermitian Forms

The thesis problem is to compute the signature characters of irreducible highest weight

modules of the Virasoro algebra. In physics, the settings for problems are often Hilbert

spaces, which carry an inner product. However, problems can arise on vector spaces with

non-definite Hermitian forms. Often, the representations which arise respect the Hermitian

form. Thus, we will study, abstractly, invariant Hermitian forms on representations and

associated data which is of interest to physicists and mathematicians: specifically, signatures

of these forms.

6.1 Real Forms

Definition 6.1.1. ([Kna02], p.34) Given a real Lie algebra LR, the complexification of

LR is

L := LR ⊕ iLR.

Definition 6.1.2. ([Kna02], p.35) A real form of a complex Lie algebra L is a real

subalgebra LR for which L = LR ⊕ iLR. In this situation, complex conjugation of elements

of L is with respect to LR:

X + iY = X − iY where X,Y ∈ LR.

Note that LR = {X ∈ L : X = X}.

Example 6.1.3. It is easy to show that sl2(R) is the set of fixed points of the usual complex

28



conjugation on sl2(C). It is a real form of sl2(C).

The previous example was very natural. There is a obvious choice real form for V ir:

spanR{Ln, z} but we will instead use the (still natural) definition that arises from the real

form for the Witt algebra. However, since it is a more complicated Lie algebra we will find

that describing complex conjugation is somewhat more difficult.

Example 6.1.4. ([KR87],p.1) Since the Virasoro algebra is the central extension of the

Witt algebra D = spanC{Ln : n ∈ Z}, it makes sense to examine V ir by considering

the real form of the Witt algebra. The Witt algebra can be viewed as the complexification

of the real Lie algebra of vector fields on S1. The space DR of vector fields has a basis:

d
dθ , cos(nθ) ddθ , and sin(nθ) ddθ for all n ∈ Z. They form a basis (over C) for the Witt algebra

that is fixed under complex conjugation with respect to the real form DR. We can relate this

basis to the basis {Ln : n ∈ Z} for the Witt algebra as follows:

Ln = ieinθ
d

dθ
= −zn+1 d

dz

where z = eiθ and n ∈ Z. Now, since einθ = cos(nθ) + i sin(nθ),

Ln − L−n = −2 sin(nθ)
d

dθ

⇒ Ln − L−n = Ln − L−n since sin(nθ)
d

dθ
∈ DR

Ln + L−n = 2i cos(nθ)
d

dθ

⇒ Ln + L−n = −(Ln + L−n) since cos(nθ)
d

dθ
∈ DR

⇒ Ln = −L−n

Therefore the natural real form on the Virasoro algebra arising in physics is the real form

for which:

1. Ln = −L−n for n ∈ Z

2. z = −z.
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6.2 Hermitian Forms

Definition 6.2.1. ([Lan02], p.579) A Hermitian form is a sesquilinear pairing 〈·, ·〉:
V ×V → C which satisfies 〈x, y〉 = 〈y, x〉 for x, y ∈ V . By sesquilinear, we mean it is linear

in the first argument and complex conjugate linear in the second.

Definition 6.2.2. ([Lan02], p.581) Given a linear map T : V → V , if 〈·, ·〉 is nondegenerate

(see definition 6.3.4), there is a unique complex conjugate linear map T ∗ : V → V satisfying

〈Tx, y〉 = 〈y, T ∗x〉 .

The map T ∗ is called the (Hermitian) adjoint of T .

Definition 6.2.3. ([Vog84], p.148) Given a real Lie group G and a Hermitian form 〈·, ·〉
on the G-representation V , the form is said to be invariant under the action of G if

〈g.v, g.w〉 = 〈v, w〉 ∀ v, w ∈ V.

Descending to the Lie algebra, this gives us:

Definition 6.2.4. ([Vog84], p.148) Let LR be a real Lie algebra and V a representation of

LR on a complex vector space. A Hermitian form 〈·, ·〉 on V is said to be invariant if

〈X.v,w〉+ 〈v,X.w〉 = 0 ∀X ∈ LR, v, w ∈ V.

Since Hermitian forms are conjugate linear in the second variable and satisfy 〈v, w〉 =

〈w, v〉, we have:

Definition 6.2.5. ([Vog84], p.148) Let L be a complex Lie algebra and (π, V ) a represen-

tation of L. A Hermitian form 〈·, ·〉 on V is said to be invariant if

〈X.v,w〉+
〈
v,X.w

〉
= 0 ∀X ∈ L, v, w ∈ V.

That is, 〈X.v,w〉 = −
〈
v,X.w

〉
.

Note that what this says is that for every X ∈ L, the adjoint operator to the linear map

V → V defined by the action of X is the linear map defined by the action of −X̄. I.e.

π(X)∗ = −π(X̄).
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Proposition 6.2.6. ([KR87], Proposition 3.4) A non-zero invariant Hermitian form exists

for M(c, h) if and only if c, h are both real. Since M(c, h) is generated from a single vector,

the invariance condition implies that invariant Hermitian forms on M(c, h) are unique up

to a real scalar.

Henceforth we only work with c, h real.

Definition 6.2.7. ([Yee05], Def. 2.5) Let 〈·, ·〉c,h denote the invariant Hermitian form on

M(c, h) and assume that the form has been normalized so that the inner product of the

choice vc,h of generating vector with itself is 1. This is called the Shapovalov form. Note

that invariance and our computations in example 6.1.4 show that the form satisfies:

〈Ln.v, w〉c,h = 〈v, L−n.w〉c,h ∀n ∈ Z, v, w ∈M(c, h)

〈z.v, w〉c,h = 〈v, z.w〉c,h .

In the literature (eg. [KR87]), you will find a complex conjugate linear map ω : V ir →
V ir defined by ω(Ln) = L−n and ω(z) = z for which ω(aX) = āω(X) for a ∈ C, X ∈ V ir.
The Shapovalov form is then described to be the unique form for which 〈vc,h, vc,h〉c,h = 1 and

〈X.v,w〉c,h = 〈v, ω(X).w〉c,h for X ∈ V ir, v, w ∈ M(c, h). We can note that ω(X) = −X̄,

making our discussion consistent with the literature.

6.3 Orthogonality of Weight Spaces for Verma Modules of

V ir

Given an invariant Hermitian form, weight vectors may be seen to be orthogonal by com-

paring weights. This can easily be seen in an example.

Proposition 6.3.1. ([KR87] p 25.) In the case of V ir, let vn and vm lie in the nth and mth

levels of M(c, h) respectively (i.e. the h+n and h+m weight spaces of M(c, h) respectively).

Then we have:

(h+ n) 〈vn, vm〉 = 〈L0vn, vm〉

= 〈vn, L0vm〉

= (h+m) 〈vn, vm〉
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Therefore, if n 6= m, then 〈vn, vm〉 = 0.

Orthogonality of the weight spaces allows us to study the invariant Hermitian form on

one (finite dimensional) weight space at a time.

Definition 6.3.2. ([Vog84], p.148) The radical of a form 〈·, ·〉 on V is the set of vectors

{x ∈ V | 〈x, y〉 = 0 for all y ∈ V }.

Definition 6.3.3. ([Itō87], p.1294) The signature of the Hermitian form 〈·, ·〉 on a

finite dimensional weight space X is the triple (p, q, r) where p is the dimension of the

subspace where the form is positive definite; q is the dimension of the subspace where the

form is negative definite; and r is the dimension of the radical of the form. Equivalently,

p, q, r are the number of positive, negative and zero eigenvalues respectively for a matrix A

describing the form where 〈u, v〉 = utAv̄ for vectors u, v in X expressed in coordinates for

the same basis used to determine the entries of A.

Definition 6.3.4. ([Vog84], p.148) A Hermitian form is nondegenerate if and only if its

radical is 0.

Although Verma modules are infinite dimensional, orthogonality of weight spaces allows

us to make the following definition:

Definition 6.3.5. ([Wal84], p.132) Let M(c, h) be a Verma module with a non-degenerate

invariant Hermitian form. Let (p(n), q(n), 0) be the signature of the form on the nth level.

Then the signature character for M(c, h) is

chsM(c, h) =
∑
n∈Z≥0

(p(n)− q(n))th+n.

It is convenient to associate all Verma modules with the same vector space U(N−) so we

often consider the normalized signature character:

σ(c, h)(t) =
∑
n∈Z≥0

(p(n)− q(n))tn.

We will also abbreviate the normalized signature to σ(c, h).

Proposition 6.3.6. ([KR87] p 25.) The radical of the Shapovalov form on M(c, h) is the

unique maximal proper submodule J(c, h). Therefore the form descends to a non-degenerate

form on L(c, h) = M(c, h)/J(c, h).
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Corollary 6.3.7. A Verma module is irreducible if and only if the radical of the Shapovalov

form is 0.

Definition 6.3.8. If the Shapovalov form of the Verma module M(c, h) is degenerate, then

J(c, h) is non-zero and the Verma module is reducible. In this case, we define the signature

character for the form on L(c, h). Let (p(n), q(n), 0) be the signature of the form on the nth

level of L(c, h). Then the signature character for L(c, h) is

chsL(c, h) =
∑
n∈Z≥0

(p(n)− q(n))th+n.

We likewise use σ(c, h) to denote the normalized signature character of L(c, h).

6.4 Kac’s Determinant Formula

We can enumerate the basis vectors of a finite dimensional subspace of the Verma module

M(λ) in our orthogonal decomposition and thus express the Shapovalov form on that sub-

space as a square matrix M where the (i, j)th term is 〈vi, vj〉 and vi, vj are basis vectors.

Since determinants are products of eigenvalues (and detM is independent of the choice

of basis), the Shapovalov form is degenerate if and only if M has a zero eigenvalue, and

thus a zero determinant. Therefore, the Verma module M(λ) is irreducible if and only if

det(M) 6= 0 for every choice of M .

Recall for V ir that the decomposition by level is orthogonal. Thus, M(c, h) is reducible

if and only if the Shapovalov form is degenerate for some level n.

Theorem 6.4.1. ([KR87] p 87) Kac’s Determinant Formula: Let M be a matrix repre-

senting the Shapovalov form on the nth level of the Verma module M(c, h). Then up to a

non-zero scalar k:

det(M) = k
∏
p,q∈N

1≤pq≤n

(h− hp,q(c))P (n−pq)

where P (n) is the partition function and

hp,q(c) =
1

48
[(13− c)(p2 + q2) +

√
(c− 1)(c− 25)(p2 − q2)− 24pq − 2 + 2c].
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We can let c = 1− 6
m(m+1) which simplifies hp,q(c) to

hp,q(m) =
[(m+ 1)p−mq]2 − 1

4m(m+ 1)
([DFMS97], p.210).

We will use hp,q(c) and hp,q(m) interchangeably with the understanding that c = 1− 6
m(m+1) .

Note that det(M) = 0⇔ h = hp,q(c) for some p, q ∈ Z+, 1 ≤ pq ≤ n, and c ∈ R.

Definition 6.4.2. ([DFMS97], p.209) The determinant is zero only at h = hp,q(c), thus we

define the curve hp,q : (c, hp,q(c)) ⊂ R2 on a plane (with c and h as axes). These curves are

called reducibility curves (often called vanishing curves in the literature).

6.5 Reducibility Curves for V ir

When studying signatures, it is important to understand where the reducibility curves lie,

and their intersections. For V ir, the c, h plane can be broken down into five areas as shown:

([FF90])

Figure 6-1: Decomposition of the c, h plane

These areas satisfy (discussed in further detail later):

1. c > 1 and h > 0

This region is unitary; that is, the invariant Hermitian form on the Verma module
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M(c, h) is positive definite. There are no reducibility curves in this region. ([DFMS97],

p. 209)

2. 1 < c < 25 and h < 0

1 < c < 25 which implies that m is complex in this region. Thus, hp,q(m) is real if and

only if p = q. Therefore, the only reducibility curves in this region are hp,p. These

reducibility curves do not intersect each other.

3. c < 1 and h < c−1
24

In this region, there are no reducibility curves, yet the invariant Hermitian form is

not positive definite. We will examine the signature for this region later. ([KR87], p.

92)

4. c > 25 and h < 0

hp,q is well-defined for all p, q ∈ Z+. Furthermore, for rational values of c, intersections

of reducibility curves can occur. The structure behind the intersections is fascinating

and again we will examine it in greater detail later. It should be noted, however, that

in this region, there is only a finite number of curves intersecting at any given point.

5. c < 1 and h > c−1
24

Similar to the previous region, hp,q is well-defined for all p, q ∈ Z+. However, while

the previous region had only a finite number of curves intersecting at a given point,

every intersection point in this region has an infinite number of curves intersecting it.

Furthermore, for irrational c values, {(c,hp,q(c))|p, q ∈ Z+} is dense on the vertical line

{(c, h)|h > c−1
24 }. However, we will see that this is not a problem when we examine the

signature by looking at a weight space decomposition of the Verma module M(c, h).

6.6 Signatures in Regions Bounded by Reducibility Curves

Here we review philosophies introduced in [Vog84]. Consider points (c1, h1) and (c2, h2)

such that σ(c1, h1) 6= σ(c2, h2) and their respective Verma modules are irreducible. The

signatures must differ for some level. Consider a path from (c1, h1) to (c2, h2). Since the

number of positive and negative eigenvalues for matrices representing the form on that level
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differ, there must be some point (c, h) on the path where the number changes. Then by

continuity, there must be a zero eigenvalue at (c, h).

We can therefore conclude that signatures can only change when crossing a reducibility

curve. It is not, however, sufficient to conclude that the signature must change at reducibility

curves. For example, the changing eigenvalue could go from + → 0 → +. Therefore, we

need additional information in order to compute the signatures. Some of that information

is given in the Jantzen filtration. Our philosophy to compute some signatures will be to

track how signatures change as we cross reducibility curves.
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Chapter 7

The Jantzen Filtration And

Submodule Structure of Verma

Modules over V ir

In this chapter, we discuss two key pieces of information associated to each Verma module:

its Jantzen filtration and its submodule structure. The Jantzen filtration is a filtration

by order of vanishing which, in conjunction with additional information, indicates how

signatures change as you cross reducibility curves. The Janzen filtration is closely related

to submodule structure, which we need to understand later to compute chsL(c, h).

7.1 Module Structure and Jantzen Filtration For Verma Mod-

ules over V ir

In this section, we will use r, s to index reducibility curves instead of p, q in deference to

the notation used in [DFMS97].

Fix (c, h). Let Φr,s(c, h) = (h−hr,s(c))(h−hs,r(c)). In order to study module structure,

we wish to understand to which reducibility curves (c, h) belongs. We seek integer solutions

(α, β) = (r, s) to Φr,s(c, h) = 0.

Proposition 7.1.1. ([FF90] p. 479, [DFMS97] p.240) The equation Φr,s(c, h) = 0 has

integer solutions (r, s) = (α, β) when pα+ p′β + k = 0 for some integers α, β where

1. c = 1− 6 (p−p′)2
pp′ and
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2. hr,s(c) = k2−(p−p′)2
4pp′

for some numbers p, p′, k.

Furthermore, for some constant C,

Φr,s(c, h) = C(pα+ p′β + k)(pα+ p′β − k)(p′α+ pβ + k)(p′α+ pβ − k).

Feigin and Fuchs note in [FF90] that you only need to consider one of the four lines.

For example, if pr+ p′s+ k = 0 , then p(−r) + p′(−s)− k = 0. I.e. if (r, s) gives a solution

for one line, then (−r,−s) gives a solution for another line. Note that M(c, h + rs) =

M(c, h+ (−r)(−s)), etc.

Notation 7.1.2. ([FF90]) Consider the line pα+p′β+k = 0. It can have 0, 1, or infinitely

many lattice points lying on it. We consider the cases and subcases:

I: If pα+ p′β + k = 0 contains 0 lattice points.

II: If pα+ p′β + k = 0 contains 1 lattice point (α1, β1).

II+: α1β1 > 0

II−: α1β1 < 0

IIo: α1β1 = 0

III: If pα+ p′β + k = 0 contains infinitely many lattice points.

IIIo+: pα+ p′β + k = 0 has negative slope and intersects one axis at a lattice point.

IIIoo+ : pα+ p′β + k = 0 has negative slope and intersects both axes at lattice points.

III+: pα+ p′β+ k = 0 has negative slope and does not intersect either axis at a lattice

point.

IIIo−: pα+ p′β + k = 0 has positive slope and intersects one axis at a lattice point.

IIIoo− : pα+ p′β + k = 0 has positive slope and intersects both axes at lattice points.

III−: pα+ p′β + k = 0 has positive slope and does not intersect either axis at a lattice

point.

We then have the following module structure for cases:

Theorem 7.1.3. ([FF90])
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I : M(c, h) is irreducible.

II+ : α1β1 > 0: M(c, h) ⊃M(c, h+ α1β1) ⊃ 0.

II−: α1β1 < 0: M(c, h+ α1β1) ⊃M(c, h) ⊃ 0. Note that M(c, h) is irreducible.

IIo: If αβ = 0 then M(c, h) is irreducible.

III: Consider the lattice points satisfying pα+ p′β + k = 0.

IIIoo± : The lattice points on the line can be paired into pairs giving the same product. We

therefore only consider half the points: let P be the midpoint of the intersection points

with the axes and we will take only points lattice in the upper half of the line above P ,

including P if it is a lattice point. We can order the points by:

· · · < α−2β−2 < α−1β−1 < 0 < α1β1 < α2β2 < · · · .

We then have

· · · ⊃M(c, h+ α−1β−1) ⊃M(c, h) ⊃M(c, h+ α1β1) ⊃M(c, h+ α2β2) ⊃ · · · .

IIIo±: Again order (αi, βi) as in the previous case, but this time all the points (since we do

not have the same product appearing) and we have the module structure:

· · · ⊃M(c, h+ α−1β−1) ⊃M(c, h) ⊃M(c, h+ α1β1) ⊃M(c, h+ α2β2) ⊃ · · · .

III±: Again, order (αi, βi) and draw a line parallel to pα+ p′β + k = 0 but passing through

(αi,−βi). Order the lattice points on the new line whose coordinates have a positive

product, i.e. 0 < α′1β
′
1 < α′2β

′
2 < · · · . Then, we have the following:

0 < α1β1 < α2β2 < α1β1 + α′1β
′
1 < α1β1 + α′2β

′
2 < α3β3 < α4β4 < α1β1 + α′3β

′
3 < · · ·

and

· · · < α′−3β
′
−3 + α1β1 < α−2β−2 < α−1β−1 < α′−2β

′
−2 + α1β1 < α′−1β

′
−1 + α1β1 = 0
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Giving us the module structure:

M(c, h+ α2β2) M(c, h+ α1β1 + α′2β
′
2) M(c, h+ α4β4) ..........

M(c, h)

M(c, h+ α1β1) M(c, h+ α1β1 + α′1β
′
1) M(c, h+ α3β3) ..........

....
....

....
....

....
....

....
....

....
....

............................................

where each module contains the modules to its right connected to it by lines. There is

a similar diagram for modules which contain M(c, h).

Remark 7.1.4. We note that if the slope of the line is positive, then the number of lattice

points on the line in quadrants one and three is infinite. If the slope of the line is negative,

then the number of lattice points on the line in quadrants one and three is finite. Therefore

there are infinitely many αiβi and finitely many α−iβ−i for i ∈ Z+ when the slope is positive,

while there are finitely many αiβi and infinitely many α−iβ−i for i ∈ Z+ when the slope is

negative. Thus our sequences of submodules terminate on one side: “above” in the - case

and “below” in the + case, as shown in the following diagrams.

The figures below provide complete module structure. Dots represent Verma modules

with the solid dot indicating the Verma module M(c, h). Lines indicate containment: Verma

modules contain the modules connected to them by a downward path.

I II+ II− IIo

◦

M(c, h) • • • •

◦

Figure 7-1: The Submodule Structure for Cases I and II
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IIIo+ IIIo− IIIoo+ IIIoo− III− III+

◦ ◦ ◦

◦

..........
◦

..........
◦ ◦

M(c, h) • • •

..........................
•

..........................
•

..........
◦

..........
•

..........
◦

..........

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

....................

◦

..........
◦

..........
◦

..........

....................

....................

◦

..........................

........................... ◦

1

Figure 7-2: The Submodule Structure for Case III

Remark 7.1.5. A few things of note:

Case I occurs when (c, h) does not lie on a reducibility curve.

In Case II+, if α1β1 > 0 then (c, h) lies on hα1,β1 and only on this reducibility curve.

In Case II−, if α1β1 < 0 then (c, h+ α1β1) lies on h|α1|,|β1|.

Case III only occurs at the intersection of reducibility curves. If c < 1 then there are

an infinite number of reducibility curves intersecting and if c > 25 then the number of

reducibility curves is finite. c < 1 and c > 25 also corresponds to positive/negative slope

([FF90]).

Case Regions

I All

II+ 2, 4, 5

II−, IIo 1, 4, 5

III∗+ 4

III∗− 5
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Remark 7.1.6. ([FF90]) It is readily apparent from the figures that the cases X− and X+

are related. The antiautomorphism between Verma modules M(c, h) and M(26 − c, 1 − h)

that Feigin and Fuchs note gives rise to this phenomenon.

Remark 7.1.7. ([DFMS97], p.216) One should note that the minimal model case cor-

responds to case III− where M(c, h) is not a submodule of any other Verma module (it is

the top module in the III− structure).

7.2 The Jantzen Filtration

The Jantzen filtration of a Verma module is a decomposition that can be used in conjunction

with additional information to calculate how the signature of a Verma module changes as

it crosses a reducibility curve. Consider a vertical path g(t):

Figure 7-3: Jantzen Filtration and Paths

We define Verma modules M(g(t)) along path g(t) with highest weight vectors vg(t) with

invariant Hermitian forms 〈·, ·〉t.
The Janzen filtration of a Verma module M(c, h) (at g(0) = (c, h)) with highest weight

vector vc,h can be defined as:

Definition 7.2.1. ([Vog84], p.151) Let

Jk = {l.vλ | l ∈ U(L), and ∀x ∈ U(L), lim
t→0

t−k
〈
l.vg(t), x.vg(t)

〉
t
6= ±∞}.

Clearly M(λ) = J0 ⊇ J1 ⊇ J2 ⊇ · · · . This sequence of submodules is the Jantzen

filtration of a Verma module. The Jantzen filtration is independent of path and Jk consists
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of vectors which vanish to at least order k.

Example 7.2.2. By definition of the radical, J(λ) = J1. If M(λ) is irreducible, then

J1 = {0} and the Jantzen filtration is thus:

J0 = M(λ) ⊇ {0} = J1.

We will be focusing our attention on case II+ as we will cross the reducibility curves

one at a time. We will also look closely into the Janzten filtration of case III− as it is of

particular interest to physicists.

Theorem 7.2.3. [FF90], p. 491 The Jantzen filtration for a Verma module over the Vira-

soro algebra is given by the following diagram.

IIIo+ IIIo− IIIoo+ IIIoo− III− III+

◦ ◦ ◦

◦

..........
◦

..........
◦ ◦

M(c, h) • • •

..........................
•

..........................
•

..........
◦

..........
•

..........
◦

..........

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

....................

◦

..........
◦

..........
◦

..........

....................

....................

◦

..........................

........................... ◦

1

Figure 7-4: The Jantzen Filtration for Reducible Verma Modules

Note that in cases IIIoo± J1 = J2 because any vector which vanishes at least to order

one must vanish to order two. Therefore the quotient Jk/Jk+1 is only non-trivial for even

k.

43



7.2.1 Invariant Hermitian Form on Jk/Jk+1

Definition 7.2.4. ([Vog84], p.151) If we consider the module Jk/Jk+1, then we can define

the invariant Hermitian form on Jk/Jk+1 as

〈
l1.vg(0) + Jk+1, l2.vg(0) + Jk+1

〉k
= lim

t→0
t−k

〈
l1.vg(t), l2.vg(t)

〉
t

for all l1, l2 ∈ U(L) such that l1.vg(0), l2.vg(0) ∈ Jk.

7.3 Changes to Signature Characters When Crossing Re-

ducibility Curves

Here, we see how the Jantzen filtration is related to understanding changes to signature

characters as we cross reducibility curves.

Theorem 7.3.1. ([Vog84] Proposition 3.3) Consider the path g(t) : (−δ, δ)→ R2 crossing a

reducibility curve only at t=0. Let M(c, h) be the Verma module at t=0 and let t0 ∈ (−δ, 0)

and t1 ∈ (0, δ).

Let us again apply the Jantzen filtration to M(g(0)), i.e. M(g(0)) = J0 ⊇ J1 ⊇ ... as in the

prior subsection. Now consider the signature at t0. Let the signature of the kth level of the

Jantzen filtration be (pk, qk); that is, the h+ n weight space in the kth level of the Jantzen

filtration has signature (pk(n), qk(n), 0).

1. The signature for the nth level of 〈·, ·〉t1 is

(∑
k

pk(n),
∑
k

qk(n)

)
.
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2. The signature for the nth level of 〈·, ·〉t0 is

( ∑
k:even

pk(n) +
∑
k:odd

qk(n) ,
∑
k:odd

pk(n) +
∑
k:even

qk(n)

)
.

Note that only finitely many reducibility curves can affect any particular level.

Corollary 7.3.2. Consider a path g(t) from (−δ, δ) to the c, h plane such that g(0) lies on

a single reducibility curve. Then, in the notation of the previous theorem,

1. limt→0+ signature for the nth level of 〈·, ·〉t is

(∑
k

pk(n),
∑
k

qk(n)

)
.

2. limt→0+ signature for the nth level of 〈·, ·〉t0 is

( ∑
k:even

pk(n) +
∑
k:odd

qk(n) ,
∑
k:odd

pk(n) +
∑
k:even

qk(n)

)
.
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Chapter 8

Signatures for Irreducible Verma

Modules for V ir

The philosophies which we will use to compute signatures for irreducible Verma modules are

those from [Vog84]. First, we saw that signatures can only change as we cross reducibility

curves. Then we saw that according to a result of Vogan (Theorem 7.3.1), as you cross

a reducibility curve, the signature will change by the signature of the odd levels of the

Jantzen filtration. When the crossing point only lies on a single reducibility curve, the

Jantzen filtration is particularly simple–it has two levels. In this situation, the signature

changes by the signature of the radical, an irreducible Verma module.

Beginning in a region where signatures are known and then crossing reducibility curves

one at a time, we arrive at formulas for other regions up to some unknown variables, denoted

by ε, which take values ±1. ε will be computed in a subsequent chapter.

8.1 The Difference Equation For Crossing a Single Reducibil-

ity Curve hp,q

Theorem 8.1.1. Consider the Verma module M(c, h) in the situation where (c, h) lies on

only one reducibility curve and there are no reducibility curves between (c, h) and (c, h± δ)
for small δ > 0. Let’s suppose h = hp,q(c). Then:

1. The Jantzen filtration is M(c, h) = J0 ⊇ J1 = M(c, h+ pq) ⊇ 0.
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2. Recall that 〈·, ·〉k was the induced invariant Hermitian form on Jk/Jk+1. Then:

chsM(c, h+ δ) = t2δchsM(c, h− δ)− 2εtδchsM(c, h+ pq)

where ε is one of ±1.

3. Recall that σ is used to denote the normalized signature character. Then:

σ(c, h− δ) = σ(c, h+ δ) + 2εtpqσ(c, h+ pq)

where ε is one of ±1.

Proof. Now, by Kac’s Determinant Formula (6.4.1) and Theorem 7.6.6 of [Dix96], we know

that there is a unique singular vector w (up to scalar multiples) of weight h+pq. Since w is

a singular vector, there exists a submodule of M(c, h) with highest weight vector w which

is isomorphic to the Verma module M(c, h+ pq). Thus M(c, h) ⊃M(c, h+ pq).

Since we are in case 1 of section 7.1, the Jantzen filtration for M(c, h) stabilizes quickly.

Specifically, M(c, h) = J0 ⊇ J1 = M(c, h+ pq) ⊇ 0.

To prove the final formula, let t = h± δ in Theorem 7.3.1. Then:

chsM(c, h+ δ) = tδchs 〈·, ·〉0 + tδchs 〈·, ·〉1 = tδchs 〈·, ·〉0 − tδε chsM(c, h+ pq) (8.1)

chsM(c, h− δ) = t−δchs 〈·, ·〉0 − t−δchs 〈·, ·〉1 = t−δchs 〈·, ·〉0 + t−δε chsM(c, h+ pq)

where ε = ±1. Subtracting t2δ times the second formula from the first equation and then

rearranging, we obtain our desired formula.

An additional consideration which separates the Virasoro algebra case from the settings

considered in [Vog84] and [Yee05] is the density of points around which reducibility curves

are dense. However, we may apply the curve crossing philosophy nonetheless because of

our orthogonal decomposition by level. As we saw in the previous theorem, there are only

finitely many curves which may alter the signature at level n: the hp,q for which pq ≤ n. It

follows that:

Corollary 8.1.2. For m, p, q such that (c, hp,q(m)) lies on only one reduciblity curve, there
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exists ε(m, p, q) = ±1 such that

lim
δ→0+

(σ(c, hp,q − δ)− σ(c, hp,q + δ)) = 2ε(m, p, q)tpqσ(c, h+ pq)

Remark 8.1.3. Since ε is associated with our single curve crossing formula, we only define

ε for points lying on a single reducibility curve.

Note the tpq in the curve crossing formula. This occurs in the formula due to σ being a

normalized signature.

8.2 Region 1: σ(c, h) for Irreducible M(c, h) when c > 1, h > 0

Theorem 8.2.1. ([DFMS97], p. 360) In this region, every Verma module is irreducible

and every matrix for the Shapovalov form is positive definite. Thus signature is equivalent

to the character, and so

σ(c, h) =

∞∑
n=0

P (n)tn =

∞∏
n=1

(1− tn)−1

We will denote this product as ϕ(t).

Remark 8.2.2. It should also be noted that if c < 1 then lim
h→∞

σ(c, h) = ϕ(t). ([Ken91])

8.3 Region 2: σ(c, h) for Irreducible M(c, h) when 1 < c <

25, h < 0

Lemma 8.3.1. If 1 < c < 25, then m is complex.

Proof. Recall that c = 1− 6
m(m+1) .

Now if m is real,

m(m+ 1) = (m+
1

2
)2 − 1

4

⇒ m(m+ 1) > −1

4

But if −1
4 < m(m + 1) < 0 then c > 25 and if 0 < m(m + 1) then c < 1. Therefore, if

1 < c < 25 then m must be a complex number (and not real).
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Proposition 8.3.2. The only possible p, q values for which hp,q(c) is real in region 2 is p, p.

Proof. Recall that hp,q(m) = [(m+1)p−mq]2−1
4m(m+1) . Let k = (m+1)

m (note that k is also not real)

and we can simplify hp,q(m) as: ([DFMS97], p.208)

hp,q(m) =
1

4
(p2 − 1)k +

1

4k
(q2 − 1)− 1

2
(pq − 1)

=
1

4
(p2 − 1)(k +

1

k
)− 1

2
(pq − 1) +

1

4k
(q2 − p2).

Now it should be noted that k + 1
k = (m+1)

m + (m)
m+1 = 2 + 1

m(m+1) which is a real number.

Since p and q are both positive integers, hp,q(m) is real if only if 1
4k (q2−p2) is also a real

number. But since k is not real, this is only possible if p = q. Hence the only reducibility

curves in the range 1 < c < 25 are hp,p for positive integers p.

Lemma 8.3.3. In region 2,

1. 0 > h1,1(c) > h2,2(c) > . . .

2. hp,p(c) + p2 > 0.

Proof. We first note that

hp,p(c) =
[(m+ 1)p−mp]2 − 1

4m(m+ 1)

=
p2 − 1

4m(m+ 1)

=
(p2 − 1)(1− c)

24
.

Since 1 < c < 25, therefore 0 > h1,1(c) > h2,2(c) > . . . . Now since −24 < 1 − c < 0,

| (p2−1)(1−c)
24 | < |p2 − 1| < p2. Therefore, hp,p(c) + p2 > 0.

Theorem 8.3.4. Given (c, h) in region 2 with hp+1,p+1(c) < h < hp,p(c),

σ(c, h) = [1 +

p∑
k=1

2ε(m, k, k)tk
2
]ϕ(t).

Proof. Consider a vertical path from the unitary region to (c, h). Since the hk,k(c) decrease

as k increases, we will intersect h1,1, h2,2, . . . , hp,p in order. Since σ(c, hk,k(c) + k2) = ϕ(t),
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by Lemma 8.3.3 and Theorem 8.2.1, applying the difference equation Theorem 8.1.1 p times,

we obtain the desired result.

8.4 Region 3: σ(c, h) for Irreducible M(c, h) when c < 1 and

h < c−1
24

Lemma 8.4.1. ([KR87], p. 91) The region c < 1, h > c−1
24 contains no reducibility curves.

Fix c0, h satisfying c0 < 1 and h < c0−1
24 . Since there are no reducibility curves in this

region, the signature here remains constant if we alter h, as long as h < c0−1
24 .

Since we have the formulas for 1 < c < 25 we will use these formulas to calculate the

signature for region 3. We will compare the signatures of the Verma modules at (c, h) in

region 2 and at (c0, h).

Figure 8-1: Path From the Unitary Region to c < 1 and h < c−1
24

Lemma 8.4.2. Let (c, h) be in region 2 and p be such that hp+1,p+1(c) < h < hp,p(c). Then

the reducibility curves that intersect the line segment from (c, h) to (c0, h) are hp+1,p+1,

hp+2,p+2,hp+3,p+3 . . ..
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Proof. The only reducibility curves in regions 2 are of the form hk,k and region 3 has

no reducibility curves. Now each curve partitions the plane into two regions: (c, h) for

which h > hk,k(c) and (c, h) for which h < hk,k(c). Recall that the hk,k are monotonically

increasing in region 2 as c decreases to 1, so any curves crossing our line segment cross

exactly once. For 1 ≤ k ≤ p, h < hk,k. For every k, hk,k(c) → 0 > h as c → 1. Since

hk,k(c) < h < 0 for k ≥ p + 1, therefore as we travel horizontally from (c, h) to (c0, h), we

cross only the reducibility curves hk,k for each k ≥ p+ 1.

Theorem 8.4.3. Given (c0, h) in region 3,

σ(c0, h) = [1 +

∞∑
k=1

2ε(m, k, k)tk
2
]ϕ(t)

where (c(m), h) lies in region 2.

Proof. Recall we chose c ∈ (1, 25) and p so that hp+1,p+1(c) < h < hp,p(c). The path tracing

the line segment from (c0, h) to (c, h) cross hk,k for k ≥ p + 1. That means that all of the

reducibility curves crossed can only alter signatures at levels (p+1)2 and higher. So σ(c0, h)

and σ(c0, h) have the same signature for the eigenvectors of any level less than (p+ 1)2.

Now consider what happens as h→ −∞. Choose {hi|i ∈ Z+, hi+1,i+1(c) < hi < hi,i(c)}.
As i→∞:

lim
i→∞

σ(c, hi) = [1 +
∞∑
k=1

2ε(m, k, k)tk
2
]ϕ(t).

We know that σ(c0, hi) has the same first i2 coefficients of σ(c, hi) for large enough i. But

we also know that σ(c0, hi) = σ(c0, hj) for all i, j as there are no intervening reducibility

curves (provided the points are in region 3). This is only possible if for large enough i

σ(c0, hi) = limj→∞ σ(c, hj). Therefore,

σ(c0, h) = [1 +
∞∑
k=1

2ε(m, k, k)tk
2
]ϕ(t).

8.5 No Intersections of Reducibility Curves at Irrational c

Note that if c is irrational, then m must also be irrational.
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Proposition 8.5.1. Reducibility curves cannot intersect at any irrational c value.

Proof. Suppose there exist two distinct pairs of integers, p1, q1 and p2, q2 such that h =

hp1,q1(m) = hp2,q2(m). But then

[(m+ 1)p1 −mq1]2 = [(m+ 1)p2 −mq2]2

=⇒ (m+ 1)p1 −mq1 = ∓[(m+ 1)p2 −mq2]

=⇒ (m+ 1)

m
=

q1 ± q2

p1 ± p2

Which implies that m (and therefore c) is rational.

Thus if we take paths following irrational c values, we will only intersect one reducibility

curve at a time which will permit us to use the difference equation. We will use this in

regions 4 and 5 where our formulas become more complicated.

8.6 Region 4: σ(c, h) for Irreducible M(c, h) when c > 25, h < 0

Lemma 8.6.1. Let (c, h) lie in region 4. There are finitely many reducibility curves between

(c, h) and (c, 0) and only finitely many reducibility curves may intersect at any given point

in the region.

Proof. Since −1
2 < m < 0, we have (m+1)p > 0 and −mq > 0. Thus there are only finitely

many hp,q curves such that hp,q > h for any fixed h.

The reducibility curves divide this region into open regions. Therefore for δ > 0 small

enough, σ(c, h) = σ(c+ δ, h).

When c is irrational, reducibility curves may be crossed one at a time if one takes a

vertical path to the unitary region. Since σ(c, h) = σ(c+ δ, h) for δ small enough, applying

the curve crossing difference equation to each of those curves:

Proposition 8.6.2. For (c, h) in region 4,

σ(c, h) = ϕ(t) +
∑
p,q∈Z+

0>hp,q(c)>h

2ε(m, p, q)tpqσ(c, h+ pq)(t).
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Unfortunately, in this case, σ(c, h+ pq) may not equal ϕ(t). If h+ pq > 0, then it does.

Otherwise, it may not. However, each (c, h+ pq) is closer to the unitary region and we find

by recursion:

Theorem 8.6.3. For (c, h) in region 4 lying on no reducibility curves,

σ(c, h) =
∑

(p1,q1),...,(pr,qr)

h+
∑j−1
i=1

piqi<hpj,qj (c)<0 for j=1,...,r

2r
r∏
i=1

ε(m, pi, qi)t
piqiϕ(t).

Note: include r = 0 for the empty list which satisfies the second condition vacuously.

Corollary 8.6.4. For (c, h) in region 4,

σ(c, h) = Qc,h(t)ϕ(t)

for some polynomial Qc,h(t).

8.7 Region 5: σ(c, h) for Irreducible M(c, h) when c < 1, h > c−1
24

Lemma 8.7.1. Let (c, h) lie in region 5. There are infinitely many curves on the line

between (c, h) and (c,∞). Where any two reducibility curves intersect in this region, there

are in fact infinitely many reducibility curves intersecting at that point.

The same reasoning for region 4 may be applied to region 5, except the unitary region

we move towards can only be reached in a limit. This gives us:

Theorem 8.7.2. For (c, h) in region 5,

σ(c, h) =
∑

(p1,q1),...,(pr,qr)

h+
∑j−1
i=1

piqi<hpj,qj (c) for j=1,...,r

2r
r∏
i=1

ε(m, pi, qi)t
piqiϕ(t).

Like region 4, we follow a vertical path along c + δ irrational; however, since infinitely

many reducibility curves intersect the line segment between (c, h) and (c+ δ, h), we need to

take appropriate limits along irrational c+ δ → c.

Remark 8.7.3. Comparing these equations to those in [Ken91], one notices that our for-

mulas have 2r while Kent has (−2)r. This difference is due to the choice of difference
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equation; that is, if we had instead chosen

lim
δ→0+

(σ(c, hp,q + δ)− σ(c, hp,q − δ)) = 2ε(m, p, q)tpqσ(c, h+ pq)

then our equations would match those Kent have already calculated. This change will also

propagate in the ε values. I have made this change to provide a more intuitive understanding

on the ε values which will be calculated later.
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Chapter 9

Computing ε

In this chapter, we assume c > 1. Our proofs apply for c > 1 and we conjecture

the formulas hold for c < 1.

A necessary step in completing the formulas in the previous chapter is understand-

ing the values of ε(m, p, q).

Since the potential values of ε are limited to ±1, we seek means of eliminating

one of the options. The asymptotic behaviour of P (n), the nth coefficient of ϕ(t),

in many cases is enough to force ε to take certain values. Those values are related

to the number of reducibiility curves separating two particular points. Counting the

number of such curves may be formulated as counting the number of lattice points

within a certain parallelogram.

9.1 Asymptotic Approximation of P (n)

Recall that ϕ(t) =
∞∑
n=0

P (n)tn.

Theorem 9.1.1. ([Apo76], p.316) P (n) is asymptotically e

(
π

√
2n
3

)
4n
√

3
.
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9.2 Q(t)ϕ(t)

Proposition 9.2.1. Due to our curve crossing algorithm, we can express each sig-

nature in the form

σ(c, h) = Qc,h(t)ϕ(t)

where Qc,h(t) is a power series in t with integer coefficients.

Remark 9.2.2. Note that for c > 1 (i.e. all regions except 3 and 5), Qc,h(t) is

in fact a polynomial as we only cross a finite number of reducibility curves to reach

(c, h) from the unitary region. We will see that in such a situation, we may compute

ε. Since region 3 does not contain any reducibility curves, we are able to compute ε

in all regions except region 5. We will conjecture a formula for region 5.

Lemma 9.2.3. Let (c, h) lie on only the reducibility curve hp,q. Then

lim
δ→0+

Qc,h−δ(t)−Qc,h+δ(t) = 2ε(m, p, q)tpqQc,h+pq(t).

Proof. Recall (formula 8.1.2) that when a path crosses a reducibility curve:

lim
δ→0+

σ(c, hp,q(m)− δ) = lim
δ→0+

σ(c, hp,q(m) + δ) + 2ε(m, p, q)tpqσ(c, hp,q(m) + pq).

Substituting in the appropriate Q(t) for each signature and dividing by ϕ(t) gives us

the desired result.

We have the following important theorem when Qc,h(t) is in fact a polynomial:

Theorem 9.2.4. If c > 1, then for all h, Qc,h(1) = ±1.

Proof. Consider a vertical path π from (c, 0) to (c, h). Since M(c, 0) is unitary,

Qc,0(t) = 1. Now when π crosses the hp,q reducibility curve, Qc,h(t) changes by

2tpqQc,h+pq(t). So Qc,h(1) will change by 2Qc,h+pq(1) which is an even integer. Since

Qc,0(1) = 1 which is odd, Qc,h(1) is always an odd integer.

Assume that for some (c, h), |Qc,h(1)| ≥ 3.

Let Qc,h(t) = 1+a1t
1 + ...+amt

m for some integers k and ai where i = 1, 2, . . . ,m.

56



We can expand out the terms of σ(c, h) = Qc,h(t)ϕ(t). For large n, the coefficient

of tn is P (n) + a1P (n− 1) + a2P (n− 2) + ...+ amP (n−m).

However,

lim
n→∞

P (n)

P (n− k)
= lim

n→∞

e

(
π

√
2n
3

)
4n
√

3

e

(
π

√
2(n−k)

3

)
4(n−k)

√
3

= lim
n→∞

e

(
π

(√
2n
3
−
√

2(n−k)
3

))
4n
√

3
4(n−k)

√
3

= lim
n→∞

e

(
π√
3

(
2k√

2n+
√
2n−k

))
n

n−k
= 1

as both the numerator and the denominator tend to 1.

So for large n, the the coefficient of tn in |Qc,h(t)ϕ(t)| is

|P (n) + a1P (n− 1) + · · ·+ amP (n−m)| ≈ |Q(1)P (n)| ≥ 3P (n)

or more importantly, larger than P (n). This is impossible however, since P (n) rep-

resents the the dimension of the entire (n+ h)th eigenspace.

Therefore |Q(1)| = 1.

Corollary 9.2.5. Let π be a vertical path from (c, 0) to (c, h) for irrational c > 1.

Then Qc,h(1) = (−1)k where k is the number of reducibility curves k crosses.

Proof. This follows directly from the fact that |2εtpqQc,h+pq(t)|t=1=2 and from Propo-

sition 8.5.1.

Corollary 9.2.6. If c > 1 is irrational, ε(m, p, q) = (−1)k where k is the number of

reducibility curves on the path between (c, hp,q − δ) and (c, hp,q + pq) for very small

δ > 0.

Proof. Let i be the number of reducibility curves crossing the vertical path from (c, 0)

to (c, hp,q − δ). Then Qc,hp,q−δ(1) = (−1)i, Qc,hp,q+δ(1) = (−1)i−1 and Qc,hp,q+pq(1) =
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(−1)i−k. Using Lemma 9.2.3, evaluating at t = 1 we have:

Qc,hp,q−δ(1)−Qc,hp,q+δ(1) = 2ε(m, p, q)1pqQc,hp,q+pq(1)

(−1)i − (−1)i−1 = 2ε(m, p, q)(−1)i−k

2(−1)i = 2ε(m, p, q)(−1)i−k

(−1)k = ε(m, p, q).

9.3 Computing ε for irrational c > 1

Recall that hp,q(m) = [(m+1)p−mq]2−1
4m(m+1)

. We then note the following lemma:

Lemma 9.3.1. For positive integers i, k such that hp,q(m) < hi,k(m) < hp,q(m) + pq,

(m+ 1)p−mq < (m+ 1)i−mk < |(m+ 1)p+mq|.

That is, the number of reducibility curves between hp,q(m) and hp,q(m) + pq is the

number of i, k pairs satisfying the above inequality.

Proof. This follows immediately by noting that for c > 1, −1
2
< m < 0 and thus

(m+ 1)p−mq is positive and that hp,q(m) + pq = hp,−q(m).

This leads us to the following theorem for ε(m, p, q) for c > 1.

Theorem 9.3.2. Given c > 1 and irrational c and positive integers p, q we have the

following formulas:

1. If c > 1 and (m+ 1)p+mq > 0 then ε(m, p, q) = (−1)b
q

m+1
c+1.

2. If c > 1 and (m+ 1)p+mq < 0 then ε(m, p, q) = (−1)b
−p
m
c.

Proof. Case 1: c > 1 and (m+ 1)p+mq > 0:

By Lemma 9.2.6 we only have to calculate the parity of the number of reducibility

curves between (c, hp,q(c) − δ) and (c, hp,q(c) + pq). Consider the following diagram

with lines of slope m+1
m

passing through all possible lattice points.
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Figure 9-1: Lattice Points Between (p, q) and (p,−q)

Now for any lattice point (a, b) we can express the equation of the line as: y =

m+1
m
x+ k

m
giving k2 = [(m+ 1)a− bm]2. We can see immediately that:

hp,q(c)− δ < ha,b(c) < hp,q(c) + pq

if and only if

1. (a, b) = (p, q)

2. [(m+ 1)p+mq]2 < k2 < [(m+ 1)p−mq]2.

The second condition holds when the line passing through (a, b) lies between the line

passing through (p, q) and the line passing through (p,−q).
Thus we only need to determine the parity of the number of first quadrant lattice

points lying between the two lines (including (p,q)). We divide up the areas as shown

in the following diagram:
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Figure 9-2: Computing the Number of Reducibility Curves Between hp,q and hp,−q, Case 1

Area 1: Note that each vertical lattice line segment has length 2q. Since the slope

is irrational, neither end point can lie on a lattice point. Therefore we must have an

even number of lattice points (2q lattice points per line segment), so the number of

lattice points in the entire area has an even parity.

Areas 2 and 3 are symmetric by a 180◦ rotation around the point (p, 0). Now

since the lines have slope m+1
m

and pass through points (p, q) and (p,−q), the x-

intercepts are p ± qm
m+1

so there are 2b qm
m+1
c + 1 vertical lattice lines passing through

the parallelogram. There are, therefore, 2q[2b| qm
m+1
|c + 1] + 1 = 2q[2b−qm

m+1
c + 1] + 1

lattice points in the parallelogram. (The +1 is due to the fact that there are 2q + 1

lattice points on the x = p vertical line).

We can now calculate the parity of the number of lattice points in area 2. We will

combine areas 2 and 3 and divide by 2.

Since each vertical lattice line passes through the x-axis, we subtract 2b qm
m+1
c+ 1

from the total number of lattice points in the parallelogram. Of these, half will lie in
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area 2. So the number of lattice points in area 2 is:

2q[2b−qm
m+1
c+ 1] + 1− [2b−qm

m+1
c+ 1]

2
= q[2b −qm

m+ 1
c+ 1]− b −qm

m+ 1
c

= (2q − 1)b −qm
m+ 1

c+ q

≡ b −qm
m+ 1

c+ q

≡ b q

m+ 1
− qc+ q

≡ −b q

m+ 1
c

≡ b q

m+ 1
c (mod 2).

Therefore ε(m, p, q) = (−1)b
q

m+1
c.

Case 2: c > 1 and (m+ 1)p+mq < 0:

We have a similar argument here, this time noting that hp,−q = h−p,q. We instead

count the lattice points between the lines passing through (p, q) and (−p, q). We now

have the following diagram:

Figure 9-3: Computing the Number of Reducibility Curves Between hp,q and h−p,q, Case 2

Following the same argument, but this time with horizontal lattice lines (each contain
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2q lattice points) and y-intercepts, we get that the the number of lattice points is:

2p[2b−p(m+1)
m
c+ 1] + 1− [2b−p(m+1)

m
c+ 1]

2
≡ (2p− 1)b−p(m+ 1)

m
c+ p

≡ b−p(m+ 1)

m
c+ p

≡ b−p
m
c (mod 2).

Therefore ε(m, p, q) = (−1)b
−p
m
c.

9.4 Formulas for ε and σ for Irreducible M(c, h) by Region

9.4.1 ε and σ for Region 1: c > 1, h > 0

Theorem 9.4.1. 1. There are no reducibility curves in this region, hence ε is not

defined.

2. σ(c, h) = ϕ(t) =
∏∞

n=1(1− tn)−1.

9.4.2 ε and σ for Region 2: 1 < c < 25, h < 0

Theorem 9.4.2. (cf. [Ken91] (11))

1. If (c, h) lies on a single reducibility curve hp,p in region 2, then

ε(m, p, p) = (−1)p.

2. For (c, h) in the region corresponding to an irreducible Verma module with

hp+1,p+1(c) < h < hp,p(c),

σ(c, h) = [1 +

p∑
k=1

2(−1)ktk
2

]ϕ(t).

Proof. The number of reducibility curves between (c, h) and (c, 0) is p by Lemma

8.3.3. Thus by Corollary 9.2.5, ε(m, p, p) = (−1)p. Substituting into Theorem 8.3.4

gives the second formula.
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9.4.3 ε and σ for Region 3: c < 1, h < c−1
24

Theorem 9.4.3. (cf. [KR87] p.91)

1. There are no reducibility curves in this region, hence ε is not defined.

2. For (c, h) in region 3,

σ(c, h) = [1 +
∞∑
k=1

2(−1)ktk
2

]ϕ(t) =
∞∏
n=1

(1 + tn)−1.

Proof. Substituting values for ε for region 2 into Theorem 8.4.3 gives us the first

equality.

9.4.4 ε and σ for Region 4: c > 25, h < 0

Theorem 9.4.4. (cf. [Ken91] (10), (21))

1. For (c, h) in region 4, there are finitely many reducibilty curves crossing the

vertical path from (c, 0) to (c, h). Here,

ε(m, p, q) =

 (−1)b
−p
m
c if (m+ 1)p−mq > 0

(−1)b
q

m+1
c+1 if (m+ 1)p−mq < 0.

2. For (c, h) in region 4 lying on no reducibility curves,

σ(c, h) =
∑

(p1,q1),...,(pr,qr)

h+
∑j−1
i=1

piqi<hpj,qj (c)<0 for j=1,...,r

2r
r∏
i=1

ε(m, pi, qi)t
piqiϕ(t)

where ε(m, pi, qi) is given above.

9.5 Conjecture for ε in Region 5

We end this chapter with the conjecture for the cases where c < 1:
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Conjecture 9.5.1. ([Ken91] (10))

The formulas are equivalent for c < 1. That is:

1. If c < 1 and (m+ 1)p+mq > 0 then ε(m, p, q) = (−1)b
q

m+1
c+1.

2. If c < 1 and (m+ 1)p+mq < 0 then ε(m, p, q) = (−1)b
p
m
c.

The diagrams for these cases (if we were to try to follow the same logic) are:

Case 1: c < 1 and (m+ 1)p+mq > 0

Giving ε(m, p, q) = (−1)b
q

m+1
c+1.

Figure 9-4: Computing the Number of Reducibility Curves Between hp,q and hp,−q: c < 1
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Case 2: c < 1 and (m+ 1)p+mq < 0

Giving ε(m, p, q) = (−1)b
−p
m
c.

Figure 9-5: Computing the Number of Reducibility Curves Between hp,q and h−p,q: c < 1

We arrive at the equivalent formula for σ(c, h) except for the requirement that

h < 0. That is:

σ(c, h) =
∑

(p1,q1),...,(pr,qr)

h+
∑j−1
i=1

piqi<hpj,qj (c) for j=1,...,r

2r
r∏
i=1

ε(m, pi, qi)t
piqiϕ(t)

where ε(m, pi, qi) is given above.

The issue with this method is area 1, while still having an even number of lattice

points per line segment, the total number of lattice points is now infinite. However,

we will outline a method for future study that should rectify this problem.

Remark 9.5.2. At this point, we shall return to Remark 8.7.3 to note that the ε values

calculated in this chapter all contain a factor of −1 as to those given by [Ken91].

These two changes combine to give the same signature formulas provided by Kent.

We will thus appropriately modify Kent’s formulas in future chapters.

Comparing these signature to those of Kent’s, we see that in region 2 we have

a closed formula while Kent has a difference formula. Furthermore, in region 4, we

have a closed formula while Kent provided a description (repeated use of the difference

formula).
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Chapter 10

Equivalence With Kent’s Formula

in Region 5

We would like to show that the previous section’s formulas match Kent’s formulas.

10.1 Kent’s Formula

Theorem 10.1.1. ([Ken91] (21)) Kent’s formula is for rational m. Let r, s be co-

prime integers satisfying m = r
s
.

Define h(a,m) = (a2−s2)
4r(r+s)

Then for h(a− 1,m) < h < h(a,m),

σ(h, c(m)) = ϕ(t)(1 +
∑

(p1,q1),...,(pr,qr)

2r
r∏
i=1

ε+(m, pi, qi)t
piqi)

where:

ε±(m, p, q) = lim
δ→0+

ε(m± δ, p, q)

and the sum is over all finite sequences of pairs of positive integers satisfying:

1. |(r + s)p1 − rq1| ≥ a

2. For i ≥ 1, |(r + s)pi+1 − rqi+1| > (r + s)pi + rqi or (r + s)pi+1 − rqi+1 =

−((r + s)pi + rqi).

Now let us see how this is equivalent to our formula 5.
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Since h(a − 1,m) < h < h(a,m), (c, h) does not lie on a reducibility curve.

Therefore, we could follow a path from ∞ → h along m + δ, irrational. As δ → 0+,

this path will give us the same signature.

Recall for region 5 we had

σ(c, h) =
∑

(p1,q1),...,(pr,qr)

h+
∑j−1
i=1

piqi<hpj,qj (c) for j=1,...,r

2r
r∏
i=1

ε+(m, pi, qi)t
piqiϕ(t).

Note that we changed the formula slightly from before in that we now use ε+(m, p, q)

due to the limiting argument. What now remains to be shown is that the polynomial

in t is equivalent in both formulas. That is, we need to show that we sum over the

same set. In order to do so, we require the following result:

10.2 The Ordering of Reducibility Curves Around an Inter-

section Point

Theorem 10.2.1. The reducibility curves that intersect at point (c, h) have slopes

that are ordered by (from largest to smallest):

If m < 0, or (c > 1) then the slopes are greatest with greatest q values.

If m > 0, or (c < 1) then the slopes are greatest first by

All (pi(m+ 1)− qim) < 0 greatest with greatest q-values followed by

All (pi(m+ 1)− qim) > 0 greatest with smallest q values.

Proof. We follow a perturbed path from (c+ δ,∞) to (c+ δ, h) along c+ δ, irrational.

Taking δ → 0+, in the limit, the path will cross reducibility curves in an order

determined by the slopes of the tangents to each reducibility curve at (c, h).

Let us look at an intersection point (c, h) of the reducibility curves {hpi,qi(c)}.
We examine the slopes of the reducibility curves at (c, h) by considering the hp,q(m)

values. Recall that hp,q(m) = [(m+1)p−mq]2−1
4m(m+1)

. We reparamaterize with x = m+1
m

([DFMS97],p.208) so

hp,q(x) =
1

4
(p2 − 1)x+

1

4x
(q2 − 1)− 1

2
(pq − 1)
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Now since these reducibility curves intersect,

h =
[(m+ 1)pi −mqi]2 − 1

4m(m+ 1)
=

[(m+ 1)pj −mqj]2 − 1

4m(m+ 1)

=⇒ (m+ 1)pi −mqi = ±[(m+ 1)pj −mqj]

That is, [(m+ 1)pi −mqi]2 is constant for all of the curves at the intersection point.

If we then take the derivative with respect to x, we see that

h′p,q(x) =
1

4
(p2 − 1)− 1

4x2
(q2 − 1)

=
1

4x2
[(p2x2 − q2)− (x2 − 1)]

=
1

4x2
[(px− q)(px+ q)− (x2 − 1)]

=
1

4x2

[
(p(m+ 1)− qm)(p(m+ 1) + qm)

m2
− (x2 − 1)

]
=

1

4x2

[
(p(m+ 1)− qm)2 + (p(m+ 1)− qm)2qm)

m2
− (x2 − 1)

]

Notice that 1
4x2

[
(p(m+1)−qm)2+(p(m+1)−qm)2qm)

m2 − (x2 − 1)
]

is fixed for all p, q values

except for (p(m+ 1)− qm)2qm). So h′p,q(x) is greatest when (p(m+ 1)− qm)2qm is

greatest.

Now since ∂x
∂m

= − 1
m2 ,

∂(hpi,qi)

∂m
= − 1

m2

(
1

4x2

[
(p(m+ 1)− qm)2 + (p(m+ 1)− qm)2qm)

m2
− (x2 − 1)

])

Therefore, ∂(hp,q)

∂m
is greatest when (p(m+ 1)− qm)2qm is smallest.

Also, c = 1− 6
m(m+1)

⇒ ∂c
∂m

= 6(2m+1)
(m(m+1))2

> 0⇒ ∂m
∂c
> 0.

Therefore, ∂(hp,q)

∂c
is greatest when (p(m+ 1)− qm)2qm is smallest.

Region 4: c > 25, −1
2
< m < 0

(m+1)pi−mqi > 0 so pi > pj =⇒ qi > qj as [(m+1)pi−mqi]2 is constant. But since

(pi(m+ 1)− qim) and m are fixed, ∂hp,q
∂m

is completely dependent on qi. Thus
∂(hpi,qi )

∂m

is greater when qi is greater and so the path from (c+ δ, 0)→ (c+ δ, h) intersects the

reducibility curve with the largest qi first.
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Region 5: c < 1, m > 0

We have a similar situation but there are now two subcases: pi(m + 1) − qim > 0

and pj(m+ 1)− qjm < 0. Note that in both cases, |pi(m+ 1)− qim| > 0 is constant.

Now it is clear that the entire first subcase has a smaller slope then the entire second

subcase as (pi(m+ 1)− qim)2qm > 0 > (pj(m+ 1)− q(j)m)2qm.

Subcase A: (p(m+ 1)− qm) > 0

(pi(m+ 1)− qim) > 0 and m > 0 so ∂hp,q
∂m

is greater when q is smaller

Subcase B: (p(m+ 1)− qm) < 0

(pj(m+ 1)− qjm) < 0 and m > 0 so ∂hp,q
∂m

will be greater when q is greater.

Thus the order of the p, q pairs by greatest to smallest slope around m > 0

intersection points is:

1. All (p(m+ 1)− qm) < 0 ordering by largest q values (only if c < 1)followed by

2. All (p(m+ 1)− qm) > 0 ordering by smallest q values.

Let us now examine the restrictions on Kent’s sequences of integers.

10.3 Kent’s Sequences of Integers

We will show the equivalence by looking at the expansion of Region 5’s formula and

finding a 1-1 correspondence with the indexing set for Kent’s formula.

First, let us look at all sequences in Kent’s formula ([Ken91] (21)). The restrictions

on the sequences are:

1. |(r + s)p1 − rq1| ≥ a

2. For i ≥ 1, |(r + s)pi+1 − rqi+1| > (r + s)pi + rqi or (r + s)pi+1 − rqi+1 = −((r +

s)pi + rqi).

Recall that hp,q(m) = ((m+1)p−mq)2−1
4m(m+1)

and that hp,q(m) + pq = hp,−q(m). Let’s look

closely at these restrictions.
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Restriction 1: |(r + s)p1 − rq1| ≥ a

Since both sides are positive,

|(r + s)p1 − rq1| ≥ a

⇐⇒ [(r + s)p1 − rq1]2 ≥ a2

⇐⇒
[

(r + s)

s
p1 −

r

s
q1

]2

≥ a2

s2

⇐⇒ [(m+ 1)p1 −mq1]2 ≥ a2

s2

⇐⇒ [(m+ 1)p1 −mq1]2 − 1

4m(m+ 1)
≥

a2

s2
− 1

4m(m+ 1)

But
a2

s2
−1

4m(m+1)
= a2−s2

4m(m+1)s2
= h(a,m)

∴ hp1,q1(m) ≥ h(a,m)

So restriction 1 can be understood as any reducibility curve above h since h(a,m) is

the first reducibility curve above h.

Restriction 2. For i ≥ 1, |(r+s)pi+1−rqi+1| > (r+s)pi+rqi OR (r+s)pi+1−rqi+1 =

−((r + s)pi + rqi).

Conducting similar calculations to those above, we can reinterpret the restriction

as:

hpi+1,qi+1(m) > hpi,−qi(m) OR hpi+1,qi+1
(m) = −hpi,−qi(m)

Now the first condition is expected, as these correspond to the curves that have h

values strictly greater then hpi,qi + piqi. However, the second condition requires a bit

more attention.

Recall that we evaluated the signatures by following a path along m+ δ, δ → 0+.

Since we have perturbed c, the curves no longer intersect. So we need to examine

where hpi,qi(m + δ) + piqi lies in relation to the other reducibility curves around

hpi,qi(m + δ) + piqi. We know that hpi,qi(m) + piqi = hpi,−qi(m). Now (pi(m + 1) −
(−qi)m) > 0 and since −qi is negative, hpi,qi(c+ δ) > hr,s where r, s falls into subcase
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B. However, since (pi(m + 1)− (−qi)m) > 0, hpi,qi(c + δ) < hx,y where x, y falls into

subcase A. Therefore, any reducibility curve hp,q satisfying (p(m+ 1)− (q)m) < 0 is

above hpi,qi(m) + piqi and so must be included in the summation.

Thus we are summing over the same sets.

71



Chapter 11

Signatures for Irreducible Highest

Weight Modules L(c, h) over V ir

In this chapter, we see that σL(c, h) can be expressed as (limits of) averages of

signature characters of irreducible Verma modules. (We abuse notation and insert

L’s and M ’s for clarity.)

11.1 Case II+:

Theorem 11.1.1. Case: II+ If (c, h) lies on only one reducibility curve hp,q then

σL(c, h) = lim
δ→0+ :M(c,h±δ)irred

σM(c, h+ δ) + σM(c, h− δ)
2

.

Proof. Recall the equations (8.1) give when normalized and altered to accommodate

the more general setting of Corollary 8.1.2:

lim
δ→0+

σM(c, h+ δ) = σ 〈·, ·〉0 + tpqσ 〈·, ·〉1 = σ 〈·, ·〉0 + tpqε σM(c, h+ pq)

lim
δ→0+

σM(c, h− δ) = σ 〈·, ·〉0 − tpqσ 〈·, ·〉1 = σ 〈·, ·〉0 − tpqε σM(c, h+ pq).

We take the limit over M(c, h± δ) irreducible–however, note that since only finitely

many reducibility curves affect a given level, we can simply take the limit δ → 0+

(except we have not defined σ for reducible M(c, h)). We see that from averaging the
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two equations,

σL(c, h) = 〈·, ·〉0 = lim
δ→0+

σM(c, h+ δ) + σM(c, h− δ)
2

.

Remark 11.1.2. We can generalize the formulas for σ(c, h) by looking at the full

Jantzen filtration, i.e.

lim
δ→0+

chsM(h+ δ) = chs 〈·, ·〉0 + chs 〈·, ·〉1 + chs 〈·, ·〉2 + · · ·

and

lim
δ→0+

chsM(h− δ) = chs 〈·, ·〉0 − chs 〈·, ·〉1 + chs 〈·, ·〉2 − · · · .

If, for example, our module structure is:

M(c, h+ α2β2) M(c, h+ α1β1 + α′2β
′
2) M(c, h+ α4β4) .........

M(c, h)

M(c, h+ α1β1) M(c, h+ α1β1 + α′1β
′
1) M(c, h+ α3β3) .........

....
....

....
....

....
....

....
....

....
...........................................

then we have

lim
δ→0+

chsM(c, h+ δ) = chsL(c, h) + ε1chsL(c, h+ α1β1) + ε2chsL(c, h+ α2β2) + · · ·

for some εi = ±1.

Now we can compute the signatures at intersections of reducibility curves.
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11.2 Case III±:

Theorem 11.2.1. Case III±: If (c, h) is such that M(c, h) has the module structure:

M(c, h+ p2q2) M(c, h+ p1q1 + p′2q
′
2) M(c, h+ p4q4) .........

M(c, h)

M(c, h+ p1q1) M(c, h+ p1q1 + p′1q
′
1) M(c, h+ p3q3) .........

....
....

....
....

....
....

....
....

....
..........................................

then

σ(c, h) = lim
δ→0:c+δ irrat

σ(c+ δ, hp1,q1(c+ δ)) + σ(c− δ, hp1,q1(c− δ))
2

.

Proof. We will prove the formula for Case III+ with the understanding that case

III− is the same but with a limiting argument.

For brevity, we will refer to the Verma modules as M(i) = M(c, h+ ni) as shown

in the following diagram.

M(2) M(4) M(6) ..........

M(0) M(m)

M(1) M(3) M(5) ..........

...
...
...
...
...
...
...
...
...
...
...
.....................................

Consider the following diagram. The curves labelled by hp1,q1 and hp2,q2 corre-

spond to M(1) and M(2), respectively. The dotted curves represent other reducibility

curves. We focus on M(1) and M(2) in particular because they are maximal Verma

submodules of M(c, h). Note that there are no reducibility curves (other than those

that pass through (c, h)) in a neighbourhood of (c, h).
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A ● 

B ● 

D ● 

C ● 

€ 

hp2 ,q2
 

€ 

hp1,q1
 

Figure 11-1: Reducibility Curves in the Neighbourhood of (c, h)

We consider points A,B and C,D which straddle the reducibility curve hp1,q1 on

different sides of hp2,q2 . In any open region containing no reducibility curves, the

signature must remain the same. Considering the Jantzen filtration, we therefore

know that

σ(M(A)) = σ(L(0))+ε1t
n1σ(L(1))+ε2t

n2σ(L(2))+ε3t
n3σ(L(3))+· · ·+εmtnmσ(L(m))

for some εi = ±1 by Theorem 7.3.1. There is an analogous formula for σ(M(B)).

Now we know that the path from A to B crosses hp1,q1 and the signature must

therefore change by the signature of some M(c1, hp1,q1(c1)+p1q1) which may be taken

so that there is a path from it to M(1) = M(c, h + p1q1) crossing no reducibil-

ity curves. Considering the Jantzen filtration of M(1), the signature character of

M(c1, hp1,q1(c1)+p1q1) must be a ±1-linear combination of the irreducible constituents

of M(1). We see therefore that the signature of M(B) may be obtained from the sig-

nature of M(A) by switching all of the coefficients in front of L(1), L(3), L(4), . . . ,

L(m). Thus

σ(M(B)) = σL(0)−ε1t
n1σ(L(1))+ε2t

n2σ(L(2))−ε3t
n3σ(L(3))−· · ·−εmtnmσ(L(m)).
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Note that ε2 did not change signs, as L(2) is not a composition factor of M(1).

Adding these two equations together, we have

σ(M(A)) + σ(M(B)) = 2σ(L(0)) + 2ε2t
n2σ(L(2)).

Applying the same argument to M(C) and M(D), we have

σ(M(C)) + σ(M(D)) = 2σ(L(0)) + 2ε′2t
n2σ(L(2)).

However, ε2 = −ε′2 since:

1. A,B and C,D lie on opposite sides of hp2,q2 .

2. No reducibility curve other then hp2,q2 can change the coefficient of σ(L(2)) as

M(2) is a maximal Verma submodule.

3. Crossing hp2,q2 does change ε2 since when you cross curves one at a time the

signature changes by the signature of the maximal submodule.

Thus ε2 = −ε′2.

Now if we sum the two equations together, we arrive at

σ(M(A)) + σ(M(B)) + σ(M(C)) + σ(M(D))

4
= σ(L(0)).

Applying the previous theorem, we are done.

This theorem allows us, with the computations from chapter 9, to compute the

signatures at most intersection points and in particular, those of minimal models.

11.3 Case IIIo± and Case IIIoo±

These cases are even more straightforward:

Theorem 11.3.1. Given M(c, h) with the module structure of Case IIIo± or Case

IIIoo± , let hp,q be the reducibility curve of minimal level on which (c, h) lies. Then

σL(c, h) = limδ→0
σM(c+ δ, hp1,q1(c+ δ)) + σM(c− δ, hp,q(c− δ)

2
.
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Proof. Again, we will abbreviate our notation for the Verma submodules. For sub-

module structure, we have M(0) ⊃ M(1) ⊃ M(2) ⊃ · · · . We apply a similar argu-

ment as in the previous case except this time note that σ((A)) + σ((B)) = 2σ(L(0))

and so we are done.

Remark 11.3.2. Note that although the Jantzen filtration for Case IIIoo± only has

even levels, we perturb from (c, h) and cross the curves one at a time, and the Jantzen

filtration after the perturbation has odd levels.
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Chapter 12

Modular Group Actions

In this chapter we briefly outline the motivation for studying modular group actions

and discuss the action of T on signatures. The action of S is left for future work.

12.1 The Torus

One means of constructing a torus is by taking a unit square, gluing two opposite sides

to make a cylinder, and then gluing the remaining two opposite sides (now circles) to

form a torus. Described algebraically, a torus may be viewed as a quotient:

Definition 12.1.1. A torus can be identified with the quotient of a plane by a lattice;

that is if ω1 and ω2 are two vectors forming a basis for R2, define Λ := {mω1 + nω2 :

m,n ∈ Z}. Then a torus is in bijection with R2/Λ.

Equivalently, choose ω1, ω2 ∈ C which are linearly independent over R. Define the

lattice Λ as above. C/Λ is in bijection with a torus.

Note that this makes sense since k = k+ω1 = k+ω2 for k ∈ R2 under the quotient

while such an equality holds by considering our gluing.

Definition 12.1.2. τ = ω2

ω1
∈ C is called the modular parameter.

12.2 Modular Invariance

Conformal field theories play an important role in theoretical physics. However, we

would like the lattice to define the theory, not the choice of basis. This means that
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any formulas must remain invariant under a change of basis. Given this, consider two

bases ω1, ω2 and ω′1, ω
′
2 which form the same lattice.

Consider the automorphisms of this lattice. Now since ω′1 and ω′2 are on the lattice,

ω′1 and ω′2 are integral linear combinations of ω1 and ω2. So there exist a, b, c, d ∈ Z

such that  ω′1

ω′2

 =

 a b

c d

 ω1

ω2

 .

Likewise, there must also be a set of integers such that ω1

ω2

 =

 a′ b′

c′ d′

 ω′1

ω′2

 .

Substituting this into the previous equation we have ω′1

ω′2

 =

 a b

c d

 a′ b′

c′ d′

 ω′1

ω′2



⇒

 1 0

0 1

 =

 a b

c d

 a′ b′

c′ d′

 .

Since ω′1,
′ ω′2 are linearly independent in R. But since a, b, c, d, a′, b′, c′, d′ are all inte-

gers, ad−bc and a′d′−b′c′ are both integers. Thus, det

 a b

c d

 = det

 a′ b′

c′ d′

 =

±1 Now interchanging w′1 and w′2 will change the determinant by a factor of -1 (but

leaves the lattice the same), thus we will study those matrices with determinant 1.

Note that multiplying by negative the identity matrix does not change the determi-

nant. The set of all integral matrices

 a b

c d

 with determinant 1 is SL(2,Z). The

group we are interested in is SL(2,Z)/Z2, which is also called PSL(2,Z).
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12.3 Modular Group

Definition 12.3.1. ([DFMS97], p.339) The group PSL(2,Z) is known as the mod-

ular group Γ, and can be generated by the two matrices

T =

 1 1

0 1


S =

 0 1

−1 0

 .

Expressed in terms of generators and relations,

Γ = {S, T : S2 = I, (ST )3 = I}.

Definition 12.3.2. Given

 a b

c d

 ∈ Γ, the corresponding fractional linear

transformation of C is

z 7→ az + b

cz + d
.

This defines a group action of Γ on C.

Proposition 12.3.3. ([DFMS97] p. 338) If

 ω′1

ω′2

 =

 a b

c d

 ω1

ω2

, then the

modular parameters τ ′ and τ are related by

τ ′ =
aτ + b

cτ + d
.

Proposition 12.3.4. ([DFMS97] ,p.339) T and S correspond to the transformations

T and S respectively which act on the modular parameter τ by:

T : τ → τ + 1

S : τ → −1

τ
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12.4 Modular Group Actions on Signature Characters

For applications to conformal field theories, we want to understand how the modular

group acts on our signature formulas.

Notation 12.4.1. Let the upper half plane be H := {z ∈ C : Im z > 0}.

Proposition 12.4.2. ([DFMS97], p.340) Γ maps the upper half plane to itself.

Since Γ acts on the upper half plane, we may view characters and signature charac-

ters as functions on the upper half plane, and then Γ acts on characters and signature

characters. Our formulas involve polynomials in t; in conformal field theory, t is

defined as

t = e2πiτ .

Given an element g ∈ Γ, how can we let g act on signature formulas, which are

functions of t and hence functions of τ? A natural way would be to let g act on the

argument τ of the function:

Definition 12.4.3. Given g ∈ Γ and f a function on H, define the right action of g

on f by

(f.g)(τ) = f(g.τ).

Therefore, our previous definitions for T and S can be generalized to:

Definition 12.4.4. Let f be a function on the upper half plane. Define

T (f) = f.T

S(f) = f.S,

which we observe to be consistent with Proposition 12.3.4.

Notation 12.4.5. To simplify computations, there is a shift in the literature of t−
c
24

which we build into not just characters but also signature characters:

1. χc,h(t) := t−
c
24 chL(c, h)

2. χ̃c,h(t) := t−
c
24 chsL(c, h).
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We may act on χc,h and χ̃c,h by the modular group Γ. It is known ([DFMS97])

that acting by g ∈ Γ on χc,h returns a linear combination of χc,h′ ’s. It suffices to

understand the behaviour of T and S since they generate Γ. We wish to develop

similar formulas for χ̃c,h’s.

We finish this chapter by computing how T acts on signature characters.

Lemma 12.4.6. If k is an integer, then T (tk) = tk.

Proof. Recall that T : τ → τ + 1 and t = e2πiτ .

Corollary 12.4.7. Polynomials in t and the formal power series ϕ(t) are both un-

changed under the action of T .

Theorem 12.4.8. T (χ̃c,h(t)) = e2πi(h− c
24

)χ̃c,h(t)

Proof. Recall that χ̃c,h(t) = th−
c
24Qc,h(t)ϕ(t). Thus

T (χ̃c,h(t)) = e2πi(τ+1)(h− c
24

)T (Qc,h(t))T (ϕ(t))

= e2πi(τ)(h− c
24

)e2πi(h− c
24

)Qc,h(t)ϕ(t)

= e2πi(h− c
24

)e2πiτ(h− c
24

)Qc,h(t)ϕ(t)

= e2πi(h− c
24

)χ̃c,h(t)
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Chapter 13

Future Work

13.1 Computing ε(m, p, q) for c < 1

In Feigin and Fuch’s paper ([FF90]), they prove that there is an antiautomorphism

that takes M(c, h)→M(26− c, 1− h). In particular,

M(c, h) ⊃ M(c, h+ pq)

⇒M(26− c, 1− h) ⊂ M(26− c, 1− h− pq).

(c, h) on h = hp,q ⇐⇒ (26− c, 1− h) on h = h−p,q = hp,−q.

Where h = hp,q detected if a Verma module has a non-trivial submodule, h = hp,−q

detects if a Verma module has a non-trivial embedding into another Verma module. In

region 5, every Verma module has finitely many (up to scaling) non-trivial embeddings

into other Verma modules. Furthermore, formulas in [KR87] (eg. p. 27) indicate how

invariant Hermitian forms on M(c, h) and on M(26− c, 1− h) are related.

If (c, h) lies on h = hp,−q so that (c, h−pq) lies on h = hp,q, the difference equation

gives

σ(c, h− pq + δ) = σ(c, h− pq − δ) + 2tpqε(m, p, q)σ(c, h).

Rearranging, we find that:

σ(c, h) =
σ(c, h− pq + δ)− σ(c, h− pq − δ)

2tpqε(m, p, q)
.
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13.2 Conformal Field Theory and Modular Transformations

To completely understand the action of the modular group, we must understand S.

We have the following philosophy for computing S(χ̃c,h(t)). If S(χc,h(t)) is under-

stood, we simply note that any χ̃c,h(t) is a linear combination of χ’s and therefore

the problem reduces to understanding S(χc,h(t)). The solution to the latter problem

is known for example in the minimal model case ([DFMS97], p. 363).
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Appendix - Listing of Virasoro

Examples

This is a listing of the examples used throughout the thesis that highlight specific

properties of the Virasoro algebra (and of related structures).

Definition: 2.6.4

Cartan Subalgebra: 3.0.3

Universal Enveloping Algebra: 4.2.3

Positive and Negative Roots: 5.1.2

Basis for Verma Modules: 5.2.6

Character Formula: 5.3.3

Real Form: 6.1.4

Invariant Hermitian Form: 6.2.7

Orthogonality of Weight Spaces: 6.3.1

Kac’s Determinant Formula: 6.4.1

Reducibility Curves: 6.4.2

Submodule Structure and Jantzen Filtration: 7.1
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