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Abstract 

 

 

The current era is calling for a greater electricity demand than ever seen before.  

There is much at stake with health care, manufacturing, communications, and safety 

systems relying on the assumption that a constant supply of power is always available.  

Slow information feedback and hesitation to relay the information to other power stations 

was a major contributor to North America's northeast blackout of 2003.  Had fault 

information been properly passed on, the blackout area would have been much smaller.  

From experience, it can be seen that having the knowledge of knowing exactly when and 

what is happening on the power distribution grid is extremely valuable.  This thesis 

develops a practical, self configuring, sampling and forwarding scheme for transmission 

line monitoring.  A hierarchical communication topology is also proposed.  The 

developed prototype operates successfully and its functionality is fully documented.  In 

addition, a ZigBee testbed is developed and used to determine its ability to perform in 

harsh environments, such as the one that may be found in a transmission line or power 

station environment.  This research found that ZigBee devices are able to perform 

suitably with harsh surroundings.
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Chapter 1 

Introduction 

 

  

1.1 – Motivation 

 

Most people in today's world take for granted that electricity is available at our 

finger tips whenever we fire up our computers or turn on a light.  It is constantly being 

consumed by the hot water heaters, air conditioners, and furnaces that make our lives 

more comfortable.  Electricity is essential to manufacture the automobiles we drive, 

process the foods we eat, and power the entertainment we all enjoy.  In the not so distant 

past, these were luxuries beyond imagination.  In order to properly maintain and expand 

this precious power distribution system, it is necessary to understand and monitor the 

system's behaviour.  Coupled with fast and reliable communication networks, fault 

situations can be readily reported to control centres for processing so immediate action 

can be taken.  This way costs incurred to manufacturer's for stagnant assembly lines or 

health risks to hospital patients caused by lengthy power outages are minimized. 

 

Now almost a full decade into the 21
st
 century it is abundantly clear that 

alternative power sources to fossil fuels are crucial to meet the increasing power demands 

and decrease the effects of global warming.  According to Statistics Canada [1], from 

2004 to 2008 the Ontario population has grown by approximately 538,400 people, and 

Canada's population has grown by approximately 1,370,700 people.  Additionally, North 

America is on the verge of mass production and distribution of electric vehicles.  The 

introduction of millions of cars plugging in to recharge every day and the need to support 

an increasing population, will alone give rise to a massive electrical demand on Canada 

and Ontario's power transmission systems.  The 2009 first-quarter report from the Ontario 

Power Authority (OPA) [2] illustrates that 6,778 MW of power is under development to 

meet this demand.  This figure is in addition to the 3,801 MW that are currently in 

operation.  Such an increase in power to be distributed would cripple a transmission 
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system that is not fit to receive it. 

 

Ontario's first 110 kV transmission lines were installed and then operated in 1910, 

and the first 500 kV lines were under construction in 1960 [3, 4].  Since these times there 

have been many more kilometers of transmission lines put in place spanning across 

Ontario.  The Ontario Energy Board [5] shows that in 2007 Hydro One had a total of 

120,231 km of transmission lines.  That is enough transmission lines in Ontario alone to 

circle the equatorial circumference of the earth 3 times!  Of course, this massive 

distribution system does not always function flawlessly.  Faults do occur and are a result 

of many different circumstances.  Some faults are a consequence of bad weather such as 

tornadoes and ice storms, whereas others are caused by cranes, air planes, animals, and 

even fallen trees.  Faults may also arise from contaminated and deteriorated insulators.  

Thus, conductors are exposed and short circuits may take place.  Deterioration of 

insulators is mainly a product of age and overloading [6].  As previously stated, the first 

AC transmission lines are between 50 and 100 years old, and the amount of power 

Ontario is producing will almost double within 5 years.  This could be a potentially 

hazardous situation without careful planning and monitoring of the power distribution 

grid. 

 

1.2 – Problem Statement 

 

Essex Powerlines Corporation [7] is an electricity supplier in the area surrounding 

the City of Windsor.  The University of Windsor collaborated with Essex Power to 

implement a transmission line monitoring system, and it is the task of this project to 

develop a prototype.  The prototype is composed of two parts; the fault sensor, and the 

communication scheme to channel the data.  The undertaking of this thesis is to design 

and create the communication scheme. 

 

1.3 – Thesis Contribution 

 

In order to properly design an efficient monitoring system, it is necessary to 
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understand the limitations of the communication devices used in the system.  Hence, a 

wireless testbed is created for the purpose of discovering the performance capabilities of 

IEEE 802.15.4.  Performance trials are conducted in four different environments and the 

complete results are tabulated.  Once a strong sense of the performance abilities are 

achieved, a self-configuring transmission line monitoring system is developed and a 

complete description of its functionality is given.  Additionally, an IEEE 802.11 backbone 

network is developed to demonstrate the system feasibility.  This backbone network 

includes a graphical user interface so an operator can monitor and interact with the 

sensing network. 

 

1.4 – Background 

 

Since the establishment of the first three-phase alternating current (AC) power 

transmission system in 1893 by the Southern California Edison Company [6], this form 

of power transmission has gained much popularity. So much so, that three-phase AC is 

now used world wide as the preferred method for transmitting power from one place to 

another.  In order to design an appropriate three-phase transmission line monitoring 

system, it is necessary to understand the difference between the transmission line's 

normal and abnormal operating parameters. 

 

1.4.1 – Types of faults and Consequences 

 

For a three-phase transmission system there are four different types of faults that 

could occur.  The first, and most popular, is the single line-to-ground fault.  In this case 

one of the three conductors gets shorted to the ground.  As a result, the shorted phase will 

experience a high current spike and the potential difference in the line will dramatically 

drop.  The remaining two phases will both experience a sudden current decline (possibly 

to zero) and their voltage levels will change.  Single line-to-ground faults make up 70%-

80% of the faults that occur [6, 8].  Another type of fault is the double line-to-ground 

fault.  The resulting current and voltage behaviour is similar to the single line-to-ground 

fault situation, except in this case two of the three phases are short circuited to the 
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ground. 

 

The second most occurring fault type for a three-phase transmission system is a 

line-to-line fault.  This occurs when one phase is short circuited with another phase.  In 

such a case, these two phases experience equal current magnitude but it flows in opposite 

directions.  Additionally, their voltage magnitudes are also equal, but they have different 

phase angles.  This phenomenon causes the current to drop to zero in the remaining line 

that did not experience the short circuit. 

 

The last type of fault is the least likely to take place, and does so only 5% of the 

time.  It is known as the balanced three-phase fault.  In this case, all three phases are 

shorted to the ground resulting in very high current flows and low voltage levels. 

 

Determining the abnormal operating parameters is the responsibility of the power 

systems engineers.  For the purpose of this thesis, it is enough to recognize that there will 

be both high and low thresholds for different circuit characteristics such as current and 

voltage, with normal operation occurring in between.  The different combinations of 

exceeded thresholds for each phase will help establish which fault is present. 

 

1.4.2 – Smart Meters 

 

As Mankind pushes deeper into the Information Age, our goal for ubiquitous data 

access has not yet been attained.  Nonetheless, one piece of technology that brings Man 

one step closer to that goal is smart meters.  Smart meters are a digital meter to measure 

the amount of power being consumed at its final destination, such as commercial or 

residential buildings.  They are an improvement upon the previous analog meters because 

of many additional features, but most importantly they are capable of wireless 

communication.  Although several wireless communication technologies are possible, 

many smart meters implement IEEE 802.11.x WLAN as the preferred choice. 

 

A neighbourhood of homes equipped with smart meters create a self organizing, 
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non-mobile, mesh network, as seen in Figure 1.1.  Once every hour, each meter transmits 

the power consumption values it measured.  This data gets forwarded through the 

network in a multi-hop fashion to a central collection node for the neighbourhood.  At the 

end of the day, the collector sends all the information to the distribution company for bill 

processing.  Under this scheme it is possible for the power company to have time-of-use 

pricing by charging different amounts for power consumption during different hours of 

the day.  This is intended to motivate consumers to use less power at normally high peak 

times (lunch and dinner hours), and save high power demanding tasks for low peak times.  

An example would be to run dishwashers and clothes dryers during night time hours.  As 

a result, the power generating and distribution companies will experience a more constant 

power demand during a 24h cycle instead of the fluctuating behaviour they experience 

now which introduces additional stresses to the system. 

 
Figure 1.1: An example of a smart meter (REX Meter) residential deployment and its 

mesh network with the collector nodes [9]. 

 

The Ontario Energy Board put together a smart meter implementation plan in 

2004 [10] that was submitted to the Ontario Ministry of Energy and Infrastructure.  

Details of this plan were then passed into legislation to make Ontario more energy 

efficient in the future.  One of the details was to have smart meters installed on all 
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customers by the end of 2010 [10, 11].  This is significant to this project because it gives 

distribution companies a perfect network backbone to use for collecting transmission line 

fault information in populated areas.  Since the WLAN mesh network and collecting 

device infrastructure would already be in place, the fault monitoring system would then 

only have to forward data by tapping into the existing smart meter network. 

 

1.4.3 – Why WLAN and ZigBee 

 

The proposed transmission line monitoring system in this thesis uses the existing 

smart meter mesh network as an integral part of the communication scheme.  Since the 

smart meters in the geographical area where the proposed system is intended to be 

implemented use WLAN technology, it is vital that the monitoring system be compatible 

with this technology.  Nevertheless, many advantages of utilizing WLAN technology will 

be discussed in Chapter 2 and especially Chapter 3. 

 

The IEEE 802.15.4 standard, otherwise known as ZigBee, is a Media Access 

Control (MAC) and physical layer standard specifically designed for short range wireless 

communication where low rate, low power and low bandwidth are required.  This makes 

ZigBee an ideal choice when it comes to sensor networks for monitoring data collection 

and/or triggering process responses. 

 

1.5 – Thesis Organization 

 

A description of the remaining parts of this thesis is as follows: Chapter 2 will 

discuss some related work in the field of sensor networks and transmission line 

monitoring, and Chapter 3 and Chapter 4 will analyze the performance capabilities of 

WLAN and ZigBee technologies, respectively.  Chapter 4 will go in depth on the testbed 

design and results for determining ZigBee's performance in several different 

environments.  Chapter 5 will thoroughly describe the designed system for a transmission 

monitoring network, followed by Chapter 6 with the project conclusion and ideas for 

future work.
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Chapter 2 

Related Work 

 

 

For research to properly advance, it is important to understand what work has 

already been accomplished in that particular area.  This chapter investigates research that 

is relevant to the design of different system components needed for a complete 

monitoring system.  Section 2.1 focuses on the design of the sensors themselves and 

Section 2.2 discusses how to organize a team of sensors in a local area.  Furthermore, 

Section 2.3 explores possible methods for long range transmission of collected data and 

Section 2.4 briefly touches on the security aspect of power monitoring systems.  Lastly, 

alternative applications that utilize similar network characteristics as proposed in this 

thesis are discussed in Section 2.5. 

 

2.1 – Sensors 

 

Focusing on the sensor design, Yang et al. in [12] addresses many design issues 

that are relevant to realizing a reliable and cost effective monitoring system.  Some of 

these issues include types of wireless communication technologies, line segmentation and 

shunt impedance measuring, and integrating power, sensing, and communication 

functions.  The wireless communication technologies suggested is ZigBee, for its low 

cost and low power consumption, and WLAN for its longer range, low cost, high 

throughput, high quality of service, and its security features.  Measuring the shunt 

impedance of the line is important for detecting local disturbances, however this becomes 

difficult with interference from signal reflections in long transmission lines.  Therefore a 

segmentation scheme is proposed.  Additionally, it will be necessary for the sensor 

designers to make trade-offs with power management to operate sensing and 

communications while consuming minimal power.   

 

Rodríguez and Tello in [13] show that current and voltage characteristics of a 
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transmission line are not the only pieces of data worth collecting.  To further make use of 

a transmission line sensor network, temperature sensors and accelerometers may also be 

employed.  These sensors help analyze the structural integrity of the lines and towers.  

The temperature sensors will pick up the high heat associated with a short circuit, and the 

accelerometers will indicate when there are high winds or a collapse.   

 

2.2 – Sensor Management and Routing 

 

One routing idea was to have a linear aligned network of sensors along a 

transmission line and they would forward their data to a collector node by multi-hopping 

the packets through the sensors.  In [14] Gumbo and Muyingi studied this by comparing 

two situations for data collection.  One situation was continuous querying where the 

sensors would constantly sample and transmit their data for the next hop to forward.  The 

other situation was event-based querying where a sensor would not sample until it 

received a message to do so.  The event-based querying scheme was more energy 

efficient, although the inevitable still occurred.  Because of the nature of the sensor nodes' 

placement, each node forwards its data packets in addition to the ones it receives.  As you 

can see, the nodes closest to the collector receive the highest amount of traffic and their 

batteries run out first.  If they drop out of the network, then the link is broken and the 

collector cannot receive any more data from the remaining sensors.  Although increasing 

the number of sensor nodes is important for increasing the utilization of a single collector, 

this multi-hop layout is hazardous to a power constrained network. 

 

Maximizing utilization with many different kinds of sensors operating in 

proximity to a common collector node will require this node to execute some sort of 

management algorithm to function efficiently as a unit.  Chen et al. in [15] use clustering 

to group certain nodes together and demonstrate that a two level communication model is 

more energy efficient than a single level communication model.  In the two level model, 

one of the nodes in the cluster takes on the roll as the cluster head and any information in 

or out from the cluster passes through this node.  Unfortunately this topology suffers 

from the same drawback as the routing scheme in [14] mentioned above where one 
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crucial link runs out of batteries first from processing all of the traffic.  Two immediate 

solutions come to mind to alleviate this problem.  The first is to have the sensor nodes 

exploit the advantages of solar cells (or other renewable energy sources) to recharge their 

batteries.  The second solution could be to have each sensor node communicate directly 

with the collecting node destroying the two level communication model.  In this thesis, 

the research takes advantage of this topology (single level communication model) to 

avoid short sensor node life spans, however a different communication scheme is used 

than was tested in this paper. 

 

As with all kinds of sensing applications, there are many solutions to solve the 

same problem.  Each solution has its own advantages and disadvantages.  Transmission 

line monitoring sensing applications are no exception.  In [16] Li et al. compare two 

different routing algorithms for organizing the ZigBee sensor nodes.  One of the routing 

algorithms is a version of Ad-Hoc On demand Distance Vector (AODV) called AODVjr.  

AODVjr performs almost the same as AODV except all unnecessary aspects are removed 

and only the essential parts of the algorithm are used.  It was found that AODVjr was 

more energy efficient, whereas the other algorithm, hierarchical routing algorithm, had 

shorter packet delivery latency.  Which one is better to use in a sensor network depends 

on the power restrictions and the timing requirements for data delivery in a particular 

application. 

 

2.3 – Long Range Data Transmission 

 

So far we have discussed some design issues associated with producing a feasible 

sensor, how to employ different types of sensors to increase the value of a collector, how 

to group these sensors into clusters for efficient management, and how to route data to a 

local collector from a network of sensors.  A method for transporting the information in 

the collector to a distribution company's control centre is still needed.   

 

There are many different communication topologies for monitoring transmission 

lines.  Which is the most efficient and reliable way still has not yet been determined.  It is 
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probable that different topologies will be more appropriate for certain situations.  These 

situations may depend on whether it is an urban or rural location and the type of terrain 

and weather patterns.  They may also depend on their proximity to other interfering 

technologies likely to be found in highly populated areas.  Qing et al. in [17] propose that 

the collector act as a gateway between the sensor network and a cellular phone network 

for long range transmission to a control centre.  This would probably be most useful for 

transmission lines in the county or on the outskirts of a city where too many nodes would 

be needed to multi-hop back to a control centre.  The disadvantage would be that a 

cellular phone network radio subscription would need to be purchased for every sensor 

network gateway.  This would become expensive, especially with the additional cost on 

monthly bills for bandwidth usage every time data is sent.  Not to mention that cellular 

networks become overloaded with calls during destructive disasters when faults are likely 

to occur and may prevent fault data from being relayed to a control centre. 

 

León et al. in [18] put forward a different idea for long range data transmission.  

This plan assumes that the gateway node for a cluster of sensor nodes is not power 

constrained.  It involves each gateway transmitting its collected data to a gateway on the 

adjacent transmission line tower.  Through multi-hop, data packets would eventually 

make their way to the transmission line's connecting control centre/substation.  If a link is 

broken then the gateways forward their data packets in the opposite direction.  This 

scheme might be more oriented for monitoring in populated areas or areas near a control 

centre.  It would be unfeasible for monitoring a distant location where possibly hundreds 

of gateways would need to be installed just to channel the data to a substation.  This 

thesis is also oriented toward transmission line monitoring in populated areas, by tapping 

into an already existing infrastructure. 

 

The number of ways that sensor data can be transmitted for long distances is 

limited only by our imaginations.  Marihart in [19] describes numerous technologies for 

this application and summarizes their advantages and disadvantages.  These technologies 

range from twisted pair cables, power line carries, and optic fibre for wired solutions, to 

microwave radios and satellites for wireless solutions.  Cole in [20] illustrates how 
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satellites can be used by power companies to collect the usage information directly from 

smart meters for near-real-time data collection.  This topology would be especially useful 

for dwellings in remote areas.  The disadvantage though, would be the cost associated 

with purchasing and launching several satellites into orbit, or paying for processing time 

on existing orbiting satellites. 

 

2.4 – Security 

 

Now that a complete data transmission topology has been discussed, it would be 

beneficial for distribution companies to have some sort of security for their wireless 

sensor network.  Zhao and Villaseca in [21] researched just that.  It was found that 

implementing the Byzantine Fault Tolerance mechanisms in local area networks (LAN) 

and wide area networks (WAN) it is feasible to provide secure control of the system, 

while still maintaining strict timing requirements for real-time applications. 

 

2.5 – Alternative Applications 

 

Transmission line fault monitoring is the focus of this thesis and the related work 

so far, however there are other monitoring applications that require the same network 

topology.  Still based on transmission lines, Huang et al. in [22] use a similar sensor 

network as discussed for detecting ice build-up and de-icing of transmission lines.  

Changing paces, Lin et al. in [23] also propose a familiar sensor network for monitoring a 

water distribution system. 

 

Sensor networks are becoming extremely important in many different areas of 

science.  Applications for sensor networks in the areas of home automation, agriculture, 

automotive, and manufacturing are discussed in Section 4.2 on ZigBee performance.  If 

one is so inclined, the reader will also be able to find sensor network applications in the 

medical field such as Montón et al. in [24] where yet again the same wireless 

communication hierarchy is suggested for patient monitoring. 
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2.6 – Summary 

 

An understanding of some of the system components needed for a transmission 

line monitoring system and their current progress in research has been established.  Many 

diverse sensors and an efficient communication scheme are necessary to optimize the 

network.  Additionally, an appropriate technology must be selected for long rang data 

transmission depending on the location of the planned sensor network.  The fact that 

many researchers are working with these types of network components in alternative 

applications demonstrates their usefulness.  The reliability of these systems that have a 

sensor network with a gateway to another communication technology is also important.  

Therefore, performance characteristics for WLAN and ZigBee are examined in the 

following two chapters, respectfully.
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Chapter 3 

WLAN Performance 

 

 

A background explanation of IEEE 802.11 (WLAN) will not be given in this 

thesis.  Thorough documentation of the WLAN protocol and its operational details are 

readily available on-line.  Nevertheless, the reader is referred to [25] for the WLAN 

official standard. 

 

3.1 – Multi-hop 

 

Multi-hop capabilities are crucial to realizing a wireless transmission line 

monitoring system.  Many of the proposed systems discussed utilize multi-hopping to 

forward data across a network.  This is beneficial because additional hardware such as 

cabling or another type of wireless node for longer range transmission is not needed.  

Therefore it is mandatory that WLAN is able to perform this task efficiently.  Kim et al. 

in [26] asses the performance of three different MAC layer protocols with three different 

transmission rate adaptation schemes when using the expected transmission time (ETT) 

routing metric.  Using simulations, they determined that if an appropriate rate adaptation 

scheme is linked with a MAC layer protocol then these nodes perform well in a multi-hop 

environment. 

 

3.2 – Long Range Data Transmission 

 

With every different wireless technology, one big question that comes to mind is 

how far can it reliably transmit?  In the event that WLAN technology is used in a multi-

hop fashion for transmission line monitoring, it is necessary to determine how far a single 

hop can be.  It is well known that IEEE 802.11b,g  have an approximate range of 150m 

with no additional equipment or power boosting.  Conversely, it has been documented 

that successful IEEE 802.11b transmissions of 201km have been made [27]!  Surprisingly 
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no power boosting was used in this experiment, however directional antennas and a direct 

line of sight were necessary.  It may be unlikely that a transmission line gateway single 

hop will need to be this long, but it is good to know in case the situation should arise.  For 

long hops substantially shorter than 201km, a smaller directional antenna could be used 

to reduce the cost of hardware.  Additionally, since transmission lines are fairly linear in 

nature, the line of sight requirement for long hops would not pose a problem. 

 

Ireland et al. in [28] conducted research to determine how directional antenna 

orientation and spacing affect the throughput of a long distance multi-hop WLAN 

network.  It was found that throughput decreased when adjacent hops were transmitting 

in the same directions using the same channel.  If different channels were used for 

transmissions and/or adjacent transmissions were sent in different directions, then 

throughput improved.  This illustrates that frequency reuse techniques would be 

beneficial for a multi-hop backbone topology.  In the event that antenna orientation 

cannot be changed and two adjacent links must use the same channel, it was also 

demonstrated that introducing a vertical separation of just 4ft will also increase 

throughput. 

 

3.3 – WLAN and ZigBee Co-existence Interference 

 

The proposed system in this thesis requires both ZigBee and WLAN technologies 

to operate in the same environment.  Since both of these technologies can transmit on the 

same frequency ranges, interference and collisions are likely to happen.  Shuaib et al. in 

[29] created a physical testbed to determine if either technology affected the throughput 

of the other.  In the worst case scenario with both technologies transmitting on the same 

frequency channel, ZigBee did not reduce the throughput of the WLAN down link and 

throughput of the up link was marginally reduced.  ZigBee throughput was affected more 

by WLAN signals because the transmitting power of WLAN is higher.  When these 

technologies transmitted on separate channels, their throughputs where not affected by 

the other. 
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Diving a little bit further into the behaviour of ZigBee and WLAN interference, 

Yang and Yu in [30] determine how the packet error rate and packet loss ratios vary as the 

frequency distance between interfering channels change.  As one would expect, the larger 

the channel separation, the less interference occurs, and fewer packets are corrupted or 

lost.  They also found that ZigBee experienced less interference by IEEE 802.11g than 

was experienced by IEEE 802.11b.  This data is useful when determining which IEEE 

802.11 standard should be used when deploying a wireless monitoring system such as in 

this thesis. 

 

3.4 – Low Power Access Point 

 

In many papers, including this thesis, the assumption has been made that the 

gateway node to a wireless sensor network on a transmission line is not power 

constrained.  That is, that the power source for these gateway devices would be the 

transmission lines themselves.  Whether this is the case or not, it would still be ideal for 

the gateway nodes to consume minimal power.  Zhang et al. in [31] provide three 

different frame layout schemes for power saving multi-hop access points.  Different 

schemes performed better than others depending on the traffic loads and other network 

operations.  In summary, low power access points are possible while still maintaining 

acceptable delays and system performance.  Additionally in a related paper, Farbod and 

Todd [32] demonstrate that by implementing power saving procedures, a substantial 

reduction in access point resources can be realized. 

 

3.5 – Security 

 

In order to prevent illegal tampering with transmission line data, the wireless data 

transmissions should be encrypted.  On the other hand, this encryption should not 

degrade the system performance so that timely reporting of faults cannot be achieved.  

Siwamogsatham et al. in [33] compare four different levels of increasing encryption for a 

secure WLAN transmission and the effect that it has on the system throughput.  The first 

is the control experiment where throughput is tested with no encryption techniques 
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implemented.  Secondly, the test is repeated with wired equivalent privacy (WEP) 

encryption utilized.  Next, temporal key integrity protocol (TKIP) and lastly cipher block 

chaining message authentication code protocol (CCMP) are also tested.  CCMP is based 

on the advanced encryption standard (AES) algorithm which has been deemed suitable to 

protect classified information according to the US government.  In all cases, a negligible 

throughput performance hit is experienced regardless of the MAC payload size, if user 

datagram protocol (UDP) or transmission control protocol (TCP) is used, and whether the 

system is operating in infrastructure or peer-to-peer mode. 

 

3.6 – Summary 

 

The above research demonstrates that WLAN technology possesses the necessary 

characteristics to be used for a dependable transmission line monitoring system.  Its 

ability to perform multi-hopping on sort or very long distances, to be resistant to 

interference from ZigBee transmissions, to be used in low power access points, and to 

have very secure wireless transmissions are all attributes that reflect the robustness and 

flexibility of this technology.  In order to have system wide reliability, then both wireless 

technologies need to be robust.  In the next chapter the wireless performance of IEEE 

802.15.4 (ZigBee) is discussed.
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Chapter 4 

ZigBee Performance 

 

 

A background explanation of IEEE 802.15.4 (ZigBee) will not be given in this 

thesis.  Thorough documentation of the ZigBee protocol and its operational details are 

readily available on-line.  Nevertheless, the reader is referred to [34] for the ZigBee 

official standard. 

 

4.1 – Introduction 

 

IEEE 802.15.4, commonly known as ZigBee, is a Media Access Control (MAC) 

and physical layer standard specifically designed for short range wireless communication 

where low rate, low power and low bandwidth are required.  This makes ZigBee an ideal 

choice when it comes to sensor networks for monitoring data collection and/or triggering 

process responses.  However, these very characteristics bring into question ZigBee's 

ability to perform reliably in harsh environments.  This chapter thoroughly explains the 

experimental testbed setup and execution to demonstrate ZigBee's performance in several 

practical applications.  This testbed is capable of measuring the minimum, maximum, and 

average received signal strength indicator (RSSI), bit error rate (BER), packet error rate 

(PER), packet loss rate (PLR), and the bit error locations. 

 

As digital technology is rapidly advancing in the 21
st
 century, much of this 

technology is oriented toward efficiently monitoring and reacting accordingly.  Whether it 

is monitoring for building automation, assembly line manufacturing, or even National 

Security, sensor networks play a crucial role.  There are several mediums in which to 

construct sensor networks with each having their own strengths for certain applications.  

IEEE 802.15.4 (ZigBee) is a leading technology for wireless short-range sensor networks.  

In order to discover the full potential of ZigBee devices, it is necessary to challenge them 
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in as many diverse applications as possible.  In order to do this a reliable and efficient 

testbed is necessary.  Such a testbed can be used to discover physical layer performance 

boundaries to increase utilization of ZigBee networks.  The goal of this chapter is to 

thoroughly describe a testbed design and gather statistics describing ZigBee's physical 

layer reliability. 

 

There are studies regarding ZigBee's performance based on theory and 

simulations such as [35, 36].  Hameed et al. in [35] put forward a scheduling scheme for 

guaranteed time slots for real-time applications, and in [36] Zeghdoud et al. obtained 

optimal throughput for different clear channel assessment modes in the presence of IEEE 

802.11 interference.  On the other hand, studies that examine transmission reliability for 

off the shelf ZigBee devices are scarce.  Ilyas and Radha in [37] is one such study that 

investigated the error process in IEEE 802.15.4 devices for indoor and outdoor 

environments.  Using transmission data, they collected and modelled the channel using 

the bit error rate (BER) probability density function and correlation coefficient.  Industry 

is interested in the performance of ZigBee in different applications, such as in vehicles 

and in industrial settings like [38, 39] by General Motors, and General Electric and 

Sensicast Systems, respectively. These studies combined with this chapter's experimental 

results for several environments will give researchers an excellent foundation for 

ZigBee's ability to optimally perform in many real-time applications. 

 

Home automation is gaining popularity with appliances like dishwashers, washing 

machines, fridges, furnaces, hot water heaters, and any other device that could be used to 

form a single home network.  These appliances can be controlled to operate at ideal times 

of the day to minimize energy costs and maximize usage with smart meter technology.  

Reinisch et al. in [40] demonstrated that ZigBee is the most appropriate communication 

technology for home automation and Kim et al. in [41] put forward a scheduling scheme 

for frames and sub-frames in order to acquire optimal network parameters. 

 

One possible outdoor applications of ZigBee is environmental monitoring, which 

would be beneficial to scientists and the agricultural industry.  ZigBee would provide the 
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ability to network a wide range of sensors which detect soil and air moisture, the richness 

of the soil, temperature, solar radiation, wind speed and direction, and atmospheric 

pressure.  This data can then be used to predict weather patterns, or determine optimal 

times to dispense water or other nutrients to plants.  Siuli Roy and Bandyopadhyay in 

[42] provided a ZigBee network where soil properties are sensed for real-time 

monitoring.  A testbed that determines outdoor channel measurements would help these 

applications flourish. 

 

The idea of wireless communication within a vehicle is gaining interest for many 

reasons.  Primarily, it results in much faster installation times, by cutting the need for 

wiring many components together from all corners of the vehicle, and greatly reducing 

the weight of the vehicle by eliminating the need to install up to several kilometers of 

cables. Ahmed et al. in [38] state issues as to why ZigBee technology is not yet ready for 

automotive applications that do not include transmission error reliability.  Two main 

reasons are that ZigBee does not necessarily meet timing requirements depending on the 

sensor (shown in the popular NS-2 simulator), and these devices are still too expensive to 

be offset by the savings in cable costs.  Although these issues are out of the scope of this 

chapter, the designed testbed is used to verify ZigBee's communication capabilities in 

vehicle environments. 

 

Many industry solutions are now going wireless in an attempt to cut costs.  It is 

not uncommon for data cables, which are connected to sensors on robotic arms or other 

mobile parts, to snap.  The down time to repair and replace these cables creates an 

unnecessary cost to manufacturers.  Additionally, the installation time for a wireless 

solution is much faster.  A machine shop would be an accurate representation for a 

manufacturing facility.  The University of Windsor's machine shop was used to represent 

this environment.  Tang et al. in [43] is an example of a ZigBee wireless channel 

investigation for a similar environment.  Their analysis is primarily based on RSSI and 

the link quality indicator (LQI).  The packet error rate (PER) is calculated by assuming if 

a packet did not arrive then it was in error.  This is not necessarily the case.  It is possible 

that a packet could not arrive simply because the ZigBee radios are out of range, or there 
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is a physical obstruction blocking the transmission.  Furthermore, many of the papers 

published in this area focus on the latency issues of wireless networks and do not address 

error rates. 

 

4.2 – Testbed Components and Structure 

 

There are two types of nodes in the designed testbed.  The first node is referred to 

as the base station (BS), which encompasses a ZigBee mote on a Crossbow MIB510 [44] 

programming board connected to a laptop.  This connection is made via an RS-232 to 

USB cable.  The second node is simply the transmitter, which is a stand alone ZigBee 

mote.  The ZigBee motes that are used are the Crossbow MicaZ mote, which utilize the 

Chipcon CC2420 radio.  The TinyOS-2.x environment [45] is used to program the MicaZ 

devices and they transmit data on channel 26 with a maximum transmission power of 

0dBm (1mW).  The BS laptop communicates with the serial port (and therefore, the 

ZigBee programming board and mote) using a Java program during the experiment 

execution.  This program is referred to as BaseStation.java.  Furthermore, the laptop has 

Java Development Kit (JDK) 6 installed, and this runs in an open source Mandriva Linux 

2008 environment. 

 

Once the BS and transmitter nodes are in place and turned on, the test begins by 

running BaseStation.java as a console command.  Three of the input arguments include: 

the node ID of the transmitter node that is asked to send the data packets, the number of 

data packets the transmitter is to send in return, and the packet transmission rate (how 

many of these packets are to be sent within one second.)  Passing these arguments to 

BaseStation.java increases the flexibility of the testbed and allows the parameters of each 

trial to be changed.  It also allows consecutive trials to be conducted without the need to 

turn the transmitter node off and then back on.  This feature is helpful when the 

transmitter is in a location that is difficult to reach (E.g. under the hood of a car while 

driving.)  Once executed, BaseStation.java builds a proper TinyOS Active Message (AM) 

packet containing this information and sends it to the serial port connected to the 

programming board.  Figure 4.1 illustrates both the control packet and data packet 
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structures.  The ZigBee mote part of the BS simply transmits from the radio interface 

whatever is received on the serial interface.  Figure 4.2 offers a graphical representation 

of the testbed structure.  The computer domain contains the laptop hardware and 

software.  Figure 4.3 shows the packet transmission sequence during the trials. 

 

Figure 4.1: Packet Structures for Control and Data Packets. 

 

In order for the BS to calculate the number of errors caused by the wireless 

channel, the transmitter node always transmits the same data packet.  The first 8 octets 

are AM header information and the dummy data payload is decimal number 85 which 

was chosen simply because it is alternating 0's and 1's in binary. The total packet length is 

32 octets. 

 

Upon receiving these data packets, the BS mote adds two additional octets of 

information on to the end of the packet before it forwards them through the serial port to 

the laptop.  The first octet is a counter value, which will be discussed later, and the 

second octet is the radio's calculation of the RSSI for that particular packet.  All of these 

packets are picked up by BaseStation.java listening on the USB port and it saves each 

consecutive packet in a file for future analysis.  A new file is created for each trial. 

 

A second Java program (Analyze.java) was developed to analyze the saved files 

containing the received packets.  Since the transmitted data is known, this program can 

easily calculate the BER and PER for all received packets in each trial.  In addition, it 
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determines the bit error locations, the number of packets received, and the maximum, 

minimum, and average RSSI values for every trial.  A conversion chart for CC2420's 

RSSI values to dBm is given in [46] at page 49. 

 

 

    

  

 

  

 

 

 

 

 

 

 

 

Figure 4.2: 

Testbed Structure.      Figure 4.3: Packet Transmission Sequence. 

 

By default, the ZigBee mote radio chips conduct a cyclic redundancy check 

(CRC) on each packet.  Packets that do not pass the CRC are immediately dropped by the 

CC2420 radio and would not be available for analysis.  This poses a problem when there 

is a need to calculate BER and even PER, and creates ambiguity because it is not known 

whether the packet had an error or was lost.  Also, the BER would be impossible to 

determine when erroneous packets are dropped after CRC.  In order to circumvent this, 

some modifications to the TinyOS driver files for the radio chip were made in order to 

allow not only the correct packets through, but also the packets that have errors.  Table 

5.4 describes the modifications made to the specific driver files. 

 

The BS ZigBee mote appends a counter value to the end of the incoming packets.  

Since this mote has been modified to allow error packets through, occasionally only 

partial packets will be received during poor channel conditions.  Sizes of these partial 

packets vary, which would make for an unnecessarily complicated Analyze.java program 

to deal with them correctly.  Instead, simply the occurrences of partial packets are 

counted and such packets are discarded.  Consequently, accepted packets do not have 
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errors in the length field of the packet header.  Partial packets are included in the PER 

calculation. 

 

4.3 – Experiment Procedure and Results 

 

In this section, the experimental procedures and results will be provided, along 

with a clear representation of the test sites and transmitter locations.  The indoor, outdoor, 

vehicle, and machine shop test sites were chosen because they cover the majority of the 

application environments.  The numerical results for all trials are shown in Table C.1.  

This includes the approximate distance between the nodes, the BER, PER, PLR, the 

maximum, minimum, and average RSSI, and the number of partial packets received. 

 

4.3.1 – Indoor 

 

The house in which the indoor trials were conducted was a 12.5m x 8.7m two-

story home with a basement.  Figures 4.4a) and 4.4b) are the layouts of the first floor and 

basement, respectively.  Trials were done with the BS located in three different areas.  

First, the BS was located in the kitchen (main floor) while the transmitter was positioned 

in several key locations around the house.  Second, the BS was placed in front of the fuse 

box (basement) while the same key locations were tested.  In the final trial the BS was 

positioned on the front control unit of the furnace while the transmitter was placed one 

floor above on the thermostat.  Additionally, there was no movement of residents in the 

house during test execution and each location/trial called for 1000 packets to be 

transmitted at a rate of 5 packets per second. 
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Figure 4.4a: Main Floor Layout. 

 

 
Figure 4.4b: Basement Layout.  The triangles represent the transmitter test locations.  The 

horizontal stripe is for trials conducted with the BS in the kitchen.  White is for trials with 

the BS at the fuse box.  The vertical stripe is for the trial with the BS at the furnace. 



4. ZIGBEE PERFORMANCE 

25 

 

The results were very good when the BS was located in the kitchen while the 

transmitter was placed at either the various kitchen appliances, the electricity (hydro) 

meter directly outside of the kitchen wall, or one floor below.  However, reception was 

either extremely poor or non-existent for certain key areas such as the hot water heater 

and furnace in the basement.  In these cases the direct transmission path was impeded by 

several walls and appliances such as a refrigerator, stove, or furnace. 

 

When the BS was located in the basement at the fuse box, the results were much 

better.  There was reception from all key locations and this proved to be a much more 

ideal location for a BS.  For the final indoor test the BS and transmitter were not located 

very far apart, even though they were on separate floors.  The transmission was reliable 

with less than a 1% PER and 0.09% BER demonstrating that a wireless connection 

between furnace and thermostat is viable. 

 

Since no two indoor environments are the same, it is difficult to formulate precise 

conclusions.  Nevertheless, these results give a good indication on how ZigBee may 

perform in a home automation system.  Although performance greatly depends on the 

indoor layout and node locations it may be a good idea to have a BS for every floor in a 

home, or one for every 7m radius. 

 

4.3.2 – Outdoor 

 

The outdoor tests were conducted in two different, large, open fields.  The results 

for both were very similar.  The transmitter node was placed on a tripod so that its 

antenna was 1.5m above the ground.  The BS's receiving antenna was 1.15m above the 

ground and the laptop was positioned behind and below it to minimize interfere.  For 

each trial 1000 packets were transmitted at 5 packets per second.  It was mostly sunny 

and there was no precipitation for these tests. 

 

As can be seen, the error rates start to significantly climb once the node separation 
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is beyond a 70m distance.  Strangely, the devices experienced a poor communication 

region between 20m and 30m.  However, when the height of the transmitter was changed, 

reception greatly improved.  This may have been caused by multipaths destructively 

interfering given the original height of the antennas and the distance between them.  

Furthermore, the reception at 90m was more reliable than at 80m and 85m.  This could be 

attributed to small scale fading as described in the 20m to 30m fading region.  Although 

extremely poor, there was still reception at 95m, but no reception at 100m.  This test 

showed that a distance of 70m appears to be a reliable range if the transmitter is at least 

1m above the ground with no obstructions. 

 

4.3.3 – Automotive Internal Monitoring 

 

For this test a 1994 Toyota Corolla was used.  The BS mote receiver was placed in 

the closed glove box closest to the centre of the car.  In the event that ZigBee technology 

is used in this environment, we hypothesized that the master node would be located 

somewhere in the front dashboard.  Also, only one person was present in the car during 

the trials and was sitting in the driver’s seat.  The transmitter node was placed at twelve 

key locations around the car including under the hood, in the trunk, and in the passenger 

cabin as shown in Figure 4.5.  All twelve trials were conducted both when the engine was 

on and off, but always in park.  Each trial had 1000 packets transmitted at 5 packets per 

second.  Although the state of the engine had little effect on the performance, errors only 

occurred when the engine was running.  Generally, all packets were received error free in 

almost all trials.  The biggest interferer seemed to be the human body if it was located in 

between the transmitter and receiver nodes. 

 

 

 

 

 

 

 

 

Figure 4.5: Test Vehicle and Transmission Locations. 
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In addition to the above automotive tests, trials were conducted with the 

transmitter under the hood (at position 11) while driving on the expressway and through 

the city.  The city driving trials were typical 15 minute drives (4500 packets at 5 packets 

per second) while zigzagging across the city.  There were plenty of stops, turns, and 

straight runs.  The speed of the car ranged from 0km/h to 65km/h.  The wireless 

transmissions performed the best when the car was either stopped or moving at an 

approximate constant velocity.  The majority of the bit errors were observed to occur 

during acceleration.  This is not to say that they occurred during all accelerations, nor did 

they only occur during acceleration. 

 

The expressway test was interesting in that on some trials almost all packets were 

transmitted perfectly, and on others trials, packet transmission was not so impressive.  It 

is possible that the wind from the high speeds altered the antenna position when driving 

in one direction and not the other.  Also, a portion of the expressway where the trials were 

conducted is adjacent to an airport, so radio frequency interference could be a possibility 

at times.  The speed of the car during the expressway trials ranged from 100km/h to 

120km/h and trials had either 1500 or 1200 packets transmitted at 5 packets per second.  

The communication performance in the car was much better than expected particularly 

for the expressway and city driving tests with the worst case scenario only having a PER 

of 4.8%. 

 

4.3.4 – Machine Shop Floor 

 

Trials were conducted in a similar fashion as in the indoor test.  Two separate 

locations were used for the BS while several key spots were chosen to place the 

transmitter.  Figure 4.6 shows the layout of the machine shop.  Shop workers were 

present and were free to move around during testing.  Shop machines were on and off as 

the workers proceeded with their normal daily work schedule. 
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Figure 4.6: Machine Shop Layout. 

 

When the BS was at the first location there are two noteworthy points to make.  

The first is that when the transmitter was on the CNC lathe machine (position 3), the test 

was conducted twice, once with the machine off and then once with it running.  The 

running lathe machine had virtually no effect on the results from the first trial.  The 

second noteworthy point is the drastically improved reception at position 2 when the 

transmitter was placed high on the ceiling lights compared to at shoulder height. 

 

The second BS position in the middle of the shop floor had much better reception 

results overall, since it was closer to most of the transmitter locations.  There was not any 

reception with the transmitter at position 6, since it was behind a thick concrete wall.  

Also, there was poor reception at position 7, which may be attributed to the fact that a 

worker was standing directly in the transmission path while operating one of the 

machines.  The machine shop illustrated that a BS for every 10m radius without major 

obstructions would be appropriate. 
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4.4 – Summary 

 

A flexible testbed that is capable of determining many performance measurements 

has been developed, and a detailed description of its structure and operation is given.  

This testbed was used to test ZigBee's natural communication capabilities in four 

different practical environments without any additional techniques to improve reception.  

From these tests, some notable observations can be made.  Firstly, none of the 

environments tested extremely hindered the communication of the MicaZ motes.  Based 

on these results, it is reasonable to believe that these devices are capable of operating in 

similar conditions, and that they will be even more reliable as technology advances.  

Secondly, the human body appears to reduce the RSSI value for packets more than walls 

or machines.  Bodies can cause the RSSI to drop by 20 to 30 units.  Consequently, 

performance of the wireless connections greatly depends on the transmitter and receiver 

locations.  As discovered in the machine shop, higher installation locations are better in 

order to avoid obstructions from machines and workers.  It was also noticed in the 

outdoor test that the closer the transmitter was to the ground, the shorter the 

communication range available. 

 

Unfortunately a ZigBee performance test was not able to be done with a 

transmitter node attached to a transmissions line, however some of the results from these 

tests will give some clues as to how they would perform.  Since the transmitter nodes 

would be up on the transmission lines, they should have an increased broadcast range 

with no humans or machines as obstructions.  To help uncover the answer as to if the 

electromagnetic field from the transmission line would disrupt the wireless signals from 

the transmitter nodes, a few key results are highlighted.  When the transmitter was placed 

in the extremely noisy environment next to the car engine, the PER never surpassed 

4.8%.  This is true even for the expressway driving trials.  Electromagnetic waves would 

be generated from the engine spark plugs and possibly from other electrical systems 

under the hood.  Additionally, the PER was always below 7% in the machine shop within 

a 10m radius.  The machine shop was a harsh environment because of the numerous 

obstacles and running machines.  These environments are thought to be more unforgiving 
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than a transmission line deployment. 

 

Now that a strong understanding of the communication capabilities of both 

WLAN and ZigBee technology has been established, a transmission line monitoring 

system utilizing these technologies can be implemented.  The following chapter 

thoroughly explains the designed system carried out for this project.
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Chapter 5 

Transmission Line Monitoring System 

 

 

5.1 – Overall Proposed Solution 

 

Smart meters are currently being deployed in many places across Ontario and 

some are already being utilized in the United States, Europe, Canada, and other countries.  

These meters are the first major step in the fight against global warming by intelligently 

monitoring power consumption for individual subscribers.  Once fully deployed, smart 

meters will be placed on all residential buildings, offices, businesses, manufacturing 

plants, and any location where electricity is consumed.  The system which measures, 

transmits, collects, and processes power consumption data is known as the advanced 

metering infrastructure (AMI).  There are already many companies which specialize in 

designing, manufacturing, programming, deploying, and/or operating devices which are 

used in the AMI.  AMI technology is a proven technology for reliability, security, and 

scalability.  In addition, within large cities there could be hundreds of kilometers of 

transmission lines which are adjacent to smart meter equipped buildings.  This makes it 

ideal to be used for a transmission line monitoring system backbone for populated areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Overall System 
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Since smart meters utilize IEEE 802.11 cards as their primary communication 

radio, it will be necessary to develop a gateway device that can collect transmission line 

data and forward it into the smart meter mesh network for data aggregation.  This project 

covers these lower two tiers of the larger system for transmission line monitoring.  That 

is, sending data from the sensor nodes (SN) to the gateway (GW), and then from the 

gateway to the smart meter mesh network.  Figure 5.1 gives a graphical representation of 

the overall system.  The cloud depicted in this figure is representative of any 

neighbourhood WLAN smart meter mesh network (as was shown in Figure 1.1).  Since 

actual smart meters are not available to be used for testing purposes, this network is 

replaced with a single PC, WLAN hop.  Additionally, the solid square in the SN is 

representative of the actual sensor to detect current flow in case of a fault situation.  Since 

this sensor has not yet been developed, a stand-in sensor board is used.  See Figure 5.2 

for the resulting illustration of the overall system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Overall Test System 

 

5.2 – Hardware and Software 

 

Much of the tools used are as described in the first paragraph of the ZigBee 

performance, Section 4.3 Testbed Components and Structure.  Nevertheless, it will be 

reiterated here to take into account the additional nodes in the system. 
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There are four types of nodes in the implemented system.  The first node is 

referred to as the GW, which encompasses a ZigBee mote on a Crossbow MIB510 [44] 

programming board connected to a laptop.  This connection is made via an RS-232 to 

USB cable.  The second node is the SN, which is a stand alone ZigBee mote with a 

sensor board.  The ZigBee motes that are used are the Crossbow MicaZ mote, which 

utilize the Chipcon CC2420 radio.  The Crossbow MTS300CA is the sensor board that is 

used, which contains a microphone, buzzer, light sensor, and temperature sensor.  The 

TinyOS-2.x environment [45] is used to program the MicaZ devices and they transmit 

data on channel 26 with a maximum transmission power of 0dBm (1mW).  The GW 

laptop communicates with the serial port (and therefore, the ZigBee programming board 

and mote) using a Java program during execution.  This program is referred to as 

Gateway.java.  Furthermore, the laptop has Java Development Kit (JDK) 6 installed, and 

this runs in an open source Ubuntu Linux 8.10 environment. 

 

As for the other two types of nodes, they each consist of a fit-PC 1.0 which runs 

their respective programs written in Java.  They also have JDK 6 installed and also have 

Ubuntu Linux 8.10 as the operating system.  One of the nodes is the one representing the 

cloud network which runs the program CloudMesh.java (CM), and the other is the 

control centre (CC) end node which runs ControlTerminal.java.  A graphical user 

interface (GUI) was created for the control centre node so the user could easily operate 

the controls without needing to memorize command-line functions.  The GUI was created 

using NetBeans IDE 6.1.   

 

For the three nodes that utilize the WLAN interface (GW, CM, and CC) the 

Linksys WUSB54GC was used for the WLAN USB.  It was not necessary to download 

and install a driver for these USB's because Ubuntu already has the support to operate 

them. 
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5.3 – System Requirements 

 

For this prototype to be a successful deployable system, it must be capable of 

certain tasks.  Work crews should not be responsible for configuring and programming 

each sensor node before installation.  This would require additional training, and 

inevitably, network misconfigurations due to human error would still occur.  Therefore, 

the sensor nodes should be self configuring so all that is required is to put them in place 

and turn them on.   

 

It would also be beneficial for users in the control centre to be able to remotely 

manipulate the SNs.  Three basic commands that would be useful are enabling the SN to 

go into sleep mode, wake up from sleep mode, and being able to probe it for its sensor 

data at any time.  These three commands would greatly increase the functionality of the 

system. 

 

The sleep command is valuable for when maintenance is already being conducted 

on the transmission line.  During the maintenance procedure it is possible that power will 

cut in and out, and it is not needed to have the SN reporting this since a work crew is 

already present.  Therefore, prior to the maintenance procedure the CC can put those SNs 

into sleep mode so they can conserve their power.  Also, in the event that repairs are 

ahead of schedule or the SN was put to sleep for too long, the CC should be able to wake 

them up at any time. 

 

During the regular sensing cycle for a SN, it may be programmed to sample its 

sensors every 10 minutes.  Once a fault is detected however, it would be advantageous for 

this cycle to repeat every 5 seconds so more data about the situation can be logged.  For 

this to be accomplished, the SNs will have to be intelligent enough to know when a fault 

is detected and be able to dynamically change its cycle period accordingly. 

 

Lastly, it is also beneficial for the GW to not instantly forward data packets as 

soon as they arrive with fault data.  Elaboration of this requirement will be discussed in 
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Section 5.7 describing the GW's functionality. 

 

The explanation to follow will describe the functionality of each node 

individually starting with the control centre and then moving down into the network. 

 

5.4 – Control Centre (CC) Node 

 

5.4.1 – Functionality 

 

ControlTerminal.java is a double threaded program.  One thread is responsible for 

listening for incoming packets, where the duty of the other is to construct and send 

command packets when desired.  Breaking up responsibilities into two separate threads 

allows for longer listening periods than if one thread has to do all the processing.  The 

listening thread simply opens a socket during initialization and waits for data packets to 

arrive.  Upon receiving a data packet, its information is displayed on the screen and the 

thread returns to the listening state.  A separate function (named affix) had to be written in 

order for the text to be displayed because the GUI does not refresh until it has completed 

the function it was in.  If printing to the screen was done in the running thread function, 

nothing would be displayed since the thread constantly loops around waiting for new 

packets.  Once started, this thread continues to run until the program is closed. 

 

When the sending thread is activated, the program captures the command type 

and the integers from the text fields.  A datagram packet is then constructed using this 

data as its payload and the packet is then forward into the network to the next hop toward 

the ZigBee GW.  The sending socket is then closed and this thread terminates until it is 

needed again to send a new command. 

 

5.4.2 – Graphical User Interface (GUI) 

 

The GUI program for operating the CC node is a single windowed application as 

depicted in Figure 5.3.  The button in the top right corner of the window labelled “Start 



5. TRANSMISSION LINE MONITORING SYSTEM 

36 

Receiving” will start the thread that opens the WLAN socket for listening.  This button 

only needs to be triggered one time when ControlTerminal.java is started.  In fact, once it 

is pressed, the button is disabled so it cannot be pressed again and another thread cannot 

be triggered.  The top portion of the window is the display area where received data 

packets are printed.  If the “Start Receiving” button has not been activated, then received 

data packets will not appear on the screen.  In the event that data is received and the 

values indicate a fault has occurred, these particular values will be displayed in red text, 

whereas everything else is displayed in black text.  Notice the red fault values that are 

below the low operating threshold (700) and above the high operating threshold (990).  In 

addition, if a data value indicates that a SN is running low on battery power, this value 

will also be displayed in red text.  Therefore the user should know far in advance if a SN 

will need a battery change. 

 

Figure 5.3: CC's GUI Sample Screen Shot. 

 

The bottom portion of the CC's GUI window is for sending commands to one or 
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all sensor nodes.  In order to send a command, the user must fill in the two data fields and 

select a command type prior to pressing the “Send” button.  The type of command to 

send can be selected from the list in the pull-down menu.  This allows for complete 

protection from users entering erroneous command types.  The SN ID number in which 

the command is desired to go must be entered into its field.  If the command is directed to 

all nodes that are associated with the GW, the decimal number 65535 is to be entered.  

This is equivalent to two bytes of all 1's, which is the broadcast address.  If a command is 

sent with a SN ID that nobody has been assigned, nothing will happen.  This packet will 

simply not be picked up by any node that receives it.  Lastly, the number of minutes for 

inactivity must be entered only if the sleep command is being issued.  The “Send” button 

triggers a new thread to send the desired packet. 

 

5.5 – Cloud Network (CM) Node Functionality 

 

The CM node is a simple node that represents a WLAN mesh network.  The idea 

proposed in this thesis is that the mesh network is the one created from a neighbourhood 

of smart meters, however this does not need to be the case.  Any devices that use WLAN 

technology to form a self configuring, static, and reliable mesh network could be used. 

 

The program methodology for this node is similar to the CC node.  

CloudMesh.java is also a double threaded program that monitors incoming packets from 

a single interface.  As with the CC, one thread of CM is always listening for incoming 

packets.  When a packet does arrive, it starts a second thread passing it a copy of the 

information.  The first thread then displays the received data and loops back to the 

listening state.  See Figure 5.4 for a screen shot of the CM program running in a terminal.  

There are two procedures for displaying the packet data.  Which one is used depends on 

the structure of the data inside the packet payload.  If the data came from the GW and 

was originally an array list object (variable sized array), then it must be converted back 

into an array list and displayed using the appropriate array list methods.  Otherwise the 

data was originally in the form of a byte array, and when CM tries to convert it into an 

array list, an exception will be thrown.  If this is the case then the byte array is 
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reconstructed back into its integer values and displayed.  This same procedure is 

implemented in the CC program to display the packet data.  The listening thread is 

always running, right from program execution until termination. 

 

Figure 5.4: CM's Sample Screen Shot. 

 

When the second thread is started, it is in charge of routing the received packet to 

its next hop.  This is done by looking at the IP address the packet came from and 

forwarding it to the opposite IP address.  CM only routes packets back and forth between 

the GW and the CC.  Once the packet has been forwarded, this thread closes the sending 

socket and terminates.  In the event that more than one CM is desired to be used to create 

its own mesh network, its routing algorithm would be placed in this second thread. 

 

5.6 – Gateway (GW) Node Functionality 

 

Although Gateway.java is also a double threaded program like the CM and CC 

nodes, it functions differently because it has two types of interfaces to supervise.  On one 
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side it interacts with the SN's through the ZigBee radio, and on the other side it interacts 

with the mesh network through the WLAN radio.  Both threads manipulate both 

interfaces, however once initialized, their operations are independent of each other.  The 

process of each thread will be explained separately. 

 

5.6.1 – WLAN Thread 

 

This program thread listens on the WLAN socket for command packets coming 

from the CC.  This thread is activated from the ZigBee thread near the beginning of the 

program once the USB port information has been set up.  During activation, the WLAN 

thread is given the pointer to the USB port information, and this is the extent of their 

interaction.  The port information is used so communication with the ZigBee radio 

connected to the computer can be made. 

 

At this point, a receiving socket is opened and listening begins.  Upon WLAN 

packet arrival, the necessary information is displayed on the screen, a ZigBee packet is 

constructed containing only the needed data, and this packet is written to the USB port.  

Here, the GW's ZigBee mote transmits on its radio whatever is received on its serial port. 

 

As can be seen, this thread is responsible for channelling packets in the 

downstream.  That is, in the direction from the higher up CC, to the lower SN's. 

 

5.6.2 – ZigBee Thread 

 

This thread is in charge of much more functionality than the other since it must 

interact with the SNs in addition to forwarding information in the upstream.  Both threads 

in the GW node are always running and are constantly listening for incoming packets on 

their respective interfaces.  When a ZigBee packet is transmitted to the GW, the mote 

captures the packet from the radio, appends this packet's RSSI value to the end, and sends 

the resulting packet through the serial port to the computer.  This ZigBee thread picks up 

the packet and processes it accordingly.  The processing action that is taken depends on 
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the value in the “Type” field of the packet payload.  This field is the first piece of data 

that is checked when a ZigBee packet is received.  The actions that are taken depending 

on the packet type are discussed next. 

 

Data Packet: 

 

There are two types of data packets.  They both have the same packet structure 

and differ only in the type field identification.  One type is for sampled data during 

regular operation, and the other is for sampled data in response to a command from the 

CC. 

 

If a data packet is received that is apart of the regular sensing cycle, this data is 

saved in a variable sized array.  Every sensor data packet that comes in has its payload 

information appended to the end of this array.  Sensor data packets are small and it is not 

necessary for the GW to forward each data packet individually into the mesh network.  In 

the case of the smart meters, the collector transmits data to the CC using the cellular 

phone network, so every transmission costs money.  This is why the GW collects many 

data packets and then can forward them all as one block of data at a later time.  Of course 

if a fault does occur the CC would need to be notified as soon as possible.  For this reason 

certain send conditions are exploited so the GW knows when it is ideal to forward this 

data. 

 

It may be desired by the monitoring company to receive sensor data information 

every certain number of hours.  The GW does not need a countdown timer to accomplish 

this task.  As will be explained, the SNs run a timer for periodic transmission.  The GW 

simply needs to count how many data packets it has received before it needs to forward 

the data.  For example, if the GW forwards data once every hour and three sensor nodes 

are associated with this GW that each sample every 10 minutes, the GW forwards the 

block of data to the CC after receiving 18 packets.  At this point, all the array entries are 

cleared and the process starts over. 
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If fault data is received, it is not forwarded right away for two reasons.  First, if a 

short power outage occurs that only lasts a couple of seconds or less, this is not necessary 

to forward it to the CC immediately.  It will be sent in the next block of data that gets 

forwarded.  Secondly, if a severe fault has occurred it gives the remaining SNs a chance 

to sample their data so that a more complete picture of the situation can be reported to the 

CC in one shot.  This is done by the GW keeping track of how many packets it receives 

that contain fault data, and then forwarding a small block after receiving so many.  For 

example, if the SNs transmit fault data every second, and there is a SN for each phase, a 

forwarding delay of 3 seconds can be achieved by the GW collecting 9 fault data packets.  

This is how the GW fulfills the requirement of providing a forwarding delay. 

 

If a data packet is received that is in response to a command from the CC, this 

data is not entered into the variable sized array.  This single packet is simply forwarded 

toward the CC for immediate response. 

 

Broadcast Request ID Packet: 

 

The GW will receive this kind of packet from a SN which has just been activated 

and is looking for a GW to associate with.  This means that the SN needs to be assigned a 

node ID so it can operate in the personal area network (PAN).  When a broadcast request 

ID packet is received, the GW first checks to see if this particular SN had previously 

requested a node ID and has one being reserved by checking its sequence number.  If it 

has, then the GW re-offers the same ID number the SN had last time.  Conversely, if this 

is an ID request from a new SN, then the GW searches its ID table to find an available ID 

number.  Once it is found, the ID number is marked as taken to reserve it, the sequence 

number of the requesting SN is coupled with this new ID along with a random number 

that the GW generates for its own sequence number.  All of these numbers are then used 

to build an “Offer ID” packet which is then sent to the SN.  See Figure 5.5 for an 

illustration of the behaviour between the address ID table and the sequence number table.
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Figure 5.5: GW's Address ID Table and the Corresponding Sequence Number Table 

Structures.  Node ID 2 has been reserved for a SN with sequence number 0x345A0CFE 

and a reply has been made with random number 0x52FA3E1E. 

 

ID Acknowledgement: 

 

An “ID Acknowledgement” packet will be sent from the SN to a GW when it 

receives an “Offer ID” packet.  This acknowledgement packet is the final step in the 3-

way handshake method for a SN to associate with a GW.  Once the GW determines that it 

has received an “ID Acknowledgement” packet, it checks to see if the received sequence 

numbers match the ones that were sent in the “Offer ID” packet.  If they match, then the 

SN has successfully joined the network managed by this GW.  If the sequence numbers 

do not match, then the SN has associated with another nearby GW and its reserved 

information (node ID number, etc...) is cleared so it can be used for another SN. 

 

The sequence numbers used in order for a SN to associate with a GW are 

necessary to avoid some potential problems.  This would be especially true for situations 

where many of these SNs and GWs are deployed in close proximity.  An explanation of 

why they are necessary and the problems it allows the system to avoid is discussed next. 

 

Dynamic Node-Gateway Association: 

 

The Dynamic Node-Gateway Association (DNGA) scheme created for this thesis 

is modelled after the Dynamic Host Configuration Protocol (DHCP) for LAN networks.  

In fact, it is a simpler version of DHCP where some unnecessary features for this ZigBee 
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network are taken out.  DNGA is used for the same purpose as DHCP which is 

dynamically assigning node ID numbers (or IP addresses) to new SNs (or hosts) that join 

the network.  Figure 5.6 shows the packet communication procedure for a SN to join the 

network.  The following are two problems that may arise which are avoided using this 

DNGA scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: DNGA Packet Communication Procedure. 

 

Problem 1:  The following situation could take place when two, or more, SNs are 

in proximity of a single GW.  As shown in Figure 5.7a), SN1 is activated and broadcasts 

an “ID Request” packet.  Before the GW has a chance to respond however, SN2 is 

activated and broadcasts its “ID Request” packet as shown in Figure 5.7b).  Note that for 

the ease of deployment, all SNs are uploaded with the same program and their default 

node ID number is 1.  Therefore, both SNs transmit a request packet with source address 

ID of 1, and destination address of “broadcast”. 
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Figure 5.7: DNGA Problem 1 Depicting Node Addresses. 

 

When the GW responds with an “Offer ID” packet to the first request of SN1, 

both SNs will process and accept the same offer packet, as shown in Figure 5.7c).  At this 

point both SNs will have the same node ID address 7.  It can be harmful for networking 

applications if two network devices have the same address.  At this point, the second 

“Offer ID” packet with ID equal to 8 that is intended for SN2 would be ignored, as shown 

in Figure 5.7d). 

 

What is needed is some way to uniquely identify each SN even though they are all 

uploaded with the same program prior to deployment.  This identity is achieved through 
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the use of sequence numbers in the packet data.  Each ZigBee mote has a small chip on it 

that contains a number that is guaranteed to be unique.  This is analogous to MAC 

addresses for network cards.  These unique numbers are utilized as each SN's sequence 

number.  When the GW responds with an “Offer ID” packet, this packet must contain the 

requesting SN's sequence number so other SNs understand it is not directed to them.  The 

resulting diagram is shown in Figure 5.7e). 

 

Problem 2:  In this situation a single SN is in proximity to two, or more, GW 

nodes.  When the SN is activated and broadcasts its “ID Request” packet containing its 

sequence number, both GW's will pick up this message as shown in Figure 5.8a).  GW1 

and GW2 will each reserve an ID and respond with their own “Offer ID” packet 

containing the SN's sequence number.  This is shown in Figure 5.8b).  The node IDs that 

are offered may be the same ID or two different ID's.  Either way, the SN will have to 

pick a GW to associate with and broadcast an “ID Acknowledgement” packet.  Both 

GW's will hear this acknowledgement, and both will also assume the SN associated with 

them.  This would especially be true if the GWs happen to offer the same node ID value 

to begin with.  Figure 5.8c) depicts the resulting problem. 
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Figure 5.8: DNGA Problem 2.  Depicting packet sequence numbers, node addresses 

remain the same as in problem 1. 

 

A way to uniquely identify the conversations between the SN and both GW's is 

needed.  Once again a sequence number will be employed, this time in the GW.  When a 

GW receives an “ID Request” packet it generates a random number using the current 

system time as the random number seed.  This random number is included in the “Offer 

ID” packet and is also saved and used for the entire DNGA conversation.  Therefore 

when the SN responds with an “ID Acknowledgement” it includes in the packet the 

sequence number for the GW that it wishes to associate with, as shown in Figure 5.8d).  

This way GW2 knows that it was not chosen by the SN, and it can release the ID it 

previously reserved. 

 

Figure 5.9 shows a sample screen shot of the GW's terminal window during 

program execution.  Also, Figure 5.10 illustrates the different ZigBee packet structures 

that are transmitted back and fourth between the SNs and the GWs and Table 5.1 
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describes their “Type” field values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: GW's Sample Screen Shot. 

 

 
Figure 5.10: ZigBee Packet Structures. 
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Table 5.1: ZigBee Packet “Type” Field Values 

 

Type Field Packet Type 

ASCII Character Value (Hex) 

Description 

Request ID R 52  – 

Offer ID O 4F  – 

ID Acknowledgement A 41  – 

D 44 Data packet for normal operation. 

Sensor Data 
d 64 Data packet in response to CC 

command 

d 64 “Get Sensor Data” Command 

S 53 “Sleep” Command CC Command 

W 57 “Wake Up” Command 

Note: The system can tell the difference between the two “d” type packets because of the 

destination they are intended for. 

 

5.7 – Sensor Node (SN) Functionality 

 

5.7.1 – Normal Operation 

 

The SNs are a different kind of animal compared to the nodes discussed so far 

because they are written in the TinyOS language and not in Java.  TinyOS is an event-

driven language designed for sensing applications.  As a result, all blocks of code in the 

program do not run until an event triggers them to do so. 

 

After activation, the ZigBee radio is called upon to be initialized.  Once this is 

successfully completed, another function is called (AMControl.startDone()) to access the 

DS2401 chip and obtain the SN's unique sequence number.  Now a function to build and 

broadcast an “ID Request” packet is called (BroadcastRequestID()).  After it sends the 

packet it starts a timer for 3 seconds and ends the thread. 

 

A new thread is spawned when either the 3 second timer completes or a packet is 

received on the radio.  If an “Offer ID” packet is not received before the 3 second timer is 

completed (Timer0.fired()), it recalls the block of code to broadcast another “ID Request” 
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packet.  Otherwise, if an “Offer ID” packet was received (Receive.receive()) then the 

timer is stopped, the GW's mote ID is saved, it changes its node ID to the one that was 

offered to it, and a function is called to send an “ID Acknowledgement” packet 

(OfferAcknowledge()). 

 

Once the “ID Acknowledgement” packet is sent to the GW, the normal sensing 

cycle begins.  A block of code is called to sample the SN's battery level and then 

ReadBattery.readDone() is called.  The battery value is saved and a read of the 

photosensor is called.  Upon completion, the next block of code (ReadSensor.readDone()) 

is responsible for constructing the “Data” packet and sending it to the radio.  Next, a 

check is done to determine if the most recent sensor value is between the operating 

thresholds.  If so then the timer is set for a longer time period than if the value is outside 

the thresholds.  This is how the SN accomplishes its dynamic sensing cycle period 

requirement. 

 

5.7.2 – Received Commands 

 

There are three valid commands that the SN can receive and process.  The SN 

would receive a “Get Sensor Data” command if the CC wishes to probe this node for its 

current sensor values.  Once received, the SN simply runs through the same procedure it 

does when sampling during its normal cycle.  The only difference is that a flag is set so 

that when the data packet is being put together, it knows to change the “Type” field to 

indicate that this is the data for the special data request.  This special sampling operation 

does not interfere with the regular sampling cycle. 

 

In the event that a “Sleep” command is received by the SN, the procedure taken is 

very simple.  The SN will stop the timer that is keeping track of the sampling cycle, set 

the “idle” flag to indicate to the program that sleep mode is in effect, and then restart the 

timer for the indicated amount of time to sleep.  Once in sleep mode, the only command 

that the SN will respond to is the “Wake up” command.  There are two ways to escape 

sleep mode (without turning the device off), one of which is by use of the “Wake up” 
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command.  The other is the SN will automatically wake up when the sleep timer expires.  

In either case the “idle” flag is reset to zero and the sampling cycle is restarted.  Note that 

only one timer is used for all SN operations.  The SN's functionality combined with the 

CC's ability to issue commands, fulfills the system requirement of allowing a user to 

remotely manipulate the SNs. 

 

At this point the curious reader is referred to [47] which explains the ZigBee's 

microcontroller power management.  In TinyOS-2.x the programmer cannot directly tell 

the ZigBee device to go into sleep mode.  Power management is done automatically in 

the background and the microcontroller will always go into the lowest power state 

possible depending on what is in its program queue.  The SN in this application is still 

running a timer during “sleep” mode so this would not be the lowest power state.  For this 

reason, this state is sometimes referred to as being “in-active” in the program code. 

 

5.7.3 – LED States 

 

As an additional feature, the three light emitting diodes (LEDs) on the ZigBee 

motes have been programmed to give a visual feedback as to what the SN is doing.  This 

would be useful for work crews when installing and working around these devices.  There 

is a red, green, and a yellow LED on the devices.  Table 5.2 illustrates the LED's 

behaviour during different SN activities. 

 

Table 5.2: SN LED States and Description. 

 

Activity/State Red Green Yellow 

Sending “ID Request” packet. (Not yet received 

an “Offer ID” packet) 

Flashing Off Off 

Obtained new ID, and normal operation Off On (solid) Off 

Fault detected Off On (solid) Flashing 

During In-active/Sleep mode Off Off On (solid) 
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5.8 – System Robustness 

 

In this section, a highlight of some system features will be discussed that improve 

the robustness of the system.  The most prominent feature is the DNGA process in which 

the SNs are automatically configured to join the network.  This is extremely important for 

deploying a properly structured sensor network.  Also, extracting the number from inside 

the DS2401 chip on the SN, as the source for a unique sequence number, allows the GW 

to confidently offer a unique node ID address.  The fact that the SN does not assume the 

GW's node ID during start-up is also advantageous.  This means that a SN will be able to 

associate with any GW regardless of its address.  Additionally, if a SN gets reset and tries 

to re-associate with the same GW, it will be offered the same node ID it previously had.  

This is of use to the CC operators who monitor the data that is received from each SN.  It 

would help to avoid confusion if the SN ID's are not often changing. 

 

Another useful piece of information that the CC would receive is the battery 

levels of all SNs.  This way it can be seen well in advance if a SN will need a battery 

change so it does not mysteriously drop out of the network.  In addition, there are routing 

schemes oriented for ad-hoc sensor networks that utilize the energy level of the node as a 

routing decision.  For example, during route assessment, a path is chosen that routes 

through nodes that have higher battery levels and avoids the nodes that are running low.  

This way the network as a whole is able to stay alive for a longer period of time.  This 

may prove to be a useful asset in the event that many nodes are associated with a single 

GW through a multi-hop fashion. 

 

The GW's ability to simultaneously control the upstream and downstream as two 

separate threads greatly increases the performance capabilities of this crucial node.  If a 

single programming thread was responsible for every GW function, then a lag in response 

could occur during high traffic times.  This may also result in dropped or missed packets 

that contain vital information for CC feedback. 

 

Lastly regarding the WLAN test network, UDP sockets are used as the connecting 
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sockets.  As a result, say for example the CM node drops out of the network to restart, a 

program error does not occur in the remaining nodes that are running a Java program 

(GW and CC).  This would be the case if a TCP socket is utilized because it is a 

connection-oriented socket.  Therefore the program would terminate and await a restart.  

In the case of this system, packets would simply be lost while the CM node is out of the 

network and normal operation would resume once the node returns. 

 

5.9 – Performance Metrics 

 

Referring back to Section 5.1, the purpose of this thesis is to develop a prototype 

for a transmission line monitoring communication scheme.  Therefore, the main 

performance metric is whether the prototype works and completes the tasks it is intended 

to do.  As seen in the demonstration, the ZigBee functionality and the WLAN backbone 

network all operate as described in Sections 5.5 through 5.8.  Nevertheless, some system 

analysis is conducted. 

 

The ZigBee testbed described in Chapter 4 is employed again, but this time to test 

the maximum throughput from one mote to another.  The transmit and receive buffer 

sizes for the CC2420 radio on the MicaZ motes are the same.  As a result, the motes are 

capable of receiving data at the same rate they can send data.  The transmitter is the 

sender and of course, the BS is the receiver.  With only one transmitter sending data to 

the BS, a maximum transmit rate of 19.5 kbps is found.  This is done by the transmitter 

sending 1000 packets of 32 bytes each in a minimum of approximately 13 seconds.  Since 

the SN data packets are only 13 bytes long, this computes to the GW being able to 

process 189 data packets/sec. 

 

Throughput becomes a little more complicated when repeating this same test with 

two or more transmitting motes.  At its best, the BS will receive all the transmitted 

packets as long as the combined sending rate of all transmitters are 19.5 kbps or below.  

Once the BS needs to receive data faster than this, then packets will start to be dropped.  

Figure 5.11 illustrates this behaviour which also provides a limit that will determine how 
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fast SNs will be able to sample and transmit during their faster fault cycle depending on 

how many SN are associated with a single GW. 
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Figure 5.11: ZigBee Receiver Throughput. 

 

On the down side, the ZigBee motes only implement carrier sense multiple access 

(CSMA).  This means that before the radio transmits, it senses the wireless channel to see 

if it is currently being used.  If not then transmission occurs, and if so, then it will wait a 

small random amount of time and then try again.  The draw back transpires when two 

motes want to transmit at the same time.  Both motes will sense that the channel is not 

being used, they will transmit, and a collision will take place.  This can be avoided as 

long as the SN transmissions are offset from each other.  Otherwise, a scheduling scheme 

or a more sophisticated multiple access scheme will need to be implemented. 

 

Testing the throughput of the developed WLAN backbone does not make sense in 

this case for two reasons.  Firstly, this backbone is simply used for testing purposes and 

would not accurately mimic the network that the ZigBee devices are intended to be used 

in.  More importantly, WLAN technology has much higher throughput capabilities and 

would be able to easily handle the traffic given to it from the ZigBee network.  In terms 

of throughput, the GW's receiving ZigBee radio is the bottleneck of the system. 
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The reliability of this monitoring communication scheme depends on the abilities 

of both ZigBee and WLAN.  WLAN has been around for some time now and is proven to 

be an excellent close range wireless communication technology.  Its ability to operate 

efficiently and reliably is one of the reasons for its wide spread popularity.  In addition, 

ZigBee's wireless communication ability was considerably tested in Chapter 4.  Results 

show that ZigBee's reliability is suitable for use in a monitoring network in a 

transmission line environment. 

 

5.10 – Extra System Information 

 

5.10.1 – Overall System 

 

The programs written for all nodes in this system are application layer programs.  

This makes it easier for development and debugging purposes, especially since this is a 

first prototype. 

 

The WLAN network that was created for this project is intended for testing the 

ZigBee system's functionality.  The programs in the CM and CC nodes would not be used 

in actual deployment.  Nonetheless, the program for the CM node could be altered to 

model the functionality of a smart meter if the designer companies decide to release such 

details.  Since a smart meter network would perform its own route discovery for 

forwarding packets, and only one hop is being utilized within this cloud, this thesis 

assumes that route discovery has already taken place.  This is enough to prove that the 

GW can construct and send/receive WLAN packets which make it feasible to be used 

with a smart meter network.  Table 5.3 illustrates the IP addresses used for the three 

WLAN nodes in the network. 
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Table 5.3: IP Addresses Used for the WLAN Interfaces. 

 

Node IP Address 

GW 192.168.0.1 

CM 192.168.0.2 

CC 192.168.0.3 

 

In the event that the CM node continues to be used, whether it is modelled as a 

smart meter or not, it is not necessary for the program to print the traffic information to 

the screen.  This is also true for the GW node.  The displaying portions of these programs 

take up processing time and are only useful to the programmer for debugging purposes.  

They may be commented out for any system throughput or efficiency evaluations, or any 

test deployments. 

 

The power requirements for the SNs and the GW are not addressed in this thesis.  

Nor is any energy consumption evaluations performed.  The amount of research needed 

to properly tackle this problem would be a project in itself.  For the GW, properly tuning 

the garbage collection settings in Java could reduce power consumption and improve 

throughput.  The garbage collector manages system memory automatically by 

periodically checking program objects.  If an object can no longer be referenced then the 

memory it was consuming is freed.  It would also be necessary to analyze the programs in 

the ZigBee motes, and alter them if needed, so that the SN would always been in the 

lowest power state possible.  This could drastically increase the nodes lifetime and would 

require a thorough understanding of the microcontroller's power state analyzer.  

Furthermore, an efficient and convenient power source would have to be used or 

developed so that the SN has a way to continuously recharge its batteries.  This could be 

a converter that draws power from small solar panels or from the electromagnetic field 

surrounding the transmission line. 
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5.10.2 – Gateway Node 

 

It was mentioned in Section 5.7.2 that Gateway.java uses a random number as its 

sequence number during the DNGA process, and this random number is generated using 

the system time as the seed.  This could potentially result in a problem if a single SN is in 

proximity to two or more GWs because the clock value used for the seed is accurate to 1 

millisecond precision.  If the two adjacent GWs have synchronized system times accurate 

to the millisecond, then it is possible that a SN will receive an “Offer ID” packet from 

two GWs with the same sequence number.  If it is likely to happen that the GW nodes 

will have the same system times, then the GW's unique sequence number seed can come 

from the WLAN card's MAC address or the ZigBee mote's unique ID.  Then future 

sequence numbers can just be an increment of the previous one. 

 

The network embedded systems C (nesC) programming language is used in 

TinyOS to program the ZigBee devices.  nesC is an unsigned language where Java is a 

signed language.  This presented a problem in the GW node when data needs to be sent 

to, or received from, the ZigBee mote.  All data is broken down to bytes (8 bits) for 

transmission through the serial port between the two GW devices.  In the case of 

receiving an integer from the ZigBee mote, four consecutive bytes need to be combined 

to form that integer.  In Gateway.java this short converter function is called bytesToInt().  

Each individual byte needs to be checked to see if Java perceives it as a negative number.  

If so then the decimal number 256 needs to be added to each negative byte.  Then three of 

the bytes need to be shifted left by the number of positions that corresponds with the byte 

significance order within the integer, and then all of them added together.  Additionally, 

for sending an integer to the ZigBee mote, it must be broken down into bytes if it hasn't 

been already, as in the case of a WLAN packet.  To break the integer down, the AND 

operator (&) is used to capture the individual bytes and then they are unsigned shifted 

right and casted to a byte memory type.  These conversions are needed in order to ensure 

correct data interpretation between the two programming languages. 

 

Lastly for the GW, is why a variable sized array is used when this creates more 
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work to convert from objects to byte arrays, and then back again?  The answer is simple, 

efficiency and flexibility.  Instead of declaring a static sized array, the packet 

accumulation array in the GW changes in size as needed.  This way if a fault occurs after 

only 15 packets then only 15 packets are sent, instead of the entire array with 85 packets 

of blank data if a static sized array of 100 packets is used.  Also if the monitoring 

company decides to increase the interval in which the GW forwards the accumulated data 

packets, the GW program does not have to be re-compiled and installed to account for the 

larger array size that would be needed.  The variable sized array allows the operators to 

be free in choosing different system parameters as needed. 

 

5.10.3 – Sensor Node 

 

The version of TinyOS used in this project came with the support for the MicaZ 

devices to sample their battery supply.  An input to the internal analog to digital converter 

(ADC) is connected to the batteries.  The result from the ADC must be modified using a 

short formula to get the battery reading in millivolt (mV) units.  This conversion formula 

is explained in [48].  Therefore, it is just a matter of properly working the functionality 

into the SN program. 

 

The driver code for the DS2401 chip did not come included in the TinyOS 

environment.  Eleven separate nesC files were obtained from the TinyOS website [45]. 

Once they were properly connected to the sensor application program, the SN was able to 

retrieve its unique node ID sequence number. 

 

It was mentioned in problem 2 of the DGNA process (Section 5.7.2) that if a SN 

received an “Offer ID” packet from two different GWs then it has to pick one.  Currently 

the SN picks on a first come first serve basis.  If desired, in the future is it possible to 

program the SN to decide based on the signal strength of the offer packets using their 

RSSI values.  Therefore, stronger connections are always chosen. 

 

There are two bytes at the end of the “Request ID” packet that have not yet been 
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discussed in Figure 5.10.  These two bytes are intended to be used in the event that a SN 

needs to request a node ID but has not been powered down prior to this.  Using this field 

the SN may specify a node ID it would like to have and the GW may offer this ID 

depending on its availability.  If this field is not used it remains as all zeros.  These extra 

two bytes could also be used for other extended applications that may arise in the future. 

 

5.10.4 – ZigBee Testbed 

 

In Section 4.3 it was stated that modifications to the TinyOS driver files for the 

radio chip were needed to allow error packets to pass through up the radio stack.  Table 

5.4 will describe what those modifications were and what files they were made in.  These 

changes were only compiled for the BS node in the channel BER tests.  Each files' 

changes were switched back to program the transmitter node since only the BS needed to 

accept erroneous packets.  Some other key files that future students are likely to utilize in 

the TinyOS tree are mentioned in Table 5.5.
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Table 5.4: Modified Files and Description for BS in ZigBee Testbed. 

 

File Line(s) Change Description 

66-68 

Added: 

components CC2420ActiveMessageP; 

components LedsC as Leds; 

CC2420ActiveMessageC.nc 

118 

Added: 

CC2420ActiveMessageP.Leds -> Leds; 

Allows the radio's AM 

layer to change the 

LED's states.  This is 

useful for determining 

which part of the 

program the packets are 

travelling through since 

printf statements cannot 

be used. 

53 
Added: 

interface Leds; 

Same as above 

description. 
CC2420ActiveMessageP.nc 

190-201 
Commmented out all except kept line 

192. 

Always send packets 

through. 

185 

Added: 

call Leds.led0Toggle(); //Red LED 

To be notified any time 

the interrupt fired that 

the radio received 

something. CC2420ReceiveP.nc 

304 

Added inside the 'if' statement: 

|| !(( buf[ rxFrameLength ] >> 7 ) && 

rx_buf)  

To always bypass the 

CRC check. 

 

Table 5.5: Useful TinyOS Parameters. 

 

File Line Description 

19 Defines the motes active message group ID. 
AM.h 

23 Defines the motes active message node ID address. 

100 Defines the radio frequency/channel that the mote will transmit 

on. CC2420.h 
104 Defines the power level that the mote will transmit with. 
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Chapter 6 

Conclusion and Future Work 

 

 

6.1 – Conclusion 

 

A practical, self configuring, sampling and forwarding scheme for a transmission 

line monitoring system was developed and a hierarchical communication topology 

involving smart meters was proposed.  The sensor nodes are able to be self configured 

with the help of the gateway device through a protocol similar to the popular DHCP.  

Unique sequence numbers are utilized in both the sensor node and in the gateway to 

differentiate between distinct conversations from multiple devices.  Through this process 

the gateway is able to assign unique node ID values to each sensor node in the network.  

Once initialized, the sensor nodes cycle through their periodic sensing cycle looking for 

signs of a fault.  A dynamic cycle period is implemented so that a more rapid sensing 

cycle occurs when a fault is present.  Additionally, in the interest of saving bandwidth, the 

gateway devices do not forward each sensor data packet individually.  A collection of 

data packets are gathered and then forwarded together when a fault occurs or when a 

specified amount of time has elapsed.   

 

A graphical user interface was developed for the control centre.  This allows a 

user to easily monitor and remotely communicate with the sensor nodes.  As with all the 

communication nodes in this system, the control centre also has bi-directional 

communication capabilities.  Specific commands can be sent to the sensor nodes for 

various reasons to help control the system as needed.  In addition, received data that is an 

indication that a fault has occurred is highlighted so it can be easily identified by the user.  

The developed prototype operates successfully and its functionality was fully 

documented.   

 

A ZigBee testbed was also developed and used to determine its ability to perform 
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in harsh environments, such as the one that may be found in a transmission line or power 

station environment.  With a transmitter antenna height of 1.5m off the ground, it was 

found that the ZigBee radios had a reliable range of 70m without any data correction 

techniques utilized.  An impressive maximum packet error rate of 4.8% was experienced 

when the transmitter radio was under the hood of a car in front of the engine.  This figure 

includes city and high speed driving.  Furthermore, in a machine shop with many 

concrete and steel obstructions a maximum packet error rate of 7% was discovered within 

a radius of 10m from the receiver.  These findings collectively demonstrate that ZigBee 

devices are able to perform suitably with harsh surroundings. 

 

6.2 – Future Work: 

 

Given that this project completes a first prototype, there are many more features 

that would be helpful in making the system more flexible and efficient.  Next is a list of 

tests and ideas for system features that would be a good start for furthering the abilities of 

transmission line monitoring systems.  This list is not intended to be in any particular 

order of importance. 

 

1. Conduct a BER test for a ZigBee mote attached to a transmission line to see if the 

electromagnetic field interferes with packet transmissions. 

2. The monitoring system can be tested using an actual smart meter backbone. 

3. Address the power requirements for the prototype system as discussed in Section 

5.10.1. 

4. Security/Encryption can be added to the ZigBee signals to help prevent foul play. 

5. As this project is implemented in the application layer, the same project could be 

implemented in the network layer to save power and increase speed by reducing 

the amount of computing time. 

6. Since a communication system would already be in place it can be used to support 

additional applications.  A wider range of sensors can be used to detect 

overheating, collapse, conductor deterioration or icing, or even weather patterns. 

7. As of this first prototype, the CC is able to send a command to a single SN or all 
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SNs. Flexibility to allow the CC to send a command to a group of SN's would also 

be beneficial. 

8. When the GW is collecting SN data and grouping it together for a later 

transmission, it could append a time stamp to the sample so the CC would know 

more information as to when each piece of data was logged. 

9. To further expand this monitoring system by increasing the size of the network, it 

will be necessary to add additional GW nodes.  In this case it will be required for 

the CC to know which GW the groups of sensor data came from.  Furthermore, 

the CC will need to be able to specify which SN associated with which GW to 

send a command packet. 

10. It is well known that the amount of load on a transmission line varies for many 

different reasons.  It may be desired by the CC operators to be able to remotely 

change the threshold levels within the detecting devices to indicate a fault.  

Another command can also be added to remotely change how many packets the 

GW must wait for before transmitting the collected block of sensor data, thus 

varying the transmission intervals. 

11. Aside from resetting the GW node, it currently has no way to clear a SN's ID from 

being marked as in use once association is confirmed.  For future prototypes, the 

GW should keep track of how many scheduled data packets it receives, and if two 

or more sampling cycles are missed then it can send a “still alive?” message to 

that SN or just clear it from the address ID list. 

12. Currently the ZigBee motes employ CSMA as their multiple access technique.  

CSMA with collision detection or some other scheduling scheme may be applied 

to reduce the amount of collisions of ZigBee packets arriving at the GW during 

high traffic periods. 

13. Lastly, each SN node runs a timer to notify itself when it is time to sample the 

transmission line and the SNs are not necessarily in sync with each other.  

Therefore, it may be advantageous for a SN to transmit a beacon when it detects a 

fault to interrupt the remaining SNs to sample at that time.  In order to prevent a 

flood of beacons for a single fault, a SN only transmits one beacon for every 

consecutive stream of faults.  Once a normal reading occurs, then it starts over.



REFERENCES 

63 

 

References: 

 

 

[1] Statistics Canada, [Online] Available: http://www40.statcan.gc.ca/l01/cst01/demo02a-

eng.htm Accessed July 2009. 

 

[2] Ontario Power Authority, “OPA Progress Report on Electricity Supply, First-Quarter 

2009” [Online] Available: 

http://www.powerauthority.on.ca/Storage/100/9571_2009_Q1_A_Progress_Report_On_E

lectricity_Supply_(2).pdf Accessed July 2009. 

 

[3] Hydro One, [Online] Available: http://www.hydroone.com/en/about/history/timeline/ 

Accessed July 2009. 

 

[4] Centre for Energy, [Online], Available: 

http://www.centreforenergy.com/AboutEnergy/Electricity/Transmission/History.asp 

Accessed July 2009. 

 

[5] Ontario Energy Board, “2007 Yearbook of Electricity Distributors” August 2008, 

[Online] Available: 

http://www.oeb.gov.on.ca/OEB/About+the+OEB/Energy+Statistics+and+Maps Accessed 

July 2009. 

 

[6] M. E. El-Hawary “Introduction to Electrical Power Systems” Piscataway, NJ: John 

Wiley & Sons, Inc., 2008. 

 

[7] Essex Power, [Online] Available: http://www.essexpower.ca/ Accessed: July 2009. 

 

[8] Arc Advisor, [Online] Available: http://www.arcadvisor.com/faq/mva_to_ka.html 

Accessed July 2009. 

 

[9] Energy Access “Article Connecting with Value of Smart Metering” [Online] 

Available: 

http://www.energyaxis.com/pdf/Article_Connecting_with_value_of_smart_metering.pdf 

Accessed July 2009. 

 

[10] Ontario Energy Board “Smart Meter Implementation Plan: Report of the Board to 

the Minister” January 2005, [Online] Available: 

http://www.oeb.gov.on.ca/documents/communications/pressreleases/2005/press_release_

sm_implementationplan_260105.pdf Accessed July 2009. 

 

[11] Ontario Ministry of Energy and Infrastructure, [Online] Available: 

http://www.mei.gov.on.ca/english/energy/electricity/?page=smart-meters Accessed July 

2009. 



REFERENCES 

64 

 

[12] Y. Yang, D. Divan, R.G. Harley, T.G. Habetler “Power line sensornet - A New 

Concept for Power Grid Monitoring” (2006) 2006 IEEE Power Engineering Society 

General Meeting, Montreal, Quebec, Canada. 

 

[13] J.H. Rodriguez, J.C. Tello “Intelligent Wireless System to Monitoring Mechanical 

Fault in Power Transmission Lines” (2008) Proceedings - Electronics, Robotics and 

Automotive Mechanics Conference, CERMA 2008, Cuernavaca, Morelos, Mexico, 

September 2008, pp. 99-104. 

 

[14] S. Gumbo, H.N. Muyingi “Performance Investigation of Wireless Sensor Network 

for Long Distance Overhead Power Lines; Mica2 Motes, a Case Study” (2008) 

Proceedings - 3rd International Conference on Broadband Communications, Informatics 

and Biomedical Applications, BroadCom 2008, Pretoria, South Africa, November 2008, 

pp. 443-450. 

 

[15] J. Chen, K. Shubhalaxmi, A.K. Somani “Energy Efficient Model for Data Gathering 

in Structured Multiclustered Wireless Sensor Networks” (2006) Conference Proceedings 

of the IEEE International Performance, Computing, and Communications Conference, 

2006, Phoenix Arizona, USA, 2006, pp. 381-388. 

 

[16] X. Li, K. Fang, J. Gu, L. Zhang “An Improved ZigBee Routing Strategy for 

Monitoring System” (2008) Proceedings - The 1st International Conference on Intelligent 

Networks and Intelligent Systems, ICINIS 2008, Wuhan, China, 2008, pp. 255-258. 

 

[17] G. Qing, H. Jingquan, H. Hongzhi “Design and Implementation of Testing Network 

for Power Line Fault Detection Based on nRF905” (2007) 2007 8th International 

Conference on Electronic Measurement and Instruments, ICEMI, Xi'an, China, August 

2007, pp. 3513-3517. 

 

[18] R.A. León, V. Vittal, G. Manimaran “Application of Sensor Network for Secure 

Electric Energy Infrastructure” (2007) IEEE Transactions on Power Delivery, 22 (2), pp. 

1021-1028. 

 

[19] D.J. Marihart “Communications Technology Guidelines for EMS/SCADA Systems” 

(2001) IEEE Transactions on Power Delivery., 16 (2), pp. 181-188 

 

[20] B. Cole “Utilities Look to the Skies for Monitoring the Power Grid” (2004) IEEE 

Distributed Systems Online, 5 (11). 

 

[21] W. Zhao, F.E. Villaseca “Byzantine Fault Tolerance for Electric Power Grid 

Monitoring and Control” (2008) Proceedings of The International Conference on 

Embedded Software and Systems, ICESS 2008, Chengdu, Sichuan, China,  July 2008, 

pp. 129-135. 

 

[22] X. Huang, Q. Sun, J. Ding “An On-line Monitoring System of Transmission Line 



REFERENCES 

65 

Conductor De-icing” (2008) 2008 3rd IEEE Conference on Industrial Electronics and 

Applications, ICIEA 2008, Singapore, June 2008, pp. 891-896. 

 

[23] M. Lin, Y. Wu, I. Wassell “Wireless Sensor Network: Water Distribution Monitoring 

System” (2008) 2008 IEEE Radio and Wireless Symposium, RWS, Orlando, Florida, 

USA, January 2008, pp. 775-778. 

 

[24] E. Montón, J.F. Hernandez, J.M. Blasco, T. Hervé, J. Micallef, I. Grech, A. Brincat, 

V. Traver “Body Area Network for Wireless Patient Monitoring” (2008) IET 

Communications, 2 (2), pp. 215-222. 

 

[25] IEEE “IEEE Standard for Information Technology- Telecommunications and 

Information Exchange Between Systems- Local and Metropolitan Area Networks- 

Specific Requirements, Part 11: Wireless LAN MAC and PHY Specifications” June 2007, 

[Online] Available: http://ieeexplore.ieee.org/xpl/standardstoc.jsp?isnumber=35824 

Accessed July 2009. 

 

[26] S. Kim, S.-J. Lee, S. Choi “The impact of IEEE 802.11 MAC strategies on multi-hop 

wireless mesh networks” (2007) 2006 2nd IEEE Workshop on Wireless Mesh Networks, 

WiMESH 2006, Reston, Virginia, USA, September 2006, pp. 38-47. 

 

[27] Unwired Adventures, “DEFCON WiFI Shootout 2005” [Online] Available: 

http://www.unwiredadventures.com/unwire/2005/12/defcon_wifi_sho.html Accessed 

July2009. 

 

[28] T. Ireland, A. Nyzio, M. Zink, J. Kurose “The Impact of Directional Antenna 

Orientation, Spacing, and Channel Separation on Long-distance Multi-hop 802.11g 

Networks: A Measurement Study” (2007) Proceedings of the 5th International Symposium 

on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2007, 

Limassol, Cyprus, April 2007. 

 

[29] K. Shuaib, M. Boulmalf, F. Sallabi, A. Lakas “Co-existence of Zigbee and WLAN, a 

Performance Study” (2006) 2006 IFIP International Conference on Wireless and Optical 

Communications Networks, Bangalore, India, April 2006. 

 

[30] G. Yang, Y. Yu “ZigBee Networks Performance Under WLAN 802.11b/g 

Interference” (2009) 2009 4th International Symposium on Wireless and Pervasive 

Computing, ISWPC 2009, Melbourne, Australia, February 2009. 

 

[31] F. Zhang, T.D. Todd, D. Zhao, V. Kezys “Power Saving Access Points for IEEE 

802.11 Wireless Network Infrastructure” (2006) IEEE Transactions on Mobile 

Computing, 5 (2), pp. 144-156. 

 

[32] A. Farbod, D.T. Todd “Resource Allocation and Outage Control for Solar-Powered 

WLAN Mesh Networks” (2007) IEEE Transactions on Mobile Computing, 6 (8), pp. 960-

970. 



REFERENCES 

66 

 

[33] S. Siwamogsatham, K. Hiranpruck, C. Luangingkasut, S. Srilasak “Revisiting the 

Impact of Encryption on Performance of IEEE 802.11 WLAN” (2008) 5th International 

Conference on Electrical Engineering/Electronics, Computer, Telecommunications and 

Information Technology, ECTI-CON 2008, Krabi, Thailand, May 2008, 1, pp. 381-384. 

 

[34] IEEE “IEEE Standard for Information Technology- Telecommunications and 

Information Exchange Between Systems- Local and Metropolitan Area Networks- 

Specific Requirements, Part 15.4: Wireless MAC and PHY Specifications for Low-Rate 

WPANs” September 2006, [Online] Available: 

http://ieeexplore.ieee.org/xpl/standardstoc.jsp?isnumber=35824 Accessed July 2009. 

 

[35] M. Hameed, H. Trsek, O. Graeser, and J. Jasperneite “Performance Investigation 

and Optimization of IEEE 802.15.4 for Industrial Wireless Sensor Networks” (2008) 

IEEE Symposium on Emerging Technologies and Factory Automation, ETFA, Hamburg, 

Germany, September 2008, pp. 1016-1022. 

 

[36] M. Zeghdoud, P. Cordier, and M. Terré “Impact of Clear Channel Assessment Mode 

on the Performance of ZigBee Operating in a WiFi Environment” (2006) 2006 1st 

Workshop on Operator-Assisted (Wireless-Mesh) Community Networks, OpComm 2006, 

Berlin, Germany, September 2006. 

 

[37] M.U. Ilyas, and H. Radha “Measurement Based Analysis and Modeling of the Error 

Process in IEEE 802.15.4 LR-WPANs” (2008) Proceedings - IEEE INFOCOM, Phoenix 

Arizona, USA, April 2008, pp. 1948-1956. 

 

[38] M. Ahmed, C.U. Saraydar, T. ElBatt, J. Yin, T. Talty, and M. Ames “Intra-vehicular 

Wireless Networks” (2007) GLOBECOM - IEEE Global Telecommunications 

Conference, Washington DC, USA, November 2007. 

 

[39] D. Sexton, M. Mahony, M. Lapinski, and J. Werb “Radio Channel Quality in 

Industrial Wireless Sensor Networks” (2005) Proceedings of the ISA/IEEE 2005 Sensors 

for Industry Conference, Sicon'05, Houston Texas, USA, Feburary 2005, pp. 88-94. 

 

[40] C. Reinisch, W. Kastner, G. Neugschwandtner, and W. Granzer “Wireless 

Technologies in Home and Building Automation” (2007) IEEE International Conference 

on Industrial Informatics (INDIN), Vienna, Austria, July 2007, 1, pp. 93-98. 

 

[41] H.S. Kim, J.-H. Song, and S. Lee, “Energy-Efficient Traffic Scheduling in IEEE 

802.15.4 For Home Automation Networks” (2007) IEEE Transactions on Consumer 

Electronics, 53 (2), pp. 369-374. 

 

[42] A.D. Siuli Roy, and S. Bandyopadhyay “Agro-sense: Precision agriculture using 

sensor-based wireless mesh networks” (2008) International Telecommunication Union - 

Proceedings of the 1st ITU-T Kaleidoscope Academic Conference, Innovations in NGN, 

K-INGN, Geneva, Switzerland, May 2008. 



REFERENCES 

67 

 

[43] L. Tang, K.-C. Wang, Y. Huang, and F. Gu “Channel Characterization and Link 

Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments” 

(2007) IEEE Transactions on Industrial Informatics, 3 (2), pp. 99-110. 

 

[44] Crossbow Technology, [Online] Available: 

http://www.xbow.com/Products/productdetails.aspx?sid=226 Accessed: May 2009. 

 

[45] TinyOS, [Online] Available: http://www.tinyos.net/ Accessed: May 2009. 

 

[46] Chipcon, “CC2420 Data Sheet” [Online] Available:  

http://focus.ti.com/docs/prod/folders/print/cc2420.html Accessed: May 2009. 

 

[47] R. Szewczyk, P. Levis, M. Turon, L. Nachman, P. Buonadonna, V. Handziski 

“TinyOS Extension Proposal (TEP) 112” [Online] Available: 

http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep112.html 

Accessed: July 2009. 

 

[48] Crossbow “MIB Series Users Manual” page 21, Available: 

http://www.xbow.com/Support/Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf 

Accessed: July 2009. 

 

[49] TinyOS Tutorials, [Online] Available: 

http://docs.tinyos.net/index.php/TinyOS_Tutorials Accessed July 2009.



APPENDIX 

68 

 

Appendix: 

  

 

A – Programming MicaZ motes 

 

The TinyOS source tree for this project was located in the Linux root directory at 

/opt/tinyos-2.x/.  At this location a directory called apps contains all the application 

programs that can be compiled and uploaded into the ZigBee devices.  In order to 

program the ZigBee mote, the following steps were conducted: 

 

� The ZigBee mote must be properly plugged into the programming board, and the 

programming board must be connected to the computer.  For this project, the 

board is connected to one of the USB ports. 

� The programming board needs a power source.  This could be from the power 

adaptor that plugs into the wall or from batteries connected to the mote.  

Warning: Both power sources cannot be on at the same time or the mote will be 

fried.  If the batteries are still in the mote and the power from the adaptor is being 

used, then double check that the power switch on the mote is turned off.  This will 

not interfere with uploading the application. 

� Make sure that the permissions on the serial port will allow you to read and write 

from it.  To check, open up a terminal window and use the command, 

ls -l /dev 

In the case of this project the name of the USB port that the programming board is 

connected to is called ttyUSB0.  In order to shorten the list for the /dev directory 

use the command, 

ls -l /dev | grep ttyUSB 

� If it is necessary to change the permissions then do this as root user with the 

command, 

chmod a=rw /dev/ttyUSB0 

You can double check that the permissions have properly been change by 
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repeating the list command. 

� Now that everything is set up, the mote can now be programmed.  Change to the 

directory where the desired application to upload is located using the terminal 

window.  This should be  

.../tinyos-2.x/apps/application 

To compile and upload the program use the command, 

make mote_type install programming_board_type,serial_port 

Specifically for this project using the MicaZ motes, with the MIB510 

programming board connected to the ttyUSB0 port, the command is 

make micaz install mib510,/dev/ttyUSB0 

� If it is desired to simply compile the application program to check for errors and 

not upload the program use, 

make micaz 

Of course, the full command will also display if any syntax errors are present and 

will not follow through with uploading to the device. 

 

Lastly, to run the uploaded program simply, power up the mote and it will 

automatically initialize and start running the uploaded application. 

 

For a full tutorial and a more in depth explanation on the TinyOS environment 

and programming the motes, see [49]. 

 

B – Configuring WLAN Settings 

 

To set up the WLAN card parameters so that they operate in the ad-hoc mode 

needed for this project, follow these steps: 

 

� Disable and unplug any other wired or wireless network connections.  The 

wireless USB card should be on but not connected to any WLAN access points. 

� In a terminal window as root user, type the command, 

ifconfig 
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to determine the system name of the wireless interface for the USB WLAN 

devices.  It should be one of the interfaces listed on the left, such as wlan0. 

� Once the proper wireless interface name is known (for this example wlan0 is 

used), make sure it is not connected to any access point by typing, 

ifconfig wlan0 down 

� Now change the parameters of the wlan0 interface by using the iwconfig 

command.  For this project three parameters are set, the operating mode, the 

ESSID, and the frequency channel.  Set them by using the following command, 

iwconfig wlan0 mode ad-hoc essid desired_name channel ch_number 

As an example, for this project the following command was used, 

iwconfig wlan0 mode ad-hoc essid pat channel 5 

� Now all the necessary WLAN card parameters are set.  Next is to set the desired 

IP address and turn on the device.  This can be done all at once by typing, 

ifconfig wlan0 desired_IP up 

 As an example, 

ifconfig wlan0 192.168.0.1 up 

� To double check that these parameters were successfully changed, simply retype 

the iwconfig and the ifconfig commands. 

 

 C – ZigBee Testbed Results Chart 

 

Table C.1: ZigBee Testbed Locations and Results. 

 

Transmitter Location 

(Description) 

Approx. 

Distance 

(m) 

BER PER PLR 
Max. 

RSSI 

Min. 

RSSI 

Average 

RSSI 

Number 

of Partial 

Packets  

Dropped 
Indoor: BS in Kitchen 

1 (Below One Floor) 3.69 0.00176 0.05527 0.024 -37 -51 -48.838 1 

2 (Dishwasher) 2.00 0.00101 0.00702 0.003 -30 -47 -38.772 0 

3 (Basement Fridge) 8.27 No Reception 

4 (Kitchen Fridge) 2.50 0 0 0 -27 -29 -28.745 0 

5 (Fusebox) 3.50 0.00062 0.00502 0.004 -27 -29 -28.964 0 

6 (Furnace) 6.08 No Reception 

7 (Hot Water Heater) 8.47 No Reception 

8 (Hydro Meter) 3.00 0.00119 0.01103 0.003 -31 -43 -41.686 0 

9 (On Stove) 2.80 0 0 0 -27 -38 -29.109 0 

Indoor: BS at Fuse Box 

1 (Dishwasher) 1.90 0.00228 0.02010 0.006 -29 -46 -40.785 1 

2 (Basement Fridge) 8.50 0.00299 0.03473 0.021 -33 -50 -47.753 0 
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3 (Kitchen Fridge) 4.58 0.00292 0.02823 0.008 -29 -44 -42.812 0 

4 (Furnace 1) 6.73 0.00197 0.03644 0.012 -35 -50 -47.868 0 

4 (Furnace 2) 6.73 0.00513 0.05555 0.029 -35 -51 -48.157 1 

5 (Hot Water Heater 

Trial 1) 8.63 0.00660 0.32110 0.136 -35 -51 -49.257 8 

5 (Hot Water Heater 

Trial 2) 8.63 0.00638 0.11207 0.074 -36 -51 -48.640 2 

6 (Hydro Meter) 2.00 0.00155 0.01515 0.010 -41 -46 -45.102 0 

7 (TV) 7.30 0.00185 0.01301 0.001 -23 -31 -30.957 0 

8 (Up Two Floors) 4.33 0.00243 0.02020 0.010 -33 -47 -46.021 0 

9 (Washing Machine) 6.05 0.00184 0.01511 0.007 -27 -38 -36.992 0 

Indoor: BS at Furnace 

1 (Thermostat) 4.26 0.00095 0.00903 0.003 -37 -50 -44.742 0 

Outdoor 

 2 0 0 0 -20 -29 -23.054 0 

 10 0 0 0 -31 -35 -33.311 0 

 20 0 0 0 -39 -45 -43.725 0 

 25 0.03134 0.79167 0.978 -48 -50 -49.318 2 

(1.2m Tx Height) 25 0.00050 0.03704 0.029 -44 -49 -46.765 1 

 30 0.00004 0.00502 0.004 -44 -49 -47.444 0 

(1.2m Tx Height) 30 0 0 0 -42 -47 -44.640 0 

 40 0 0 0 -43 -47 -44.859 0 

 50 0 0 0 -44 -46 -45.101 0 

 60 0.00002 0.00100 0.003 -45 -49 -47.039 0 

 70 0.00010 0.00906 0.007 -46 -49 -48.048 0 

 80 0.00688 0.48765 0.241 -46 -51 -49.501 10 

 85 0.03819 0.96970 0.822 -48 -52 -50.820 20 

 90 0.00375 0.34777 0.157 -48 -51 -49.491 11 

 95 0.09005 1.00000 0.997 -51 -52 -51.333 0 

Vehicle Idle: Engine Off 

1 (Behind Driver's 

Visor)  0 0 0 -6 -15 -10.476 0 

2 (Behind Peddles)  0 0 0 -8 -21 -12.385 0 

3 (Inside Door Handle)  0 0 0 -11 -43 -21.746 0 

4 (Inside Door Handle)  0 0 0 -9 -30 -16.027 0 

5 (Inside Door Handle)  0 0 0 -10 -26 -17.794 0 

6 (Inside Door Handle)  0 0 0 -7 -21 -12.102 0 

7 (On Centre of Dash 

Board)  0 0 0 -5 -11 -8.898 0 

8 (In the Trunk)  0 0 0 -8 -15 -11.766 0 

9 (Under Driver's Seat)  0 0 0 -9 -40 -18.677 0 

10 (Under Hood, 

Drivers Side)  0 0 0 -23 -35 -26.287 0 

11 (Under Hood, 

Bottom of Grill)  0 0 0 -37 -43 -39.781 0 

12 (Under hood, 

Passengers Side)  0 0 0 -31 -33 -31.340 0 

Vehicle Idle: Engine On 

1 (Behind Driver's 

Visor)  0 0 0 -8 -33 -15.565 0 

2 (Behind Peddles)  0 0 0 -4 -41 -19.350 0 

3 (Inside Door Handle)  0 0 0 -8 -21 -11.545 0 

4 (Inside Door Handle)  0.00003 0.00050 0.002 -9 -46 -18.018 0 

5 (Inside Door Handle)  0 0 0 -8 -19 -11.689 0 

6 (Inside Door Handle)  0 0 0 -5 -16 -10.363 0 

7 (On Centre of Dash 

Board)  0 0 0 -5 -12 -9.232 0 

8 (In the Trunk)  0 0 0.001 -9 -19 -14.925 0 

9 (Under Driver's Seat)  0 0 0 -8 -36 -13.164 0 

10 (Under Hood, 

Drivers Side)  0 0 0 -23 -30 -26.169 0 

11 (Under Hood,  0.00052 0.03711 0.030 -43 -51 -46.409 0 
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Bottom of Grill) 

12 (Under hood, 

Passengers Side)  0 0 0 -27 -31 -29.126 0 

Vehicle Driving: Street 

11 (Central to Walker)  

0 0 

 

0.003 -36 -50 -42.355 0 

11 (Across City)  0.00024 0.00881 0.016 -35 -52 -42.880 1 

9 (Across City)  0.00002 0.00067 0 -14 -50 -22.095 0 

11 (Walker Rd.)  0.00021 0.00672 0.01 -31 -51 -36.367 1 

11 (Across City)  0.00032 0.00517 0.011 -37 -51 -43.620 1 

11 (Riverside Dr.)  0.00085 0.03706 0.113 -32 -52 -43.735 4 

11 (Howard Ave.)  0.00025 0.01690 0.013 -32 -51 -44.320 0 

Vehicle Driving: Expressway 

11 (Central to 

Lesperance) 

 

0.00017 0.01076 0.009 -37 -51 -41.985 1 

11 (Lesperance to 

Central) 

 

0.00125 0.04766 0.193 -37 -52 -44.097 6 

11 (Central to 

Lesperance) 

 

0.00128 0.04348 0.082 -37 -52 -44.903 2 

11 (Banwell to Walker)  0.00005 0.00250 0.001 -32 -51 -37.704 0 

11 (Central to Banwell)  0.00025 0.01087 0.019 -37 -51 -43.200 0 

11 (Banwell to 

Howard) 

 

0 0 0 -32 -43 -37.357 0 

Machine Shop: BS in Office 

1 (Head Height) 10.6 0.00022 0.00503 0.006 -35 -50 -38.354 0 

2 (Shoulder Height) 11.5 0.00387 0.13726 0.493 -41 -52 -47.809 3 

2 (On Light Banister: 

2.4m) 11.5 0.00047 0.00804 0.005 -41 -51 -44.994 0 

3 (Shoulder Height: 

Off) 7.6 0 0 0 -33 -46 -38.079 0 

3 (Shoulder Height: 

On) 7.6 0 0 0 -33 -48 -36.855 0 

4 (Shoulder Height) 13.6 0.00051 0.02156 0.026 -40 -51 -45.188 0 

5 (Shoulder Height) 15.4 0.00119 0.05606 0.130 -40 -51 -46.939 4 

6 (Shoulder Height) 10.9 0.08955 1.00000 0.976 -46 -52 -51.125 6 

7 (Waist Height) 5.8 0.00010 0.00201 0.004 -33 -51 -39.376 0 

8 (Head Height) 6.2 0.00423 0.07000 0.101 -35 -52 -42.795 1 

9 (Head Height) 8.6 0.00220 0.04158 0.064 -36 -53 -44.581 2 

Machine Shop: BS in Centre of Shop Floor 

1 (Head Height) 4.0 0 0 0 -26 -33 -28.839 0 

2 (Shoulder Height) 4.0 0 0 0 -29 -37 -33.631 0 

3 (Shoulder Height) 3.5 0.00001 0.00100 0.001 -33 -49 -39.208 0 

4 (Shoulder Height) 5.6 0 0 0 -29 -37 -31.397 0 

5 (Shoulder Height) 7.8 0 0 0 -33 -42 -36.819 0 

6 (Shoulder Height) 8.7 No Reception 

7 (Waist Height) 10.7 0.00657 0.23366 0.502 -44 -52 -48.588 7 

 

D – Program Codes 

 

D.1 – Control Centre Node 

/* 

 * ControlTerminal.java 

 * 

 * Created by Patrick Casey for his Thesis project, 2009. 

 */ 

 

//package controlcentre; 

 

import java.io.*; 

import java.awt.Color; 
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import java.net.DatagramPacket; 

import java.net.DatagramSocket; 

import java.net.InetAddress; 

import java.util.ArrayList; 

import javax.swing.text.AttributeSet; 

import javax.swing.text.SimpleAttributeSet; 

import javax.swing.text.StyleConstants; 

import javax.swing.text.StyleContext; 

import javax.swing.text.JTextComponent; 

 

//import org.jdesktop.beansbinding.Converter; 

/** 

 * 

 * @author  fit 

 */ 

 

class DisplayPkts implements Runnable { 

    private javax.swing.JTextPane receivedDisplay; 

    private int carPos = 0;  // Caret position of previous print 

     

    public DisplayPkts(javax.swing.JTextPane area) { 

        receivedDisplay = area; 

    } 

     

    public void affix(Color colour, String text) { 

        int len; 

         

        StyleContext style = StyleContext.getDefaultStyleContext(); 

        AttributeSet attr = style.addAttribute(SimpleAttributeSet.EMPTY, StyleConstants.Foreground, colour); 

         

        receivedDisplay.setCaretPosition(carPos); 

        receivedDisplay.setCharacterAttributes(attr, false); 

        receivedDisplay.replaceSelection(text); 

         

        carPos = carPos + text.length();  // Increment caret position to end of current print 

    } 

     

    public void run() {  

        String tempString; 

         

        affix(Color.black, "Initializing...\n"); 

        byte[] localIPaddress= new byte[4];       // Local interface 

        localIPaddress[0] = (byte) 192; 

        localIPaddress[1] = (byte) 168; 

        localIPaddress[2] = (byte) 0; 

        localIPaddress[3] = (byte) 3; 

         

        ByteArrayInputStream byteInStream = null;     // Declare byte input stream 

        ObjectInputStream objInStream = null;             // Declare object input strem  

        DatagramSocket socket = null;       // Declare socket 

        DatagramPacket inBuffer = null;       // Declare input buffer 

         

        ArrayList<Byte> clientData = new ArrayList<Byte>(); // Define array list (Only needed to display data) 

        int nodeID, nodeData, btryLev, i;    // Only needed to display data 

        int numBytesInDataPkt = 7;     // Number of bytes in a zigbee data packet. Change here if introduce new data 

         

        try { 

            socket = new DatagramSocket(60200, InetAddress.getByAddress(localIPaddress)); // Open a new socket on 

port number 60200 for local IP 

            inBuffer = new DatagramPacket(new byte[1000], 1000);                            // Create receiving buffer 

        } 

        catch(IOException e) { 
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            System.out.print(e); 

        } 

        while (true) { 

            try { 

                while (true) { 

     affix(Color.black, "Listening for packet ... "); 

     socket.receive(inBuffer);    // Program hangs here until packet comes in 

     affix(Color.black, "packet received: "); 

     affix(Color.black, " from "+inBuffer.getAddress()+" on port "+inBuffer.getPort()+"\n"); 

 

     /* --- For displaying purposes --- */ 

     byteInStream = new ByteArrayInputStream(inBuffer.getData()); // Give received packet data to Byte input 

stream 

     objInStream = new ObjectInputStream(byteInStream);               // Deserialize byte array back into objects 

     // ^ StreamCorruptedException will be thrown here if it received a packet in response to "Get Sensor Data" 

command b/c not an object 

     clientData = (ArrayList<Byte>)objInStream.readObject(); // Read data from object 

                  

     i = 0; 

     while ( i<clientData.size() ) { 

         // Convert proper unsigned node ID (2 bytes) 

         if( (Byte)clientData.get(i+1)<0 ) nodeID = ((Byte)clientData.get(i)<<8) + (Byte)clientData.get(i+1) + 256; 

         else nodeID = ((Byte)clientData.get(i)<<8) + (Byte)clientData.get(i+1); 

                      

         // Convert proper unsigned sensor value (2 bytes) 

         if ( (Byte)clientData.get(i+3)<0 ) nodeData = ((Byte)clientData.get(i+2)<<8) + (Byte)clientData.get(i+3) + 

256; 

         else nodeData = ((Byte)clientData.get(i+2)<<8) + (Byte)clientData.get(i+3); 

                      

         // Convert proper unsigned battery value (3 bytes) 

         if ( (Byte)clientData.get(i+5)<0 & (Byte)clientData.get(i+6)<0 ) { 

             btryLev = ((Byte)clientData.get(i+4)<<16) + (((Byte)clientData.get(i+5) + 256)<<8) + 

(Byte)clientData.get(i+6) + 256; 

         } 

         else if ( (Byte)clientData.get(i+5)<0 & (Byte)clientData.get(i+6)>=0 ) { 

             btryLev = ((Byte)clientData.get(i+4)<<16) + (((Byte)clientData.get(i+5) + 256)<<8) + 

(Byte)clientData.get(i+6); 

         } 

         else if ( (Byte)clientData.get(i+5)>=0 & (Byte)clientData.get(i+6)<0 ) { 

             btryLev = ((Byte)clientData.get(i+4)<<16) + ((Byte)clientData.get(i+5)<<8) + (Byte)clientData.get(i+6) + 

256; 

         } 

         else btryLev = ((Byte)clientData.get(i+4)<<16) + ((Byte)clientData.get(i+5)<<8) + (Byte)clientData.get(i+6); 

                      

         affix(Color.black, "From Node: "+nodeID+"   Data:"); 

         if ((nodeData<700) || (nodeData>990)) {  // Display fault values in red text 

             affix(Color.red, " "+nodeData); 

         } 

         else affix(Color.black, " "+nodeData); 

         if (btryLev<1000) {  // Display low battery values in red text 

             affix(Color.black, "   Battery: "); 

             affix(Color.red, btryLev+"\n"); 

         } 

         else affix(Color.black, "   Battery: "+btryLev+"\n"); 

                      

         i = i + numBytesInDataPkt; // Number of bytes in each individual data packet inside the received array 

     } 

     affix(Color.black, " \n"); 

     /* --- ----------------------- --- */ 

                  

     // Clear buffer and streams 

     clientData.clear(); 
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     objInStream.close(); 

     byteInStream.close(); 

                } 

            } 

            catch (StreamCorruptedException e) { 

                byte[] spcldata = new byte[numBytesInDataPkt]; 

 spcldata = inBuffer.getData(); 

 affix(Color.black, "Response to special data request:\n"); 

 

 // Convert to proper unsigned node ID 

 if (spcldata[1]<0) affix(Color.black, "From Node: "+((spcldata[0]<<8)+(spcldata[1]+256)) ); 

 else affix(Color.black, "From Node: "+((spcldata[0]<<8)+spcldata[1]) ); 

 

 // Convert to proper unsigned sensor data value 

 if (spcldata[3]<0) affix(Color.black, "   Data: "+((spcldata[2]<<8)+(spcldata[3]+256)) ); 

 else affix(Color.black, "   Data: "+((spcldata[2]<<8)+spcldata[3]) ); 

 

 // Convert to proper unsigned battery value 

 if (spcldata[5]<0 && spcldata[6]<0) affix(Color.black, "   Battery: 

"+((spcldata[4]<<16)+((spcldata[5]+256)<<8)+(spcldata[6]+256))+"mV\n" ); 

 else if (spcldata[5]>0 && spcldata[6]<0) affix(Color.black, "   Battery: 

"+((spcldata[4]<<16)+(spcldata[5]<<8)+(spcldata[6]+256))+"mV\n" ); 

 else if (spcldata[5]<0 && spcldata[6]>0) affix(Color.black, "   Battery: 

"+((spcldata[4]<<16)+((spcldata[5]+256)<<8)+spcldata[6])+"mV\n" ); 

 else affix(Color.black, "   Battery: "+((spcldata[4]<<16)+(spcldata[5]<<8)+spcldata[6])+"mV\n" ); 

 

 affix(Color.black, " \n"); 

           } 

           catch(IOException e) { 

 System.out.print(e); 

           } 

           catch(ClassNotFoundException e) { 

 System.out.print(e); 

           }         

 

           try { 

 byteInStream.close(); // Still close if went into 'catch' then loop back and start listening again 

           } 

           catch(IOException e) { 

 System.out.print(e); 

           } 

       } 

   } 

} 

 

public class ControlTerminal extends javax.swing.JFrame { 

    /** Creates new form ControlTerminal */ 

    public ControlTerminal() { 

        initComponents(); 

    } 

 

    /** This method is called from within the constructor to 

     * initialize the form. 

     * WARNING: Do NOT modify this code. The content of this method is 

     * always regenerated by the Form Editor. 

     */ 

    @SuppressWarnings("unchecked") 

   // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents 

   private void initComponents() { 

 

      jPanel1 = new javax.swing.JPanel(); 

      jLabel1 = new javax.swing.JLabel(); 
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      jLabel2 = new javax.swing.JLabel(); 

      jSeparator1 = new javax.swing.JSeparator(); 

      zigbeeNodeID = new javax.swing.JTextField(); 

      jLabel3 = new javax.swing.JLabel(); 

      sendCommand = new javax.swing.JButton(); 

      jLabel4 = new javax.swing.JLabel(); 

      jLabel5 = new javax.swing.JLabel(); 

      commandType = new javax.swing.JComboBox(); 

      jLabel6 = new javax.swing.JLabel(); 

      timeMinutes = new javax.swing.JTextField(); 

      startDisplay = new javax.swing.JButton(); 

      jLabel8 = new javax.swing.JLabel(); 

      jLabel7 = new javax.swing.JLabel(); 

      jScrollPane1 = new javax.swing.JScrollPane(); 

      receivedDisplay = new javax.swing.JTextPane(); 

 

      setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE); 

 

      jLabel1.setText("Received Data:"); 

 

      jLabel2.setText("Commands:"); 

 

      jLabel3.setFont(new java.awt.Font("DejaVu Sans", 0, 18)); 

      jLabel3.setText("Control Centre"); 

 

      sendCommand.setText("Send"); 

      sendCommand.addActionListener(new java.awt.event.ActionListener() { 

         public void actionPerformed(java.awt.event.ActionEvent evt) { 

            sendCommandActionPerformed(evt); 

         } 

      }); 

      sendCommand.addKeyListener(new java.awt.event.KeyAdapter() { 

         public void keyPressed(java.awt.event.KeyEvent evt) { 

            sendCommandKeyPressed(evt); 

         } 

      }); 

 

      jLabel4.setText("Sensor Node ID:"); 

 

      jLabel5.setText("Command Type:"); 

 

      commandType.setBackground(java.awt.SystemColor.activeCaptionBorder); 

      commandType.setModel(new javax.swing.DefaultComboBoxModel(new String[] { "Get Sensor Data", "Sleep", 

"Wake-up" })); 

 

      jLabel6.setText("Time:"); 

 

      startDisplay.setText("Start Receiving"); 

      startDisplay.addActionListener(new java.awt.event.ActionListener() { 

         public void actionPerformed(java.awt.event.ActionEvent evt) { 

            startDisplayActionPerformed(evt); 

         } 

      }); 

      startDisplay.addKeyListener(new java.awt.event.KeyAdapter() { 

         public void keyPressed(java.awt.event.KeyEvent evt) { 

            startDisplayKeyPressed(evt); 

         } 

      }); 

 

      jLabel8.setText("(65535 for Broadcast)"); 

 

      jLabel7.setText(" (1 - 71,582 minutes)"); 
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      jScrollPane1.setViewportView(receivedDisplay); 

 

      javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1); 

      jPanel1.setLayout(jPanel1Layout); 

      jPanel1Layout.setHorizontalGroup( 

         jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

         .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, jPanel1Layout.createSequentialGroup() 

            .addContainerGap() 

            .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 

               .addComponent(jScrollPane1, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, 688, Short.MAX_VALUE) 

               .addGroup(javax.swing.GroupLayout.Alignment.LEADING, jPanel1Layout.createSequentialGroup() 

                  .addComponent(jLabel1) 

                  .addGap(185, 185, 185) 

                  .addComponent(jLabel3) 

                  .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 166, Short.MAX_VALUE) 

                  .addComponent(startDisplay)) 

               .addComponent(jSeparator1, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, 688, Short.MAX_VALUE) 

               .addComponent(jLabel2, javax.swing.GroupLayout.Alignment.LEADING) 

               .addGroup(javax.swing.GroupLayout.Alignment.LEADING, jPanel1Layout.createSequentialGroup() 

                  .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                     .addComponent(jLabel4) 

                     .addComponent(jLabel5)) 

                  .addGap(1, 1, 1) 

                  .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                     .addGroup(jPanel1Layout.createSequentialGroup() 

                        .addComponent(zigbeeNodeID, javax.swing.GroupLayout.PREFERRED_SIZE, 70, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

                        .addGap(2, 2, 2) 

                        .addComponent(jLabel8)) 

                     .addGroup(jPanel1Layout.createSequentialGroup() 

                        .addComponent(commandType, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE) 

                        .addGap(155, 155, 155) 

                        .addComponent(jLabel6) 

                        .addGap(3, 3, 3) 

                        .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                           .addComponent(jLabel7) 

                           .addGroup(jPanel1Layout.createSequentialGroup() 

                              .addComponent(timeMinutes, javax.swing.GroupLayout.PREFERRED_SIZE, 120, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

                              .addGap(4, 4, 4) 

                              .addComponent(sendCommand))))) 

                  .addGap(67, 67, 67))) 

            .addContainerGap()) 

      ); 

      jPanel1Layout.setVerticalGroup( 

         jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

         .addGroup(jPanel1Layout.createSequentialGroup() 

            .addGap(12, 12, 12) 

            .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 

               .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                  .addComponent(jLabel3) 

                  .addComponent(startDisplay)) 

               .addComponent(jLabel1)) 

            .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 

            .addComponent(jScrollPane1, javax.swing.GroupLayout.PREFERRED_SIZE, 339, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

            .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
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            .addComponent(jSeparator1, javax.swing.GroupLayout.PREFERRED_SIZE, 11, 

javax.swing.GroupLayout.PREFERRED_SIZE) 

            .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 

               .addGroup(jPanel1Layout.createSequentialGroup() 

                  .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 

                  .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                     .addComponent(jLabel2) 

                     .addGroup(jPanel1Layout.createSequentialGroup() 

                        .addGap(35, 35, 35) 

                        .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                           .addComponent(jLabel4) 

                           .addComponent(zigbeeNodeID, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE) 

                           .addComponent(jLabel8)))) 

                  .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 

                  .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                     .addComponent(jLabel5) 

                     .addComponent(commandType, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)) 

                  .addContainerGap(35, Short.MAX_VALUE)) 

               .addGroup(jPanel1Layout.createSequentialGroup() 

                  .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 

                  .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                     .addComponent(sendCommand, javax.swing.GroupLayout.Alignment.TRAILING) 

                     .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, 

jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                        .addComponent(jLabel6) 

                        .addComponent(timeMinutes, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))) 

                  .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 

                  .addComponent(jLabel7) 

                  .addGap(12, 12, 12)))) 

      ); 

 

      javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane()); 

      getContentPane().setLayout(layout); 

      layout.setHorizontalGroup( 

         layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

         .addGroup(layout.createSequentialGroup() 

            .addContainerGap() 

            .addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 

            .addContainerGap()) 

      ); 

      layout.setVerticalGroup( 

         layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

         .addComponent(jPanel1, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE) 

      ); 

 

      pack(); 

   }// </editor-fold>//GEN-END:initComponents 

 

private void sendCommandKeyPressed(java.awt.event.KeyEvent evt) {//GEN-FIRST:event_sendCommandKeyPressed 

     

}//GEN-LAST:event_sendCommandKeyPressed 

 

private void sendCommandActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_sendCommandActionPerformed 

     

    int numBytesInCommandPkt = 7;  // Number of bytes sent in a command packet from CC.  Change here if 

introduce new data 
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    byte[] localIPaddress= new byte[4];     // Local interface 

    localIPaddress[0] = (byte) 192; 

    localIPaddress[1] = (byte) 168; 

    localIPaddress[2] = (byte) 0; 

    localIPaddress[3] = (byte) 3; 

     

    byte[] IPaddressToGW= new byte[4];      // Next hop interface 

    IPaddressToGW[0] = (byte) 192; 

    IPaddressToGW[1] = (byte) 168; 

    IPaddressToGW[2] = (byte) 0; 

    IPaddressToGW[3] = (byte) 2; 

     

    // Capture data in text fields 

    int timeToSleep_ms = 0; 

    int nodeID = Integer.parseInt(zigbeeNodeID.getText()); 

    Object command = commandType.getSelectedItem(); 

    if ( command.equals("Sleep") ) { 

        timeToSleep_ms = Integer.parseInt(timeMinutes.getText()) * 60 * 1000; 

    } 

     

    // Create byte array WLAN payload 

    byte[] payload = new byte[numBytesInCommandPkt]; 

     

    payload[0] = (byte) ( (nodeID & 0x0000FF00)>>>8 );                  // Node ID 

    payload[1] = (byte) ( (nodeID & 0x000000FF) ); 

    if (command.equals("Get Sensor Data"))  payload[2] = (byte) 0x64;   // Command Type 

    else if (command.equals("Sleep"))       payload[2] = (byte) 0x53; 

    else if (command.equals("Wake-up"))     payload[2] = (byte) 0x57; 

    payload[3] = (byte) ( (timeToSleep_ms & 0xFF000000)>>>24 );         // Time to sleep 

    payload[4] = (byte) ( (timeToSleep_ms & 0x00FF0000)>>>16 ); 

    payload[5] = (byte) ( (timeToSleep_ms & 0x0000FF00)>>>8 ); 

    payload[6] = (byte) ( (timeToSleep_ms & 0x000000FF) ); 

     

    try { 

        // Turn byte array into DatagramPacket 

        DatagramPacket outPacket = new DatagramPacket(payload, payload.length, 

InetAddress.getByAddress(IPaddressToGW), 60200); 

         

        // Create socket 

        DatagramSocket cloudSoc = new DatagramSocket(60201, InetAddress.getByAddress(localIPaddress)); 

         

        // Send packet to socket 

        cloudSoc.send(outPacket); 

         

        // Close the socket 

        cloudSoc.close(); 

    } 

    catch (IOException e) { 

        System.out.println(e); 

    } 

}//GEN-LAST:event_sendCommandActionPerformed 

 

private void startDisplayKeyPressed(java.awt.event.KeyEvent evt) {//GEN-FIRST:event_startDisplayKeyPressed 

     

}//GEN-LAST:event_startDisplayKeyPressed 

 

private void startDisplayActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_startDisplayActionPerformed 

     

    startDisplay.setEnabled(false);                   // Disable button (Only need to press once) 

    DisplayPkts disp = new DisplayPkts(receivedDisplay); 



APPENDIX 

80 

    Thread pkts = new Thread(disp);       // Create new thread to display packets 

    pkts.start();             // Start the new thread 

}//GEN-LAST:event_startDisplayActionPerformed 

     

    /** 

    * @param args the command line arguments 

    */ 

    public static void main(String args[]) { 

        java.awt.EventQueue.invokeLater(new Runnable() { 

            public void run() { 

                new ControlTerminal().setVisible(true); 

            } 

        }); 

    } 

 

   // Variables declaration - do not modify//GEN-BEGIN:variables 

   private javax.swing.JComboBox commandType; 

   private javax.swing.JLabel jLabel1; 

   private javax.swing.JLabel jLabel2; 

   private javax.swing.JLabel jLabel3; 

   private javax.swing.JLabel jLabel4; 

   private javax.swing.JLabel jLabel5; 

   private javax.swing.JLabel jLabel6; 

   private javax.swing.JLabel jLabel7; 

   private javax.swing.JLabel jLabel8; 

   private javax.swing.JPanel jPanel1; 

   private javax.swing.JScrollPane jScrollPane1; 

   private javax.swing.JSeparator jSeparator1; 

   private javax.swing.JTextPane receivedDisplay; 

   private javax.swing.JButton sendCommand; 

   private javax.swing.JButton startDisplay; 

   private javax.swing.JTextField timeMinutes; 

   private javax.swing.JTextField zigbeeNodeID; 

   // End of variables declaration//GEN-END:variables 

 

} 

 

D.2 – Cloud Mesh Node 

/* 

 * CloudMesh.java 

 * 

 * Created by Patrick Casey for his Thesis project, 2009. 

 */ 
 

import java.io.*; 

import java.lang.Thread; 

import java.net.DatagramSocket; 

import java.net.DatagramPacket; 

import java.net.InetAddress; 

import java.util.ArrayList; 

 

public class CloudMesh implements Runnable { 

  

 /* Thread to forward WLAN packet */ 

 private byte[] data; 

 private String fromIP; 

  

 public CloudMesh(byte[] buffer, String IPaddr) { 

  data = buffer; 

  fromIP = IPaddr; 

 } 
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 public void run() { 

  DatagramPacket outBuffer = null; 

   

  byte[] localIPaddress = new byte[4]; 

  localIPaddress[0] = (byte) 192;  // Local interface 

  localIPaddress[1] = (byte) 168; 

  localIPaddress[2] = (byte) 0; 

  localIPaddress[3] = (byte) 2; 

   

  byte[] IPaddressGW = new byte[4]; 

  IPaddressGW[0] = (byte) 192;  // Remote interface towards GW node 

  IPaddressGW[1] = (byte) 168; 

  IPaddressGW[2] = (byte) 0; 

  IPaddressGW[3] = (byte) 1; 

   

  byte[] IPaddressCC = new byte[4]; 

  IPaddressCC[0] = (byte) 192;  // Remote interface towards Control Centre (CC) node 

  IPaddressCC[1] = (byte) 168; 

  IPaddressCC[2] = (byte) 0; 

  IPaddressCC[3] = (byte) 3; 

  try { 

   if ( (InetAddress.getByName(fromIP)).equals(InetAddress.getByAddress("", IPaddressCC)) ) { // If from 

Control Centre 

    outBuffer = new DatagramPacket(data, data.length, InetAddress.getByAddress(IPaddressGW), 60200);

 // Set destination to Gateway 

   } 

   else { 

    outBuffer = new DatagramPacket(data, data.length, InetAddress.getByAddress(IPaddressCC), 60200);

 // Set destination to Control Centre 

   } 

   System.out.println("Forwarding to: "+outBuffer.getAddress()); 

 

   // Create socket 

   DatagramSocket cloudSoc = new DatagramSocket(60201, InetAddress.getByAddress(localIPaddress)); 

    

   // Forward 'outBuffer' to next hop 

   cloudSoc.send(outBuffer); 

    

   // Close socket 

   cloudSoc.close(); 

  } 

  catch (IOException e) { 

   System.out.println(e); 

  } 

 } 

 /* ----------------------------- */ 

  

 public static void main(String args[]) throws IOException { 

  

  ByteArrayInputStream byteInStream = null; // Declare byte input stream 

  ObjectInputStream objInStream = null;   // Declare object input stream 

  DatagramSocket socket = null;     // Declare socket 

  DatagramPacket inBuffer = null;    // Declare input buffer 

   

  ArrayList<Byte> clientData = new ArrayList<Byte>();  // Define array list (Only needed to display data) 

  int nodeID, nodeData, btryLev, i;       // Only needed to display data 

  byte[] payload = new byte[7]; 

   

  byte[] localIPaddress = new byte[4]; 

  localIPaddress[0] = (byte) 192;   // Local interface 

  localIPaddress[1] = (byte) 168; 
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  localIPaddress[2] = (byte) 0; 

  localIPaddress[3] = (byte) 2; 

   

  byte[] IPaddressGW = new byte[4]; 

  IPaddressGW[0] = (byte) 192;   // Remote interface towards GW node 

  IPaddressGW[1] = (byte) 168; 

  IPaddressGW[2] = (byte) 0; 

  IPaddressGW[3] = (byte) 1; 

   

  byte[] IPaddressCC = new byte[4]; 

  IPaddressCC[0] = (byte) 192;   // Remote interface towards Control Centre (CC) node 

  IPaddressCC[1] = (byte) 168; 

  IPaddressCC[2] = (byte) 0; 

  IPaddressCC[3] = (byte) 3; 

   

  try { 

   socket = new DatagramSocket(60200, InetAddress.getByAddress(localIPaddress)); // Open a new socket 

on port number 60200 for local IP 

   inBuffer = new DatagramPacket(new byte[1000], 1000);      // Create receiving buffer 

  } 

  catch (IOException e) { 

   System.out.println(e); 

  }  

   

  while (true) { 

   try { 

    while (true) {        // Listens on 60200 

     System.out.print("\nListening for packet ... "); 

     socket.receive(inBuffer); 

     System.out.println("Received from "+inBuffer.getAddress()+" on port "+inBuffer.getPort()+" with 

length "+inBuffer.getLength()); 

      

     // Call new thread to handle forwarding the packet 

     CloudMesh sendPkt = new CloudMesh(inBuffer.getData(), 

(inBuffer.getAddress()).getHostAddress() ); 

     Thread forward = new Thread(sendPkt); // Call new thread giving it the payload data and dest. 

IP as string 

     forward.start(); 

      

     /* --- For displaying purposes --- */ 

     if (inBuffer.getAddress().equals( InetAddress.getByAddress("", IPaddressGW) )) { // Packet from 

GW - display ArrayList 

      System.out.println("Packet from GATEWAY:"); 

      byteInStream = new ByteArrayInputStream(inBuffer.getData()); // Give received packet data 

to Byte input stream 

      objInStream = new ObjectInputStream(byteInStream);    // Deserialize byte array 

back into objects 

      clientData = (ArrayList<Byte>)objInStream.readObject();   // Read data from object 

       

      i = 0; 

      while ( i<clientData.size() ) { 

       // Convert proper unsigned node ID (2 bytes) 

       if( (Byte)clientData.get(i+1)<0 ) nodeID = ((Byte)clientData.get(i)<<8) + 

(Byte)clientData.get(i+1) + 256; 

       else nodeID = ((Byte)clientData.get(i)<<8) + (Byte)clientData.get(i+1); 

        

       // Convert proper unsigned sensor value (2 bytes) 

       if ( (Byte)clientData.get(i+3)<0 ) nodeData = ((Byte)clientData.get(i+2)<<8) + 

(Byte)clientData.get(i+3) + 256; 

       else nodeData = ((Byte)clientData.get(i+2)<<8) + (Byte)clientData.get(i+3); 

        

       // Convert proper unsigned battery value (3 bytes) 
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       if ( (Byte)clientData.get(i+5)<0 & (Byte)clientData.get(i+6)<0 ) { 

        btryLev = ((Byte)clientData.get(i+4)<<16) + (((Byte)clientData.get(i+5) + 256)<<8) + 

(Byte)clientData.get(i+6) + 256; 

       } 

       else if ( (Byte)clientData.get(i+5)<0 & (Byte)clientData.get(i+6)>=0 ) { 

        btryLev = ((Byte)clientData.get(i+4)<<16) + (((Byte)clientData.get(i+5) + 256)<<8) + 

(Byte)clientData.get(i+6); 

       } 

       else if ( (Byte)clientData.get(i+5)>=0 & (Byte)clientData.get(i+6)<0 ) { 

        btryLev = ((Byte)clientData.get(i+4)<<16) + ((Byte)clientData.get(i+5)<<8) + 

(Byte)clientData.get(i+6) + 256; 

       } 

       else btryLev = ((Byte)clientData.get(i+4)<<16) + ((Byte)clientData.get(i+5)<<8) + 

(Byte)clientData.get(i+6); 

        

       System.out.println("From Node: "+nodeID+"   Data: "+nodeData+"   Battery: 

"+btryLev+"mV"); 

        

       i = i + 7; // 7 = number of bytes in each individual data packet inside the received array 

      } 

       

      clientData.clear(); 

      objInStream.close(); 

      byteInStream.close(); 

     } 

     else if (inBuffer.getAddress().equals( InetAddress.getByAddress("", IPaddressCC) )) { // Packet 

from CC - already in the form byte[] 

      System.out.println("Packet from CONTROL CENTRE:"); 

      payload = inBuffer.getData(); 

      if(payload[1]<0) { 

       if ( ((payload[0]<<8)+payload[1]+256) == (-1) ) System.out.print("To ALL nodes "); 

       else System.out.print("To node: "+((payload[0]<<8)+payload[1]+256)+" "); 

      } 

      else System.out.print("To node: "+((payload[0]<<8)+payload[1])+" "); 

       

      if(payload[2]==0x64) System.out.print("   Command: Get Sensor Data\n"); 

      else if(payload[2]==0x57) System.out.print("   Command: Wake up\n"); 

      else if(payload[2]==0x53) System.out.print("   Command: Sleep\n"); 

      else System.out.print("Command: "+payload[2]+" = Unknown.  WLAN errors\n"); 

     } 

     else System.out.println("Received packet from unknown host: "+inBuffer.getAddress()); 

     /* --- ----------------------- --- */ 

      

     //socket.close(); 

    } 

   } 

   catch (StreamCorruptedException e) { 

    byte[] spcldata = new byte[7]; 

    spcldata = inBuffer.getData(); 

     

    System.out.print("Response to special data request:\n"); 

    // Convert to proper unsigned node ID 

    if (spcldata[1]<0) System.out.print( "From Node: "+((spcldata[0]<<8)+(spcldata[1]+256)) ); 

    else System.out.print( "From Node: "+((spcldata[0]<<8)+spcldata[1]) ); 

     

    // Convert to proper unsigned sensor data value 

    if (spcldata[3]<0) System.out.print( "   Data: "+((spcldata[2]<<8)+(spcldata[3]+256)) ); 

    else System.out.print( "   Data: "+((spcldata[2]<<8)+spcldata[3]) ); 

     

    // Convert to proper unsigned battery value 

    if (spcldata[5]<0 && spcldata[6]<0) System.out.print( "   Battery: 

"+((spcldata[4]<<16)+((spcldata[5]+256)<<8)+(spcldata[6]+256))+"mV\n" ); 
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    else if (spcldata[5]>0 && spcldata[6]<0) System.out.print( "   Battery: 

"+((spcldata[4]<<16)+(spcldata[5]<<8)+(spcldata[6]+256))+"mV\n" ); 

    else if (spcldata[5]<0 && spcldata[6]>0) System.out.print( "   Battery: 

"+((spcldata[4]<<16)+((spcldata[5]+256)<<8)+spcldata[6])+"mV\n" ); 

    else System.out.print( "   Battery: "+((spcldata[4]<<16)+(spcldata[5]<<8)+spcldata[6])+"mV\n" ); 

   } 

   catch (IOException e) { 

    System.out.println(e); 

   } 

   catch (ClassNotFoundException e) { 

    System.out.println(e); 

   } 

   catch (IndexOutOfBoundsException e) { 

    System.out.println(e); 

   } 

    

   byteInStream.close(); 

   //socket.close(); 

  } 

 } 

} 
 
 

D.3 – Gateway Node 

/* 

 * Gateway.java 

 * 

 * Created by Patrick Casey for his Thesis project, 2009. 

 */ 

 

package net.tinyos.tools; 

 

import java.io.*; 

import java.lang.Thread; 

import net.tinyos.packet.*; 

import net.tinyos.util.*; 

import java.net.DatagramSocket; 

import java.net.DatagramPacket; 

import java.net.InetAddress; 

import java.util.ArrayList; 

import java.util.Random; 

 

public class Gateway implements Runnable { 

 private static int bytesToInt(byte b1, byte b2, byte b3, byte b4) { 

  int i1, i2, i3, i4, newInt; 

  i1=i2=i3=i4=newInt=0; 

   

  if (b1<0) i1 = 256+b1; 

  else i1 = b1; 

   

  if (b2<0) i2 = 256+b2; 

  else i2 = b2; 

   

  if (b3<0) i3 = 256+b3; 

  else i3 = b3; 

   

  if (b4<0) i4 = 256+b4; 

  else i4 = b4; 

   

  newInt = (i1<<24) + (i2<<16) + (i3<<8) + i4; 

  return newInt; 
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 } 

  

 /* --- Thread to listen to WLAN packets --- */ 

 private PacketSource writer; 

 public Gateway(PacketSource usbPort) { 

  writer = usbPort; 

 } 

  

 public void run() { 

  int numBytesInCommandPkt = 7;  // Number of bytes sent in a command packet from CC.  Change here if 

introduce new data 

  int i; 

  byte[] commandPkt = new byte[13]; 

  byte[] payload = new byte[numBytesInCommandPkt]; 

   

  byte[] localIPaddress = new byte[4]; 

  localIPaddress[0] = (byte) 192; 

  localIPaddress[1] = (byte) 168; 

  localIPaddress[2] = (byte) 0; 

  localIPaddress[3] = (byte) 1; 

   

  try { 

   while (true) { 

     

    // Open socket on WLAN port 

    DatagramSocket cloudSoc = new DatagramSocket(60200, InetAddress.getByAddress(localIPaddress));

 // Open a new socket to listen on port 60200 for local IP 

    DatagramPacket inBuffer = new DatagramPacket(new byte[numBytesInCommandPkt], 

numBytesInCommandPkt);  // Create receiving buffer 

     

    // Listen on WLAN port for new packets 

    cloudSoc.receive(inBuffer); 

    payload = inBuffer.getData(); 

     

    /* --- For displaying purposes only --- */ 

    if (payload[1]<0) { 

     if ( ((payload[0]<<8)+payload[1]+256) == (-1)) System.out.print("WLAN: Received command 

packet for ALL nodes to");  

     else System.out.print("WLAN: Received command packet for node: 

"+((payload[0]<<8)+payload[1]+256)+" to "); 

    } 

    else System.out.print("WLAN: Received command packet for node: 

"+((payload[0]<<8)+payload[1])+" to "); 

     

    if (payload[2]==0x64) System.out.print(" retrieve sensor data.\n"); 

    else if (payload[2]==0x57) System.out.print(" Wake up.\n"); 

    else if (payload[2]==0x53) System.out.print(" be in-active for "+(bytesToInt(payload[3], payload[4], 

payload[5], payload[6])/1000/60)+" minutes.\n"); 

    else System.out.print("...\nWLAN: Received unknown command:"+payload[2]+".  WLAN packet must 

have been corrupted.\n"); 

    /* --- ---------------------------- --- */ 

     

    // Add packet data to AM header for tinyos 

    // message_t header information 

    commandPkt[0] = 0x00; 

       commandPkt[1] = payload[0];  // 1-2 Destination address 

    commandPkt[2] = payload[1]; 

    commandPkt[3] = 0x00;   // 3-4 Link source address 

    commandPkt[4] = 0x00; 

    commandPkt[5] = 0x05;   // Message length is 5 bytes 

    commandPkt[6] = 0x00;   // Group ID 

    commandPkt[7] = 0x06;   // Handler 
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    // Data fields 

    commandPkt[8] = payload[2];  // Type field 

    commandPkt[9] = payload[3];  // 9-12 Time for no-activity ( = 0 if not sleep command) 

    commandPkt[10] = payload[4]; 

    commandPkt[11] = payload[5]; 

    commandPkt[12] = payload[6]; 

     

    // Write to USB port 

    writer.writePacket(commandPkt); 

     

    // Close socket 

    cloudSoc.close(); 

   } 

  } 

  catch (IOException e) { 

   System.out.println(e); 

  } 

 } 

 /* --- -------------------------------- --- */ 

  

 public static void main(String args[]) throws IOException { 

   

  /* --- ZigBee Interface Variables --- */ 

  int i;       // Index variable 

  int offerID = 0;     // Offered ID address 

  byte[] offerPkt;     // ID offer packet 

  offerPkt = new byte[19]; 

  byte[] addrTable;  // Address ID table.  1 = address used, 0 = address available, array index = ID address 

  addrTable = new byte[256]; // ZigBee can have 2 byte long ID number.  Increase if want more than 256 

  int[][] seqNumTable;   // Col 0 = sequence number that was used when contacting the GW about 

getting a node ID (to avoid duplication) 

          // Col 1 = GW's returned random number in response pkt to that node ID 

  seqNumTable = new int[256][2]; // ZigBee can have 2 byte long ID number.  Increase if want more than 256 

  boolean seqMatch = false;   // True if sequence numbers match, false otherwise 

  String source = null; 

  PacketSource reader; 

  Random randGen = new Random();// Random number generator for GW sequence numbers 

  int rand = 0;      // Temporary storage for generated random number 

  int numBytesInDataPkt = 7; // Number of bytes in a zigbee data packet. Change here if introduce new data 

   

  /* --- WLAN Interface Variables --- */ 

  ByteArrayOutputStream byteOutStream = null; 

  ObjectOutputStream objOutStream = null; 

   

  DatagramSocket cloudSoc = null; 

  DatagramPacket outData = null; 

  ArrayList<Byte> toSendBuff = new ArrayList<Byte>(); // Data buffer to send from ZigBee packet to cloud 

network (Variable sized array) 

   

  byte[] toSendBuff_byte;     // Buffer byte array to be sent out WLAN socket (normal operation) 

  byte[] toSend_byte = new byte[numBytesInDataPkt];  // Byte array to be sent out WLAN socket (for 

special data request from CC) 

  int sendBuffNumFault = 0;         // Number of fault packets in the "to send" buffer 

  int sensorVal = 0; 

  int batteryVal = 0; 

   

  byte[] localIPaddress = new byte[4]; 

  localIPaddress[0] = (byte) 192; 

  localIPaddress[1] = (byte) 168; 

  localIPaddress[2] = (byte) 0; 

  localIPaddress[3] = (byte) 1; 
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  byte[] remoteIPaddress = new byte[4]; 

  remoteIPaddress[0] = (byte) 192; 

  remoteIPaddress[1] = (byte) 168; 

  remoteIPaddress[2] = (byte) 0; 

  remoteIPaddress[3] = (byte) 2; 

   

  // Initialize Address Table and Sequence Number Table 

  for (i=0; i<256; i++) { 

   if (i==0 || i==1 || i==255) addrTable[i] = 1;  // Reserve addresses 0, 1, and 255 (GW mote has 

ID=0xBBBB, nodes programed with ID=1) 

   else addrTable[i] = 0;      // If GW has 1 < ID < 255, then this ID should also be reserved 

    

   seqNumTable[i][0] = 0; 

   seqNumTable[i][1] = 0; 

  } 

   

  // Process command line arguments 

  if (args.length == 2) { 

   source = args[1]; 

  } 

  else if (args.length > 0) { 

     System.err.println("usage: java net.tinyos.tools.Listen [-comm PACKETSOURCE]"); 

     System.err.println("       (default packet source from MOTECOM environment variable)"); 

     System.exit(2); 

     } 

     

     if (source == null) {  

        reader = BuildSource.makePacketSource(); 

        System.out.println("In null"); 

       } 

           else { 

        reader = BuildSource.makePacketSource(source); 

           } 

         

     if (reader == null) { 

      System.err.println("Invalid packet source (check your MOTECOM environment variable)"); 

      System.exit(2); 

     } 

     

  try { 

   int rcvdSeq; 

   int origRcvdSeq; 

   int ID; 

   reader.open(PrintStreamMessenger.err); 

    

   // Start new thread to listen for WLAN packets 

      (new Thread( new Gateway(reader) )).start(); 

    

   while (true) {          // Constantly wait for new packets to arrive 

    byte[] packet = reader.readPacket();    // Read packet source (USB port) 

    Dump.printPacket(System.out, packet);  // Prints packet to screen, separating bytes, in hex format 

    System.out.println(); 

     

    // packet[8] is the packet 'type' field number 

    /* --- Is a BROADCASTED ID REQUEST packet. Reply with an ID offer packet --- */ 

    if (packet[8] == 0x52) { 

     rcvdSeq = bytesToInt(packet[9], packet[10], packet[11], packet[12]);  // Get received 

sequence number (ZigBee unique node ID) 

     //System.out.println("BROADCAST: rcvdSeq = "+rcvdSeq); 

      

     // Future option: Check if requested address is available if != 0x0000 
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     /* --- CHECK IF THIS SEQUENCE NUMBER HAS ALREADY REQUESTED A NODE ID 

AND HAS ONE BEING RESERVED --- */ 

     for (i=2; i<255; i++) {  // 0, 1, and 255 are reserved 

      if (seqNumTable[i][0] == rcvdSeq) { 

       seqMatch = true;       // This node has already entered a request 

       offerID = i;         // Retransmit same offered ID 

       rand = randGen.nextInt(2147483647);  // Generate random number between [0 

,2147483647), (for always positive 2^31) 

       seqNumTable[i][1] = rand;     // Match with reply sequence number 

       System.out.println("Re-Offer ID number "+offerID); 

       break; 

      } 

     } 

      

     /* --- FIND A NEW AVAILABLE NODE ID --- */ 

     if (seqMatch == false) {       // This is a new node 

      for (i=2; i<255; i++) { 

       if (addrTable[i] == 0) {      // Address is available 

        offerID = i; 

        addrTable[i] = 1;      // Mark address as taken 

        seqNumTable[i][0] = rcvdSeq;   // Remember sequence number sent by this ID 

        rand = randGen.nextInt(2147483647); // Generate random number between [0 

,2147483647), (for always positive 2^31) 

        seqNumTable[i][1] = rand;    // Match with reply sequence number 

        //System.out.println("Generated random number = "+rand+" for ID "+i); 

        break; 

       } 

      } 

     } 

     else { 

      seqMatch = false;  // Reset flag 

     } 

      

     /* --- PUT TOGETHER "OFFER PACKET" FIELDS --- */ 

     // message_t header information 

     offerPkt[0] = 0x00; 

            offerPkt[1] = packet[3];  // 1-2 Destination address 

     offerPkt[2] = packet[4]; 

     offerPkt[3] = 0x00;   // 3-4 Link source address 

     offerPkt[4] = 0x00; 

     offerPkt[5] = 0x0B;   // Message length is 11 bytes 

     offerPkt[6] = 0x00;   // Group ID 

     offerPkt[7] = 0x06;   // Handler 

     // Data fields 

     offerPkt[8] = 0x4F;   // Type field 

     offerPkt[9] = packet[9];  // 9-12 Received Sequence ID 

     offerPkt[10] = packet[10]; 

     offerPkt[11] = packet[11]; 

     offerPkt[12] = packet[12]; 

     offerPkt[13] = (byte) ( (rand & 0xFF000000) >>> 24);  // Random number generated from GW 

for sequence number 

     offerPkt[14] = (byte) ( (rand & 0x00FF0000) >>> 16);  // >>> = unsigned shift right 

     offerPkt[15] = (byte) ( (rand & 0x0000FF00) >>> 8); 

     offerPkt[16] = (byte) ( (rand & 0x000000FF) ); 

     offerPkt[17] = (byte) ( (offerID & 0x0000FF00) >>> 8 ); // 17-18 Offered Address 

     offerPkt[18] = (byte) ( (offerID & 0x000000FF) ); 

      

     /* --- SEND OFFER PACKET --- */ 

     if (reader.writePacket(offerPkt) != true) { 

             System.out.println("UNABLE TO SEND PACKET TO USB PORT"); 

            } 

    } 
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    /* --- Is an ACKNOWLEDGEMENT to an Offer ID packet --- */ 

    else if (packet[8] == 0x41) { 

      

     origRcvdSeq = bytesToInt(packet[13], packet[14], packet[15], packet[16]); // Get original sequence 

number (ZigBee unique ID) 

     rcvdSeq = bytesToInt(packet[9], packet[10], packet[11], packet[12]);  // Get received 

sequence number (GW random number) 

     ID = bytesToInt((byte)0, (byte)0, packet[3], packet[4]);      // Get received node ID 

      

     // Assumes new node changed its source address to the correct ID 

     // If a miss-match occurs, can change code to re-offer the proper ID by finding its sequence ID 

number in seqNumTable 

      

     /* --- CONFIRM ZIGBEE NODE'S DECISION TO JOIN --- */ 

     for(i=2; i<255; i++) { 

      if (seqNumTable[i][0] == origRcvdSeq) { // Find table entry for this original sequence 

number 

        

       if (i != ID) System.out.println("Offered-node ID doesn't match with received sequence 

number. Taking no action."); // Maybe re-send offer pkt 

        

       if (seqNumTable[i][1] != rcvdSeq) { // Node picked an ID from a different GW 

        addrTable[i] = 0;  // Clear entry in address ID table and sequence number table 

        seqNumTable[i][0] = 0; 

        seqNumTable[i][1] = 0; 

        System.out.println("Cleared address table ID "+i+": Node picked a different 

gateway."); 

        break; 

       } 

       else { // Node picked this GW: Keep sequence number in case node dies and powers back 

on, it can receive same ID again 

        System.out.println("ACKNOWLEDGEMENT: Node "+i+" joining confirmed."); 

        break; 

       } 

      } 

      else if (i==254) {  // If checked all sequence number table and couldn't find a match 

       System.out.println("Received acknowledgement from a node ID "+packet[4]+" that this 

GW did not send an Offer packet to."); 

       System.out.println("Sequence number couldn't be found in Node table. Taking no action."); 

       // Would happen if this GW wasn't present (or off) during ID REQUEST procedure with 

another GW 

      } 

     } 

    } 

    /* --- Is a SENSOR DATA PACKET --- */ 

    else if (packet[8] == 0x44 || packet[8] == 0x64) { 

      

     // Convert to proper unsigned sensor value 

     if (packet[10]<0) sensorVal = (packet[9]<<8) + packet[10] + 256; 

     else sensorVal = (packet[9]<<8) + packet[10]; 

 

     // Convert to proper unsigned battery value 

     if (packet[12]<0) batteryVal = (packet[11]<<8) + packet[12] + 256; 

     else batteryVal = (packet[11]<<8) + packet[12]; 

 

     // Calculate battery level (mV) from measured reference value 

     batteryVal = (1223*1024)/batteryVal; // See MIB Series Users Manual pg. 22 for this formula 

description 

     if (packet[8] == 0x64) System.out.print("Response to special data request: "); 

     System.out.println("Sensor Data converted to decimal = "+sensorVal+"   Battery level = 

"+batteryVal+"mV"); 
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     if (packet[8] == 0x44) { 

      toSendBuff.add(packet[3]);  // Node ID 

      toSendBuff.add(packet[4]); 

      toSendBuff.add(packet[9]);  // Sensor data 

      toSendBuff.add(packet[10]); 

      toSendBuff.add( (byte) ((batteryVal & 0x00FF0000)>>>16) ); // Battery data 

      toSendBuff.add( (byte) ((batteryVal & 0x0000FF00)>>>8) ); 

      toSendBuff.add( (byte)  (batteryVal & 0x000000FF) ); 

       

      // Future option: Make so CC can send command that can change fault threshold values 

      if ((sensorVal<700) || (sensorVal>990) /*|| (other fault conditions)*/) { 

       // Pretend fault has occured if Light sensor reading falls below 700 or above 990 

       sendBuffNumFault++; 

      } 

     } 

      

     /* --- Conditions to send packet to cloud network --- */ 

     if ( (toSendBuff.size()>=105)/*15 packets*/ || (sendBuffNumFault>=6) || (packet[8] == 0x64) ) { 

      // ^ Future option: have CC send command to change conditions for sending ^ 

       

      if(packet[8] == 0x44) { 

       byteOutStream = new ByteArrayOutputStream();   // Create streams if sending the 

ArrayList object to socket 

       objOutStream = new ObjectOutputStream(byteOutStream); 

      } 

       

      cloudSoc = new DatagramSocket(60201, InetAddress.getByAddress(localIPaddress)); 

       // Bind to local socket to send on port 60201 

       

      if(packet[8] == 0x44) { 

       // Convert array_list to byte_array 

       objOutStream.writeObject(toSendBuff); 

       toSendBuff_byte = byteOutStream.toByteArray(); 

       //System.out.println("toSendBuff.size() = "+toSendBuff.size()+"  toSendBuff_byte.length = 

"+toSendBuff_byte.length); 

        

       // Make datagram packet 

       outData = new DatagramPacket(toSendBuff_byte, toSendBuff_byte.length, 

InetAddress.getByAddress(remoteIPaddress), 60200); 

      } 

      else if(packet[8] == 0x64) { // Special data request 

       toSend_byte[0] = packet[3];  // Node ID 

       toSend_byte[1] = packet[4]; 

       toSend_byte[2] = packet[9];  // Sensor data 

       toSend_byte[3] = packet[10]; 

       toSend_byte[4] = (byte) ((batteryVal & 0x00FF0000)>>>16); // Battery data 

       toSend_byte[5] = (byte) ((batteryVal & 0x0000FF00)>>>8); 

       toSend_byte[6] = (byte)  (batteryVal & 0x0000FF); 

        

       // Make datagram packet 

       outData = new DatagramPacket(toSend_byte, toSend_byte.length, 

InetAddress.getByAddress(remoteIPaddress), 60200); 

      } 

       

      cloudSoc.send(outData); 

      System.out.println("----------------------GATEWAY: Sending gathered sensor data to Control 

Centre----------------------"); 

       

      if(packet[8] == 0x44) { 

       sendBuffNumFault = 0;      // Reset counter 

       toSendBuff.clear();       // Clear buffer 

       objOutStream.close();      // Close connections 
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       byteOutStream.close(); 

      } 

      cloudSoc.close();        // Close socket 

     } 

      

    } 

    else System.out.println("Received packet with unknown type "+packet[8]+"... Doing nothing."); 

     

    System.out.println(); 

      System.out.flush(); 

   } 

  } 

  catch (IOException e){ 

   System.err.println("Error on " + reader.getName() + ": " + e); 

  } 

 } 

} 

 

D.4 – Sensor Node 
 

 /* 

 * SensorRadioC.nc 

 * 

 * Created by Patrick Casey for his Thesis project, 2009. 

 */ 

 

#include <Timer.h> 

#include "SensorRadio.h" 

#include "IeeeEui64.h" 

 

module SensorRadioC { 

 

uses interface Boot; 

uses interface Leds; 

uses interface Timer<TMilli> as Timer0; 

uses interface Packet; 

uses interface AMPacket; 

uses interface AMSend; 

uses interface SplitControl as AMControl; 

uses interface Receive; 

uses interface LocalIeeeEui64 as LocalEui;   // To get the unique node address from chip (like MAC address) 

uses interface ActiveMessageAddress;    // To set the node's new ID value 

uses interface CC2420PacketBody as Header;  // To capture the node ID for the gateway mote 

uses interface Read<uint16_t> as ReadSensor;  // To interface with the sensor board 

uses interface Read<uint16_t> as ReadBattery;  // To aquire value from the analog to digital converter on 

battery level 

 

 } 

 

 implementation {    

  bool assignedAddress = FALSE; // True if this node has been assigned an address from the gateway 

      bool busy = FALSE;    // Radio status 

      bool fault = FALSE;    // True if sensor detected a fault, false otherwise 

      bool idle = FALSE;    // True if received a noAction command, false otherwise 

      bool spclData = FALSE;   // True if a special data request has been made from CC, false otherwise 

      uint32_t uniqID = 0;    // Unique ID number 

      nx_uint16_t GW_ADDR;    // Node ID of GW mote (Dynamically adjusts to GW's ID upon ID request) 

      message_t pkt; 

      uint16_t battery;     // Battery value 

 

event void Boot.booted() { 
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      call AMControl.start();  // Start up radio 

} 

 

   void BroadcastRequestID() { 

 

    /* --- SEND ID REQUEST MESSAGE --- */ 

    requestID* reqID = (requestID*)(call Packet.getPayload(&pkt, NULL)); 

    reqID->type = 0x52;   // Request type (R), R=0x52 

    reqID->sentSeq = uniqID; 

    reqID->reqID = 0x0000; 

 

if (!busy) {     // If radio is not busy 

       if ( (call AMSend.send(AM_BROADCAST_ADDR, &pkt, sizeof(requestID))) == SUCCESS ) { 

        busy = TRUE; 

        call Leds.led0Toggle();    // Red LED 

       } 

} 

 

    // Start timer in preperation to repeat 

    call Timer0.startOneShot(3000);   // Broadcast request every 3 sec 

   } 

 

event void AMControl.startDone(error_t err) { 

   if (err == SUCCESS) {      // If radio started successfully 

     uint8_t *point; 

     struct ieee_eui64 ieeeADR; 

     ieeeADR = call LocalEui.getId();  // Read unique ID from DS2401 chip 

  point = (uint8_t *)&uniqID;   // Take each byte of ID and put it in packet variable 

     point[0] = ieeeADR.data[7]; 

     point[1] = ieeeADR.data[6]; 

     point[2] = ieeeADR.data[5]; 

     point[3] = ieeeADR.data[4]; 

 

     BroadcastRequestID(); 

      } 

 

      else {  // If radio did not start, try and start it again 

         call AMControl.start(); 

      } 

   } 

 

   event void AMControl.stopDone(error_t err) { 

 

   } 

 

   event void Timer0.fired() { 

    if (!idle) { 

     atomic if (assignedAddress == FALSE) BroadcastRequestID(); 

     else call ReadBattery.read();  // Take battery level reading 

    } 

    else {   // In-active timer finished 

     atomic idle = FALSE; 

     call Leds.led2Off();     // Yellow LED 

     call Leds.led1On();     // Green LED 

     call ReadBattery.read();    // Continue sensing operation 

    } 

   } 

 

   event void AMSend.sendDone(message_t* msg, error_t error) { 

    if (&pkt == msg) { // Check that the message buffer that was signaled, is the same as the local message buffer 

     busy = FALSE;  // Clear busy flag so msg buffer can be reused 

    } 
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   } 

 

   async event void ActiveMessageAddress.changed() { 

    atomic assignedAddress = TRUE; 

    call Leds.led0Off();   // Red LED 

    call Leds.led1On();   // Green LED 

   } 

 

   void OfferAcknowledge(uint32_t seqNum) { 

 

    /* --- SEND ACKNOWLEDGE MESSAGE --- */ 

    ackOffer* ackID = (ackOffer*)(call Packet.getPayload(&pkt, NULL)); 

   ackID->type = 0x41;   // Acknowledge type (A), A=0x41 

 ackID->rcvdSeq = seqNum; 

    ackID->sentSeq = uniqID; 

 

if (!busy) { 

       if ( (call AMSend.send(AM_BROADCAST_ADDR, &pkt, sizeof(ackOffer))) == SUCCESS ) { 

        busy = TRUE; 

       } 

} 

 

      call ReadBattery.read(); //Call this first then when it's done call read of sensor data. Then tx data packet 

   } 

 

    

  event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) { 

 if(!idle) {    // Do not process any received packets during idle unless it is a no action cancel command 

  

  // Received Offer reply from gateway 

  if(len == sizeof(offerID)) { 

   offerID* offer = (offerID*)payload; 

   if ((offer->type == 0x4F) && (offer->rcvdSeq == uniqID)) { // If proper type of msg AND received 

message has same sequence number that was sent 

    if(call Timer0.isRunning()) call Timer0.stop();       // Stop Timer0 if it is running 

    GW_ADDR = (call Header.getHeader(msg))->src;      // Get GW's mote node ID 

    call ActiveMessageAddress.setAddress(0x22, offer->offeredID);  // Set new Active Message 

address (0x22 = group id; doesn't change) 

    OfferAcknowledge(offer->sentSeq); // Call function to acknowledge offer. Return their seq number 

in ack packet 

   } 

  } 

 

  // Receive 'service' command from gateway 

  else if(len == sizeof(service)) { 

   service* serv = (service*)payload; 

   if (serv->type == 0x64) {        // Get sensor data command 

    atomic spclData = TRUE; 

    call ReadBattery.read(); 

   } 

   else if(serv->type == 0x53) {       // Be in-active command 

    if(call Timer0.isRunning()) call Timer0.stop();  // Stop Timer0 if it is running 

     atomic idle = TRUE; 

     call Leds.led1Off();          // Green LED 

     call Leds.led2On();          // Yellow LED 

     call Timer0.startOneShot(serv->timeMS);   // Go into idle mode for 'timeMS' miliseconds 

    } 

   } 

    } 

 

else { 

     if(len == sizeof(service)) { 
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   service* serv = (service*)payload; 

   if(serv->type == 0x57) {   // In-active cancel command 

    call Timer0.stop();    // Cancel timer 

    atomic idle = FALSE;   // Reset idle flag 

    call Leds.led2Off();    // Yellow LED 

    call Leds.led1On();    // Green LED 

    call ReadBattery.read();   // Continue sensing operation 

   } 

  } 

} 

return msg; 

  } 

 

  event void ReadSensor.readDone(error_t result, uint16_t val) { 

 

    /* --- READ SENSOR DATA and SEND --- */ 

    if (result == SUCCESS){ 

     senseData* dataPkt = (senseData*)(call Packet.getPayload(&pkt, NULL)); 

     if (spclData) { 

      atomic spclData = FALSE;   // Reset flag, request has been answered 

      dataPkt->type = 0x64;    // Data type (d), d=0x64 

     } 

     else atomic dataPkt->type = 0x44;  // Data type (D), D=0x44 

     dataPkt->photoData = val; 

     dataPkt->btryLev = battery; 

 

if (!busy) { 

        if ( (call AMSend.send(GW_ADDR, &pkt, sizeof(senseData))) == SUCCESS ) { 

   busy = TRUE; 

        } 

       } 

 

        if ((val < 700) || (val > 990)) fault = TRUE;   // Future option: Make so CC can send command that can 

change fault threshold values 

  else fault = FALSE; 

       

  if (!idle) {   // If not in 'in-active' mode 

         if (fault) { 

          call Leds.led2Toggle();     // Yellow LED 

          call Timer0.startOneShot(1000);  // Take sensor reading every 1 sec. 

         } 

         else { 

          call Leds.led2Off();      // Yellow LED 

          call Timer0.startOneShot(5000);  // Take sensor reading every 5 sec. 

         } 

 

// It may be safer to start a Periodic timer. In case the oneShot timer fired interrupt is missed, the periodic timer 

// would fire again.  If a oneShot timer interrupt is missed the node might go into a frozen state. The CC would 

// have to sleep it and wake it up again.  However this would cause more processing because every time you 

//reset the timer value, you would have to stop the periodic timer then restart it again with a different value, 

//instead of simply restarting a oneShot timer. 

 

        } 

   } 

 

    else { // Try again 

     call ReadBattery.read(); 

    } 

   } 

    

   event void ReadBattery.readDone(error_t result, uint16_t val) { 
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    /* --- READ BATTERY LEVEL SAMPLE --- */ 

   if (result == SUCCESS){ 

     battery = val; 

     call ReadSensor.read();  //Read sensor data 

    } 

    else { // Try again 

     call ReadBattery.read(); 

    } 

   } 

} 

 

 

 

 /* 

 * SensorRadio.h 

 * 

 * Created by Patrick Casey for his Thesis project, 2009. 

 */ 

 

#ifndef SENSORRADIO_H 

 #define SENSORRADIO_H 

 

 enum { 

    AM_SENSORRADIO = 6, 

 }; 

 

/* Broadcast node ID REQUEST packet */ 

typedef nx_struct requestID { 

  nx_uint8_t type;   // Type of packet 

  nx_uint32_t sentSeq;  // Sent random sequence number 

  nx_uint16_t reqID;   // May request a past known ID address 

 } requestID; 

 

 /* Received OFFER ID packet */ 

 typedef nx_struct offerID { 

  nx_uint8_t type;   // Type of packet 

  nx_uint32_t rcvdSeq;  // Unique sequence number received by GW 

  nx_uint32_t sentSeq;  // New random sequence number sent by GW 

  nx_uint16_t offeredID;  // New offered ID address 

 } offerID; 

 

 /* ACKNOWLEDGEMENT to offer packet */ 

 typedef nx_struct ackOffer { 

  nx_uint8_t type;   // Type of packet 

  nx_uint32_t rcvdSeq;  // Random sequence number received by node 

  nx_uint32_t sentSeq;  // Original random sequence number sent by node 

 } ackOffer; 

 

 /* SENSOR DATA packet */ 

 typedef nx_struct senseData { 

  nx_uint8_t type;   // Type of packet 

  nx_uint16_t photoData;  // Photo sensor data 

  nx_uint16_t btryLev;  // Battery level reading 

 } senseData; 

 

 /* Received SERVICE command  */ 

 typedef nx_struct service { 

  nx_uint8_t type;   // Type of packet 

  nx_uint32_t timeMS;  // Amount of time to take no action (in ms) 

 } service; 

#endif 
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/* 

 * SensorRadio.AppC.nc 

 * 

 * Created by Patrick Casey for his Thesis project, 2009. 

 */ 

 

#include <Timer.h> 

#include "SensorRadio.h" 

 

 configuration SensorRadioAppC { 

 

 } 

 

 implementation { 

    components MainC; 

    components LedsC; 

    components SensorRadioC as App; 

    components new TimerMilliC() as Timer0; 

    components ActiveMessageC; 

    components new AMSenderC(AM_SENSORRADIO); 

    components new AMReceiverC(AM_SENSORRADIO); 

    components LocalIeeeEui64C as Eui; 

    components ActiveMessageAddressC as AMaddr; 

    components CC2420PacketC as PacketHeader; 

    components new PhotoC() as Light; 

    components new VoltageC() as Battery; 

 

    App.Boot -> MainC; 

    App.Leds -> LedsC; 

    App.Timer0 -> Timer0; 

 

    App.Packet -> AMSenderC; 

    App.AMPacket -> AMSenderC; 

    App.AMSend -> AMSenderC; 

    App.AMControl -> ActiveMessageC; 

 

    App.Receive -> AMReceiverC; 

    App.LocalEui -> Eui; 

    App.ActiveMessageAddress -> AMaddr; 

    App.Header -> PacketHeader; 

    App.ReadSensor -> Light; 

    App.ReadBattery -> Battery; 

 }
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