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ABSTRACT 

 

Advances in digital signal processing technology have created a wide variety of video rendering devices 

from mobile phones and portable digital assistants to desktop computers and high definition television. 

This has resulted in wide diversity of video content with spatial and temporal properties fitting into their 

intended rendering devices. However the sheer ubiquity of video content creation and distribution 

mechanisms has effectively blurred the classification line resulting in the need for interchangeable 

rendering of video content across devices of varying spatio-temporal properties. This results in a need for 

efficient and effective conversion techniques; mostly to increase the resolution (referred to as super 

resolution) in-order to enhance quality of perception, user satisfaction and overall the utility of the video 

content. 
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CHAPTER 1: Introduction and Research Objective 

1.0 Introduction 

The capture and conversion of continuous time signal to digital samples (or discrete-time signals), is a 

core requirement for the current body of processing techniques available for digital electronics. The 

proximity and resemblance of the discrete-time signal to its analog counterpart, is measured by the 

sampling resolution. This determines the level of (and/or possibility for perfect) reconstruction of the 

original signal. However in the design of digital signal processing systems, the application requirement 

largely determines this feature as several constraints, limitations and design specifications constitute the 

central objective of such systems. This scenario is evident in the general classification of digital image 

and video processing devices according to the capture and rendering capabilities. 

Meanwhile the deep penetration of this technology and the sheer ubiquity of its availability have created 

scenarios of interchangeable and multi-functional usage where for example images captured on humble 

mobile phones can end up being primary source material for gait recognition, this results in digital signal 

processing problems that require the upward conversion of the resolution of digitally sampled signal.  

Moreover, digital video capture, distribution and utilization has become increasingly commonplace due to 

significant advances in camera technology, digital circuit integration and storage systems among a host of 

other factors. The pervasive deployment of the technology on diverse platforms with wide application 

requirements and varied use case scenarios has created a multi-platform creation and consumption chain 

where digital video from a broad spectrum of capture devices can be utilized on an equally wide variety 

of rendering devices. 

The digital image processing devices generate images with specific spatial properties, lower resolution 

images are coarsely sampled version of the higher resolution ones, and are intended for devices with 

compatible display resolution. 

However, usage scenarios and application requirement in the ubiquitous multimedia applications 

environment ultimately results in the need for increasing the spatial dimensions of an image.  This need is 

further compounded by the fact that the lower resolution version of the image could be the only available 

media source, this inevitably results in an overarching constrain that requires the extraction of unavailable 

details, as the level of information available in images are statistically defined by their resolutions because 

the process of sampling is irreversible.  
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This presents a scenario where the only course of action for increasing the resolution of an image is the 

direct replication of the available information to the desired levels of spatial dimensions. This approach 

results in images with jagged edges and sharp discontinuities. The resulting images show visually 

disturbing artifacts and perceptually unnatural image edges lines that considerably distort the images. 

However the generated higher resolution output can be enhanced to remove these distortions by 

synchronizing the sharp edge gradients into a continuous and smooth curves exhibiting natural rhythm. 

The artifacts can also be eliminated by performing a similar action on the non edge portions of the image. 

This generally results in perceptually acceptable version of the image but confronts the problem of 

blurring. The post pixel replication actions intended for the removal of distortions also eliminates the 

variations of the pixels across the images, hence the generated higher spatial resolution image is blurred 

in comparison to the original lower resolution input. Several methods for increasing the resolutions of an 

image offer solutions aimed at managing the twin problems of sharp discontinuities and blurring, with an 

objective / expectation of finding the right balance between these two competing interests. Within the 

context of this problem definition, the blurriness of the spatially higher resolution output is a permanent 

feature of methods that adopt this model, hence are subject to some severe limitation on performance due 

to this conflict.  

Alternative formulations of the problem of increasing the resolution of an image has sought to escape this 

balancing act by attempting an actual recovery of the lost information in an image due to coarse (under) 

sampling in the lower resolution input. These methods leverage on the similarity of the samples on the 

digital image to predict the missing samples, such methods adopt complex algorithms and employ 

possible background information to generate higher resolution versions of an image from lower resolution 

input.  However, the prediction of unavailable information carries the twin outcomes of success or failure, 

where the failure could result in serious distortions of the image to the level of diminished utility. In 

addition, most of the prediction methods provides no feedback mechanism and /or prediction 

measurement metric to ascertain the level of deviations of these predictions from the norm. This is partly 

because the unavailability of the actual data set prevents the implementation of such mechanisms; this 

invariably consigns the usefulness of these algorithms to the accuracy of their models and ultimately 

providing no guarantees of success. 

More so the video temporal resolution follows the similar principle as the spatial resolution, the digital 

video frames are sampled at specific rate, referred to as frame rate, this process is also irreversible and 

information lost due to low sampling rates cannot be recovered. The generation of higher temporal 

resolution from video sequences with low temporal resolutions can be achieved by estimating the inter-

frame relationship of the objects in the video frames. The displacement of these objects across frames can 
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be estimated, interpolated and applied to generate the intermediate frames lost due to under-sampling. 

However methods for estimation of displacements and other inter-frame relationships involves 

computationally prohibitive calculations for accurate determination, this stems from the fact that the 

displacements and changes from real world scenes are difficult to model in terms of low level blocks of 

pixels. This leads to the adoption of high level techniques that certainly and successfully retrieve 

advanced displacements and complex inter-frame relations at a very high computational cost that 

completely erodes the usefulness of such techniques in real-time applications.  

The challenge of providing an optimal combination of estimation accuracy and processing cost is very 

central to the task of increasing the temporal resolution of the video sequences. 

Up-conversion techniques termed super resolution has been the subject of several research efforts in 

signal/image processing and presents enormous challenge because of the unavailability of the original 

signal hence focus on the up-sampling of the already digitally sampled signal. 

Video super resolution is broken into two sets of techniques for spatial and temporal super resolution. The 

spatial super resolution as the name implies provides techniques for increasing the resolution of 

images/individual video frames. This consists of two dimensional digital signal processing techniques for 

up-sampling, re-sampling, enhancing and/or increasing the resolution of two dimensional digital samples.  

The temporal super resolution provides a set of techniques for increasing the frame rate and the associated 

inter-frame temporal relationships. 

The research presented in this thesis is structured according to two blocks of functional techniques for 

video spatial and temporal super resolution. The final optimal combination of the two sets of techniques is 

provided in the application example of video super resolution. 

  

1.1 Objective and Purpose of Research 

 

The objective of this research effort is the development of state of the art video super resolution, that 

improves on the performance of existing techniques, this goal is accomplished in the following two steps: 

1. Research and development of video spatial super resolution that attempts to actually increase the 

resolution an under-sampled image or provide methods for improving the performance of current 

algorithms. 
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2. The research and development of temporal super resolution, that relies solely on two input frames to 

create interpolated frames between the frames in accurate inter-frame relations and objective precision to 

enhance the resolution. 

 

1.2 Layout of thesis 

 

The thesis is presented in the following structural layout, chapter one is this introduction, chapter two 

provides background information review, the third chapter provides detailed information of the work 

done; chapter four is the implementation of the research proposal. Chapter five is the test and comparison 

of the proposed techniques with pre-defined objective criteria, it provides performance analysis and 

chapter six is conclusion with additional insights on future work; and the references are provided after the 

last chapter. 

1.3 Summary 

 

The problem of increasing the spatial dimension (or resolution) of images has evolved from the 

exploration of techniques for enhancement of the image for visually / perceptually acceptable quality 

levels through the elimination of spikes, discontinuities and uncharacteristic variation in the statistical 

distribution of image pixel coloration to the attempting of an actual recreation of the original content. The 

temporal super resolution methods, is essentially the determination of the contiguous / coherent changes 

across frames and the replication of the changes in an intermediate frame in half measure.  
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Chapter 2: Background Information Review 

2.0 Introduction  

 

Super resolution refers to the techniques used for increasing or enhancing the resolution of an image or 

video. The task of increasing the number of individual elements in a sparse data set has a long history, 

with deep origins in the interpolation theory. Interpolation as defined by Thiele [1, 2] in 1909 is referred 

to as the art of reading between the lines in a table. This functional definition has survived the various 

extensions, modifications, transformations and applications of the concept. Reading between the lines 

with an aim of increasing the sample size of the data set is a core application tool in signal, image and 

digital video processing. The overview of methods for super resolution is presented for spatial (image) 

and temporal resolutions respectively. 

 

2.1 Spatial (or Image) Super Resolution  

 

The earliest methods for increasing the vector dimension (or spatial resolution) of an image is the basic 

interpolation function known as the nearest neighbor [3], in this method the value of the new (or 

interpolated) point is a direct replication of the previous point. This method is equivalent to convolving an 

image with a rectangle function (Figure 2.1), which can be interpreted as multiplication with a sinc 

function in the frequency domain (Figure 2.2).   

 

 1 h(t)       1 |H(ω)| 

 t    w 

 -1             1            -2            2    

Figure 2.1: Nearest Neighbour time domain           Figure 2.2: Frequency domain, Nearest Neighbour 

    

The resulting image from this method has sharp discontinuities and is shifted with regard to the original 

co-ordinate points of the image. Therefore pixel relations cannot be maintained using this approach, in 
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addition, the frequency attributes of the output image and the original are exactly the same with a simple 

linear phase shift. 

 

The linear interpolation (bi-linear for 2D), is an improvement of the nearest neighbour algorithm in which 

the new (interpolated) point is derived from the interpolation of two adjacent neighbours. The linear 

interpolation can be implemented as the convolution of the image with the triangle function. The process 

results in a low pass filtering in the frequency domain (Figure 2.3 and Figure 2.4) with strong smoothing 

in the cut-off frequency. 

 

 h(t)       1 |H(ω)| 

 t    w 

-1             1       -2            2    

Figure 2.3: Linear Interpolation time domain           Figure 2.4: Frequency domain Linear Interpolation 

 

The cubic (bi-cubic for 2D) interpolation [4, 5, 6] also improves on the linear interpolation by using three 

points instead of two, as a result of this extension, the interpolated image is smoother. The cubic 

interpolation is implemented using cubic convolution in the spatial domain. This results (see Figure 2.5 

and Figure 2.6) in a low pass filter with smoother cut-off frequency response in the frequency domain.  

 

 

t  w 

-1             1      -2            2    

Figure 2.5: Cubic Interpolation time domain           Figure 2.6: Frequency domain Cubic Interpolation 
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The cubic interpolation can also be implemented using the Lagrange polynomials and cubic B-splines.  

 

However, additional methods of image super resolution exists, these include the many variations of 

splines. The concept of piecewise polynomials with smoothly separated units‟ points has been in 

existence in various shapes and forms and was formalized by Schoenberg [7] in 1946 as splines. 

 

Splines can be described in terms B-splines expansion where B stands for basic: 

 

s(x) =     (2.1) 

  

Equation 2.1 represents the integer shifts of the B-spline of degree n, the c(k) are the B-spline co-

efficients. B-splines are constructed from rectangular function ß defined as ß
n
(x). 

 

ß
0 
=            (2.2) 

 

     (2.3) 

(n+1 times)  

 

 

B-Splines of degree 0, 1 and 2 are piecewise constant, linear and cubic respectively (see Figure 2.7); 

higher degrees can be easily constructed from the basic splines known as B-splines. 

 

    

   Degree 0    Degree 1 
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   Degree 2    Degree 3 

Figure 2.7: The B-splines functions for degrees 0…3 

 

The cubic B-spline is very popular in image processing due to its curvature and can be derived from the 

B-spline as presented below in Equation 2.4:  

 

 

                                      (2.4) 

 

 

However, direct low pass filters has been designed for increasing spatial resolution, several methods with 

varying low pass response(s) (see Figure 2.8) exists, these are designed to achieve a smooth pixel inter-

relationships across interpolated points. The two dimensional (2D) recursive (IIR) filters [8] is a typical 

example, however other versions with FIR implementations also provides comparative performance at 

additional high computational cost. In addition separable two dimensional filtering is also used for lower 

computational cost with the obvious downside of performance penalties. 

    

     

 

Figure 2.8: Typical design response(s) for low pass filters used for resolution enhancement. 

 

Fractal zooming is another method of increasing the resolution of an image, it is derived from fractal 

coding theory[9, 10, 11] that treats images as a collage of smaller image structures that can be expanded 
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or compressed using geometric transformation functions. In fractal compression, the compressed image is 

resolution independent, this stems from the premise that images are characterized as fractals which is 

defined as a loosely connected conflagration of self-similar objects. This definition contends that fractals 

possesses no physical characteristic sizes, rather strictly self-similar units with metric properties defined 

on the atomic level, hence the overall arrangement is scale independent. Self similarity in fractal parlance 

is defined by the expression below in Equation 2.5:   

 

 

    (2.5) 

 

M(x) represents any metric property of the fractal (e.g. area or length), and x denotes the scale of 

measurement of the metric property, r is a scaling factor, such that 0≤ r ≤1 and f(D) is a function of the 

fractal dimension D for the given metric property. 

 

An example of the fractal coding method as originally introduced by Von Koch known as Von Koch 

Curve or Snowflakes is presented in Figure 2.9. 

1. 

2.  4.     

3.   

 

Figure 2.9: Van Koch Curve or Snow flakes, the rule is repeated at every stage  

 

The Von Koch curve example in Figure 2.9 shows the different transformation of the original line, this 

simple illustration is at the heart of fractal coding theory, in which every image is decomposed into 

constituent atomic units and the decoding process involves the iterative application of the transformation 
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rules on these units to recover the original image. However since the atomic units is the sole content of 

the entire image, the decoding process can recover the image to any desired scale independent of the 

original. However, despite the promising nature of the theory and the utter usefulness of its application, 

Fractal coding is yet to gain traction due to the prohibitive computational cost of the encoding process. 

Several attempts at simplifying the process with wavelet-based decomposition have been proposed [12] 

and remain a strong focus of research efforts.  Examples of fractal generated images are presented Figure 

2.10.  

 

Figure 2.10a: Example of fractal generated Image  

 

 

Figure 2.10b: Example of fractal generated Image  
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The wavelet based methods are the latest additions to the litany of super resolution algorithms. The 

unique contribution of this group, of super resolution techniques is the focus on the possibility of 

increasing the resolution (the spectral content) of a signal rather than enhancement.  Common and central 

to all wavelet based techniques is the multi-resolution analysis of the input signal into several resolutions 

or scales and reliance on the structural self similarity evident across the scales to predict the next higher or 

finer scale of detail co-efficients (see Figure 2.11). However the divergence in approach occurs on the 

method of prediction, the Hidden Markov tree [13], have been used to predict the next set of co-efficients 

using training data from a large pool of images. The wavelet co-efficients at the finest scales is predicted 

based on the state transition probabilities across the scales and the determination of an expected value of 

the state of the co-efficient at the finest scale. The method also features a sign prediction algorithm where 

the predicted magnitude of the finest scale co-efficients is assigned a positive or negative sign based on 

the sign transitions of its ancestry. 

 

                       

 

                                 

    

Figure 2.11: General Algorithmic Structure for Wavelet-based Super Resolution 
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More so additional modification [14] has been made to this method where the requirement for training is 

eliminated and the co-efficient sign prediction method simplified, resulting in improved comparative 

performance.  However, the two methods follow a tightly coupled quad-tree inter-scale dependency 

where the magnitude of the parents propagates to child co-efficients, however the quad-tree structure 

provides a potential pitfall for this approach for higher levels of iterations as low magnitude parents often 

yield very high magnitude in the child co-efficients due to shifts. More so the simplified co-efficient sign 

prediction directly extends the sign of the parent to the children, this approach though computationally 

efficient is fraught with potential errors. Directional wavelet filtering [15] has been used to improve the 

performance of increasing resolution, it attempts to create multiple and flexible directional filtering 

radically different from the traditional horizontal and vertical separable two dimensional filters in order to 

closely model the characteristics of the image edges, the performance of the method lags standard wavelet 

methods in complex images though it provides marginal gains in less complex ones. Neural network 

method has been proposed [16], and an edge adaptive method using Markov chain Monte Carlo is also 

proposed [17], in addition several statistical and algebraic methods exists, but these methods lacks a 

definitive model that constrains the feasible solutions space for the predicted co-efficients, hence rely 

heavily on the validity and accuracy of the model to achieve desired results. 

 

2.2 Temporal Super Resolution  

 

Methods for increasing or enhancing the temporal resolution of video sequences include the simplistic 

replication of frames, in which the video frames are simply repeated in order to increase the frame rate. 

Beyond this method, other approaches are deeply rooted in, and practically synonymous with the motion 

estimation techniques for eliminating redundancy across video frames. However the application of this 

technique to super resolution requires the interpolation of the motion vectors for motion compensated 

prediction of the interpolated frame; this is commonly referred to as motion compensated interpolation for 

video format conversion (MC-VFC).    

 

Frames with temporal proximity in video sequences generally contain little variations in content; a greater 

percentage of the variations can be grouped as motion of objects (group of pixels) in the frames. Motion 

estimation of pixels of a video frame is the focus of several research efforts, past and ongoing, several 

techniques has been proposed, implemented, deployed and/or modified. Majority of the existing 

algorithms provide a model of the motion estimation problem as the determination displacement vectors 

of a fixed and variable block of pixels in a frame, while this is uncharacteristic of motion in video 

sequences, the methods holds sway due to the computational efficiency. An alternative high level object 
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based motion estimation methods that leverages on object segmentation provides greater precision and 

accuracy in this regard, but this approach is computational prohibitive, within the context of the state of 

current implementations, for any practical usage in digital video processing applications requiring low 

processing latency. Prominent block based motion estimation algorithm includes the Full Search (also 

known as Exhaustive Search or Global Search), this method provides the best results among all matching 

algorithms due to its exhaustive search of the target frame for the best match for the candidate block of an 

image sequence. However, the approach is very computationally expensive and is rarely used. Other 

methods like the three step search, attempts to achieve the quality performance of the full search with far 

lower computational cost, this method employs a three step hierarchical search method (see Figure 2.12) 

where the search area is constantly refined according to a cost function and the new search area is defined 

that represents the best target for matching the candidate block. Additional modifications to this method 

include the New Three Step Search [18], Simple/Efficient Search [19] and the Four Step Search [20].   

 

 

 

 

 

Figure 2.12: The Three Step Search, circles, triangles and squares represent the first, second and third step 

respectively 

 

Several hybrid and modifications of these search patterns have been proposed and implemented, these 

include the Diamond Search [21], and this is an extension of the four step search but differentiates from it 

by adopting a diamond search point pattern instead of a square. The search method uses two fixed size 

diamond shapes, called the large diamond search pattern and the small diamond search pattern (see Figure 

2.13); the search process is initiated with the large diamond and the search area is refined based on the 
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best match, the hierarchical refinement is implemented with large diamonds until the last step, when the 

small diamond is actually used. 

 

 

 

 

Figure 2.13: The Diamond Search, circles, triangles, squares, hexagons and stars represent the first, 

second, third, fourth and last step respectively 

 

There are related methods derived from the methods presented, these derivations include extensions like 

the adoption of the complex shaped polygon patterns and variable shaped patterns. The diamond search 

method provides comparable quality performance to the Full Search and provides the basic structure for 

most existing extensions in literature. 

 

However the quest for efficient and accurate motion estimation across video sequences is not limited to 

spatial domain techniques, the fix all wavelet phenomena has not spared this area of digital video 

processing, there are currently two evolutions in this area, the first is the multi-resolution motion 

estimation (MRME) methods that tend to create efficient method for motion vector determination at 

different levels of resolution without repetitive processing. The second line of approach is the wavelet-

based motion estimation that focuses on traditional motion estimation but with a new wavelet based 

technique. Multi-resolution motion estimation (MRME) typically involves the estimation/determination 

of motion vectors at either coarsest or finest scale, followed by subsequent refinements of the vectors 

across the hierarchical structure in either directions, implementations of MRME include a premier work 

and widely referenced material [22], other research work in this field includes [23], more so an analysis 

[24] of the performance of the transversal methods (coarsest to finest OR finest to coarsest), suggests that 
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the finest to coarsest vector estimation and refinement approach provides superior performance.  This 

result completely undercuts the super resolution potential of the coarsest to finest approach, as it would 

have provided a perfect fit to the problem formulation of wavelet based video super resolution.  

 

Wavelet based motion estimation adopts multi-scale (resolution) sub-band based matching, in this 

scenario, the target area/blocks in each wavelet reference sub-band is matched to the corresponding 

current sub-band, additional approaches includes the use of redundant wavelet transform for sub-band 

matching. More so the wavelet based motion estimation techniques has recorded a giant leap in 

comparison to the established spatial domain methods, the best results presented [25] in this area as at the 

time of writing this thesis is competitive to the spatial domain approach in terms of quality though lags it 

severely in resource requirement.  

 

2.3 Summary 

 

The video spatial (image) super resolution methods with the exception of wavelet and fractal methods, 

provides an enhancement of the lower resolution image, this approach though practical and pragmatic in 

the face of the sheer impossibility of recovering the under-sampled information, provides a very strong 

limitation, such that the higher resolution (HR) image, is essentially as good (if not worse) as the lower 

resolution version, thereby paving the way for the exploration of techniques for the recovery of lost 

spectral content. The motion estimation methods for temporal super resolution, provides search methods 

for handling translational motion of blocks of pixels. Several existing propositions and algorithms, 

derived from the presented methods; all conforms to this general principle. 
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Chapter 3: Proposed Video Super Resolution 

3.0 Introduction 

Video super resolution is accomplished in two steps, spatial and temporal; each of these steps requires 

distinct set of techniques for its implementation. The proposed methods are presented in that order, in the 

following three sections, the first section provides details of the proposed spatial (or image, it is used 

interchangeably throughout this text) super resolution, the second section deals with the temporal 

techniques and the third and final section provides an optimal combination of the two bodies of 

techniques to implement video super resolution. 

 

3.1 Video Spatial (Image) Super Resolution 

 

The main purpose of this work is to generate an output that is greater in spatial resolution than the original 

input and conforms to the statistical/spectral dynamics of the image at this new spatial resolution. 

However achieving the latter remains a daunting task owing to the fact that the Super Resolution (SR) 

algorithms are technically constrained to up-sampling of already digitally sampled signal. Several SR 

methods as described in chapter two provides an enhancement of the resolution at higher spatial 

dimensions owing to this challenging constraint. However wavelet based groups of techniques provide 

the possibility of increasing rather than enhancing the resolution of an image. This approach provides a 

platform that supports the probable recovery of lost image details due to under-sampling. The proposed 

video spatial SR method leverages on this possibility to attempt a recovery of high resolution image from 

the lower resolution version, using it as the only input. 

 

The problem model and the detailed description of wavelet theory strictly within the context of spatial 

(image) super resolution is presented in the following sections succeeded by the proposed technique based 

on the model.  

 

The problem definition: The proposed super resolution model is defined for a single constrain, it applies 

to band limited signals.  For a continuous time one–dimensional signal f (t) 

      (2) 

there exist a certain frequency q for which |w| > q, F(jw) = 0; where (2) is the Fourier transform of the 

signal. Hence for the discrete-time spectrum 
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      (3.0a) 

 , m = 0 

         (3.0b) 

 

This signal can be reconstructed perfectly from the discrete time version. Hence the super resolution 

problem can be characterized as the increase of the sampling frequency from a level (< 2q) to any desired 

level, with a maximum limit at the Nyquist limit (> 2q). To achieve this objective, a frequency domain 

solution that attempts to recover the higher frequencies beyond the range the signal are sampled is 

proposed. In this approach, the spectral distribution of the input signal is used to predict the 

lost/unavailable frequencies. To explore the frequency properties of the signal, wavelet multi-resolution 

analysis is applied; this provides the advantage of time-frequency [26] characterization of the signal 

unavailable in Fourier transform.  

For wavelet transform of an input signal x (t) the output wavelet co-efficients Cs,τ . 

 

 

 is the wavelet function, s is scale (1/frequency), and  is time shift. The inverse is the linear 

combination of the wavelet at all scales and translations. 

 

However, the signal can be approximated to a desired resolution (scale) s=A, in which case the 

approximated version of the original signal is xA(t). 

 

The difference between the approximated version at s=A and the original signal  

xD(t) = x(t) – xA(t)                   (8) 
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For discrete time signals the approximation is represented by equation (9) where h (nT) is the impulse 

response of the wavelet function.  

 

The difference is the convolution of the input signal with a high pass filter g(nT) which is related to the 

approximation (low pass) filter as shown in equation 10 

g (L – 1 – nT) = (-1)
n
 h(nT)             (10) 

where L is the filter length 

Multiple approximations of the original signal at different scales (resolutions) with the resulting 

differences at each level constitute the much-famed wavelet multi-resolution analysis (MRA). This is 

typically implemented in a filter bank as shown in Figure 3.1, derived from sub-band coding. 

 

 

 

 

 

    Input 

 

Figure 3.1: Filter bank for Multi-resolution Analysis 

Multi-resolution analysis can be defined [27] as a sequence of spaces {V j} jЄz of L²(R) with respect to a 

function if the following constraints are true. 

 (j, k)  Z², f (t)  Vj ↔ f (t – 2
j
k)  Vj   (11.1) 

 j  Z, Vj+1  Vj              (11.2) 

 j  Z,  f (t)  Vj ↔ f ( )  Vj+1            (11.3) 

H 

G 

H 

G 

H 

G 

H 

G 
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Vj is translation invariant proportional to scale 2
j
, equation (11.1), while equation (11.2) states the 

causality property, equation (11.3) specifies an approximation of the original signal at coarser resolution, 

more over all details of the signal is lost when the resolution goes to zero as shown in equation (11.4), and 

inversely (11.5) the original is recovered as resolution tends to infinity. In the wavelet based SR process, 

the LR input constitutes the approximation, while the difference is predicted. Wavelet multi-resolution 

analysis provides a tool for estimation of the relative similarity of the differences across scales, useful in 

predicting the next higher set of unavailable differences for which the input signal is the approximation. 

The wavelet decomposition of signals into approximation and difference components, results in output 

wavelets co-efficients with same sample size as the original signal for each component. For two 

dimensional signals like images, the wavelet transform co-efficients will be four times the original image 

size, however for perfect reconstruction of the original input, only half of the wavelet co-efficients (in 

both directions) is required as this can be accomplished using either the set of even or odd co-efficients, 

this leads to the subsampling of the wavelet co-efficients used in discrete wavelet transform (DWT), as 

the original output is considered redundant or over-complete for reconstruction. However the output sub-

sampled version (DWT), is altogether complete for perfect reconstruction but individually incomplete, as 

each component suffers from shift variance, due to subsampling, more over within the context of multi-

resolution analysis, iterative subsampling greatly reduces the usefulness of co-efficients for inter-scale 

frequency analysis as the increasing reduction of samples sizes results in increasingly low frequency 

resolutions completely unsuitable for such analysis. This leads to the adoption of redundant discrete 

wavelet transform for inter-scale frequency analysis. 

  

                                                                                                      

Figure 3.2: (a) Wavelet Decomposition (b) DWT Multi-resolution Analysis of Sample Image Lena 
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Figure 3.3: (a) Redundant Wavelet Decomposition (b) RDWT Multi-resolution Analysis of Sample Image 

Lena 

  

The inter-scale analysis of the high frequency components (Horiz., Vert., and Diag.) of the resulting 

wavelet co-efficients accomplishes two goals: (1) The determination of the existence of sufficient high 

frequency information in the image, which is pre-requisite for the proposed image super resolution 

algorithm (2) It provides a useful resource for the detection of the resolution invariant features of the 

image, detection of these features provides the unique frequency characterization of the image. The 

details of the two design objectives are presented below: 

 

Spectral content pre-requisite: The proposed algorithm relies on the higher ranges of frequency content, 

therefore the prior establishment of the availability of this crucial information is necessary to guarantee 

any performance. This is established by the estimating the regularity of the wavelet co-efficients across 

the scales in fine to coarse order as shown in Figure 3.4, 3.5, 3.6. 
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Figure 3.4: Inter-scale co-efficients regularity estimation for prediction 

 

Figure 3.5: The Plot of the red lines in Figure 3.4 in ascending order, shown here in descending order.  
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Figure 3.6: The delineation of the frequencies based on the inter-scale regularity 

 

In the Figure 3.6, the S3 cluster shows a distinct regularity with increasing magnitudes from finest scale 

to the coarser scales. The S3 cluster must exist in an image for any guarantee of performance, as the 

method relies on the enforcement of the equality constraint on the image features grossly dependent on 

the spectrum range. Images (see Figure 3.7) adjudged by this process as having insufficient higher range 

spectrum content typically lack feature detail that can be reliably enforced on the estimated higher 

resolution version. 

 

Resolution Invariant Feature Detection: The inter-scale analysis also provides a tool for detection and 

estimation of resolution invariant features of the image. The correlation between the co-efficients across 

scales within the S3 cluster (Figure 3.6) provides the synchronization points for automatic extraction of 

the exhaustive and salient features of the image that transcends resolutions.    

 

However, this is a mathematically involved and computationally expensive process, an alternative 

proposition is the use of standard features of an image that are resolution invariant, these include the edge 

strength, edge direction and edge continuity. This is adopted in this research. 

 

Succeeding the analysis is the prediction of the unavailable wavelet co-efficients using the Lipschitz 

regularity; this provides an estimation of the growth rate across scales. The predicted values are 

constrained to conform to the standard features of the lower resolution image, in comparison to the 

generated higher resolution version. The refinement process of the predicted co-efficients based on the 
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constraints is a bounded non-linear optimization, where the solution space is confined to the magnitude of 

the coarser co-efficients. 

 

 

Figure 3.7: S1 cluster of Image Lena (or Lenna) 

 

3.2 Temporal Super Resolution   

 

The performance of motion estimation algorithms largely depends on the search and matching methods, 

the objective matching criteria has very limited tunable parameters and hence a move from Mean Square 

Error (MSE) to the Mean Absolute Deviation (MAD) has been the significant progression in this area.  

 

The central core of the performance for motion estimation algorithms reside in the search methods and all 

existing algorithms are defined and differentiated by their search methods. Several algorithms for motion 

estimation from the exhaustive search (or Full Search) to the Four Step Search employ diverse approaches 

to implementing an optimal search algorithms, which ultimately aim at improving the computational 

performance of these techniques, in furtherance to this objective, a new method is proposed that uses 

redundant discrete wavelet transform and temporal filtering to extract the changes across video frames 

and constrain the search area to the defined regions of the frames temporally associated. The proposed 

technique has no close implementation in literature or equivalence for fair comparison, but provides an 

improvement in performance over existing methods. 
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The temporal aspect of the video super resolution is modeled as the increase of the frame rate by 

generating and inserting intermediate frames between two adjacent frames. This model requires two input 

frames temporally related in chronological order and returns an output with a number of intermediate 

frames. 

 

The insertion or generation of an intermediate frame is solely based on the accurate depiction of the 

temporal relationship across the adjacent input frames. This process derives from techniques and 

algorithms that estimate the relative redundancies, differences and displacement across frames. These 

methods largely referred to as motion estimation algorithms (as presented in chapter two), employ mainly 

objective matching of the areas of the input frames. The proposed algorithm improves on these methods 

by restraining/confining the matching target to areas of the input with differences or displacement. This 

provides an improved performance and applicability to real-time video processing. The estimated 

displacement vectors across the two input frames are interpolated to produce the predicted intermediate 

frame(s).   

 

To estimate the difference(s) or displacement across two input frames, redundant two dimensional (2D) 

discrete wavelet transform is applied to the frames of the input video, the resulting co-efficients of the 

adjacent frames (the approximation and three detail orientations or sub-bands) of the input video are 

filtered using high pass reversible integer Haar wavelet filter. The resulting frames from the temporal 

filtering contains low and/or near zero magnitude values for co-ordinates with little or no changes across 

frames and high values for areas of relative motion.  The result of the temporal filtering hereafter referred 

to as motion profile is segmented using an adaptive threshold that classifies the values into motion and 

non – motion pixels.  

 

In the threshold-based classification process the sorted co-efficients values of the motion profile is 

analyzed for sharp rise/relative discontinuity in magnitude, the resulting value from this analysis become 

the magnitude threshold. This process can also be accomplished using a simple hard coded threshold 

resulting in very minimal outliers. The consequence of obtaining sub-optimal threshold classification due 

to the hard coded baseline is the minimal or fringe noise spikes in the motion profile, this is far too low 

penalty in comparison the compulsory increase in processing footprint added by the adaptive threshold 

method. 

  

The classification scheme is used for predicting the areas of the adjacent video frames with significant 

changes between the frames. The performance of this motion estimation algorithm hinges squarely on the 
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accuracy of this prediction. The co-efficients below the threshold is made equal to zero. A two step 2D 

inverse discrete wavelet transform is applied to the magnitude classified wavelet co-efficients detailed 

below: 

1. The co-efficients are used in two dimensional inverse discrete wavelet transform. 

2. The approximation co-efficients are completely replaced with zero and an inverse 2D discrete 

wavelet transform is applied. 

 

The image pixels resulting from the two steps process above is added to produce the motion areas of two 

adjacent video frames. The generated image is used for block matching where only block within the 

motion areas are selected for matching thereby optimizing the performance. 

 

3.3 Summary  

 

The presented video spatial (image) super resolution method, attempts the recovery of the lost image 

information due to under-sampling by re-creating it following an established rule (feature constraints), 

The extent of the recovery is dependent on the availability of these rules, the detection/creation of the 

feature constraints is not considered, additionally the detection of non-standard feature constraints would 

extensively enhance the potential robustness and precision of the proposed algorithm. The video temporal 

super resolution provided a stable search method for extraction of motion across frames.  
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Chapter Four: Implementation 

4.0 Introduction 

The video super resolution algorithm was implemented in a two step design process of image and 

temporal super resolution. The individual merits and trade-off of the methods are analyzed independently, 

there after an optimal combination of the two methods for real-time video super resolution is presented. 

The presentation in this chapter follows that order. 

 

4.1 Image Super Resolution 

 

The implementation is a five step process listed below: 

 

(1.) Redundant Discrete Wavelet Transform 

(2.) Estimation of the growth rate  

(3.) Grouping/ Delineation of the Image Frequencies 

(4.) Prediction of the coefficients 

(5.) Refinement of the predicted coefficients  

 

The details of the steps are presented in the following sections: 

 

4.1.1 – Redundant Discrete Wavelet Transform 

 

Two dimensional separable discrete wavelet transform is applied on the input low resolution (LR) image, 

using the Cohen Daubechies Feauveau 9/7 bi-orthogonal filter as shown in Figure 4.1, the filter kernel is 

presented in Table 4.1. 

 

Figure 4.1: First step of the proposed image super resolution algorithm 
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Table 4.1: The cdf-9/7 filters kernel used in this implementation is the FBI version 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The output of the transform is four times the size of the input. The RDWT is used for Multi-resolution 

analysis applied to the next step. 

 

4.1.2 – Estimation of regularity and growth rate 

 

The multi-resolution analysis of the input image is used for estimating the regularity and growth rate of 

the wavelet coefficients across scales as shown in Figure 4.2 below.  

         Magnitude  

 

            Scale   

           

           

  

 

 

 

Figure 4.2: Multi-resolution analysis using RDWT, the co-efficients across scales is analyzed. 

Analysis low-pass filter: 0.0267487574108098,-0.0168641184428750,-0.0782232665289879, 

0.2668641184428723, 0.6029490182363579, 0.2668641184428723,  

-0.0782232665289879, -0.0168641184428750, 0.0267487574108098; 

 

Analysis high-pass 

filter: 

0.0456358815571247, -0.0287717631142498, -0.2956358815571235, 

0.5575435262284970, -0.2956358815571235, -0.0287717631142498, 

0.0456358815571247; 

Synthesis low-pass 

filter: 

0.0534975148216208, -0.0912717631142514, -0.1564465330579798,  

0.5912717631142532, 1.2058980364727310, 0.5912717631142532,  

-0.1564465330579798,    -0.0912717631142514, 0.0534975148216208; 

 

Synthesis high-pass 

filter: 

0.0337282368857512, -0.0575435262285022,-0.53372823688575, 

1.1150870524570070, -0.5337282368857500, -0.0575435262285022, 

0.0337282368857512; 

RDWT-MRA 
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4.1.3 – Wavelet coefficients grouping and delineation  

 

The frequency distribution of the image from the multi-resolution analysis is used for the estimation and 

delineation of the wavelet bands into groups based on regularity.  The existence of S3 cluster in the image 

is a core requirement for the proposed method, the delineation is shown in Figure 4.3. The inter-scale 

relationship across the finer scales is estimated using the Lipschitz regularity [27], this defines the 

calculation of the growth factor termed Lipschitz exponent. To calculate the Lipschitz exponent, the 

absolute maximum value for the coefficients on the finest (first set of coefficients from the MRA) scale is 

found, and the slope of the log2 of both the coefficient and that of the absolute value of the coefficient in 

the same position in the next higher scale is the Lipschitz exponent for these two adjacent scales. 

 

Figure 4.3: Frequency delineation based on areas of strong regularity   

 

 

 

 

 



pg. 29 
 

4.1.4 – Prediction of coefficients 

 

The next higher set of coefficients of the wavelet sub-bands is predicted using the regularity relations of 

the coefficients across scales within the S3 cluster, the steps of the prediction is presented in Figure 4.4 

below. 

 

(1.) The original LR input image: 

 

 

 

   

 

 

 

 

(2.) The input LR image becomes the approximation coefficients for generating the HR image.  
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(3.) The detail coefficients are predicted using the regularity of the coefficients from S3 cluster. 

(4.) The predicted coefficients and the approximation are used to generate HR image.  
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(5.) The predicted coefficients are refined using the comparison of the standard, resolution invariant 

features in the generated HR images and the original LR input. 

 

 

 

Figure 4.4: The steps for prediction and refinement of the unavailable detail coefficients. 

 

The edge strength is used in the implementation; the refinement process is restricted to selection of the 

best comparative result for the standard feature within the range of the magnitude of the (preceding) 

coarser coefficients in the same position.   

 

4.2 Temporal Super Resolution 

 

The implementation of the Video Temporal Super resolution is also a five step process as presented 

below: 

 

(1.) Redundant Discrete Wavelet Transform of input frames 

(2.) Inter-frame (temporal) filtering of RDWT´ed frames 

(3.) Application of a value threshold on the results of (2.)  

(4.) Inverse RDWT of the results of (3.) and the Inverse RDWT of the results of (3.) with the 

approximation coefficients made equal to zero. The two results of (4.) is added together to produce the 

motion profile of the adjacent frames. 

<> 
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(5.) The motion profile is used deterministic search and matching across the input frames for estimation 

of the differences and displacement vectors.  

 

The individual steps of the process is presented in the next sections 

 

4.2.1 – Redundant Discrete Wavelet Transform of input frames 

 

This is the single decomposition of the input frames into wavelet sub-bands, similar to the first step in 

image super resolution technique. However temporal super resolution receives two input frames. 

 

4.2.2 – Temporal (inter-frame) Filtering of the wavelet sub-bands 

 

The output of the first step for the input frames is temporally filtered using the Haar integer reversible 

high pass wavelet filter, as shown in Figure 4.5 below: 

 

 

 

Figure 4.5: Temporal filtering of the wavelet sub bands, derived from the input frames. 
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4.2.3 – Threshold classification 

 

The application of threshold classification to the temporally filtered coefficients, is used to eliminate the 

near zero values. The hard magnitude threshold is applied to the output. 

 

4.2.4 – Inverse DWT and Inverse DWT with zero values in approximation coefficients 

 

Inverse discrete wavelet transform of the output of step 3 above, and the output an inverse discrete 

wavelet with the filtered approximation coefficients replaced with zero values is summed up to produce 

the motion profile of the two frames, all non zero values in the motion profile are areas of relative motion 

across the frames, this is shown in Figure 4.6.   

 

 

 

 

Figure 4.6: Generation of the changes across two input frames 
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4.2.5 – The motion profile is used for deterministic search and matching across the input frames for 

estimation of the displacement vectors.  

 

The estimation of differences and displacement vectors across the input frames is restricted to the areas of 

changes across the frames, as defined by the motion profile. The objective criteria and the shape and size 

of the matching units (regions or blocks) used are user defined, any method can be implemented. An 

example is shown in Figure 4.7 below: 

 

 

 

Figure 4.7: An example of estimation of areas of changes across two input frames 

 

4.3 Video Super Resolution 

 

The key modifications for optimal combination of the two techniques are presented in the following sub 

sections. 

 

4.3.1 Optimal Combination of the Spatial and Temporal techniques for Video Super Resolution 

 

The optimal combination of the techniques for efficient and possible real-time video super resolution is 

implemented by adding the following modifications to the steps in the spatial and temporal super 

resolutions. The following modifications are implemented: 

 

1. The image (spatial domain) feature constraints is restricted to standard features (Edge Strength, 

Direction and Continuity), therefore eliminating automatic detection process, however only the 

edge strength feature constrain is implemented, additional optimizations can be achieved by 

streamlining the constrain implementation. 

2. The estimation of the regularity (or growth) is eliminated to optimize for speed, requiring only 

single wavelet decomposition (RDWT). 
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3. The predicted coefficients are therefore directly derived from the last available scale. 

4. The refinement process is implemented using the binary search method.  

 

The resulting optimally combined spatial (image) and temporal super resolution is a three step process as 

shown in Figure 4.8 and 4.9: 

 

Step 1. Single decomposition  

Step 2. Refinement and Temporal Filtering  

Step 3. Apply the Refinement factor and perform Inverse DWT 

 

 

 

 

Figure 4.8: The implementation of the three step process for video super resolution 
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Figure 4.9: The final step of the optimal implementation of video super resolution 

 

 

 

 

4.4 Summary  

 

The implementation steps of the image super resolution algorithm support resource efficient offline or 

online applications, with several tunable parameters. However the detection of resolution invariant 

features was not implemented, this can be achieved for offline applications using dual frequency 

approach, where correlation of the frequency of the wavelet coefficients across resolutions can be 

extracted.  The temporal resolution method provided an efficient extraction of motion across frames; 

however the choice of wavelet filters (CDF9/7), is solely based on the need to conform to the image super 

resolution step in order to support optimal combination of the two algorithms.      
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Chapter Five: Experimental Analysis and Results 

5.0 Introduction 

 

The test and analysis of the performance of the proposed video super resolution is presented in two 

sections following the order established throughout this thesis, the first sections provides details of the 

test environment and benchmarks for image super resolution while the second section provides the 

comparative analysis of motion estimation functions of the temporal super resolution against other similar 

algorithms. The tests are presented in the following sections: 

 

5.1  Test and Performance Analysis of Image Super Resolution 

 

The establishment of baseline or benchmark for performance analysis of image super resolution 

propositions follows a general rule that tends to adopt bi-linear and/or bi-cubic interpolation. However 

this is inadequate for wavelet based methods [28], as all wavelet based methods will easily outperform bi-

linear and bi-cubic interpolation, therefore a more accurate model for comparison is the objective 

measurement of the peak signal to noise ratio of generated HR image based on predicted coefficients 

against the zero valued coefficients. 

  

The zero-valued coefficients provide the maximal proximity of the image at that resolution to the target 

HR version; this can be easily proved using any other spectral methods.  The resulting HR estimate from 

the zero-valued detail coefficients version (shown in Figure 5.1) provides the equivalence of increasing 

the spatial domain resolution (more accurately dimensions) without the attendant increase in the spectral 

content.  
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Figure 5.1: The generated High Resolution image based on the zero-valued detail coefficients 

 

This provides the required benchmark for algorithms that attempt to introduce additional spectral 

information through prediction and other methods. These propositions or algorithms MUST outperform 

the zero-valued detail coefficient HR image in order to lay claim to any useful contribution and/or 

additional insight in the quest for improving/enhancing image super resolution. However outperforming 

zero-valued HR version is a very difficult and daunting task, this stems from the fact that predicting the 

unavailable information lost through under-sampling with any degree of certainty is almost technically 

untenable. For example (Figure 5.2) using the LR Lenna image of resolution 256x256 and generating a 

higher resolution version (512x512), will require the prediction of 3x256x256 detail coefficients, ALL the 

predicted values MUST be within the range of the actual values in order to outperform the zero-based 

version of the HR image, or else the prediction of the coefficients will result in a deterioration. The 

fluidity of the process makes the odds for accurate prediction very low as small errors, perturbations and 

outliers will result in degradation and an objective performance that lags the zero-valued baseline. 

IDWT 
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Figure 5.2: The prediction of coefficients for wavelet based super resolution 

Three categories of tests are used in the performance analysis. (1.) The comparison of the generated high 

resolution image against a reference image. The reference and the low resolution image are obtained by 

direct capture. (2.) In the second case, the low resolution image is obtained by down-sampling a high 

resolution image to a low resolution one using bi-cubic interpolation with anti-aliasing filter. (3.) In the 

last category the results of other algorithms [29, 30, 31] are compared using the similar evaluation metrics 

(images and resolutions) as contained in the documentation.  

For the first category of tests, a snap shot of a computer desktop screen was captured at three resolutions 

using 24bit color. The second and third resolutions being half and quarter of the first respectively, these 

were up-scaled and compared with the first resolution in three colour components. The results are 

presented in table 5.1. 

In the second category of tests, a 24 bit colour image of Lena (Lenna) was down-sampled, and the 

algorithm was similarly evaluated, the result is presented in table 5.2.  

In comparison with other algorithms, two 8 bit grayscale images, boat and bridge [32] was used in the 

evaluation and the result is presented in table 3 for the third category. The overall performance of the 

algorithm in the results are marginal in comparison to „zero-valued wavelet‟ but substantial, compared to 

other methods (wavelet and non-wavelet), the adoption of zero-valued wavelet as benchmark is meant to 

prove an actual (and definite) increase in the resolution. The proposed super resolution technique 

consistently outperformed the zero-valued counterpart which validates the approach taken in this research 

IDWT 
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and provides a guarantee of performance in the reconstruction of lost signal details. Several other 

constraints like edge continuity and spatial similarity (or inter-pixel relationships) within groups of pixels 

is the focus of current research for the extension of the proposed method. The technique can be applied to 

any under-sampled signal for the recovery of lost detail if there exists a set of constraints that can be used 

to delimit the solution space. 

 

Table 5.1: Results of first category of tests 

Image:Desktop  

 

320 x 240 → 640x480 

Colour Index Zero-Valued Wavelet Proposed 

1. 34.91dB 35.26dB 

2. 35.43dB 35.86dB 

3. 34.24dB 34.72dB 

 160 x 120 → 640x480 

1. 32.50dB 32.73dB 

2. 32.74dB 32.96dB 

3. 32.41dB 32.78dB 

 

Table 5.2: Results of second category of tests 

 

Image: Lena 

(Figure 3) 

256 x 256 → 512x512 

Colour Index Zero-Valued Wavelet Proposed 

1. 35.23dB 35.61dB 

2. 35.22dB 35.46dB 

3. 35.73dB 36.07dB 

 128 x 128 → 512x512 

1. 32.77dB 33.04dB 

2. 32.56dB 32.75dB 

3. 33.58dB 33.67dB 
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Table 5.3: Results of third category of tests 

 

Method 256 x 256 → 512x512 

 Boat Bridge 

Proposed 33.85dB 31.56dB 

Zero-Valued 33.63dB 31.49dB 

Vandewalle[31] 25.97dB 23.21dB 

Tian / Ma [30] 26.89dB 25.18dB 

Tian/Ma [29] 27.40dB 25.68dB 

Kinebuchi[33] 29.12dB - 

Dong [34] 31.05dB - 

 128 x 128 → 512x512 

Proposed 31.62dB 29.95dB 

Zero-Valued 31.43dB 29.87dB 

Vandewalle[31] 23.57dB 22.10dB 

Tian / Ma [30] 24.78dB 22.93dB 

Tian/Ma [29] 25.27dB 23.52dB 

 

 

 

5.2 Video Temporal Super Resolution 

 

The central point of the temporal super resolution proposition is the timely, efficient and accurate 

determination of the moving/changing areas across two input frames, the subsequent motion vector 

interpolation for motion compensated prediction of an intermediate frame is somewhat inconsequential to 
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the performance of the technique. Therefore the algorithm is evaluated in terms of objective quality of the 

predicted frames. In this scenario, a set of temporally related video frames are sub-sampled, and the 

missing frame is predicted using the proposed interpolation method. The quality of this prediction is 

evaluated against the sub-sampled frame. A group of eight (8) temporally related images from [35] shown 

in Appendix A (A1.1) is used for the evaluation. The table of quality and output frame is presented in 

Figures 5.3.  

 

Additionally, an interpolation example using the images from [32] and the proposed algorithm is 

presented in Figure 5.4. In this case, two input frames from the sequence without subsampling are used 

for the prediction. The results are visually (or perceptually) close to the expected higher frame rate 

(resolution) version.  The proposed algorithm provides close interpolated prediction of the frames of the 

sub-sampled  

 

 

 

 

  

 

Figure 5.3: The predicted interpolated frame and the actual frame (frame 6), the PSNR qualities of frames 

 

frames; however, the method is not resilient to occlusions as the quality of the prediction dips 

significantly in occluded portion of the frames. The proposed method provides a computationally efficient 

temporal interpolation, but the existence of visual artifacts and noise reduces the quality; however the 

performance can be improved based on the proposed algorithmic structure.  

 

Frame 

Number 

PSNR 

Value 

2 +34.95dB 

4 +31.76dB 

6 +32.39dB 
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Figure 5:4: Interpolated frames from the temporally related sequence, showing noise and occlusion effect 

 

The distortion from mild noise is due to sub-optimal implementation of the algorithm and lack of 

extensive/rigorous code validation. However the implementation serves the purposes of academic 

research and can be extended into commercial package for real-time temporal resolution up-conversion. 

 

5.3 Summary 

 

The implementation validated the proposed algorithms for video spatial and temporal super resolutions; 

the edge strength feature constraint can be extended to include edge continuity and direction. The 

temporal super resolution provided pseudo-object segmentation approach then tends avails of all the 
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benefits of the object centered motion detection but eliminates the prohibitive computational cost 

associated with object segmentation.  
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Chapter Six: Conclusion 

6.0 Introduction  

 

The super resolution algorithms provided a technique to recover with certainty a degree of the lost high 

frequency information in under-sampled images, however further work on preprocessing the images for 

aliasing problems and the development of additional constraints based on the characteristics of the signals 

will improve the recovery results. The following conclusions drawn the experimentation is presented in 

the following sections. 

 

6.1 Image Super Resolution 

 

The proposed technique for image super resolution provided a confirmation that lost information due to 

under-sampling can be recovered with deterministic but severely limited accuracy from under studying 

the available information and their inter-resolution relationships. However the scheme can be improved 

by developing robust resolution invariant feature detection algorithms, in addition the model can be 

extended to support optional high level information, in this scheme, several portions of the image can be 

automatically identified as real world image detail like texts or objects and hence used as an input in the 

application of the constraints. More so automatic detection of resolution invariant features of an image 

could be explored for offline line applications like forensics and astronomy.  

 

6.2 Video Temporal Super Resolution 

 

The temporal super resolution algorithm provides a threshold in temporal resolution up conversion and 

additional programming effort could translate the algorithm into standard library for video processing as 

none currently exists. The method could be optimized for robust matching of object motion resilient to 

occlusions and complex motion.  

 

6.3 Summary 

 

The proposed algorithms for video super resolution provided a set of techniques that could be tuned for 

several application of image and video super resolution; however additional work on pre-processing of 

images for aliasing problems and post processing of frames for noise is required. 
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Appendix A 

 

 

A.1: Temporally related images for inter-frame change evaluation   

 

              

(1)                                                                     (2) 

              

(3)                                                                     (4) 
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(5)                                                                     (6) 

             

(7)                                                                     (8) 
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Appendix B 

B.1: Clarifications of terms used in the thesis 

 

φ(t) – is the wavelet function, it is generic representation of continuous time wavelet function used as 

standard notation in wavelet literature for theoretical analysis, the proposed design is implemented with 

discrete wavelet transform.  

Low, High – the low, high in Figure 3.2 refers to the low pass and high pass filters represented in the 

figure, the Figure is also a standard wavelet notation for discrete wavelet transform. 

Lipschitz regularity – the Lipschitz regularity refers the continuous smoothness of the high frequency 

co-efficients of the wavelet transform; it is measured as a gradient, of the co-efficient distribution across 

scales, details of Lipschitz regularity is also available in the referenced material [27] 

Haar – Haar wavelet filter: low pass [0.7071 0.7071] and high pass [0.7071 -0.7071]  

CDF9/7 – The CDF9/7 is defined in section 4.1.1 and it is a popular and widely acknowledged wavelet 

filter selected for JPEG 2000 image compression format and also used for FBI finger print compression. 

S3 – the S1, S2 and S3 clusters are defined in Figure 3.6 and Figure 4.3 

Integer Haar – Integer Haar wavelet filter: low pass [1 1] and high pass [1 -1] 

Coarse – Higher levels of co-efficients in multiple wavelet decomposition 

Fine – Lower levels (or initially generated co-efficients) in multiple wavelet decomposition 

   

B.2: Source Code for the Implementation 

Three codes are attached: The essential implementation sections of Image Super Resolution using C++, 

Scaled down version (grayscale version) of Image Super Resolution using Matlab.  Temporal Super 

Resolution using C++. 

 

B.2.1: The Matlab Implementation of Image Super Resolution 

% Function for increasing the resolution of an image using redundant 

% discrete wavelet transform, the version is scaled down to support only 

% grayscale images for simplicity. 

function imgwaveletsupres(grayscaleimgfile) 

img_lr = imread(grayscaleimgfile); 

color_cnt = numel(size(img_lr)); 

 

if (color_cnt < 2) 
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    disp('Error: Only images or 2D signals are the allowed input'); 

    return;    

elseif (color_cnt == 2) 

    [i,j] = size(img_lr); 

    imgs(:,:,1) = img_lr; 

    nr = 1; 

else 

    disp('Sorry: Only grayscale images are supported in this version, use the c++ code instead'); 

    return;  % DO NOT REMOVE THIS LINE!!!  

    imgs = img_lr; 

    nr = 3; 

    [i,j,k] = size(img_lr); 

end 

 

rdwtout(:,:,:) = zeros(2*i,2*j,nr); 

for clrcnt = 1:nr    

   rdwtout(:,:,clrcnt) = RDWTwavecdf97 (imgs(:,:,clrcnt),2);     

end 

 

% Find the largest value 

maxvalues(:,:,:) = zeros(1,2,nr); 

h_v = zeros([1 nr]); 

for clrcnt = 1:nr 

    %vertical edges 

    [vy,vz] = max(abs(rdwtout(i+4:(2*i)-4,1+4:j-4,clrcnt))); % +4 and -4 to search within for maximum, 

and eliminate border edge point 

    [vy,vzk] = max(max(abs(rdwtout(i+4:(2*i)-4,1+4:j-4,clrcnt)))); 

    % horizontal edges 

    [hy,hz] = max(abs(rdwtout(1+4:i-4,j+4:(2*j)-4,clrcnt))); 

    [hy,hzk] = max(max(abs(rdwtout(1+4:i-4,j+4:(2*j)-4,clrcnt)))); 

     

    h_v(clrcnt) = 1; offsetx = 0; offsety = j; 

    maxvalues(:,:,clrcnt) = [hz(hzk) hzk]; 

    if (vy > hy) 
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        maxvalues(:,:,clrcnt) = [vz(vzk) vzk]; 

        h_v(clrcnt) = 0; 

        offsetx = i; offsety = 0; 

    end 

         

end 

 

 

% Test for regularity using one color component 

cntr = 1; 

orig_img = imgs(:,:,cntr); 

Noofdecomp = 3; % Decompose three times, as shown in thesis Figure 3.4 and 3.5 

decompoutput(:,:,:) = zeros(2*i,2*j,nr*Noofdecomp); 

  

for numberofdecomposition = 1:Noofdecomp 

     decompoutput(:,:,numberofdecomposition) = RDWTwavecdf97 (orig_img,2);  

     orig_img = decompoutput(1:i,1:j,numberofdecomposition); 

end 

 

if ( log2( abs(decompoutput(maxvalues(1,1,1)+offsetx,maxvalues(1,2,1)+offsety,2)) - 

abs(decompoutput(maxvalues(1,1,1)+offsetx,maxvalues(1,2,1)+offsety,1)) ) < log2( 

abs(decompoutput(maxvalues(1,1,1)+offsetx,maxvalues(1,2,1)+offsety,3)) - 

abs(decompoutput(maxvalues(1,1,1)+offsetx,maxvalues(1,2,1)+offsety,2)) )) 

    verycoarseestimate = 

decompoutput(maxvalues(1,1,1)+offsetx,maxvalues(1,2,1)+offsety,2)/decompoutput(maxvalues(1,1,1)+o

ffsetx,maxvalues(1,2,1)+offsety,1); 

else 

    disp('Pre-requirement was not met, sorry, try another image'); 

    return; 

end 

% Calculate the variance-to-mean of the original 

vvar(:,:,:) = zeros(1,9,nr); 

mvar(:,:,:) = zeros(1,9,nr); 

 



pg. 55 
 

for clrcnt = 1:nr 

    if (h_v(clrcnt) == 0) 

        %vvar = var(double(imgs(maxvalues(1,1,clrcnt)-4:maxvalues(1,1,clrcnt)+4, 

maxvalues(1,2,clrcnt),clrcnt))); 

        %mvar = mean(imgs(maxvalues(1,1,clrcnt)-4:maxvalues(1,1,clrcnt)+4, 

maxvalues(1,2,clrcnt),clrcnt)); 

        vvar(:,:,clrcnt) = imgs(maxvalues(1,1,clrcnt)-4:maxvalues(1,1,clrcnt)+4, 

maxvalues(1,2,clrcnt),clrcnt); 

    else 

        %vvar = var(double(imgs(maxvalues(1,1,clrcnt), maxvalues(1,2,clrcnt)-

4:maxvalues(1,2,clrcnt)+4,clrcnt))); 

        %mvar = mean(imgs(maxvalues(1,1,clrcnt), maxvalues(1,2,clrcnt)-

4:maxvalues(1,2,clrcnt)+4,clrcnt)); 

        vvar(:,:,clrcnt) = imgs(maxvalues(1,1,clrcnt), maxvalues(1,2,clrcnt)-

4:maxvalues(1,2,clrcnt)+4,clrcnt); 

    end 

     

end 

 

for clrcnt = 1:nr 

    for itr=1:8 

        mvar(1,itr,clrcnt)= (var(double(vvar(1,itr:itr+1,clrcnt))))/mean(vvar(1,itr:itr+1,clrcnt)); 

    end 

end 

 

% zero valued 

zimgs(:,:,:) = zeros(2*i,2*j,nr); 

zrdwtout(:,:,:) = zeros(2*i,2*j,nr); 

 

% predicted values 

pimgs(:,:,:) = zeros(2*i,2*j,nr); 

prdwtout(:,:,:) = zeros(2*i,2*j,nr); 

 

for clrcnt = 1:nr 
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   % zero valued 

   zimgs(1:i,1:j,clrcnt) = imgs(1:i,1:j,clrcnt); 

   zrdwtout(:,:,clrcnt) = RDWTwavecdf97 (zimgs(:,:,clrcnt),-1); 

end 

 

% predict and refine till the best is obtained 

searchquest = 0; 

pvvar(:,:,:) = zeros(1,9,nr); 

pmvar(:,:,:) = zeros(1,9,nr); 

 

minval = 255*ones([1 nr]); ratefactor = verycoarseestimate*ones([1 nr]); finalfactor = 

verycoarseestimate*ones([1 nr]); 

allcolorsmatched = zeros([1 nr]); 

direction_change = ones([1 nr]); 

     

while (searchquest == 0) 

         

    for clrcnt = 1:nr 

        % predicted values 

        pimgs(:,:,clrcnt) = ratefactor(clrcnt)*rdwtout(:,:,clrcnt); 

        pimgs(1:i,1:j,clrcnt) = imgs(1:i,1:j,clrcnt); 

        prdwtout(:,:,clrcnt) = RDWTwavecdf97 (pimgs(:,:,clrcnt),-1); 

    

    end 

 

    % Calculate the variance to mean ratio of the predicted 

     

    for clrcnt = 1:nr 

        if (h_v(clrcnt) == 0) 

            %pvvar = var(double(prdwtout((maxvalues(1,1,clrcnt)*2)-4:(maxvalues(1,1,clrcnt)*2)+4, 

maxvalues(1,2,clrcnt)*2,clrcnt))); 

            %pmvar = mean(prdwtout((maxvalues(1,1,clrcnt)*2)-4:(maxvalues(1,1,clrcnt)*2)+4, 

maxvalues(1,2,clrcnt)*2,clrcnt)); 
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            pvvar(:,:,clrcnt) = prdwtout((maxvalues(1,1,clrcnt)*2)-4:(maxvalues(1,1,clrcnt)*2)+4, 

maxvalues(1,2,clrcnt)*2,clrcnt); 

        else 

            %pvvar = var(double(prdwtout(maxvalues(1,1,clrcnt)*2, (maxvalues(1,2,clrcnt)*2)-

4:(maxvalues(1,2,clrcnt)*2)+4,clrcnt))); 

            %pmvar = mean(prdwtout(maxvalues(1,1,clrcnt)*2, (maxvalues(1,2,clrcnt)*2)-

4:(maxvalues(1,2,clrcnt)*2)+4,clrcnt)); 

            pvvar(:,:,clrcnt) = prdwtout(maxvalues(1,1,clrcnt)*2, (maxvalues(1,2,clrcnt)*2)-

4:(maxvalues(1,2,clrcnt)*2)+4,clrcnt); 

        end 

    end 

 

    for clrcnt = 1:nr 

        for itr=1:8 

            pmvar(1,itr,clrcnt)= (var(double(pvvar(1,itr:itr+1,clrcnt))))/mean(pvvar(1,itr:itr+1,clrcnt)); 

        end 

    end 

     

    for clrcnt = 1:nr 

        if ( (abs(pmvar(1,6,clrcnt)-pmvar(1,7,clrcnt))) < minval(clrcnt) && mvar(1,5,clrcnt) < 

sum(pmvar(:,:,clrcnt))) 

                minval(clrcnt) = abs(pmvar(1,6,clrcnt)-pmvar(1,7,clrcnt)); 

                finalfactor(clrcnt) = ratefactor(clrcnt);  

        else 

            if (direction_change(clrcnt) == 1) 

                direction_change(clrcnt) = -1; 

                ratefactor(clrcnt) = finalfactor(clrcnt); 

            else 

                allcolorsmatched(clrcnt) = 1; 

            end                

        end        

        ratefactor(clrcnt) = ratefactor(clrcnt) + (0.1*direction_change(clrcnt)); 

    end 

      if ( (sum(allcolorsmatched)/nr) == 1) 
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            for clrcnt = 1:nr 

              % predicted values 

                pimgs(:,:,clrcnt) = finalfactor(clrcnt)*rdwtout(:,:,clrcnt); 

                pimgs(1:i,1:j,clrcnt) = imgs(1:i,1:j,clrcnt); 

                prdwtout(:,:,clrcnt) = RDWTwavecdf97 (pimgs(:,:,clrcnt),-1); 

            end 

           break; 

           

      end 

end 

% zero-valued 

imwrite(mat2gray(ceil(zrdwtout)),'zerovalued.bmp', 'BMP'); 

% predicted 

imwrite(mat2gray(ceil(prdwtout)), 'predicted.bmp', 'BMP'); 

 

disp('Done! Two files created zerovalued.bmp and predicted.bmp for the zero and predicted co-efficients 

images');    

 

end 

 

B.2.1.1: Required Function for the Matlab Code [Source: Matlab Exchange, Tianhui Wang] 

function c = RDWTwavecdf97(x, nlevel) 

%WAVECDF97: Multi-level discrete 2-D wavelet transform  

%with the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet.  

% 

% c = wavecdf97(x, nlevel) does the follows according to the value of  

%   nlevel: 

%   nlevel > 0:   decomposes 2-dimension matrix x up to nlevel level; 

%   nlevel < 0:   does the inverse transform to nlevel level; 

%   nlevel = 0:   sets c equal to x; 

%   omitted:      does the same as nlevel=5.   

% 

% The boundary handling method is symmetric extension.  
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% 

% x may be of any size; it need not have size divisible by 2^L. 

%   For example, if x has length 9, one stage of decomposition 

%   produces a lowpass subband of length 5 and a highpass subband 

%   of length 4.  Transforms of any length have perfect 

%   reconstruction (exact inversion). 

%   NOTE: the 5 lines above are quoted directly form [3]. 

%    

% If nlevel is so large that the approximation coefficients become  

%   a 1-D array, any further decomposition will be performed as for 1-D  

%   decomposition until the approximation coefficients be a scale number.   

% 

% Lifting algorithm is not used here; we use subband filters directly. 

%   Lifting algorithm and spline 5/3 wavelets and other jpeg2000 related  

%   codes will be available soon.  

% 

% Example: 

%   Y = wavecdf97(X, 5);    % Decompose image X up to 5 level 

%   R = wavecdf97(Y, -5);   % Reconstruct from Y 

% 

% You can test wavecdf97.m with the following lines:      

%   % get a 2-D uint8 image  

%   x=imread('E:\study\jpeg2000\images\lena.tif'); 

%   % decompose 

%   y=wavecdf97(x,2); 

%   % show decomposed result  

%   figure;imshow(mat2gray(y)); 

%   % reconstruct without change of anything 

%   ix=wavecdf97(y,-2); 

%   % show and compare the original and reconstructed images 

%   figure;subplot(1,2,1);imshow(x);subplot(1,2,2);imshow(uint8(ix)); 

%   % look at the MSE difference  

%   sum(sum((double(x)-ix).^2))/numel(x) 

% 
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% Reference: 

%   [1] D.S.Taubman et al., JPEC2000 Image Compression: F. S. & P., 

%       Chinese Edition, formula 10.6-10.9 in section 10.3.1  

%       and formula 10.13 in section 10.4.1. 

%   [2] R.C.Gonzalez et al., Digital Image Processing Using MATLAB,  

%       Chinese Edition, function wavefast in section 7.2.2. 

%   [3] Pascal Getreuer, waveletcdf97.m from Matlab file Exchange website 

%   [4] Matlab files: biorwavf.m, wavdec2.m, wawrec2.m, etc. 

%    

% Contact information:  

%   Email/MSN messenger:  wangthth@hotmail.com 

% 

% Tianhui Wang at Beijing, China,   July, 2006 

%                  Last Revision:   Aug 5, 2006 

 

%---------------------- input arguments checking  ----------------------% 

error(nargchk(1,2,nargin)); 

if nargin == 1 

    nlevel = 5; % default level 

end 

% check x 

if ~isreal(x) || ~isnumeric(x) || (ndims(x) > 2) 

    error('WAVELIFT:InArgErr', ['The first argument must' ... 

        ' be a real, numeric 2-D or 1-D matrix.']); 

end 

if isinteger(x) 

    x = double(x); 

end 

% check nlevel 

if ~isreal(nlevel) || ~isnumeric(nlevel) || round(nlevel)~=nlevel 

    error('WAVELIFT:InArgErr', ['The 2nd argument shall be ' ... 

        'a real and numeric integer.']); 

end 

%---------------- forming low-pass and high-pass filters ---------------% 
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% CDF 9/7 filters: decomposition low-pass lp and high-pass hp 

%                  reconstruction low-pass lpr and high-pass hpr 

% The filter coefficients have several forms. 

% What D.S.Taubman et al. suggest in [1] are used here: 

lp = [.026748757411 -.016864118443 -.078223266529 .266864118443]; 

lp = [lp .602949018236 fliplr(lp)]; 

hp = [.045635881557 -.028771763114 -.295635881557]; 

hp = [hp .557543526229 fliplr(hp)]; 

lpr = hp .* [-1 1 -1 1 -1 1 -1] * 2; 

hpr = lp .* [1 -1 1 -1 1 -1 1 -1 1] * 2; 

% Matlab 'bior4.4' use the varied version (see Matlab's biorwavf.m): 

%  lp=lp*sqrt(2);hp=hp*(-sqrt(2));lpr=lpr*(1/sqrt(2));hpr=hpr*(-1/sqrt(2)); 

% P.Getreuer's waveletcdf97.m [3] alters the Taubman's version as follows: 

%  lp=lp*sqrt(2);hp=hp*sqrt(2);lpr=lpr*(1/sqrt(2));hpr=hpr*(1/sqrt(2)); 

% while R.C.Gonzalez et al in [2] alter the Taubman's version as follows: 

%  lp=lp;hp=hp*(-2);lpr=lpr;hpr=hpr*(-1/2); 

%----------------  remain unchanged when nlevel = 0  -------------------% 

if nlevel == 0 

    c = x; 

%--------------------  decomposition,  if nlevel < 0  ------------------% 

elseif nlevel > 0 

    c = zeros(size(x)); 

    x = double(x); 

    for i = 1:nlevel 

        % [ll, hl; lh, hh]: 1-level FWT for x  

        temp = symconv2(x, hp, 'col');    % high filtering 

       % temp = temp(2:2:end, :);          % down sampling 

        hh = symconv2(temp, hp, 'row');   % high filtering  

       % hh = hh(:, 2:2:end);              % down sampling 

        lh = symconv2(temp, lp, 'row');   % low filtering 

       % lh = lh(:, 1:2:end);              % down sampling 

         

        temp = symconv2(x, lp, 'col');    % low filtering 

       % temp = temp(1:2:end, :);          % down sampling 
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        hl = symconv2(temp, hp, 'row');   % high filtering 

       % hl = hl(:, 2:2:end);              % down sampling 

        ll = symconv2(temp, lp, 'row');   % low filtering 

       % ll = ll(:, 1:2:end);              % down sampling 

        % update coefficient matrix 

        c=nlevel*c; 

        c(1:nlevel*size(x,1), 1:nlevel*size(x,2)) = [ll, hl; lh, hh]; 

        % replace x with ll for next level FWT 

        x = ll; 

        % give a warning if nlevel is too large 

        if size(x,1)<=1 && size(x,2)<=1 && i~=nlevel 

            warning('WAVECDF97:DegradeInput', ['Only decompose to ' ... 

                num2str(i) '-level instead of ' num2str(nlevel) ... 

                ', \nas the approximation coefficients at ' num2str(i) ... 

                '-level has row or/and column of length 1.']); 

            break 

        end 

    end 

%--------------------  reconstruction,  if nlevel < 0  -----------------% 

else 

    sx = size(x); 

    % find reconstruction level 

    nl = -nlevel; 

    while sx(1)/2^nl<=1/2 && sx(2)/2^nl<=1/2,  nl = nl-1;  end 

    if nl ~= -nlevel  

        warning('WAVECDF97:DegradeInput', ['Only reconstruct to ' ... 

            num2str(nl) '-level instead of ' num2str(-nlevel) ... 

            ', \nas the approximation coefficients at ' num2str(nl) ... 

            '-level has row or/and column of length 1.']); 

    end 

    % nl-level reconstruction 

    for i = 1:nl 

        % find the target ll hl lh hh blocks 

        sLL = ceil(sx/2^(nl-i+1)); 
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        sConstructed = ceil(sx/2^(nl-i)); 

        sHH = sConstructed - sLL; 

        lrow = sConstructed(1); lcol = sConstructed(2); 

 

        ll = x(1:sLL(1), 1:sLL(2)); 

        hl = x(1:sLL(1), sLL(2)+1:sLL(2)+sHH(2)); 

        lh = x(sLL(1)+1:sLL(1)+sHH(1), 1:sLL(2));     

        hh = x(sLL(1)+1:sLL(1)+sHH(1), sLL(2)+1:sLL(2)+sHH(2)); 

 

        % upsample rows and low filter 

        temp = zeros(sLL(1), lcol); temp(:, 1:2:end) = ll; 

        ll = symconv2(temp, lpr, 'row');  

        % upsample rows and high filter     

        temp = zeros(sLL(1), lcol); temp(:, 2:2:end) = hl; 

        hl = symconv2(temp, hpr, 'row'); 

        % upsample columns and low filter       

        temp = zeros(lrow, lcol); temp(1:2:end, :) = ll + hl; 

        l = symconv2(temp, lpr, 'col');   

 

        % upsample rows and high filter        

        temp = zeros(sHH(1), lcol); temp(:, 1:2:end) = lh; 

        lh = symconv2(temp, lpr, 'row'); 

        % upsample rows and high filter        

        temp = zeros(sHH(1), lcol); temp(:, 2:2:end) = hh; 

        hh = symconv2(temp, hpr, 'row'); 

        % upsample rows and high filter        

        temp = zeros(lrow, lcol); temp(2:2:end, :) = lh + hh; 

        h = symconv2(temp, hpr, 'col'); 

 

        % update x with the new ll, ie. l+h 

        x(1:lrow, 1:lcol) = l + h; 

    end     

    % output 

    c = x; 
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end 

%------------------------- internal function  --------------------------% 

%       2-dimension convolution with edges symmetrically extended       % 

%-----------------------------------------------------------------------% 

function y = symconv2(x, h, direction) 

% symmetrically extended convolution(see section 6.5.2 in [1]): 

%    x[n], E<=n<=F-1, is extended to x~[n] = x[n], 0<=n<=N-1; 

%                                  x~[E-i] = x~[E+i], for all integer i 

%                                x~[F-1-i] = x~[F-1+i], for all integer i 

%    For odd-length h[n], to convolve x[n] and h[n], we just need extend x  

%    by (length(h)-1)/2  for both left and right edges.  

% The symmetric extension handled here is not the same as in Matlab  

%  wavelets toolbox nor in [2]. The last two use the following method: 

%    x[n], E<=n<=F-1, is extended to x~[n] = x[n], 0<=n<=N-1; 

%                                  x~[E-i] = x~[E+i-1], for all integer i 

%                                x~[F-1-i] = x~[F+i], for all integer i  

 

l = length(h); s = size(x); 

lext = (l-1)/2; % length of h is odd  

h = h(:)'; % make sure h is row vector  

y = x; 

if strcmp(direction, 'row') % convolving along rows 

    if ~isempty(x) && s(2) > 1 % unit length array skip convolution stage 

        for i = 1: lext 

            x = [x(:, 2*i), x, x(:, s(2)-1)]; % symmetric extension 

        end 

        x = conv2(x, h); 

        y = x(:, l:s(2)+l-1);  

    end 

elseif strcmp(direction, 'col') % convolving along columns 

    if ~isempty(x) && s(1) > 1 % unit length array skip convolution stage 

        for i = 1: lext  

            x = [x(2*i, :); x; x(s(1)-1, :)]; % symmetric extension 

        end 
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        x = conv2(x, h'); 

        y = x(l:s(1)+l-1, :); 

    end 

end     

% EOF 

 

B.2.2 : The Essential sections of the program code for implementation of image super resolution 

using C++ 

 

void Onwavelet_image(CString m_csSourceImage, int lx, int ly, int rx, 

int ry) 

{ 

 lx=0; ly=0; rx=height; ry=width; 

 

 vff = 0.0; 

 hff = 0.0; 

 dff = 0.0; 

 

 // Initialize the GDI+ 

    GdiplusStartupInput StartupInput; 

    ULONG_PTR GdiplusToken = NULL; 

    GdiplusStartup( &GdiplusToken,&StartupInput,0 ); 

 { 

  

  UpdateData(); 

  int magfactor; 

  int magnification[4] = {2, 4, 8, 16}; 

   

  int c_size = (ry-ly); 

  if ((rx-lx) > (ry-ly)) c_size = rx-lx; 

 

  int w_size = c_size;  

  int h_size = c_size; 

  // please remove this crap and make the necessary 

corrections 

  int tmp = ly; 

  ly = lx; 

  lx = tmp; 

   

  if((ly+c_size) > width) 

   w_size = width-ly; 

  if((lx+c_size) > height) 

   h_size = height-lx; 

  // 

  lx=0; ly=0; rx=height; ry=width; 

  w_size = height;h_size = width; 

  // 
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  if (mag_factor < 0) 

  { magfactor = 2; } 

  else 

  {magfactor = magnification[mag_factor];} 

 

  if (magfactor > 2) 

  { 

   AfxMessageBox(_T("The magnifaction factor for wavelet 

scaling function defaults to 2 for this update")); 

   magfactor = 2; 

  } 

 

  // Create the image. 

  USES_CONVERSION; 

  const wchar_t* wstr_file = 

T2W(m_csSourceImage.GetBuffer()); 

  Bitmap ColorImage(wstr_file); 

   

  int r,g,b; 

  int rr_r, gg_g, bb_b; 

 

  int *maxpos_x =  (int *)malloc(3*sizeof(int)); 

  int *maxpos_y =  (int *)malloc(3*sizeof(int)); 

 

  double *maxcoeff = (double *)malloc(3*sizeof(double)); 

 

  // Second data storage for calculated co-efficients 

  double *ttemp_r = (double 

*)malloc(magfactor*magfactor*h_size*w_size*sizeof(double));  

  double *ttemp_g = (double 

*)malloc(magfactor*magfactor*h_size*w_size*sizeof(double)); 

  double *ttemp_b = (double 

*)malloc(magfactor*magfactor*h_size*w_size*sizeof(double)); 

  // memory locations 

  int i = 0, j = 0, k = 0; 

 

  // the three scales of the wavelet subbands and the 

three(3) colour components and the two dimension image co-efficients 

  double **** aval = (double ****) malloc(3*sizeof(double 

***)); 

  double **** aprx = (double ****) malloc(3*sizeof(double 

***)); 

  double **** hort = (double ****) malloc(3*sizeof(double 

***)); 

  double **** vert = (double ****) malloc(3*sizeof(double 

***)); 

  double **** diag = (double ****) malloc(3*sizeof(double 

***)); 

  double *** upscale = (double ***) malloc(3*sizeof(double 

**)); 

   

  for (i = 0; i < 3; i++) 
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  { 

   aval[i] = (double ***) malloc(3*sizeof(double **)); 

   aprx[i] = (double ***) malloc(3*sizeof(double **)); 

   hort[i] = (double ***) malloc(3*sizeof(double **)); 

   vert[i] = (double ***) malloc(3*sizeof(double **)); 

   diag[i] = (double ***) malloc(3*sizeof(double **)); 

  } 

  for (i = 0; i < 3; i++) 

  { 

   for (j = 0; j < 3; j++) 

    { 

     aval[i][j] = (double 

**)malloc(h_size*sizeof(double *)); 

     aprx[i][j] = (double 

**)malloc(h_size*sizeof(double *)); 

     hort[i][j] = (double 

**)malloc(h_size*sizeof(double *)); 

     vert[i][j] = (double 

**)malloc(h_size*sizeof(double *)); 

     diag[i][j] = (double 

**)malloc(h_size*sizeof(double *)); 

    } 

  } 

 

  for (i = 0; i < 3; i++) 

  { 

   for (j = 0; j < 3; j++) 

    { 

     for (k = 0; k < h_size; k++) 

     { 

      aval[i][j][k] = (double 

*)malloc(w_size*sizeof(double)); 

      aprx[i][j][k] = (double 

*)malloc(w_size*sizeof(double)); 

      hort[i][j][k] = (double 

*)malloc(w_size*sizeof(double)); 

      vert[i][j][k] = (double 

*)malloc(w_size*sizeof(double)); 

      diag[i][j][k] = (double 

*)malloc(w_size*sizeof(double)); 

     } 

    } 

  } 

 

   

  for (i = 0; i < 3; i++) 

  { 

   upscale[i] = (double **) 

malloc(magfactor*h_size*sizeof(double *)); 

  } 

  i=0; 

  for (i=0; i<3; i++) 
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  { 

   for (j = 0; j < (magfactor*h_size); j++) 

   { 

    upscale[i][j] = (double 

*)malloc(magfactor*w_size*sizeof(double)); 

   } 

  } 

  // memory allocation ended 

   

  // read the image and store in the right positions,   

  // Get the pixels  

        Color PixelColor; 

  int cnts = 0; int xindx,yindx,zindx,m=0,h=0;  

 

  for (xindx = ly; xindx < (ly+h_size); xindx++ ) 

  { 

   for (yindx = lx; yindx < (lx+w_size); yindx++) 

   { 

    // Get the pixel at x,y 

          ColorImage.GetPixel( xindx, yindx, &PixelColor ); 

    // Convert it to COLORREF 

          COLORREF RgbColor = PixelColor.ToCOLORREF();  

    aval[0][0][m][h] = GetRValue(RgbColor); 

aval[0][1][m][h] = GetGValue(RgbColor); aval[0][2][m][h] = 

GetBValue(RgbColor); 

    cnts++;h++; 

   } 

   m++;h=0; 

  } 

  cnts = 0; 

   

  // Scale 1 

  forward_waveletcdf97 

(aval[0][0],aprx[0][0],vert[0][0],hort[0][0],diag[0][0],h_size, 

w_size); 

  forward_waveletcdf97 

(aval[0][1],aprx[0][1],vert[0][1],hort[0][1],diag[0][1],h_size, 

w_size); 

  forward_waveletcdf97 

(aval[0][2],aprx[0][2],vert[0][2],hort[0][2],diag[0][2],h_size, 

w_size); 

  // Scale 2 

  forward_waveletcdf97 

(aprx[0][0],aprx[1][0],vert[1][0],hort[1][0],diag[1][0],h_size, 

w_size); 

  forward_waveletcdf97 

(aprx[0][1],aprx[1][1],vert[1][1],hort[1][1],diag[1][1],h_size, 

w_size); 

  forward_waveletcdf97 

(aprx[0][2],aprx[1][2],vert[1][2],hort[1][2],diag[1][2],h_size, 

w_size); 

  // Scale 3 
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  forward_waveletcdf97 

(aprx[1][0],aprx[2][0],vert[2][0],hort[2][0],diag[2][0],h_size, 

w_size); 

  forward_waveletcdf97 

(aprx[1][1],aprx[2][1],vert[2][1],hort[2][1],diag[2][1],h_size, 

w_size); 

  forward_waveletcdf97 

(aprx[1][2],aprx[2][2],vert[2][2],hort[2][2],diag[2][2],h_size, 

w_size); 

  // 

   

  // Get the maximum value for the co-efficients in vertical 

or horizontal on scale 1(0 for first decomposition) for the three(3) 

colours  

  maxcoeff[0] = 0.0; maxcoeff[1] = 0.0; maxcoeff[2] = 0.0;  

  int h_v = 1,offsety, offsetx; 

  for (xindx = 4; xindx < h_size-4; xindx++ ) // with -+ 4 of 

the image borders is to eliminate border edges 

  { 

   for (yindx = 4; yindx < w_size-4; yindx++) // with -+ 

4 of the image borders is to eliminate border edges 

   { 

    for (zindx = 0; zindx < 3; zindx++) 

    { 

     // three(3) colour components 0-2  vertical 

subband co-efficients 

     if (abs(vert[0][zindx][xindx][yindx])  >  

maxcoeff[zindx]) 

     {   

       maxcoeff[zindx] = 

abs(vert[0][zindx][xindx][yindx]); 

       maxpos_x[zindx] =  xindx; 

       maxpos_y[zindx] =  yindx; 

       h_v = 0; offsety=0; offsetx=1; 

     } 

      

     if (abs(hort[0][zindx][xindx][yindx])  > 

maxcoeff[zindx] ) 

     {   

       maxcoeff[zindx] = 

abs(hort[0][zindx][xindx][yindx]); 

       maxpos_x[zindx] =  xindx; 

       maxpos_y[zindx] =  yindx; 

       h_v = 1; offsety=1; offsetx=0; 

     } 

      

      

    }  

   } 

  } 

  //  

  double coarseprediction = 0.0; 
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  //Establish regularity with the assumption that it holds 

for all the colours 

      

      if ( 

log2(abs(hort[2][1][maxpos_x[1]][maxpos_y[1]])-

abs(hort[1][1][maxpos_x[1]][maxpos_y[1]])) > 

log2(abs(hort[2][1][maxpos_x[1]][maxpos_y[1]])-

abs(hort[1][1][maxpos_x[1]][maxpos_y[1]]))) 

      { 

        coarseprediction = 

abs(hort[2][1][maxpos_x[1]][maxpos_y[1]])/abs(hort[1][1][maxpos_x[1]][

maxpos_y[1]]); 

      } 

      else 

      { 

       // requirement cannot be 

satisfied 

       return; 

      } 

      

  // Apply the coarse prediction 

  for (xindx = 0; xindx < h_size; xindx++ )  

  { 

   for (yindx = 0; yindx < w_size; yindx++)  

   { 

    for (zindx = 0; zindx < 3; zindx++) 

    {     

     hort[0][zindx][xindx][yindx] = 

hort[0][zindx][xindx][yindx]*coarseprediction; 

     vert[0][zindx][xindx][yindx] = 

vert[0][zindx][xindx][yindx]*coarseprediction; 

     diag[0][zindx][xindx][yindx] = 

vert[0][zindx][xindx][yindx]*coarseprediction; 

    }  

   } 

  } 

 

  int directionofsearch = 1; // i.e. positive direction 

  double minres = 255.0; 

  double finalpredrate = 0.0, incrementrate = 0.1; 

 

  while (1) 

  { 

   

   //Perform the scaling of the image  

   // Generate one colour to optmize for speed 

     for (xindx = 0; xindx < h_size; xindx++ )  

      { 

       for (yindx = 0; yindx < w_size; 

yindx++)  

       { 
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 hort[0][0][xindx][yindx] = 

hort[0][zindx][xindx][yindx]*coarseprediction; 

        

 vert[0][0][xindx][yindx] = 

vert[0][zindx][xindx][yindx]*coarseprediction; 

        

 diag[0][0][xindx][yindx] = 

vert[0][zindx][xindx][yindx]*coarseprediction; 

         

       } 

      } 

   inverse_waveletcdf97(upscale[0], aval[0][0], 

vert[0][0], hort[0][0], diag[0][0], h_size, w_size);   

   //inverse_waveletcdf97 (upscale[1], aval[0][1], 

vert[0][1], hort[0][1], diag[0][1], h_size, w_size); 

   //inverse_waveletcdf97 (upscale[2], aval[0][2], 

vert[0][2], hort[0][2], diag[0][2], h_size, w_size); 

     

    

    if ( 

abs(vmr(upscale[0][(2*maxpos_x[1])+offsetx][(2*maxpos_y[1])+offsety],u

pscale[0][(2*maxpos_x[1])+(2*offsetx)][(2*maxpos_y[1])+(2*offsety)]) - 

vmr(upscale[0][(2*maxpos_x[1])+(2*offsetx)][(2*maxpos_y[1])+(2*offsety

)],upscale[0][(2*maxpos_x[1])+(3*offsetx)][(2*maxpos_y[1])+(3*offsety)

])) < minres && 

vmr(aval[0][1][maxpos_x[1]][maxpos_y[1]],aval[0][1][maxpos_x[1]+offset

x][maxpos_y[1]+offsety]) > 

(vmr(upscale[0][(2*maxpos_x[1])+offsetx][(2*maxpos_y[1])+offsety],upsc

ale[0][(2*maxpos_x[1])+(2*offsetx)][(2*maxpos_y[1])+(2*offsety)])/aval

[0][1][maxpos_x[1]+offsetx][maxpos_y[1]+offsety]) ) 

    { 

     minres = 

abs(vmr(upscale[0][(2*maxpos_x[1])][(2*maxpos_y[1])+1],upscale[0][(2*m

axpos_x[1])][(2*maxpos_y[1])+2]) - 

vmr(upscale[0][(2*maxpos_x[1])][(2*maxpos_y[1])+2],upscale[0][(2*maxpo

s_x[1])][(2*maxpos_y[1])+3])); 

     finalpredrate = coarseprediction; 

    } 

    else if (directionofsearch == 1) 

    { 

      directionofsearch = -1; 

      coarseprediction = finalpredrate; 

      

    } 

    else 

    { 

      // end of search 

      // generate the final image 

      for (xindx = 0; xindx < h_size; 

xindx++ )  

      { 
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       for (yindx = 0; yindx < w_size; 

yindx++)  

       { 

        for (zindx = 0; zindx < 3; 

zindx++) 

        {     

        

 hort[0][zindx][xindx][yindx] = 

hort[0][zindx][xindx][yindx]*coarseprediction; 

        

 vert[0][zindx][xindx][yindx] = 

vert[0][zindx][xindx][yindx]*coarseprediction; 

        

 diag[0][zindx][xindx][yindx] = 

vert[0][zindx][xindx][yindx]*coarseprediction; 

        }  

       } 

      } 

       

      inverse_waveletcdf97(upscale[0], 

aval[0][0], vert[0][0], hort[0][0], diag[0][0], h_size, w_size); 

      inverse_waveletcdf97 (upscale[1], 

aval[0][1], vert[0][1], hort[0][1], diag[0][1], h_size, w_size); 

      inverse_waveletcdf97 (upscale[2], 

aval[0][2], vert[0][2], hort[0][2], diag[0][2], h_size, w_size); 

      break; 

    } 

    coarseprediction += 

(incrementrate*directionofsearch);   

  } 

   

  // create magnified image 

  Bitmap ColorImageMag(magfactor*h_size,magfactor*w_size); 

  Color MagPixelColor; 

  COLORREF MagRgbColor = MagPixelColor.ToCOLORREF(); 

  

  for (xindx = 0; xindx < (magfactor*h_size); xindx++ ) 

  { 

   for (yindx = 0; yindx < (magfactor*w_size); yindx++) 

   {   

      // set into image 

      MagRgbColor = 

RGB((BYTE)upscale[0][xindx][yindx],(BYTE)upscale[1][xindx][yindx],(BYT

E)upscale[2][xindx][yindx]); 

      MagPixelColor.SetFromCOLORREF( 

MagRgbColor ); 

      ColorImageMag.SetPixel( xindx, yindx, 

MagPixelColor);  

       

   } 

    

  } 
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  CLSID bmpClsid; 

  GetEncoderClsid( L"image/bmp", &bmpClsid ); 

  ColorImageMag.Save( L"predicted.bmp", &bmpClsid, NULL); 

 

  ImgDlg Disp_mag; 

  Disp_mag.DoModal(); 

    

 } 

 

} 

B.2.2.1: The required functions for the program code for implementation of image super resolution 

using C++ 

double log2(double x) 

{ 

  static const double xlog = 1.0/log(2.0); 

  return log(x)*xlog; 

} 

 

double vmr(double x, double y) 

{ 

  double meanval = (x+y)/2.0; 

  return ((x-meanval)*(x-meanval))/meanval; 

} 

 

int CInterpolateframesDlg::GetEncoderClsid(const WCHAR* format, CLSID* 

pClsid) 

{ 

    UINT  num = 0;          // number of image encoders 

    UINT  size = 0;         // size of the image encoder array in 

bytes 

     

    ImageCodecInfo* pImageCodecInfo = NULL; 

     

 GetImageEncodersSize(&num, &size); 

    if(size == 0) 

        return -1;  // Failure 

     

    pImageCodecInfo = (ImageCodecInfo*)(malloc(size)); 

    if(pImageCodecInfo == NULL) 

        return -1;  // Failure 

     

    GetImageEncoders( num, size, pImageCodecInfo ); 

     

    for(UINT j = 0; j < num; ++j) 

    { 

        if( wcscmp(pImageCodecInfo[j].MimeType, format) == 0 ) 

        { 

            *pClsid = pImageCodecInfo[j].Clsid; 
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            free(pImageCodecInfo); 

            return j;  // Success 

        }     

    } 

     

    free(pImageCodecInfo); 

    return -1;  // Failure 

} 

 

void inverse_dilatedcdf97 (double ** outputval, double ** inapprox, 

double ** invertical, double ** inhorizontal, double ** indiagonal, 

int rnum, int cnum ) 

{ 

int i,j,k,cnt; 

 

int sz = sizeof(lowpass_analy)/sizeof(double); 

sz /= 2; 

 

double **temp1 = (double **)malloc(rnum*sizeof(double *)); 

 

for (i=0; i<rnum; i++) 

temp1[i]=(double*)malloc(cnum*sizeof(double)); 

 

double **temp2 = (double **)malloc(rnum*sizeof(double *)); 

 

for (i=0; i<rnum; i++) 

 temp2[i]=(double*)malloc(cnum*sizeof(double)); 

 

double **temp3 = (double **)malloc(rnum*sizeof(double *)); 

    

for (i=0; i<rnum; i++) 

 temp3[i]=(double*)malloc(cnum*sizeof(double)); 

 

 // synthesis level 1 

 for (j=0; j<cnum; j++) 

 { 

  for (i=0; i<rnum; i++) 

  { 

 

    

 temp1[i][j]=inapprox[i][j]*lowpass_synth[sz];  

    

 temp2[i][j]=invertical[i][j]*lowpass_synth[sz];  

    

 outputval[i][j]=inhorizontal[i][j]*highpas_synth[sz];  

    

 temp3[i][j]=indiagonal[i][j]*highpas_synth[sz]; 

 

     for (k=1; k<5; k++) 

     { 

       if ((i-k) >= 0 && (i+k) < rnum) 
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       { 

          temp1[i][j] += 

((inapprox[i-k][j]*lowpass_synth[sz-k]) + 

(inapprox[i+k][j]*lowpass_synth[sz+k])); 

          temp2[i][j] += 

((invertical[i-k][j]*lowpass_synth[sz-k]) + 

(invertical[i+k][j]*lowpass_synth[sz+k])); 

          outputval[i][j] 

+= ((inhorizontal[i-k][j]*highpas_synth[sz-k]) + 

(inhorizontal[i+k][j]*highpas_synth[sz+k])); 

          temp3[i][j] += 

((indiagonal[i-k][j]*highpas_synth[sz-k]) + 

(indiagonal[i+k][j]*highpas_synth[sz+k])); 

       } 

       else 

        break;     

     } 

 

  } 

 } 

 // data re-packing 

 

  for (i=0; i<rnum; i++) 

  { 

    for (j=0; j<cnum; j++) 

    { 

      // 

      inhorizontal[i][j] = temp1[i][j] + 

outputval[i][j]; 

      indiagonal[i][j] = temp2[i][j] + 

temp3[i][j]; 

      // 

 

    } 

  } 

 

 

 // synthesis level 2 

 

 for (i=0; i<rnum; i++) 

 { 

   for (j=0; j<cnum; j++) 

   { 

    temp1[i][j]=inhorizontal[i][j]*lowpass_synth[sz];  

    temp2[i][j]=indiagonal[i][j]*highpas_synth[sz]; 

 

    for (k=1; k<5; k++) 

    { 

      if ((j-k) >= 0 && (j+k) < cnum) 

      { 
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       temp1[i][j] += 

((inhorizontal[i][j-k]*lowpass_synth[sz-k]) + 

(inhorizontal[i][j+k]*lowpass_synth[sz+k])); 

       temp2[i][j] += 

((indiagonal[i][j-k]*highpas_synth[sz-k]) + 

(indiagonal[i][j+k]*highpas_synth[sz+k])); 

 

      } 

      else 

       break; 

    } 

   } 

 

  } 

 

  // data synthesis ends and final output 

    for (i=0; i<rnum; i++) 

     for (j=0; j<cnum; j++) 

        

 outputval[i][j]=temp1[i][j]+temp2[i][j]; 

 

} 

 

 

 

void forward_waveletcdf97 (double ** inputval, double ** 

outputapproximation, double ** outputvertical, double ** 

outputhorizontal, double ** outputdiagonal, int row, int col ) 

{ 

 

 int i=0,j=0,k=0,cnt=0; 

 int sz = sizeof(lowpass_analy)/sizeof(double); 

 sz /= 2; 

 double ** outputapprox = (double **) malloc(row*sizeof(double 

*)); 

 for (i = 0; i < row; i++) 

     outputapprox[i] = (double 

*)malloc(col*sizeof(double)); 

 

 double ** outputvert = (double **) malloc(row*sizeof(double *)); 

 for (i = 0; i < row; i++) 

     outputvert[i] = (double 

*)malloc(col*sizeof(double)); 

 

 

 // approximation co-efficients  and vertical co-efficients -- 

subband decomposition - first step 

  for (i=0; i<row; i++) 

  { 

     for (j = 0; j < col; j++) 

     { 
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       outputapprox[i][j] = 

inputval[i][j]*lowpass_analy[sz]; // remember to refine the code 

       outputvert[i][j] = 

inputval[i][j]*highpas_analy[sz];  

        

       for (k=1; k<5; k++) 

       { 

        if ((j-k) >= 0 && (j+k) < 

col) 

        // approximation co-

efficients 

        { outputapprox[i][j] += 

((inputval[i][j-k]*lowpass_analy[sz-k]) + 

(inputval[i][j+k]*lowpass_analy[sz+k])); 

         outputvert[i][j] += 

((inputval[i][j-k]*highpas_analy[sz-k]) + 

(inputval[i][j+k]*highpas_analy[sz+k])); 

        } 

        else 

         break; 

       } 

     } 

  } 

 // subband decomposition  --- second step 

 

   for (j = 0; j < col; j++) 

   { 

      for (i=0; i<row; i++) 

      { 

        outputapproximation[i][j] = 

outputapprox[i][j]*lowpass_analy[sz]; 

        outputhorizontal[i][j] = 

outputapprox[i][j]*highpas_analy[sz];  

        outputvertical[i][j] = 

outputvert[i][j]*lowpass_analy[sz];  

        outputdiagonal[i][j] = 

outputvert[i][j]*highpas_analy[sz]; 

 

        for (k=1; k<5; k++) 

        { 

         if ((i-k) >= 0 && 

(i+k) < row) 

         { 

         

 outputapproximation[i][j] += ((outputapprox[i-

k][j]*lowpass_analy[sz-k]) + 

(outputapprox[i+k][j]*lowpass_analy[sz+k])); 

         

 outputvertical[i][j] += ((outputvert[i-k][j]*lowpass_analy[sz-k]) 

+ (outputvert[i+k][j]*lowpass_analy[sz+k])); 

          // 



pg. 78 
 

         

 outputhorizontal[i][j] += ((outputapprox[i-

k][j]*highpas_analy[sz-k]) + 

(outputapprox[i+k][j]*highpas_analy[sz+k])); 

         

 outputdiagonal[i][j] += ((outputvert[i-k][j]*highpas_analy[sz-k]) 

+ (outputvert[i+k][j]*highpas_analy[sz+k])); 

         } 

         else 

          break; 

 

        } 

 

      } 

   } 

 

 

} 

 

B.2.3.1: The program code for implementation of motion area extraction using C++ 

 

 

void MotionAreaExtract(CString first_file, CString second_file, 

CString output_file) 

{ 

 progressval.SetPos(5); 

 

 clock_t start, finish; 

 double  duration; 

 CString outtime; 

 

 // Initialize the GDI+ 

    GdiplusStartupInput StartupInput; 

    ULONG_PTR GdiplusToken = NULL; 

    GdiplusStartup( &GdiplusToken,&StartupInput,0 ); 

  

    // Code Block for Bitmap to get destroyed before 

GdiplusShutdown(). 

    { 

  int h,i,j, wi,hi, im, jn; 

  int blcksize = 16; 

 

  USES_CONVERSION; 

  const wchar_t* first_frame = T2W(first_file.GetBuffer()); 

  const wchar_t* second_frame = T2W(second_file.GetBuffer()); 

  const wchar_t* output_frame = T2W(output_file.GetBuffer()); 

 

  // Create the first image. 
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  Bitmap ColorImage(first_frame); 

  width = ColorImage.GetWidth(); 

  height = ColorImage.GetHeight(); 

 

  // create the second image 

  Bitmap ColorImage2(second_frame); 

  wi = ColorImage2.GetWidth(); 

  hi = ColorImage2.GetHeight(); 

 

  if (wi != width || hi != height) 

  { AfxMessageBox(_T("Error!: File size mismatch, the 

files MUST be of the same dimensions"), MB_ICONERROR ); return;

 } 

 

  // create memory 

  double *** vidframes = (double ***) malloc(10*sizeof(double 

**)); 

 

  for (h = 0; h < 10; h++) 

   vidframes[h] = (double **) malloc(height*sizeof(double 

*)); 

   

  for (h = 0; h < 10; h++) 

   for (i = 0; i < height; i++) 

    vidframes[h][i] = (double *) 

malloc(width*sizeof(double)); 

  // // Get the pixels 

        Color PixelColor, PixelColor2; 

  progressval.SetPos(10); 

 

  for (i = 0; i < height; i++) 

  { 

   for (j = 0; j < width; j++) 

   { 

    ColorImage.GetPixel(i,j, &PixelColor ); 

    ColorImage2.GetPixel(i,j, &PixelColor2 ); 

    COLORREF RgbColor = PixelColor.ToCOLORREF();  

    COLORREF RgbColor2 = PixelColor2.ToCOLORREF();  

    vidframes[0][i][j] = (GetRValue(RgbColor)*0.299) 

+ (GetGValue(RgbColor)*0.587) + (GetBValue(RgbColor)*0.114); 

    vidframes[5][i][j] = (GetRValue(RgbColor2)*0.299) 

+ (GetGValue(RgbColor2)*0.587) + (GetBValue(RgbColor2)*0.114); 

   } 

  } 

  progressval.SetPos(20); 

   

  start = clock(); 

  forward_waveletcdf97 (vidframes[0], vidframes[1], 

vidframes[2], vidframes[3], vidframes[4], height, width ); 

  forward_waveletcdf97 (vidframes[5], vidframes[6], 

vidframes[7], vidframes[8], vidframes[9], height, width ); 
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  progressval.SetPos(50); 

  // Temporal filtering 

   

  for (i = 0; i < height; i++) 

  { 

   for (j = 0; j < width; j++) 

   { 

    vidframes[1][i][j] = vidframes[1][i][j] - 

vidframes[6][i][j]; 

    vidframes[1][i][j] = (abs(vidframes[1][i][j]) > 

35 ) ? vidframes[1][i][j] : 0; 

    vidframes[2][i][j] = vidframes[2][i][j] - 

vidframes[7][i][j]; 

    vidframes[2][i][j] = (abs(vidframes[2][i][j]) > 

35 ) ? vidframes[2][i][j] : 0; 

    vidframes[3][i][j] = vidframes[3][i][j] - 

vidframes[8][i][j]; 

    vidframes[3][i][j] = (abs(vidframes[3][i][j]) > 

35 ) ? vidframes[3][i][j] : 0; 

    vidframes[4][i][j] = vidframes[4][i][j] - 

vidframes[9][i][j]; 

    vidframes[4][i][j] = (abs(vidframes[4][i][j]) > 

35 ) ? vidframes[4][i][j] : 0; 

    // 

     

   } 

  } 

   

 

  progressval.SetPos(60); 

   

  for (i = 0; i < height; i++) 

  { for (j = 0; j < width; j++) 

   {  

     

    vidframes[9][i][j]=0.0; 

    vidframes[8][i][j]=0.0;   

    //vidframes[1][i][j]=0.0; 

   } 

  } 

 

  //inverse_dilatedcdf97 (vidframes[9], vidframes[1], 

vidframes[7], vidframes[8], vidframes[5], height, width ); 

  //-- 

  inverse_dilatedcdf97 (vidframes[6], vidframes[1], 

vidframes[2], vidframes[3], vidframes[4], height, width ); 

  inverse_dilatedcdf97 (vidframes[9], vidframes[8], 

vidframes[2], vidframes[3], vidframes[4], height, width ); 

   

  finish = clock(); 

  duration = (double)(finish - start) / CLOCKS_PER_SEC; 
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  // the frames for the prediction 

   for (i=0; i<height; i++) 

   { 

    for (j=0; j<width; j++) 

    { 

      vidframes[7][i][j] = 

vidframes[0][i][j]; 

      vidframes[8][i][j] = 

vidframes[0][i][j]; 

      vidframes[6][i][j] = 

abs(vidframes[6][i][j] + vidframes[9][i][j]); 

    } 

   } 

    

   int blkrow, blkcol, matchedi, matchedj; double madval, 

lowestval;// making lowestval = infinity 

   //calculate the number of blocks and search per block 

   blkrow = height/blcksize; 

   blkcol = width/blcksize; 

   int st_h,en_h,st_w,en_w; 

    

 

  Bitmap ColorImageMag(height, width); 

  Color MagPixelColor; 

  COLORREF MagRgbColor = MagPixelColor.ToCOLORREF(); 

 

  progressval.SetPos(80); 

 

  for (i = 0; i < height; i++) 

  { 

   for (j = 0; j < width; j++) 

   { 

       

vidframes[6][i][j] = (vidframes[6][i][j] > 0 ) ? vidframes[5][i][j] : 

0; 

MagRgbColor = RGB((BYTE)vidframes[6][i][j], (BYTE)vidframes[6][i][j] 

,(BYTE)vidframes[6][i][j]); 

       

           

 MagPixelColor.SetFromCOLORREF( MagRgbColor ); 

 ColorImageMag.SetPixel(i,j,  MagPixelColor); 

   } 

  } 

   

  progressval.SetPos(85); 

 

  CLSID bmpClsid; 

  GetEncoderClsid( L"image/bmp", &bmpClsid ); 

  ColorImageMag.Save( output_frame, &bmpClsid, NULL); 

   

  progressval.SetPos(90); 
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 } 

    // Shutdown the Gdi+ 

    GdiplusShutdown( GdiplusToken ); 

 

 outtime.Format(_T("Processing Complete! in %f 

seconds"),duration); 

 

 //result_text = L"Processing Complete!"; 

 result_text = outtime; 

 UpdateData(FALSE); 

 progressval.SetPos(100); 

 

 

} 
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