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ABSTRACT 
 

Diesel engine in-cylinder pressure analysis is important for engine research and diagnosis. It has 

been a subject of interest right from the inception of internal combustion engines. Engine 

cylinder pressure measurements provide insight into the combustion process and the accuracy 

of these measurements governs the quality of analyses of different combustion modes of the 

engine. Since the in-cylinder pressure increases abruptly after the start of combustion, non-

flush mounting of the pressure transducer creates standing/resonant waves in the access 

passage which severely affect the recorded pressure fidelity by introducing undesired noise. 

The challenge is to get rid of these pressure pulsations and characterize the unaccounted noise 

which can lead to erroneous determination of different combustion parameters and 

characteristics. 

This work focuses on online filtering of the noisy pressure data so as to obviate the need of any 

post-processing for combustion and noise analysis. An online filtering algorithm is defined 

which is a combination of a five-point moving average filter and a forward and reverse 

Butterworth digital filter. The filter is tested for its robustness over different engine operating 

conditions such as engine load, speed, boost etc. The cut-off frequency of the filter is 

determined on a cycle-by-cycle basis using an algorithm based on the power spectral density of 

the pressure signal. The noise component is segregated from the pressure trace by means of 

pressure decomposition technique and the peak noise power is attributed to the access 

passage resonance frequency. Further development of this approach can be used to achieve 

optimal combustion control by means of the development of optimal injection strategies in 

order to fulfill emission reduction and performance requirements in Diesel engines. 
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1.   INTRODUCTION 

1.1. Motivation 

 

Diesel engine in-cylinder pressure analysis is important for engine research and diagnosis. 

Among its many applications, combustion and noise analysis based on the first law of 

thermodynamics is the most important. A noisy cylinder pressure data can obscure the heat 

release rate calculation, a parameter that is derived from the acquired cylinder pressure. Heat 

release analysis of a combustion trace can be used to (a) validate mathematical models for 

engine simulation, (b) develop new combustion systems (c) analyze alternative fuel burning and 

(d) study new fuel injection strategies. In order to explore these areas with high fidelity, 

reliability of the heat release rate and hence accuracy of the cylinder pressure trace is highly 

desirable. The challenge here is to eliminate the pressure pulsations and characterize the 

unaccounted noise on a cycle-by-cycle basis. Many studies show that pollutant emission 

reduction can be achieved by means of an optimal combustion control strategy.  

1.2. Objective and approach 

 

The principal objective of this work is to eliminate the unaccounted noise from the in-cylinder 

pressure trace and characterize the noise signal. Although there are multiple sources of noise 

which can interfere with the cylinder pressure trace, the principal sources of noise are 

identified as part of this work and the power spectral density of the noise curve is plotted. In 

addition to this, the filtering algorithm has to be stressed upon because the noisy pressure data 

cannot be reconstructed by using a simple filter.  

One approach to reject the unaccounted noise from in-cylinder pressure trace could be to 

design a suitable filter. The filter parameters have to be determined keeping in mind that the 

filter has to work online i.e. on a cycle by cycle basis and has to be tested over all engine 

operating conditions to prove its robustness. The in-cylinder pressure trace is decomposed into 

the motoring, combustion-only and noise signal components. Spectral analysis of the pressure 

trace is carried out by using Fast Fourier Transform (FFT) to obtain the frequency components 
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of the signal. It is shown that, under certain conditions, resonance phenomenon inside the 

cylinder chamber can be an important aspect in combustion noise analysis [11]. The acquired 

cylinder pressure data is simulated by using SAES [20] to determine the acoustic wave speed 

inside the cylinder chamber and the concentration of the gaseous mixture. These parameters 

are used to validate the peak noise frequency with the access passage resonance frequency. 

1.3. Thesis organization 

 

This thesis work is divided into six chapters. 

Chapter 1: This chapter covers the motivation, objective and approach and the thesis 

organization. 

Chapter 2: Background study and Literature Review: This chapter provides basic ideas about the 

different components and terms necessary and associated with this research work such as 

pressure transducer system, adapter, filter types and parameters, sources of noise associated 

with diesel engine etc. This part also shows a comparative study of the filters used so far in the 

literature and their drawbacks are pointed out. The challenges are identified and the most 

suitable approach is defined.  

Chapter 3: Study of important parameters and filters: This chapter briefly familiarizes with 

important engine related parameters such as heat release rate (HRR) and indicated mean 

effective pressure (IMEP). This chapter also includes a discussion on the general characteristics 

and types of filters. A brief discussion is done on IIR and FIR filters and the choice of 

Butterworth filter for this work is justified. 

Chapter 4: Empirical set up: In this chapter, the experimental set up is shown. This chapter 

includes a brief discussion about the two research engines in the laboratory that are used for 

this research work. It also includes a brief discussion on pressure transducer system and charge 

amplifier used in the laboratory. A complete block diagram for the cylinder pressure acquisition 

and display system is included in this chapter as well. 
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Chapter 5: Design of filter: Results and Discussion: This chapter shows the results of the filtering 

algorithm on the raw unfiltered pressure data on a cycle-by-cycle basis. The simulation of the 

cylinder pressure diagram is used to validate the peak noise frequency for the single cylinder 

engine (since the access passage length is known) with the access passage frequency. A 

pressure decomposition technique is introduced which helps in the characterization of the 

resonance noise and combustion noise analysis. 

Chapter 6: Conclusion and future work: In this chapter, the concluding remarks on the noise 

attenuation and filter design are expressed. The pros and cons of the filtering algorithm used in 

this thesis work are discussed in brief. Future work in terms of the development of optimal fuel 

injection strategies in order to meet the sound quality requirements in diesel engines is 

proposed. 
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2.   BACKGROUND STUDY AND LITERATURE REVIEW 

 

This chapter will review the previous work, different methodologies used for the application of 

signal processing on in-cylinder pressure trace of diesel engines and the improvements 

achieved eventually in terms of noise rejection. The first part of the review identifies the key 

areas of combustion and noise analysis and the possible factors behind the problem. Non-flush 

mounting of the pressure transducer is a significant contributor of noise in the in-cylinder 

pressure trace. Due to an abrupt increase in cylinder pressure after the start of combustion, 

non-flush mounting of the pressure transducer creates standing/resonant waves in the access 

passage which severely affect the recorded pressure fidelity by introducing unwanted noise. Fig 

2.1 shows a cycle of unfiltered cylinder pressure trace measured from a non-flush mounted 

pressure transducer. High frequency oscillations obscure the cylinder pressure trace.         

         

 

Fig 2.1: Unfiltered Cylinder Pressure trace (one cycle) 

 

This review stresses upon the research done so far in order to find the best possible position of 

transducer installation and also determination of the most suitable type of transducer for a 

noise free pressure recording. An approach of modification of the access passage by designing a 

transducer adapter system [3] has been used in the literature to nullify the effect of the 

resonance passage. An alternative option is to use an appropriate filter to reject the noise from 

in-cylinder pressure trace. Therefore, a review of the different types of filters used in the 
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literature is included in this section and a comparison is made between the results obtained 

highlighting the limitations and scope of improvement.   

2.1. Position and type of the pressure transducer 

 

The frequency response of a pressure transducer is an important factor towards the choice of 

transducer. The highest frequency up to which the transducer transmits information without 

any significant modification is usually a fraction of the first natural frequency of the device [4]. 

Non-flush mounting of the transducer leads to further reduction of the frequency response. If 

the cylinder chamber and the transducer diaphragm are coupled through a passage, the natural 

frequency of the passage should be higher than the minimum desired frequency of interest of 

the transducer. The combined frequency response of the pressure transducer and the recording 

system should be flat up to 10 kHz and should not fall steeply at higher frequencies [1]. Strain 

gauge, capacitance and piezo-electric transducers have frequency responses in this order. 

However, electromagnetic transducers are not suitable for this purpose as most of the high 

frequency components are lost in the process of obtaining a pressure-time display [1]. Lyn et al 

[1] investigated the responses of all three types of transducers to a pressure step input signal in 

shock tube. It was observed that capacitance and strain gauge transducer responses include 

some low frequency oscillations whereas piezo-electric transducer response was almost flat in 

the range of interest. These transducers have the most desirable technical specifications 

regarding bandwidth, thermal characteristics, robustness, accuracy, durability and size [15]. 

Moreover, these transducers have a temperature range of up to 620 K, much higher compared 

to 423 K of piezo-resistive sensors [16]. Therefore, piezo-electric transducers are mostly used 

for recording in-cylinder pressure.  

 

A non-flush mounted pressure transducer may induce a substantial error in the absolute 

pressure value and also a phase difference as a result of the time required by the pressure wave 

to travel the distance from the combustion chamber through the duct to the transducer 

position [2]. Hountalas et al. [2] observed that duct geometry and engine speed affect the 

cylinder pressure diagram error significantly whereas the pressure diagram remains 
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undisturbed by the changes in engine load. Hountalas et al. [2]
 showed that the peak pressure 

error increases with an increasing duct length, decreasing duct diameter and an increasing 

engine speed. Access passage diameter equal to that of the sensor helps to eliminate Helmholtz 

resonance [16]. A transducer adapter system with a natural frequency higher than the 

maximum frequency content of the pressure signal can eliminate noise interferences [3]. An 

alternative way to attenuate the noise interferences is to use an adaptive digital filter to filter 

the noisy cylinder pressure trace. 

 

The mechanical vibration noise is attenuated by means of acceleration compensated sensors 

and bulk of the electrical noise can be reduced by proper insulation of the system transducer-

cable-charge amplifier. But, the significance of the errors discussed here depends on the kind of 

analysis. Indicated mean effective pressure (IMEP) is very sensitive to crank-angle phasing error 

and thermal shock but rather insensitive to absolute pressure referencing and random noise 

whereas heat release analysis is sensitive to all the errors discussed thus far. The recorded 

pressure trace has to be processed to extract reliable information. Therefore, a more reliable 

approach would be to use a filter with suitable specifications to reject the unwanted frequency 

components and allow the information signal components to pass through.  

2.2. Type of filters used and their characteristic parameters 

 

In-cylinder pressure analysis is usually a four-step process consisting of level correction, angle-

referencing, cycle-averaging and filtering. This study stresses upon the last two steps.  F.Payri et 

al. [5] used an adaptive low-pass finite impulse response (FIR) filter for online analysis of the 

pressure signal, cut-off frequency being determined by taking into account the signal-to-noise 

ratio of the signal (based on a cut-off harmonic map). The authors determined the cut-off 

harmonic as the point where the average cycle harmonics converges with the non-cyclic 

harmonics, attributable to signal noise and cycle-to-cycle variations. They used Remez 

algorithm [17] for obtaining the filter order and the coefficients. It was observed that the filter 

order increases with increasing load and speed. 
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R.Douglas et al. [6] used simple hardware electrical low-pass filter to attenuate the noise 

components from the pressure trace and applied timing correction to account for any group 

delay caused by the online filtering. A center-weighted moving average filter was also proposed 

for the post-processing of the recorded pressure although Shi et al. [7] observed that a moving 

average filter might not eliminate duct resonances properly whereas sharp pressure 

fluctuations owing to premixed combustion can be also distorted. Moreover, the smoothing 

capability of the moving average filter depends on the sampling interval. F.Payri et al. [9] chose 

cut-off frequency of the filter such that there is no statistical difference between the signal and 

noise at that point.  

                    

 

                    Fig 2.2: Map for Cut-off frequency (Adapted from [5])          

  

The challenge is to determine the pass-band edge (corner) frequency adaptively so as to 

segregate the noise and the information frequency components. Different methods have been 

studied and employed in the literature in order to determine an appropriate cut-off frequency 

of the filter. Direct elimination of high frequency band can create overshoots in the pressure 

signal (Gibbs effect) [5] which results in non-negligible errors in heat release calculation. Shi et 
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al. [7] suggested the use of Hanning window (window-sync filter), defined between two cut-off 

frequencies viz. stop-band initial frequency and stop-band final frequency, to mitigate the Gibbs 

effect by smoothing the transition (increasing the roll-off). Savitzky et al. [8] proposed a slightly 

more complicated but accurate filtering procedure based on least squares fit, also known as 

Savitzky-Golay filter. 

Table 2.1: Comparative analysis of the filters used for noise attenuation 

                   Proposed Online Filters                                Comments 

A variable-order low-pass FIR filter by F.Payri 
et al. [5] 

The cut-off is determined based on a preset 
frequency cut-off map and therefore is non-
adaptive. Number of samples (1440) per cycle 
is too low. The operating range of the engine 
was 1000-3000 rpm at all loads. 

A low-pass hardware filter with corner 
frequency equal to half of sampling frequency 
by Douglas et al. [6] 

This choice of cut-off frequency is not accurate 
as noise components might be present below 
the cut-off range determined used this 
procedure. 

 A mapped cut-off frequency filter by Martin 
et al. [9] 

The stop-band initial frequency varies linearly 
only with engine speed from 1250 rpm to 
4000 rpm. However, this does not take into 
consideration the variation of the frequency 
components with engine load. 

Ithaco electronic order 8 Bessel filters by 
J.A.Eng. [14] 

The cut-off frequency was chosen to be equal 
to the first circumferential mode frequency. 
This is more useful for offline analysis rather 
than online pressure analysis. 

 

F.Payri et al. [9] found that sharp heat release peaks caused by premixed combustions were 

smoothed and therefore suggested that smoothing methods are not frequency sensitive and 

hence not recommended. Kosarev et al. [10] proposed an optimal Weiner filter with an 

assumption that 90% of the Fourier spectrum constitutes of noise with constant intensity; the 

cut-off frequency being the point where the ratio between the harmonic level and the standard 

deviation of the noise is unity. 

 

To summarize, a wide variety of filtering options have been used so far in order to eliminate the 

high frequency noise from the in-cylinder pressure trace.  The general idea is smoothing is not a 
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feasible filtering option because of its poor performance in the frequency domain. Therefore, a 

filter with desirable properties in the time domain as well as in the frequency domain is of 

prime importance. Table 2.2 illustrates a comparative study of the filters used in the previous 

works. 

2.3. Identification of different sources of noise from the in-cylinder pressure trace 

 

F.Payri et al. [11] presented the concept of pressure signal decomposition in order to perform 

an improved combustion noise analysis. F.Payri et al. [11] noted that with the increase in 

engine speed, there is an energy level increase in the low, medium as well as high frequency 

components of the cylinder pressure signal. The authors concluded that sound quality of 

combustion noise is highly correlated with the combustion chamber resonance signal energy 

content relative to that in the pseudo-motored signal. 

  

Asad et al. [12] stated that the quality of the pressure data from a non-flush mounted 

transducer can be improved by accounting for the access passage resonance frequency given by 

fn=c/4L where ‘fn’ is the passage resonance frequency in Hz, ‘c’ is the speed of sound in m/s and 

‘L’ is the length of the access passage in meters. While analyzing the pressure data in the 

frequency domain, the transient angular-speed variation has to be accounted for so as to 

convert the data from the ‘crank angle domain’ to the ‘time domain’ which can add significantly 

to the computational overhead. Due to the variation of the pressure frequency spectrum with 

change in engine speed, the usual practice in the industry is to set the minimum filter cut-off 

frequency to at least 100 times the cylinder firing frequency [12]. Hirose [13] stated that the 

pressure oscillations can be considered acoustic in nature since the amplitude of the 

fluctuations are small relative to mean cylinder pressure.  

2.4. Challenges in filter design 

 

There are various challenges in the process of designing a filter to suit the requirements of the 

diesel engine in terms of preserving vital information in the cylinder pressure trace. Usually, all 

electrical filters induce a certain amount of phase shift in the filtered output. A simple phase-
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less/zero-phase filter is not an optimum solution to this problem. The reason behind this is an 

abrupt increase in the pressure trace after the start of combustion. However, even a zero-phase 

digital filter fails to track this abrupt increase in the cylinder pressure and the consequent shift 

with respect to the original trace is non-negligible. The designed filter has to be smart enough 

to make an approximation of the start of combustion and modify the filtered output 

accordingly so as to eliminate this apparent shift.  

         

 

Fig 2.3: Shift in the filtered pressure due to abrupt increase in pressure due to combustion 

 

Fig 2.3 shows the output of a five-point moving average filter and a zero-phase Butterworth 

filter to a noisy pressure trace. Determination of essential filter parameters such as cut-

off/corner frequency, order of the filter, pass-band characteristics etc. is also a point of concern 

especially when the filter is operating online. Since the frequency spectrum of the pressure 

trace changes with the variation of engine speed and load, having a preset/pre-determined cut-

off frequency for all modes of operation is not the proper approach. Therefore, a more 

appropriate approach is to adopt an adaptive mechanism for selecting the cut-off frequency for 

the filter on an online basis. The type and bandwidth (pass-band and transition band) of thex 

filter has to be determined based on frequency response of the cylinder pressure trace. Since 

most of the noise and resonant frequency components are predominantly in the high frequency 

zone, a low-pass filter can attenuate the noise components. Filter type is also important 

because different filters have different roll-off factors and pass-band ripples. Impulse response 

of the filters can also be a determining factor in the choice of filter. 
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3. STUDY OF IMPORTANT PARAMETERS AND FILTERS 

 

The cylinder pressure trace is an important source of information in order to carry out noise 

and thermodynamic analysis (usually combustion analysis). It provides a variety of information 

e.g. heat release rate (HRR), start of combustion (SOC), IMEP (Indicated Mean Effective 

Pressure), maximum rate of pressure rise, peak cylinder pressure and crank angle 

corresponding to peak cylinder pressure, end of combustion (EOC) etc. Since many of these 

parameters are derived from the in-cylinder pressure trace and heat release rate, a high fidelity 

pressure recording is essential for correct analysis of cylinder pressure in diesel engines. Use of 

an electrical filter to attenuate the cylinder pressure noise results in a phase shift that can 

affect thermodynamic analysis e.g. one degree CA shift in a single pressure cycle can cause an 

error up to 5% in the IMEP [12]. Errors in IMEP are primarily caused by thermal shock, crank 

angle phasing errors and transducer sensitivity [18]. Therefore, even before filtering of the 

pressure data, care has to be taken to acquire pressure data with high fidelity so as to nullify 

the effect of thermal shock and CA phase errors. 

3.1. Heat Release Rate  

 

Heat Release Rate (HRR) analysis is used in diesel engines to obtain vital information regarding 

the performance and emission characteristics of the engines. Heat Release formula can be 

derived from the first law of thermodynamics for an open system taking into consideration the 

effects of heat transfer, crevices, blow-by and fuel injection effects [12,19]. The gross heat 

release rate (measured from IVC to EVO) is given by 

                                                                                                                                                        

                                                                                                                                                                              

where,         is the fuel chemical energy released due to combustion,        is the change in 

sensible energy,         is the piston work done,           is the heat transferred to the chamber walls, 

the mass flux term            is the flow across the system boundary. However, assuming the 

cylinder chamber contents as single zone, neglecting the heat transfer to the chamber wall, 

hti
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crevice volume and effects of fuel injection [12], the apparent or net heat release [19] during 

combustion can be given by 

                                                                                                                                          

 

where, p is the in-cylinder pressure, V is the instantaneous cylinder volume and    is the 

adiabatic coefficient. This formula was used to calculate the value of the apparent heat release 

from the pressure data. It can be clearly seen that the heat release rate term has a derivative of 

the pressure term and therefore any error or high frequency noise in the measured cylinder 

pressure will appear with increased distortion in the apparent heat release term. The 

calculation was done on a crank angle basis and the value of the adiabatic coefficient was 

assumed to be constant over the cycle. Fig 3.1 shows the effect of cylinder pressure noise on 

Heat Release Rate. Attenuation of high frequency noise from the heat release curve allows the 

determination of different thermodynamic parameters with greater fidelity.                                                               

               

 

      Fig 3.1: Unfiltered pressure and heat release curves  

 

3.2. Indicated Mean Effective Pressure (IMEP) 

 

Indicated Mean Effective Pressure (IMEP) is defined as the measure of the indicated work or 

the power output per cycle i.e. the sum total of the compression stroke work and the expansion 

stroke work. It is given by                                                                                                               
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where,         is the sum of the compression stroke work and the expansion stroke work and      is 

the displacement volume of the cylinder. However, this corresponds to gross IMEP 

measurement whereas if work done in all the four strokes of the engine is taken into 

consideration, the measured IMEP is called net IMEP. The formula for the measurement of 

IMEP [19] is given by  

                                                            (3.4) 

 

where,          is the average pressure over crank angle interval (if measurement is done in crank 

angle domain),      is the displacement volume of the cylinder and        represents the change in 

the cylinder volume over the crank angle interval. It is evident from Eq. 3.4 that noisy pressure 

data can obscure the IMEP calculation and thereby hamper the cylinder pressure analysis.    

3.3. Study of filters suitable for cylinder pressure signal processing 

3.3.1. Filters 

 

Filtering is a class of signal processing, the defining feature of filters being the complete or 

partial suppression of some aspect of the signal. Most often, this means removing of some 

frequencies and not others in order to suppress interfering signals and reduce background 

noise. Filters are characterized by the following important parameters. 

Cut-Off Frequency (fc): Also referred to as the corner frequency, this is the frequency or 

frequencies that define(s) the limits of the filter range(s). It is the desirable cut-off point for the 

filter. 

Stop Band: The range of frequencies that is filtered out.  

Pass Band: The range of frequencies which is let through and recorded.  

Transition Band: The range of frequencies between the pass-band and the stop-band where the 

gain of the filter varies with frequency.  
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Digital filters are preferred in this case as they directly implement the mathematical algorithm 

on the sampled or digitized signal.  Primarily, digital filters can be broadly classified into two 

categories namely Infinite Impulse Response (IIR) filter and Finite Impulse Response (FIR) filter. 

3.3.1.1. IIR (Infinite Impulse Response) Filter 

 

IIR filter has an impulse response function that is non-zero over an infinite length of time. It 

uses feedback and therefore the phase shift is a non-linear function of frequency. IIR filter is 

derived from analog filters and make poly-phase implementation possible. Another salient 

feature of IIR filters is that they have sharper roll-off compared to FIR filters of the same order. 

IIR filters require less computational memory compared to FIR filters. High computational 

efficiency and short delays make IIR filters an attractive alternative. IIR filters can be set up as 

online calculation channels for real-time digital filtering.  

                                                                                                 

Fig 3.2: Sample IIR filter block diagram  

 

3.3.1.2. FIR (Finite Impulse Response) Filter 

 

An FIR filter has an impulse response of finite duration i.e. it settles to zero in finite time. Since, 

the filter does not use feedback, the phase shift is linear but it requires more computing power 

than an IIR filter. The most significant advantage of FIR filters is their linear phase 

characteristics. FIR filters have better delay characteristics compared to their IIR counterparts 

but they require more memory. FIR filters do not rely on feedback i.e. they are dependent only 

on the inputs. FIR filters are stable compared to IIR filters when subject to distortion 
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adjustments. They are non-recursive and are not suitable for simulating analog filter responses. 

FIR filters are available only in software; they cannot be set up as calculation channels and must 

be applied as transformations once the acquisition is done. An FIR filter requires a very high 

number of coefficients which should be greater than or equal to at least four times the 

sampling frequency divided by the lowest cut-off frequency specified.                                                

                                  

     Fig 3.3: A discrete-time FIR filter of order N and containing N+1 taps 

 

In spite of non-linearity of phase, IIR filter is more suitable for this work as compared to FIR 

filter, because of its low memory requirement and sharper roll-off factor compared to FIR filter 

of the same order. In addition to that, IIR filters are more suitable for real-time digital filtering. 

The non-linearity in phase was handled in this work by means of a forward and reverse digital 

filter which will be discussed in detail in later chapters. 

3.3.2. Butterworth filter: Characteristics of IIR Filters 

 

There is a wide variety of IIR filters available such as Butterworth filter, Elliptic (Cauer) filter, 

Bessel filter, Chebyshev filter etc. Among all these filters, Butterworth has the flattest pass-

band response and poor roll-off rate. Chebyshev filter has a steeper roll-off and more pass-

band ripple (Type I) or stop-band ripple (Type 2) than a Butterworth filter. Chebyshev filters 

minimize the error between the idealized and the actual filter characteristics over the range of 

the filter, but with inherent pass-band ripples. An elliptic filter (also known as Cauer filter) is 

characterized by an equiripple (equalized ripple) in both pass-band and stop-band. The amount 

of ripple in each band is independently adjustable and it has the fastest transition in gain 
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between the pass-band and stop-band, for given values of the ripple (equalized or non-

equalized). Bessel filter has the best phase response and the slowest of all roll-off rates. But, a 

higher order of Bessel filter is required as compared to a Butterworth filter in order to perform 

the same level of filtering which adds to the complexity.  

      

 

       

 

Fig 3.4: Frequency responses of fifth order low-pass IIR filters with cut-off frequency of 0.5 

normalized units 

 

As the filter should operate online, the processing time of the filter should be small enough as 

greater processing time can introduce unnecessary delay in the system. Therefore, the order of 

the filter has to be chosen in such a way so that the roll-off is not very steep as faster roll-off in 

frequencies transforms to slower response in the time domain. 
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4.   EMPIRICAL SET-UP 
 

This section explains the layout of the engines used for obtaining empirical results and the 

mode of connection between the engine chamber and the pressure recording devices and its 

accessories.  

4.1. Single-cylinder Research Engine 

 

The research carried out as part of the thesis work is based on two research engines in the 

laboratory. One of them is the single-cylinder research engine. One advantage of this engine is 

that the length of the access passage (glow plug adapter) is known which makes it easier to 

correlate the peak noise frequency with the access passage frequency. Table 4.1 shows the 

single-cylinder engine specifications. It is evident that the pressure sensing tip is set back from 

the chamber surface by 23 mm. 

                            Table 4.1: Single-cylinder research engine specifications 

Number of Cylinders 1 

Type 4-Stroke 

Bore 95 mm 

Stroke 105 mm 

Connecting rod length 176 mm 

Compression ratio 16.2 

Duct length 23 mm 

Duct diameter 9.6 mm 

Injection System Common Rail 

 

4.2. Ford Puma Research Engine 

 

The Ford Puma engine is a four-cylinder research engine. Majority of the online cylinder 

pressure analysis work was done on this research engine. This engine is also referred to as the 

“Box Engine” since both the bore and stroke are equal. Although it has four cylinders, research 
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is conducted on cylinder number one, which is isolated from the other cylinders. The table 

below shows the engine specifications. 

           Table 4.2: Ford Puma research engine specifications 

Number of Cylinders 4 

Type 4-Stroke 

Bore 86 mm 

Stroke 86 mm 

Connecting rod length 144 mm 

Compression ratio 18.2 

Injection System Delphi Common Rail 

 

The major difference between this engine and the single-cylinder engine, given the scope of the 

project, is that no information is available regarding the mounting scheme of the transducer. 

Assuming that the analysis done on the single-cylinder engine is valid, the same procedure can 

be used to back-track an approximate length of the duct (if at all present) through which the 

transducer is mounted in the Ford engine. This engine has higher compression ratio compared 

to the single-cylinder engine. 

4.3. Pressure Transducer System 

 

The pressure transducers used for pressure acquisition are different for the two engines in the 

laboratory. The transducer mounted on the single-cylinder engine is Kistler 6052B1 whereas the 

one mounted on the Ford engine is AVL GU13P. This section explains the working principle and 

salient features of Kistler 6052B1 and AVL GU13P transducer.  

4.3.1. Pressure Transducers 

 

Kistler 6052B1 is a very small pressure sensor with integrated connecting cable. The natural 

frequency is very high and therefore it is suitable for knock detection. Owing to its high 

sensitivity, a high precision and good signal-to-noise ratio (SNR) is obtained. It gives a sensitivity 
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of -20 pC/bar which varies at most by   0.5% within the temperature range of 200   50   deg C. 

More specific transducer specifications are shown in the Table 4.3. 

Table 4.3: Kistler 6052B1 pressure transducer specifications 

Range Bar 0-250 

Sensitivity pC/bar 20 

Natural frequency kHz 130 

Operating temperature range  deg C -50-400 

Overload  Bar 300 

Tightening torque Nm 1.5 

Weight, with cable G 20 

Linearity, all ranges at RT %FSO        0.4 

Plug, Ceramic insulator  M4X0.35 

Capacitance without cable pF 5 

 

AVL GU13P is a sensitive piezo-electric pressure transducer that is suitable for combustion 

analysis of diesel engines via M8 and M10 glow plug bores. It has a high measuring and 

operating temperature range that is necessary for the cylinder pressure acquisition system. 

More details of the specifications of the transducer are available in Table 4.4. 

                                                                           

Fig 4.1: [a] Kistler 6052B1 Pressure Transducer (Adapted from [22]); [b] AVL GU13P Pressure 

Transducer (Adapted from [23]) 

                                                                    

 



[a] [b] 
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           Table 4.4: AVL GU13P pressure transducer specifications 

Range Bar 0-200 

Sensitivity pC/bar 15.8 

Natural frequency kHz 130 

Operating temperature range  deg C 0-400 

Tightening torque Nm 1.5 

Linearity, all ranges at RT %FSO        0.3 

 

4.3.2. Charge Amplifier 

 

The signal from the pressure transducer is conditioned by a charge amplifier which converts the 

charge input into an amplified analog voltage output. The charge amplifier used in the 

laboratory for pressure acquisition in both the engines is Kistler 5010. This charge amplifier has 

the ability to work reliably with high and low impedance sensors for both dynamic and quasi-

static measurements. 

Table 4.5: Kistler 5010B0 Dual mode charge amplifier specifications 

Measuring Range Pc    10-999000 

No. of channels   1 

Frequency range KHz 0-180 

Operating temperature range  deg C 0-50 

Output signal V   10 

Voltage V 89-135 

Supply VAC 115 

Mass Kg 1.27 

Connection  BNC neg. 

Width mm 71 

Height mm 184 

Depth mm 129 

 






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The time constant of the charge amplifier can be adjusted to either ‘short’ or ‘long’ depending 

on the type of the test engine. Charge amplifier with short time constant is normally used for 

pressure acquisition in modern day high speed diesel engines. Usually, piezo-electric principle-

based pressure measurement is accompanied by a certain amount of inherent shift in the 

output signal, which is an undesirable change in the output signal over time. However, the 

signal drift can be controlled up to a certain limit by operating the charge amplifier in ‘short’ 

time constant mode or by using a drift compensation circuitry in the charge amplifier [12]. A 

low-pass filter can also be used within the charge amplifier in order to attenuate undesired high 

frequency noise accumulated in the cylinder pressure signal. Table 4.5 shows the charge 

amplifier specifications in detail. 

4.4. Pressure acquisition and recording system 

 

In the current experimental set up, the cylinder pressure data is acquired in crank angle 

domain. Incremental rotary encoders generate a square wave or sinusoidal output signal and 

enable counters and PLCs to calculate position, speed and distance. There are a few differences 

between absolute and incremental rotary encoders. Incremental encoders have output signals 

that repeat over the full range of motion. The position of the incremental encoder is not known 

just after it is turned on since the output signals are not unique to any singular position. Once 

an incremental encoder passes an index (either single- or multi-track design), the position 

information is absolute from that point onwards. However, these encoders are similar in terms 

of form and issues of count and directional information.  

4.4.1. Index-A and Index-Z signals 

 

An optical incremental rotary encoder is installed in the free end of the crankshaft to provide 

the crank angle data. The encoder shaft is aligned with the crankshaft axis by using a flexible 

coupling between the encoder shaft and a special mounting fitted into the crank shaft. The 

importance of the correct alignment of the cylinder pressure data with the corresponding 

cylinder volume has already been mentioned before. Therefore, in order to achieve this 

accuracy in terms of alignment, an optical encoder provides the following two outputs: 
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1. Index ‘A’ signal - It is a TTL signal that corresponds to a fixed angular rotation of the 

crankshaft. Usually, it is called ‘Index-A’ or clock signal. Optical encoder with an 

incremental resolution of 0.1 degree CA resolution is used in the current experimental 

set up. Although the resolution used here is very fine, there remains a scope for the 

signal to be down-sampled during post- or online processing to obtain data at a coarser 

resolution (0.5, 0.2 deg CA etc.) 

2. Index ‘Z’ signal – It is a TTL signal that is generated once every revolution of the 

crankshaft and represents a discrete angular position in the engine revolution. This 

signal is used as the start or event trigger signal in order to start the pressure-data 

acquisition and is also known as the ‘Index-Z’ signal or simply trigger signal. The start 

trigger position is usually aligned with either the bottom dead centre (BDC) or the top 

dead centre (TDC) which eventually makes it obligatory to determine the correct 

position of TDC and subsequent alignment of the encoder with this position. Several 

methods have been proposed in the literature regarding the estimation of correct TDC 

position. 

The two index signals generated by the encoder and the amplified signal from the charge 

amplifier are input to a PC system with a high-speed data acquisition card. The data card 

installed in the laboratory PC is an M-Series NI-PCI 6229. The data acquisition is externally 

triggered using the encoder’s Index-Z signal and externally clocked using the encoder’s Index-A 

signal. The pressure is usually acquired using an analog input channel with a range of 10 V. It 

can be seen that for a 16-bit ADC resolution, the measurement resolution is 0.61 mV which 

corresponds to a pressure measurement resolution of 0.012 bar with charge amplifier gain 

being 1 V=20 bars [12]. 

4.4.2. Cylinder pressure acquisition system 

 

The tested engine has the piezo-electric pressure transducer non-flush with the cylinder 

chamber and is fitted into the glow plug adapter on the cylinder head. The output from the 

pressure transducer is connected to the charge amplifier so as to convert the charge output 

into amplified analog voltage. Since the signal output from the pressure transducer is of a very 
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low level, the charge amplifier should be installed as close as possible to the transducer in order 

to avoid the interference of any external noise including electrical noise.  Samples are acquired 

at 0.1 degree CA resolution (once for every Index-A signal high or tick) and therefore for a 4-

stroke engine, 7200 samples are acquired during a single cylinder pressure cycle (one cycle of 4-

stroke engine corresponds to two revolutions of the crankshaft i.e. 720 degrees). 

 

                                                                                                                  

                                                                                                                                                                                                                            

 

Fig 4.3: Set up for cylinder pressure acquisition 

 

The charge produced by the pressure transducer is amplified to generate an analog voltage 

signal. Based on the calibration data provided by the manufacturer, the transducer and the 

charge amplifier have to be matched in order to get accurate measurements. The raw cylinder 

pressure data along with the corresponding heat release rate (HRR) curve are displayed online 

by using a NI Labview program.  
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5.   DESIGN OF FILTER: RESULTS AND DISCUSSION 
 

Post-processing of a noisy cylinder pressure data usually involves cycle-averaging followed by 

the use of a suitable filter with essential parameters so as to remove the unnecessary pressure 

pulsations from the pressure curve. The design of the filter suitable for this purpose was 

approached from the point of determination of filter parameters. As mentioned in the previous 

chapters, cut-off (corner) frequency, type of filter (low-pass or high-pass; IIR or FIR), order etc. 

are the important filter parameters that have to be determined before designing a filter.  

 

Spectral analysis of a cylinder pressure curve is carried out by using FFT. The cut-off frequency 

is determined adaptively on an online basis (cycle-by-cycle) as the cylinder pressure signal 

frequency components change with the change of engine run conditions (e.g. engine speed, 

engine load, intake pressure or boost etc.). The filter designed here is tested to operate 

successfully over engine loads (IMEP) in the range of 3 bar to 9 bar and up to an engine speed 

of 3000 rpm in the laboratory. The filter is able to eliminate noise from the cylinder pressure 

curve with transient change in the engine speed and load on an online basis. 

5.1. Spectral analysis of cylinder pressure: Determination of cut-off frequency 

 

Spectral analysis of the cylinder pressure data is done by first obtaining the autocorrelation 

function of the cylinder pressure data by means of a Matlab code. In the same code, FFT (Fast 

Fourier Transform) is used to obtain the power spectral density of the cylinder pressure signal. 

The number of points (i.e. 16000) used for FFT is chosen to be greater than the number of 

sample points which is 7200 so that a high frequency resolution is obtained. In this scenario, 

high frequency resolution leads to a better frequency analysis as it can be confirmed that no 

frequency peaks are missing. However, as mentioned before, the laboratory is equipped with 

two diesel engines. Fig 5.1 shows the frequency components of a cylinder pressure cycle in the 

single-cylinder research engine. The power spectral density (PSD) curve is standardized to the 

order of 107. However, the frequency components observed in this power spectral density 

diagram are dependent on the engine run conditions such as engine load, speed or boost etc. 
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Fig 5.1: Power Spectral Density and cut-off frequency of filter for a cylinder pressure cycle 

(Single-cylinder engine) 

Any variation in these values can lead to changes in the spectral components. This method is 

used to obtain the power spectral density diagram for all the cylinder pressure traces 

irrespective of the engine used for the cylinder pressure analysis. Result of similar analysis on 

the Ford Puma engine cylinder pressure data is shown in Fig 5.2. It can be clearly observed that 

the peak frequency components in the high frequency zone are different for the two engines.  

 

Since the filter has to operate online, the determination of cut-off frequency has to be done on 

an adaptive basis. This method of cut-off frequency determination helps in the proper isolation 

of noise and the information components of the signal. Slope of the power spectral density 

curve is measured on a point-by-point basis and a ten-point average is calculated in order to 

have a clear trend of the slope of the curve. Combustion signal spectral components gradually 

lose power with increasing frequency as shown in Fig 5.1 and 5.2. A sudden increasing trend in 

the slope on a decreasing PSD curve implies that noise components have started to dominate 

over the combustion frequency component.  
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Fig 5.2: Power Spectral Density and filter cut-off frequency for a cylinder pressure cycle (Ford 

Puma engine) 

The determination of the cut-off frequency is done by using the NI Labview code that operates 

online on a cycle-by-cycle basis. The cut-off frequency of the filter used for the single-cylinder 

engine pressure cycle as shown in Fig 5.1 is 3.1 kHz and for the Ford engine pressure cycle as 

shown in Fig 5.2 is 3.42 kHz. These cut-off frequencies correspond to specific engine cylinder 

pressure cycles and eventually vary from cycle-to-cycle. This provides a better leverage in terms 

of cycle-by-cycle processing of the engine cylinder data i.e. online analysis when compared to a 

filter having a preset cut-off frequency. However, the cut-off frequency for the same filter 

might change drastically with the change in the engine run conditions such as engine speed, 

load, intake pressure or boost etc. 

5.3. Determination of filter type and parameters 

 

It is clearly observed that the spectral components of the cylinder pressure consists of the 

information components (more clarification is provided in latter sections) in the low and mid 

frequency zone whereas the high frequency zone is primarily dominated by the unaccounted 
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noise. Due to an abrupt increase in the cylinder pressure trace when the combustion starts, all 

digital filters (IIR or FIR) result in an inherent shift at the start of combustion. Therefore, a 

combination of two filters is used in order to avoid this shift. The filter used in this work for 

identifying the start of combustion is an IIR filter. The comparative analysis of IIR and FIR filters 

earlier in Chapter 3 reveals that IIR filter fares better than FIR filters in case of cylinder pressure 

signal processing. But, one disadvantage of IIR filters as stated before is that they introduce a 

certain amount of non-linear phase shift in the output signal which is undesirable. Therefore, 

the filtering algorithm has to remove this non-linearity. 

5.3.1. Forward and Reverse Butterworth Filter 

 

A forward and reverse IIR filter is used to filter the raw pressure signal. Among all the IIR filters 

discussed in Chapter 3, it was evident that Butterworth filter has the best frequency response in 

terms of roll-off factor and pass-band ripple. Therefore, a forward and reverse Butterworth 

filter of order 5 (having a moderate roll-off factor) is used for this purpose. Fig 5.3 shows the 

step response of a 5th order Butterworth filter.  

            

     

   Fig 5.3: Unit Step response of a 5th order Butterworth filter 
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A lower order filter has less complexity but the transition band is longer which can cause 

unwanted ripples in the frequency response. A forward and reverse filter is synonymous to a 

zero-phase filter except that this filter has two separate filtering components. The first 

component filters the signals samples and then the filtered samples are reversed and fed into 

the second filter component. The output from the second filtering component is the same as 

the output from a zero-phase or a phase-less filter. The filtered output is unable to track the 

raw pressure signal and incurs a certain amount of undesirable shift at the start of combustion. 

Therefore, use of this filter right from the beginning of the cylinder pressure cycle is not viable. 

However, the proposed filter switches to the forward and reverse Butterworth filter after the 

combustion starts. This filter has a variable frequency response as the cut-off frequency is 

determined on an online basis and thereby varies from cycle to cycle. It is shown later that  the 

proposed filter performs better than a simple zero-phase filter and other filters in tracking the 

start of combustion from a cylinder pressure curve. 

5.3.2. Five-point moving average filter 

 

A weighted five-point moving average filter, a simple low-pass FIR filter, is also used as part of 

the proposed filter. It is also called Cascaded Integrated-Comb (CIC) filter. Since the high 

amplitude pressure pulsations are primarily observed after the start of combustion, any 

random electrical or background system noise appearing in the pressure trace before the start 

of combustion can be attenuated by a simple moving average filter. An N-point moving average 

filter generates its output signal y[n] by simply taking the arithmetic mean of the input samples 

x[n]. The filtered output y[n] is given by 

                                 

 

Fig 5.4 and 5.5 show the step response and the frequency response of a five point moving 

average filter respectively. The frequency response is mathematically described by the Fourier 

transform of the rectangular pulse and is given by 

               

 







1

0

][
1

][
N

i

inx
N

ny

)sin(

)sin(
][

fN

fN
fH




 (5.2) 

(5.1) 



29 
 

It is evident from Fig 5.5 that a five point moving average filter is incapable of separating one 

band of frequencies from another. The moving average filter is an exceptionally good 

smoothing filter (in the time domain) but an exceptionally bad low-pass filter (in the frequency 

domain) because of the non-negligible side-lobes in the frequency response. 

       

 

Fig 5.4: Unit Step response of a 5-point moving average filter 
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spike start and end point for cylinder pressure acquisition at 0.1 degree CA resolution. Fig 5.6 

shows that the random noise spike in the cylinder pressure trace was attenuated completely. 

 

             

 

Fig 5.5: Frequency response of 5-point moving average filter 

            

 

Fig 5.6: Filtering of random noise spike in the cylinder pressure before start of combustion        
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5.3.3. Proposed filter 

 

The proposed filter employs an algorithm to identify the start of combustion and switches 

between the two aforesaid filters. The five-point moving average filter starts operating from 

the beginning of the cylinder pressure cycle and shifts to the forward and reverse order five 

Butterworth filter once the start of combustion occurs in the cylinder pressure trace. The switch 

from the five point moving average filter to the forward and reverse filter allows the filtered 

output to track the abrupt jump in cylinder pressure that is caused by start of combustion.             

                                                Fig 5.7: Block diagram of the proposed filter 

 

                           

                                               

 

Fig 5.8: Block Diagram of the operating principle of the proposed filter 
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As shown in Fig 5.7, the start of combustion is identified by calculating the difference between 

the moving-average filtered and zero-phase filtered outputs. Once the difference crosses a 

certain threshold, (1 bar since the filter does not operate until this difference for the motoring 

curve exceeds 1 bar) the filter switches. Due to an intelligent switching between the filters just 

after the start of combustion, it is possible to avoid the shift in the filtered pressure trace. 

               

  

Fig 5.9: Comparison of different filters in tracking the start of combustion  

5.4. Decomposition of in-cylinder pressure 
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Fig 5.10: Decomposition of the unfiltered pressure trace (Single cylinder engine) 

 

Let P, M, C and N represent the unfiltered pressure, motoring, combustion-only and the noise 

signal respectively as functions of crank angle     . Using the pressure decomposition principle, 

the unfiltered pressure P can be expressed as  

                                                                                                                                                                    (5.3)                                                                                                                                                                              
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Fig 5.11: Decomposition of the unfiltered pressure PSD (Single cylinder engine) 
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        Fig 5.12: Decomposition of the unfiltered pressure trace (Ford engine) 
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        Fig 5.13: Decomposition of the unfiltered pressure PSD (Ford engine) 

 

5.5. Application of the filter on cylinder pressure and heat release rate (HRR) curve 

 

The proposed filter is tested on multiple engine run conditions e.g. speed (1200-3000 rpm), 

load (3-10 bar) and different combustion modes e.g. HCCI, LTC for both the engines. The 

filtered heat release rate curve for both the engines is also shown in the subsequent plots. 

         

                 

 

    Fig 5.14: Filtered and the unfiltered cylinder pressure trace (Single cylinder engine)       
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                         Fig 5.15: Filtered and the unfiltered heat release rate (Single cylinder engine)  

 

                 

 

     Fig 5.16: Filtered and the unfiltered cylinder pressure trace (Ford engine) 

                   

                  

 

Fig 5.17: Filtered and the unfiltered heat release rate (Ford engine) 
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crank angle i.e. 720 points. Filtering at 0.1 degree CA resolution leads to an improved filtered 

output. At present, an online down-sampled heat release curve is displayed while running the 

engine. Fig 5.17 and Fig 5.18 show that filtering in the 7200 point domain helps to eliminate 

noise and retain the information content of the signal some of which might be lost while down-

sampling the signal. 

                  

 

        Fig 5.18: Down-sampled heat release rate (Single cylinder engine) 

 

                

 

         Fig 5.19: 7200 point filtered heat release rate (Single cylinder engine) 
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recording can give erroneous results as all calculations are based on the assumption that the 

sample points are equispaced. A Labview code is used to record the transient engine speed and 

the sample interval for all the 7200 points on an online (cycle-by-cycle) basis. Fig 5.20 shows the 

engine speed fluctuation over one pressure cycle of Ford Puma engine.             

        

                                                 

 

Fig 5.20: Transient engine speed in a cylinder pressure cycle (Ford Engine) 
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Fig 5.21: Cylinder pressure cycle post interpolation (Ford Puma engine) 
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The speed of sound was calculated by using the formula for the speed of sound in gases [24] i.e. 

 

                                            

where c is the speed of sound in gases,     is the adiabatic coefficient i.e. the ratio of specific 

heat at constant pressure to constant volume, Rm is the universal molar gas constant and T is 

the mean cylinder temperature. It is assumed that the temperature remains constant, ideal gas 

law and adiabatic condition holds. For the sake of simplicity, it is assumed that these conditions 

hold inside the combustion chamber. 

 

The first harmonic of the standing wave in the access passage [12] is obtained from the formula 

             

 

where f is the access passage frequency, c is the speed of sound and l is the length of the duct 

or access passage. Based on the engine specifications provided in Table 4.1, the duct length (l) 

for the single cylinder engine is 23 mm. First, an entire single cylinder engine pressure cycle is 

simulated using SAES [20] and the concentration of each of the gases is used to determine the 

value of the universal molar gas constant for the gaseous mixture. The peak temperature point 

within the cycle is chosen as the sample point of interest. All measurements are done for this 

particular sample point. The speed of sound for this point is found to be 790 m/sec (approx). 

Therefore, using the formula mentioned above, the resonant frequency comes out to be 8.57 

kHz. This is very close to the peak noise frequency in the spectral analysis of the cylinder 

pressure trace as shown in figure 5.11. Therefore, it can be concluded that the peak noise 

frequency can be attributed to the access passage resonant frequency caused by acoustic 

resonance. 

 

However, a similar assessment is not possible for the Ford Puma engine since no information is 

available regarding the access passage length (for transducer mounting). But it is possible to 

estimate the approximate length of the duct in the Ford engine. Figure 5.13 shows that the 

peak noise frequency exists at around 14.5 kHz. SAES [20] is used to simulate the engine 
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gaseous concentration for the entire pressure cycle. Using the same method as used for the 

single cylinder engine, value of the universal molar gas constant is derived and the speed of 

sound is calculated for all the sample points. The speed of sound is averaged over all the sample 

points in the entire cycle (586 m/sec approx). Using Equation 5.5, the value of the duct length is 

obtained by averaging over all the sample points in the entire cycle is 7 mm (approx). 

 

Therefore, it can be concluded that the unaccounted noise can be primarily attributed to the 

access passage frequency with the peak noise power showing high correlation with the duct 

resonant frequency. However, smaller noise peaks surrounding the big one can be attributed to 

background noise such as EMI, electrical connections and wiring, combustion noise, chamber 

resonance etc. An increase in the engine load caused a shift in the noise frequency 

components. This is mostly because of the effect of combustion noise in the high frequency 

zone of the spectral components of the cylinder pressure signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

6.   CONCLUSION AND FUTURE WORK 
 

The effect of non-flush mounted pressure transducer on cylinder pressure was studied in detail 

in this work. Apart from non-flush mounting of the transducer, the cylinder pressure is 

obscured by pulsations caused by electro-magnetic interference, electrical connections and 

wiring and combustion noise among other factors. Vibration of the gases inside the cylinder 

chamber tend to induct errors in the cylinder pressure curve and consequently in the heat 

release curve. Important parameters related to combustion such as SOC, EOC, maximum rate of 

pressure rise, IMEP etc. that are calculated from the heat release curve derived from noisy 

cylinder pressure curve also become erroneous which is highly undesirable for combustion 

analysis. This work includes the design of an online filter in order to nullify the effect of 

unaccounted noise in the cylinder pressure trace. A concurrent display of filtered cylinder 

pressure and heat release provides leverage for an improved control over the test conditions 

with considerably less computational overhead as compared to post-processing of the data. A 

brief summary of the work done is given below. 

 

1. Segregation of the different signal components of the cylinder pressure trace was done 

so as to obtain the power spectral density curves for the motoring-only, combustion-

only and the unaccounted noise. It was observed that the high frequency components 

are dominated by the unaccounted noise whereas the mid-frequency components are 

dominated by the combustion-only curve and the motoring signal spectrum dominates 

the low frequency zone. 

 

2. A low-pass forward and reverse order five Butterworth filter is used in conjunction with 

a five point moving average filter to attenuate the high frequency noise from the 

cylinder pressure trace. The filter identifies the start of combustion and switches from 

the five-point moving average filter to the forward and reverse Butterworth filter just 

after the start of combustion. Therefore, the filter is able to track the abrupt increase in 

the cylinder pressure trace. The moving average filter is also capable of nullifying the 
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effect of any random noise in the cylinder pressure trace before the start of combustion. 

The cut-off frequency of the filter is determined on an online basis (cycle by cycle) and 

therefore no preset cut-off frequency for the filter is necessary. The cut-off frequency 

for the filter changes with change in the engine operating conditions and eventually it 

might vary from cycle to cycle. Most of the filters designed so far in the literature has 

either not been tested on all engine operating conditions (speed and load) or are only 

an extension of the offline filters where filter parameters were mostly preset. This filter 

was tested on the cylinder pressure trace over different engine speeds in the range of 

1000-3000 rpm and engine loads of 3-10 bar.   

 

3. Interpolation of the cylinder pressure was done in order to account for the variations of 

engine speed within a single cycle of the cylinder pressure. Since the engine speed 

varies within a single cycle, the sample points for a fixed sampling frequency are not 

equally spaced over time i.e. the sampling interval varies from one sample to the other. 

So, the analyses made based on these samples could be erroneous. The sample intervals 

were recorded as part of the transient engine speed analysis. The cylinder pressure 

trace was interpolated so as to obtain higher number of equally spaced points in a single 

cycle of the time domain. An increased number of sample points gives a better 

frequency resolution in FFT analysis and an equal sampling interval ensures the quality 

of the subsequent analyses. 

 

4. The noise in the cylinder pressure trace was characterized and the principal source was 

identified as the pulsations caused by the standing waves in the access passage 

connecting the pressure transducer. It was shown for the single cylinder engine that the 

peak noise frequency component in the PSD diagram of the cylinder pressure is highly 

correlated with the duct resonant frequency. However, calculations were done based on 

the duct length for the single cylinder engine. But, no information is available regarding 

the mounting scheme of the pressure transducer in the Ford Puma engine. Therefore, 

similar calculation as mentioned above was not possible in this work. However, 
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assuming that the correlation that was established for the single cylinder engine holds 

for the Ford engine, backtracking was done to find a possible length of the duct or the 

access passage in the Ford engine. 

 

The pressure decomposition technique helped in segregating noise components from the in-

cylinder pressure trace. It was observed that the energy content in the noise signal relative to 

that in the motoring signal governs the sound quality of combustion noise. Further studies 

might make it possible to achieve optimal combustion control by means of the development of 

optimal injection strategies fulfilling emission reduction and performance requirements in 

Diesel engines. Pollutant emission reduction can be achieved by activating or deactivating pilot 

injection keeping the combustion noise under a certain threshold. 

This work can be further extended to analyze the sensitivity of combustion noise or resonance 

to changes in engine parameters such as injection strategy, bowl geometry, EGR, coolant 

temperature, etc. [11]. The filtered cylinder pressure output can be used to validate different 

mathematical simulation models. Characterization of noise into various components might lead 

to the design of new combustion strategies so as to keep the noise level within a preset limit. 
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