
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2011

High Speed FPGA Implementation of Cryptographic Hash High Speed FPGA Implementation of Cryptographic Hash

Function Function

Olakunle Esuruoso
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Esuruoso, Olakunle, "High Speed FPGA Implementation of Cryptographic Hash Function" (2011).
Electronic Theses and Dissertations. 124.
https://scholar.uwindsor.ca/etd/124

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/124?utm_source=scholar.uwindsor.ca%2Fetd%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

High Speed FPGA Implementation of

Cryptographic Hash Function

by

Olakunle Esuruoso

A Thesis

Submitted to the Faculty of Graduate Studies through the Department of

Electrical and Computer Engineering in Partial Fulfillment of the

Requirements for the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2011

© 2011 Olakunle Esuruoso

High Speed FPGA Implementation of Cryptographic Hash Function

by

Olakunle Esuruoso

APPROVED BY:

__
Dr. J. Chen

School of Computer Science

__
Dr. R. Rashidzadeh

Department of Electrical and Computer Engineering

__
Dr. H. Wu, Advisor

Department of Electrical and Computer Engineering

__
Dr. R. Muscedere, Chair of Defense

Department of Electrical and Computer Engineering

 19 September 2011

iii

AUTHOR’S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices. Furthermore, to the

extent that I have included copyrighted material that surpasses the bounds of fair dealing within

the meaning of the Canada Copyright Act, I certify that I have obtained a written permission

from the copyright owner(s) to include such material(s) in my thesis and have included copies of

such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

In this thesis, a new method for implementing cryptographic hash functions is proposed. This

method seeks to improve the speed of the hash function particularly when a large set of

messages with similar blocks such as documents with common headers are to be hashed. The

method utilizes the peculiar run-time reconfigurability feature of FPGA. Essentially, when a

block of message that is commonly hashed is identified, the hash value is stored in memory so

that in subsequent occurrences of the message block, the hash value does not need to be

recomputed; rather it is simply retrieved from memory, thus giving a significant increase in

speed. The system is self-learning and able to dynamically build on its knowledge of frequently

occurring message blocks without intervention from the user. The specific hash function to

which this technique was applied is Blake, one of the SHA-3 finalists.

v

DEDICATION

To my beloved family, for their support.

vi

ACKNOWLEDGEMENT

I would like to thank my advisor, Dr. Huapeng Wu, for his guidance and support for this research

work. I would also like to thank Dr. Rashid Rashidzadeh and Dr. Jessica Chen for their valuable

feedback.

vii

TABLE OF CONTENTS

AUTHOR’S DECLARATION OF ORIGINALITY ... iii

ABSTRACT .. iv

DEDICATION ... v

ACKNOWLEDGEMENT .. vi

LIST OF TABLES .. ix

LIST OF FIGURES.. x

1. Introduction .. 1

1.1 Cryptographic hash functions .. 1

1.2 Applications of hash functions ... 4

1.3 Problem statement .. 7

1.4 Literature review ... 8

1.5 Proposed work .. 8

1.6 Thesis outline .. 9

2. Background ... 10

2.1 Current hash functions .. 10

2.2 Blake hash function ... 11

2.2.1 Message padding ... 15

2.2.2 Counter.. 16

2.2.3 State initialization .. 17

2.2.4 State update .. 18

2.2.5 G-function.. 19

2.2.6 Finalization .. 22

2.3 Implementations of Blake .. 23

3. Previous works on high-speed implementation of Blake .. 25

viii

3.1 Parallelism ... 25

3.2 Pipelining ... 26

3.3 Fast adders .. 27

4. Proposed design .. 29

4.1 Message preprocessor ... 31

4.2 Memory... 32

4.3 Decoder ... 33

4.4 System ... 36

5. Implementation and results .. 41

5.1 Hardware implementation ... 41

5.2 Software implementation .. 43

5.3 Testing procedure .. 43

5.4 Results ... 45

6. Conclusion and future work .. 49

6.1 Conclusion ... 49

6.2 Future work ... 49

BIBLIOGRAPHY .. 50

VITA AUCTORIS ... 54

ix

LIST OF TABLES

Table 1 Permutation table (σrc) .. 21

Table 2 Blake constants ... 22

Table 3 Finalization ... 22

Table 4 Blake’s Initialization Vector (IV) ... 23

Table 5 Sample decoder truth table ... 35

Table 6 Results (1) ... 45

Table 7 Results (2) .. 46

x

LIST OF FIGURES

Figure 1 Top level diagram of Blake ... 12

Figure 2 State initialization .. 17

Figure 3 State update: columns and diagonals ... 19

Figure 4 G-function ... 20

Figure 5 Pipelining applied to Blake ... 27

Figure 6 Fast adders .. 28

Figure 7 Message preprocessor ... 31

Figure 8 Memory ... 33

Figure 9 Decoder ... 34

Figure 10 System block diagram .. 36

Figure 11 Details of some system interconnections ... 37

Figure 12 ASM chart for controller unit of Blake .. 38

Figure 13 Illustration of FIN state implementation in Blake controller unit 39

Figure 14 Time to hash versus # of common blocks k in original and proposed designs............ 47

Figure 15 Time to hash versus # of messages k with 1 common block per message 47

Figure 16 Time to hash versus # of messages k with 5 common blocks per message 48

Figure 17 Time to hash versus # of messages k with 9 common blocks per message 48

1

CHAPTER 1

1. Introduction

1.1 Cryptographic hash functions

There is no doubt about the fact that electronic communication has revolutionized our

world. The world has progressed from communication with mainly letters written on paper and

sent through the post office to instant communication via email, chat and social networking

websites like Facebook and Google+. Many communication activities that were traditionally

done via post are now done through electronic means. These activities include transferring

documents, images, audio and video.

Communication needs to be secure to avoid fraudulent activities, such as

impersonation. Documents created by an institution such as transcripts can be digitally signed;

images created by a camera can be digitally watermarked, all in an effort to ensure secure

communication. Many schemes come into play when we are trying to provide information

security. These schemes, such as digital signatures and digital watermarking, utilize a number of

cryptographic primitives. Cryptographic hash functions are primitives or building blocks utilized

in the schemes that are used to provide information security. The cryptographic hash functions

on their own do not typically provide full information security; however, they play a critical role

in the schemes that do provide information security. Hence the security and speed of the

cryptographic hash function can significantly impact the overall security and computational

efficiency of an information security scheme.

2

A cryptographic hash function is one which converts an input data of arbitrary length

into a fixed-length output. Cryptographic hash functions are somewhat different from ordinary

hash functions used in computer programs; however, for simplicity cryptographic hash functions

will simply be referred to as hash functions throughout the rest of this thesis. The output of a

hash function must have certain properties; these are: pre-image resistance, second pre-image

resistance and collision resistance. These properties ensure that the hash function is secure. The

properties stem from the ways in which hash functions have been attacked. Pre-image

resistance implies that the hash function is a one-way function. That is, it should be infeasible

for an attacker to determine the original data (or message) from a given hash code or digest (the

digest is another name for the hash code or hash value). Second pre-image resistance

guarantees that even the slightest change in a message will change the digest. That is, if an

attacker is given a message, it should be infeasible for the attacker to manipulate the message

and still obtain the same digest as the original message digest. Collision resistance gives the

general analogy of fingerprint with respect to the message digests. That is, every message is

expected to have a unique hash code and it should be generally difficult for an attacker to find

two messages with the same hash code.

Mathematically, a hash function (H) is defined as follows:

H: {0, 1}* → {0, 1}n

In this notation, {0, 1}* refers to the set of binary elements of any length including the empty

string while {0, 1}n refers to the set of binary elements of length n. Thus, the hash function maps

a set of binary elements of arbitrary length to a set of binary elements of fixed length. Similarly,

the properties of a hash function are defined as follows:

x {0, 1}*; y {0,1}n

1. Pre-image resistance: given y= H(x), it should be difficult to find x.

3

2. Second pre-image resistance: given x, it should be difficult to find x’ such that H(x) =

H(x’) (where x x’).

3. Collision resistance: it should be hard to find any pair of x and x’ (with x x’) such that

H(x) = H(x’)

The properties of second pre-image resistance and collision resistance may seem similar

but the difference is that in the case of second pre-image resistance, the attacker is given a

message (x) to start with, but for collision resistance no message is given; it is simply up to the

attacker to find any two messages that yield the same hash value. The word “difficult” or the

phrase “hard to find” in this context implies that it will take a long time (many years) and a huge

amount of memory for a computer to perform the computation. That is, for example, it will take

many years and a lot of memory for a computer with today’s technology standards to compute

a message from its digest value; thus, the computation is regarded as infeasible. It is interesting

to note that as processing power of computers have increased over the decades, some hash

functions that were previously considered secure (possessing all the properties of pre-image,

second pre-image and collision resistance) are now considered “broken”. Also, if an attacker is

able to prove that the time it will take to ‘break’ a hash function, though not small has been

significantly reduced, that hash function will be considered weak. As computational power

increased and cryptanalysis of hash functions were performed, certain hash function standards

have also been revised because they were found to be weak. It is desirable to have a hash

function that is secure and computationally efficient.

In practise, the length of the input message to a hash function is not arbitrary, but it has

a maximum value. However, compared to the length of the resulting hash code, the length of

the input message may be considered arbitrary. A hash function operates by first breaking down

a message into blocks of a fixed size (unless the entire message is smaller than or equal to the

4

block size). In this breaking down process, the message is usually “padded” so as to make it fit

into a whole number of blocks without any ‘remainder’ or leftover bits. The block size (that is,

the number of bits contained within a block) depends on the hash function. Padding a message

consists of adding a certain number of zeros and ones to the end of the message. The padding

also typically involves embedding the length of the message within the padding bits; other

information may also be embedded within the padding bits depending on the hash function.

With the message padded and broken down into blocks, the hash function operates on it in an

iterative manner. The first message block is inputted to the hash function and the corresponding

hash code obtained. The second message block is then inputted along with the hash code of the

first block. Thus, the hash output from the first message block is called a chain or intermediate

value and it is fed back to the input of the hash function as the initial value for the compression

of the second message block. The initial value utilized for the compression of the first message

block is a constant for a particular hash function and it is often called the ‘initialization vector’.

The hash value obtained when the last message block is compressed is then taken as the hash

code (or digest) of the message.

1.2 Applications of hash functions

As mentioned earlier, hash functions are used in certain information security schemes.

These include: digital signatures, Message Authentication Codes (MACs) and digital image

watermarking. There are also simple applications of hash functions such as password storage. In

password storage application, the password entered by a user at the first log-in is not stored in

the computer system; rather the hash of the password is stored. To log into the system at

subsequent times, the user needs to enter the password; the system hashes it and compares it

with the stored hash. If there is a match, the user is granted access to the system otherwise the

5

user is denied access. The advantage of this scheme lies in the fact that if an attacker manages

to gain access to the system’s storage devices, only the hash of the password can be retrieved

and this cannot be used to recover the original password since the hash function is a one-way

function.

In digital signatures, hash functions are used to improve the efficiency (speed) and

reduce the bandwidth of the scheme. The digital signature provides a means of demonstrating

the authenticity of a message. It relies on the use of asymmetric keys for encryption/

decryption. If party A encrypts a message with a private key, the only key that can decrypt that

message is A’s public key. Conversely, if a message is successfully decrypted with A’s public key,

it implies that the message could only have been encrypted with A’s private key or in other

words - the message originated from A. The process of encrypting the message with A’s private

key is known as (digitally) signing the message. However, in practise, the message itself is not

signed, rather the digest (hash value) of the message is computed and that digest is signed. The

advantage in doing this is that first of all, the digest is of a fixed length, so the input to the

asymmetric encryption unit is always of a fixed known length, irrespective of the size of the

original message. Thus, we can say the bandwidth of the input is fixed and reduced from what it

would have been if the message itself was signed. Secondly, the process of encryption with an

asymmetric key is computationally intensive; thus the smaller the size the input, the faster the

operation.

A Message Authentication Code (MAC) can be used to verify that a received message is

identical to the one that was sent. That is, it can be used to verify that a message has not been

corrupted or manipulated in transit. However, it cannot be used to verify the identity of the

sender to a third party because the MAC can be computed by either the sender or the recipient.

A MAC is computed with a keyed- hash function. A keyed-hash function is one whose input

6

includes a key in addition to the message. The success of the operation relies on the secrecy of

the key. The sender and recipient must use the same key, yet the key must be kept secret from

third parties. To generate a MAC, the sender inputs the message and key to the hash function

(along with any applicable constant strings) in a manner specified by an algorithm such as HMAC

[1] or UMAC [2]. The generated MAC and message are then sent to the receiver. To verify that

the message has not been manipulated, the receiver also generates a MAC of the message using

the same hash function and algorithm. If the MAC generated by the receiver is the same as the

MAC received from the sender, then the receiver reckons that indeed the message has not been

manipulated. The scheme provides an easy way to verify the integrity of a message. For

efficiency in computing MACs by both the sender and the receiver, the hash function needs to

be able to operate at high speed and in a computationally efficient manner

 Another important application of hash functions is found in digital image watermarking.

Digital image watermarking is the process of embedding information (known as a watermark)

into a digital image. This serves the purpose of facilitating the detection of image manipulation.

The original structure of the watermark utilized by a sender is expected to be known by the

recipient. If the watermarked image is manipulated, the watermark is also affected; hence when

a recipient extracts the watermark, it will be different from that which is expected. It is a clever

means of providing information security in situations where the information is an image. Hash

functions are utilized in the watermarking algorithms; a common example is the Wong’s

watermarking algorithm [3]. In Wong’s algorithm, the image is divided into blocks of pixels and

each block is hashed independently. This is done when embedding the watermark and also

when extracting it for verification purposes. When embedding the watermark, the hash output

is truncated to a desired size and then it is XORed with a binary watermark to give the output

that will be encrypted and placed in the corresponding least significant bit positions of the pixels

7

of the image. Since the image can contain many blocks of pixels, it is imperative for the hash

function to be able to operate at high speed and in a computationally efficient manner.

1.3 Problem statement

 Hash functions, as previously established, are very useful in information security

schemes. Apart from the above mentioned applications (digital signatures, digital image

watermarking and so on), hash functions are also utilized in generating pseudo random numbers

which are in turn utilized in many cryptographic schemes. In most of these applications,

particularly digital signatures, digital image watermarking and Message Authentication Codes, it

is desirable to have the hash function operate as fast as possible especially when a huge traffic

or load of messages are expected to be operated on. Consequently, a lot of research effort has

been expended in the area of high speed implementation of standardized or widely used hash

functions. The US National Institute of Standards and Technology (NIST) has organized a

competition to select a new hash function standard that is expected to be atleast as secure as

and significantly faster than the current hash function standard (SHA-2). This is in line with the

objective of making the hash function run faster and increase overall performance when it is

utilized along with other primitives in information security schemes. The goal of this thesis is to

explore the high speed implementation of hash functions using Field Programmable Gate Arrays

(FPGAs) and the Blake hash function (one of the final round candidates in the competition

organized by NIST).

8

1.4 Literature review

 As previously mentioned, a significant amount of research effort has been expended in

the area of high speed implementation of hash functions. The Blake hash function like many

other hash functions was designed with the intent of making it capable of running at high speed.

It has a relatively simple algorithm; its compression function is a modified “double round”

version of Bernstein’s stream cipher “chacha” which has been intensively analyzed and found to

be of excellent performance and parallelizable [4]. Blake has been examined by researchers

seeking ways of providing high speed operation. One of the techniques for speed optimization

of Blake that is found in literature is parallelism [5]. Other speed optimization techniques that

have been applied to Blake are pipelining (in an area of the algorithm where pipelining is

feasible) [6] and the use of carry-save adders [6] in the compression function. These techniques

focus on the main ‘core’ of the hash function. Nowhere, to the best of our knowledge has any

attempt been made to improve the speed of the hash function by looking at the iterative/

repetitive process of hashing.

1.5 Proposed work

 Having examined the speed optimizations that have been applied to Blake in literature,

we noted that these optimizations only affect the core of the hash function and do not take into

consideration the iterative or repetitive process of hashing. The iterative/ repetitive process of

hashing as mentioned here, refers to the process by which a message is broken down into

blocks and each block is compressed in turn until the final hash code (digest of the message) is

produced. In this process, it is possible for redundant computations to occur. This happens when

the same message block is compressed more than once. For example, when two messages are

9

to be hashed in a digital signature scheme, if the first block of both messages is identical, then

the hash function is going to repeat the same computation twice when it is compressing these

blocks. Each compression takes a number of rounds or in other words, a number of clock cycles.

In Blake-256 (the typical implementation of Blake which gives a 256 bit digest), each

compression requires 14 clock cycles. If a thousand messages with the same initial message

block are to be hashed in an information security scheme and these redundant computations

can be somehow avoided, this gives rise to a savings of 1,000 x 14 = 14,000 clock cycles. This

gives rise to a remarkable increase in speed. This work seeks to provide a means of recognizing

and eliminating such redundant computations that may be encountered when hashing

messages and by so doing, improve the speed and computational efficiency of the hash

function.

1.6 Thesis outline

 The rest of this thesis is structured as follows: chapter 2 introduces and explains the

concepts of operation of the Blake hash function, which are necessary for a proper

understanding of both previous and current research works. Chapter 3 describes the speed

optimizations that have been applied to Blake in literature. Chapter 4 explains our new

proposed architecture which provides additional speed optimization for the Blake hash function.

Chapter 5 presents the implementation of the proposed architecture and the results obtained.

Finally, chapter 6 presents concluding remarks and recommendations for future work.

10

CHAPTER 2

2. Background

2.1 Current hash functions

 The hash functions in use today evolved from weaknesses found in previous hash

functions. The first publicly known hash function was developed by Ronald Rivest in 1989 and it

was known as Message-Digest Algorithm (MD2). In 1990, Rivest developed another hash

algorithm named MD4. MD4 was based on the Merkle-Damgard construction [7]. In 1991, Rivest

again developed another hash algorithm to replace MD4; this new algorithm was named MD5.

Meanwhile the National Institute of Standards and Technology (NIST) was also working on a

hash function standard. In 1993, NIST developed the Secure Hash Standard (SHA). This standard

was published by NIST as a US Federal Information Processing Standard (FIPS). However, shortly

after the publication, the algorithm was withdrawn due to an undisclosed "significant flaw". It

was replaced by a revised version named SHA-1. SHA-1 has been widely used in information

security schemes such as Transport Layer Security (TLS), Secure Sockets Layer (SSL), Internet

Protocol Security (IPsec), Secure Shell (SSH) and Pretty Good Privacy (PGP). SHA-2, a set of hash

functions (SHA-224, SHA-256, SHA-384, and SHA-512) was designed by the National Security

Agency (NSA) and published by NIST in 2001. These hash functions in SHA-2 are named

according to the number of bits of their digest; SHA-256 for instance has 256 bits in its digest.

SHA-2 was created as an update to the former standard (SHA-1).

Many of the hash functions mentioned above have either been broken or weaknesses

have been found in them. MD2, MD4 and MD5 have all been broken [8]. Collisions have been

11

found for SHA-0 [9] and some cryptographers have found algorithms that produce SHA-1

collisions in fewer than the expected number of evaluations [10]. This implies that SHA-1 is

weak. SHA-2 has some similarities to SHA-1 and since some weakness had already been found in

SHA-1, NIST decided to update the hash standard to a new standard which will be called SHA-3.

SHA-3 will not be derived from SHA-2; instead, NIST organised a competition in 2007 in which

anybody is free to submit candidate hash algorithms for the SHA-3. A "Draft requirements and

evaluation criteria of the SHA-3 algorithm" was published for public comment and the

evaluation criteria was updated by NIST based on public feedback. The competition started off

with 64 candidate submissions. Of the 64 submissions, NIST accepted 51 for the first round of

evaluations. The first round candidates were posted online at the NIST website for public

review; NIST also had its own internal review team. In 2009, based on public feedback and

internal reviews, the list of 51 candidates was reduced to 14 candidates for the second round of

the competition. After the second round of evaluations, the list of candidates was further

reduced to 5 for the final round. These five candidates are Blake, Groestl, Keccak, JH, Skein.

We selected the Blake hash function, one of the SHA-3 finalists, for this work on speed

optimization of hash function due to its public recognition as a secure and efficient hash

function. A description of the algorithm of Blake is provided in the following section.

2.2 Blake hash function

 The Blake hash function [4] is a SHA-3 proposal submitted to NIST by Jean-Philippe

Aumasson, Luca Henzen, Willi Meier and Raphael C.-W. Phan. The original submission was made

in October 2008 and a revision with some tweaks for the final round of the SHA-3 competition

was submitted in January 2011. The names of the tweaked versions of the hash function were

changed from BLAKE-28, BLAKE-32, BLAKE-48, BLAKE-64 to BLAKE-224, BLAKE-256, BLAKE-384

12

and BLAKE-512 respectively. These new names indicate the digest sizes for the various versions

of the Blake hash function. These digest sizes are the same as those of SHA-2 making it easy to

directly substitute Blake in applications utilizing SHA-2. The tweaks made on the original

submission were the change of the recommended number of rounds for BLAKE-224, BLAKE-256

to 14 (instead of 10) and the change of the recommended number of rounds for BLAKE-384,

BLAKE-512 to 16 (instead of 14).

A top-level diagram of Blake-256 with its inputs and outputs is shown in figure 1 below

(when we make reference to the Blake hash function, we normally refer to its core functionality

alone as depicted in figure 1; that is the unit that hashes only individual message blocks). The

main input to the hash function is the message block input and the main output is the digest (or

hash value). The message block input takes in a 512-bit message block which may represent

text, image pixels or any kind of information. There are other inputs (salt and counter), one of

which is optional.

Figure 1 Top level diagram of Blake

13

The salt input is an optional input that the user may utilize to introduce a user-controlled

parameter to compression of each message block. The salt is useful for randomized hashing. If

the salt is not used, its value is simply set to 0. For this work of speed optimization, we will not

make use of the salt. The counter input adds an extra security layer to the hash function. We

shall take a closer look at the counter in a later section.

 The designers of Blake did not re-invent the wheel; rather they put together

components which had been previously analyzed and found to be secure and effective to form

Blake. Blake works in an iterative manner just as most hash functions do; that is, the hash code

of the previous message block is fedback to the input of the hash function for the compression

of the next message block. However, Blake follows the Hash Iterative Framework (HAIFA)

method proposed by Biham and Dunkelman [11] and not the Merkle-Damgard (MD) iteration [7]

mode. HAIFA is an improved version of the MD construction. Blake does not follow HAIFA fully,

but it borrows from it. The main ideas behind HAIFA are the introduction of the counter, a

special initial value (IV) for each digest size and a salt to the input of the compression function.

Also the length of the digest is included (in addition to the length of the message) in the padding

of the message. The Merkle-Damgard construct only includes the length of the message in the

padding. With Blake following the HAIFA iteration mode, it is able to provide resistance to

certain attacks that the MD construct could not adequately prevent such as length-extension.

Blake's internal structure is called a local-wide pipe structure [4]. The wide pipe

construction [12] is a type of structure in which the internal state of the hash function (from

which the hash value is extracted) is much larger (in number of bits) than the hash value. The

local-wide pipe was inspired by the wide-pipe structure; in local-wide pipe, the large internal

state is initialized from an initial value (or chain value), a salt and a counter. The advantage of

the local-wide pipe structure is that it makes ‘local’ collisions impossible. Blake's compression

14

function borrows heavily from Daniel J Bernstein's stream cipher named "chacha". Bernstein, a

professor of mathematics at the University of Illinios at Chicago also submitted a SHA-3

candidate known as Cubehash to NIST, but Cubehash was eliminated in the second round of the

competition. Blake's compression function is actually a modified 'double round' of chacha [4].

It’s a modified version because the designers of Blake added the input of a message word and a

constant to the original chacha function. Chacha had been previously analyzed by Aumasson

(one of the designers of Blake). From his analysis, Aumasson became convinced of the

remarkable simplicity and security of chacha, leading to the adoption of chacha in Blake. Chacha

was designed to be immune to all kinds of side-channel attacks and Blake automatically

inherited this property. Side channel attacks are attacks which do not attack the compression

function but attack its implementation on systems which leak data (such as timing and power

analysis information). For example, the power consumption trace of a program running in a

microcontroller is full of information. Chacha's performance was found to be excellent during

the analysis and it was found to be strongly parallelizable. Again, Blake inherited these

properties and this makes it an efficient hash function.

The first step in hashing a message with Blake is to pad the message and break it into

blocks of 512 bits. The details of the padding are explained in the next section. The block size of

Blake-256 is 512 bits but the word size is 32 bits; thus each message block contains 16 words.

Blake’s algorithm initializes an internal state from the initial (or chain) value and other input(s)

(salt, counter) and then updates this internal state in a number of rounds by performing

computations on the state in each round using pieces (words) of the message block and some

constants. The salt input, when not used is set to 0; thus it acts as a constant for the initialization

of the internal state. After the rounds of state update have been all been completed, a

finalization process is performed which extracts the hash code from the internal state. This hash

15

code could be the digest for the message or it could simply be an intermediate or chain value

which will be used as the initial value for the initialization of the internal state for the next

message block. However, if message block being processed is the last message block of the

message, then the hash value obtained at the finalization stage is the digest of the message.

2.2.1 Message padding

 A message is padded before hashing it for a number of reasons; first of all, the message

is padded so that it can be divided into an integral number of blocks. For example, if a message

has 592 bits, without padding the first 512 bits of the message can be placed in a block but then

80 bits are left ‘hanging’. To solve this kind of problem, the message is padded to make it a 1024

bit message. Now it can be divided into 2 blocks. Padding is done by appending a number of

zero and one bits at the end of the message. Padding is also done to embed certain properties

of the message into the last message block. This enhances the security of the hash function

against certain types of attacks. In Blake, a message (M) is padded by first extending its length,

|M|, such that |M|= 447 mod 512. In effect, this means the remainder when |M| is divided by

512 is 447. This length extension is done by appending a '1' bit to the end of the message

followed by a sufficient number of ‘0’ bits. Having achieved length extension, the size of the

digest and length of the message are then embedded into the message. 512-447 = 65; 64 bits

are used to embed the length of the message while 1 bit is used to embed the size of the digest.

The digest size is set to 1 for Blake-256, Blake-512 and set to 0 for Blake-224, Blake 384. Thus

the padding operation can be summarized as

 M <- M&1&00000.....&|d|&|M|

where |d| is the digest size, |M| is the length of the original (unpadded) message; and ‘&’

represents concatenation.

16

2.2.2 Counter

 The counter is an input that springs from the HAIFA iteration mode specification. Most

of the recent proposals on the way compression functions are to be iterated such as randomized

hashing and the enveloped Merkle-Damgard construction can all be instantiated as part of

HAIFA. The counter represents the sum of the number of message bits that have been hashed so

far and the number of message bits in the current block to be hashed. HAIFA makes the

compression of each block a function of the counter. That is hi = C (hi-1, mi, #bits, salt) where

‘#bits’ is the counter. This provides extra security against fixed-point attacks. A fixed-point is an

initial value and message block pair (h, m) which when inputted to the hash function (H) gives H

(h, m) = h. That is the hash code computed for an initial value and a message block is the same

as the initial value. A collision may be obtained if a fixed-point is found because m and m&m

will give the same hash code. With the inclusion of the counter as an input for each message,

the attacker is forced to work harder in order to find a fixed-point. Moreover, even if a fixed-

point of the form (h, m, #bits, salt) is found, so that h = (h, m, #bits, salt), the attacker cannot

concatenate m to itself and still get the same hash code because the counter (#bits) would be

different for m and m&m. The following example illustrates how the counter value for each

message block in the Blake hash function is determined: suppose we have a message with 1020

bits. After padding, this will be broken into 3 blocks of 512, 508 and 0 message bits. The term

'message bits' is important because in the second and third blocks there will be some padding

bits, but since we are only considering message bits, we do not consider these. Thus, the

counter value for the first block is 512; for the second block it is 512+508 = 1020. For the third

block, following the definition, we ought to have the counter value also set to 1020; however,

whenever a block contains only padding bits without any message bits, the counter value is set

17

to 0 (irrespective of the number of bits that were previously hashed). Thus, for the third block in

our example, the counter value is set to 0.

2.2.3 State initialization

 The internal state of Blake has a local-wide pipe structure. The state is a 4x4 matrix of 32

bit state variables. Thus the state has 16 32-bit variables (or words). The internal state is a core

component of the Blake hash function. The inputs (apart from the message block) are used to

initialize the state; or in other words to determine the initial value of the state variables. The

initialization of some state variables is done by simply assigning the corresponding value of the

initial or chain value to the state variables. For some other state variables, the initialization is

Figure 2 State initialization

18

done by first XORing a word of the salt and a constant or XORing a word of the counter and a

constant and then assigning the result to the state variable. Figure 2 illustrates the state

initialization for all the state variables. In figure 2, Vi represents a state variable; hoi represents a

word of the initial or chain value; si represents a word of the salt; ci represents a constant word

and ti represents a word of the counter.

2.2.4 State update

 The algorithm of Blake updates the internal state once it has been initialized; this is

done by performing some operations on the state. These operations performed on the state

change the values of the state variables. The state update utilizes words of the message block

and it is performed by a compression function. Essentially the state update involves operations

like addition, rotations, XOR. The compression function of Blake which performs these

operations is called the g-function. The state is updated in a number of rounds. Each round

consists of some operations performed by the g-function on the state to update it. Since the

state is a 4x4 matrix; it has 4 rows and 4 columns. Each round of a state update can be broken

down into the update of the state’s columns and diagonals. These columns and diagonals of the

state are indicated by their distinct colours in figure 3. The state columns are first updated

starting from the first column on the left as indicated by the index of the g-function in the figure.

After all the columns have been updated, the four diagonals are updated in order. In Blake-256,

a full or complete state update consists of 14 rounds of state update. Since each round typically

takes one clock cycle, the full state update takes 14 clock cycles. A g-function operation on a

state column or diagonal utilizes 2 message words. Thus, each round of state update utilizes 16

message words (or 512 bits); in order words, each round of state update utilizes the entire

message block.

19

Figure 3 State update: columns and diagonals

2.2.5 G-function

 The g-function has the following inputs: 4 state variables, 2 message words and 2

constant words. It has 4 outputs which are same 4 inputted state variables. At the active clock

edge, new values are assigned to the state variables are stored; figure 4 illustrates this. The g-

function performs operations such as addition, rotation and XOR on the state variables. The

specific operations performed by the g-function depends on the column or diagonal of the state

that it is acting on (represented by the’ i’ subscript of the g-function) and the round number

(represented by ‘r’ subscript of σ) as given below.

20

Gi (Vx1, Vx2, Vx3, Vx4) at round, r, is evaluated as

 vx1 = vx1+ vx2 + (mσr (2i) ^ Cσr (2i+ 1))

 vx4 = (vx4 ^ vx1) >>> 16

 vx3 = vx3 + vx4

 vx2 = (vx2 ^ vx3) >>> 12

 vx1 = vx1+ vx2 + (mσr (2i+1) ^ Cσr (2i))

 vx4 = (vx4 ^ vx1) >>> 8

 vx3 = vx3 + vx4

 vx2 = (vx2 ^ vx3) >>> 7

In the operations described above, ‘>>>’ represents a rotation to the left and ‘^’ represents a

bitwise XOR operation. Vx1, Vx2, Vx3, Vx4 are state variables. From figure 3, the state column or

diagonal denoted by the subscript i in the notation Gi is evident. The message words (m) and

constants (c) utilized during a g-function computation are determined by a permutation table

named σ.

G-function

Vx1[31..0]

Vx3[31..0]

Vx2[31..0]

Vx1[31..0]

Vx4[31..0]

Vx2[31..0]

Vx3[31..0]

Vx4[31..0]

Msg[63..0]

Const[63..0]

Q

Q
SET

CLR

D

Figure 4 G-function

21

The permutation table σ can be visualized as a 2-dimensional array of integers. The first array

index specifies the row of the table, while the second array index specifies the column of the

table. The permutation table is displayed in table 1. The message block is also internally

represented as an array of message words m(0) to m(15); similarly, the constants employed in

the g-function are represented as an array of constant words c(0) to c(15). The notation mσr (2i)

represents a message word whose array index is determined by the permutation σr (2i). For

example, if the current round of the state update, r, = 2 and the second column of the state is

being updated (i = 1) then σr (2i) = σ2 2; from permutation table this gives a value of 12. Thus, mσr

(2i) = m (12).

r\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3

2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4

3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13

5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9

6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11

7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10

8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5

9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3

12 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4

13 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

Table 1 Permutation table (σrc)

22

The constants utilized in the g-function (such as Cσr (2i)) are determined in a similar manner. The

array of 16 constants is given in table 2 below:

c0 = 243F6A88 c1 = 85A308D3 c2 = 13198A2E c3 = 03707344

c4 = A4093822 c5 = 299F31D0 c6 = 082EFA98 c7 = EC4E6C89

c8 = 452821E6 c9 = 38D01377 c10 = BE5466CF c11 = 34E90C6C

c12 = C0AC29B7 c13 = C97C50DD c14 = 3F84D5B5 c15 = B5470917

Table 2 Blake constants

2.2.6 Finalization

 The finalization stage is the last process in the computation of the hash value of a

message block. This hash value (or code) may be a chain value or the digest of the message. In

this stage, the hash value is extracted from the updated state. The salt (s) and initial value (hi-1)

which were used to initialize the state are again used in the extraction of the hash code, but the

counter is not used.

Table 3 Finalization

23

As previously mentioned, when the salt input is not used, its value is set to 0 and it simply

functions as a constant. Essentially, a set of XOR operations are performed using the initial

value, salt and 2 state variables as shown in table 3 in this stage. Table 4 gives the initial values

used for the first block of a message (referred to as the initialization vector) in both the state

initialization and the finalization processes. It may be recalled from previous discussions that for

subsequent message blocks the initial value is given by the hash code (chain value) of the

previous message block.

IV0 = 6A09E667F3BCC908 IV1 = BB67AE8584CAA73B

IV2 = 3C6EF372FE94F82B IV3 = A54FF53A5F1D36F1

IV4 = 510E527FADE682D1 IV5 = 9B05688C2B3E6C1F

IV6 = 1F83D9ABFB41BD6B IV7 = 5BE0CD19137E2179

Table 4 Blake’s Initialization Vector (IV)

2.3 Implementations of Blake

 Blake has already been implemented on a wide variety of platforms. These include

software implementations using C, Python, Matlab; hardware implementations with Application

Specific Integrated Circuit (ASIC) and FPGA. In FPGA, Blake has been implemented on devices

from the two main FPGA vendors (Altera and Xilinx). In these platforms there have been efforts

to optimize the speed of operation of the hash function since this has huge advantages

particularly when hashing a large amount of messages in the various information security

schemes. Hardware implementations generally operate faster than software implementations.

24

In the next chapter we shall examine the speed optimizations that have already been done in

hardware.

25

CHAPTER 3

3. Previous works on high-speed implementation of Blake

Certain techniques have been applied to hardware implementations of Blake in an

attempt to optimize the speed of the hash function. These techniques are: parallelism,

pipelining and the use of fast adders. In the following sections we shall examine each of these

techniques.

3.1 Parallelism

 Parallelism [5] is one of the methods that have been applied for the speed optimization

of Blake. The main task that consumes time in the hash function’s algorithm is the state update.

The initialization is a process that simply depends on a few XOR gates and combinational logic;

this doesn’t consume time. Similarly, the finalization is a process that depends on XOR gates and

utilizes only combinational logic; it consumes a relatively small amount of time. However, for

the state update; first of all it utilizes the g-functions which have addition, rotation operations;

these can consume some time. Secondly, the full state update takes 14 rounds of similar g-

function operations. Thus, if the speed of the hash function is to be increased, one of the main

areas to consider would be the state update. The update of the state columns and diagonals can

be done sequentially; that is, one column (or diagonal) updated at a time or it could be done

with all 4 columns updated simultaneously. However, all the columns must be updated before

the diagonals are updated because the diagonal update makes use of the new state variable

values obtained from the column update. Parallelism is applied to Blake by updating all the

columns of the state simultaneously and then similarly updating all the diagonals of the state

26

simultaneously. This requires atleast 4 g-functions; alternatively 8 g-functions may be used,

however the last four g-functions will be dependent on the first 4 g-functions for their inputs in

this case. The speed of the hash function is improved by a factor of 4 through parallelism.

3.2 Pipelining

 In the g-function, some of the operations performed could take a relatively long period

of time. The g-function is a modified ‘double’ round of the stream cipher chacha. The fact that it

is a double round implies that the outputs of some operations in the g-function are inputs to

some other operations in the same g-function. In particular, computations involving the XOR of

message and constant words, one of which is given below:

vx1 = vx1+ vx2 + (mσr (2i) ^ Cσr (2i+ 1))

consume a longer time because there are three major operations involved. Thus, these

operations constitute the critical path of the g-function (the path with the longest delay).The

critical path influences the speed (throughput) of the overall computation. A long critical path

delay requires a long the clock period and hence the speed of the hash function is reduced.

However, a pipeline stage may be used to improve the speed. Since there are 14 rounds of

repeated g-function computations, if a pipeline register is inserted into the critical path of the g-

function; thereby creating a two stage pipeline, then the first stage of the pipeline for the next

round can be executed while the second stage of the pipeline for the current round is executing.

The net effect is an increase in the clock rate and consequently an increase in speed

(throughput) of the hash function. This pipeline technique was applied in [6]. Figure 5 illustrates

the method.

27

Figure 5 Pipelining applied to Blake

As seen in figure 5, when pipelining is applied, 3 g-function computations were accomplished

within a time period of t2; whereas without pipelining only 2 g-functions were accomplished

within the same time period.

3.3 Fast adders

 The third technique that has been applied for speed optimization in Blake is the use of

carry-save and carry-lookahead adders in the g-function. These are fast adders. The technique

was applied in [6]. Carries are a major source of delay in additions when ripple adders are used

because a carry needs to propagate to the last full adder before the sum can be considered

valid. The additions in the g-function of Blake are 32-bit additions; thus if ripple adders are used,

then the time it takes for a carry to propagate from the full adder (FA) at the least significant bit

(LSB) position to the full adder at the most significant bit position (MSB) can be significant. To

28

overcome this source of delay, 2 carry-save adders (CSA) are used when three numbers are to

be added, with a carry -lookahead adder (CLA) performing the final stage of the addition. This is

shown in figure 6 for a 2 bit number. The CSA is a FA connected in such a way that it adds

corresponding bits of the 3 numbers directly similar to the way we add numbers on paper. This

saves a significant amount of time since the few carries generated are added with a CLA. The

arrangement can be easily extended to 32 bits.

Figure 6 Fast adders

29

CHAPTER 4

4. Proposed design

 The speed optimizations techniques discussed in the previous chapter essentially focus

on the process of hashing one message block. These techniques are effective and aim at

reducing the time spent in hashing each message block, thereby reducing the overall time spent

in hashing a message which may contain many blocks. For example, if the time spent in hashing

a message block has been reduced through the use of fast adders from 50ns to 45ns and there

are 1000 messages to be hashed, each containing 10 message blocks; the minimum time that

would be spent in hashing these messages would be reduced from 0.5ms to 0.45ms. Thus, the

speed has been improved. A similar analogy holds for the techniques of parallelism and

pipelining. However, there is a particular situation in which the speed of the hash function can

be potentially increased further but these techniques cannot bring about the improvement. This

situation occurs when many messages which have some identical message blocks are to be

hashed. For instance, if message blocks 1 and 2 out of the 10 message blocks in the messages of

our previous example are identical but message blocks 3 to 10 are different, these messages will

still give distinct hash codes. However, the chain values (intermediate hash values) obtained for

message blocks 1 and 2 will be the same for all the messages. The implication of this, is that in

computing the digests of the 1000 messages, the hash function will perform the same

computation 2,000 times (the hash code of message block 1 will be computed 1000 times, the

same goes for message block 2, so in total there will be 2,000 identical or repeated

computations). If there was a way to bypass these repeated computations, this would certainly

30

lead to a significant increase in speed; the time taken to compute the hash codes would be

reduced by an additional 0.1ms.

 Our design takes the situation in which messages with common blocks are to be hashed

into consideration and provides a way of bypassing the redundant computations that would

otherwise have to be made; thus providing high speed operation. The design allows the

previously discussed techniques of parallelism, pipelining and fast adders to be applied to the

Blake hash function but in addition it provides a method of avoiding redundant computations,

thereby leading to a further increase in the speed of the hash function. The design is self-

learning; that is, it builds up its knowledge of common message blocks without intervention

from the user. The design incorporates three major components to facilitate these:

1. Message preprocessor: This component independently identifies common message

blocks in the messages that are being hashed, determines their initial values, counter

values and computes their hash codes.

2. Memory: A memory device is used to store the hash code of any common message

block that has been identified by the message preprocessor.

3. Decoder: This component is used to determine if an inputted message block is a

common message block. If the inputted message block is a common message block, the

decoder outputs the address of the memory location containing the hash code of the

common message block. In addition, it also outputs a signal which indicates to the hash

function unit that the hash code of the inputted message block is already available in

memory and consequently, there is no need to compute it.

In the following sections we shall discuss each of these components and how they interconnect

to achieve the desired operation.

31

4.1 Message preprocessor

 The message preprocessor is a microprocessor with software running on it to perform

the function of identifying any common message blocks within a sequence of messages. It has to

be able to run independently; that is it should run concurrently with the hashing of the

messages so that it does not delay or disrupt the hashing of the messages. In order to achieve

this, the external memory device from which the messages to be hashed are fetched should be a

multiport memory device, so that the message preprocessor has an independent access to the

messages through one of its ports and the rest of the system also has access to the same

messages through another port of the memory.

The preprocessor initializes reconfiguration of the decoder whenever this is required.

Figure 7 shows a block diagram of the preprocessor. An example of a preprocessing algorithm

would be to place 10 messages occurring in sequence in arrays; with each array element

containing a message block. A 3-dimensional array could be used to place the messages into

blocks; the first array index representing the message, the second array index representing the

message block and the third array index representing the individual bits of a message block. A

Message PreprocessorMultiport Memory

P
o

rt
 A

Port B Port C

Reconfig_data

Reconfig_init

Figure 7 Message preprocessor

32

comparison can then be made between message blocks at corresponding array positions to

determine if any of them have identical initial values and identical contents. The term “common

message block” refers to a message block that has not only identical content with another (or

multiple) message block(s), but also has identical counter and initial values. Thus if message

blocks 1, 2 and 4 are identical for 2 messages, we can bypass the computation of the hash codes

for message blocks 1 and 2 in the second message by using the results obtained from the first

message but we cannot bypass the computation of message block 4 because it will have

different initial values for both messages and consequently different hash codes. It should be

noted that the counter value for two identical message blocks at the same block position with

the same initial value will automatically be the same.

After identifying any common blocks in the messages through comparison, the

preprocessor will independently compute the hash codes of the common blocks (a separate

hash peripheral will be utilized for this so that the normal hash process of the messages remains

undisrupted). These hash codes will then be used to reconfigure the memory device and the

corresponding message blocks, initial values and counter values will be used to reconfigure the

decoder. The algorithm for these tasks can be written in C (or any other suitable programming

language).

4.2 Memory

 A memory device is required for storing hash codes of common message blocks that

have been identified by the preprocessor. The word size of the memory should be 256 bits in

order to accommodate the 256-bit hash codes. However, a large number of memory words is

typically not required since only a limited number of hash codes are expected to be stored at

any given time. The address input of the memory is connected to the decoder. Figure 8

33

illustrates the function of the memory device. Hash codes are placed in memory locations

through run-time reconfiguration. This reconfiguration is initiated by the preprocessor and

carried out by a reconfiguration processor.

Memory

address

hash code

Figure 8 Memory

4.3 Decoder

 When a message block is to be hashed, there needs to be a way of determining if the

block is one of the common blocks that have been identified by the preprocessor and whose

hash code has been stored in memory. If the block is one of such common blocks, then the

address of the memory location where its hash code has been stored needs to be determined.

Furthermore, a signal needs to be sent to the hash function computation unit to inform the unit

that no computation needs to be made for that message block and that a valid output signal can

be generated since the hash code is already available. In this way the entire 14 rounds of

computations that would otherwise be required are skipped. The decoder performs these tasks.

As shown in figure 9, the decoder can be visualized as an m-bit to n-bit code converter.

That is, it maps the m-bit codes present at its input to corresponding n-bit output codes. The m-

bit code represents the message block concatenated with the initial value and counter value.

34

Thus, it is an 831-bit code (512 bits for the message, 256 bits for the initial value, and 64 bits for

the counter).

Decoder

Message

Initial Value

Memory Address

Match

Counter

M
-b

it

N
-b

it

Figure 9 Decoder

The n-bit code represents the address of the memory location with the hash code of the

message block contained in the input m-bit code, concatenated with a “match” signal. This

match signal when activated indicates that a hash code is present in memory for the inputted

message block. Thus it can be used to inform the hash function unit to skip computations for

that message block.

 Essentially, the decoder is created by a truth table with an m-bit input code and n-bit

output code. Since we are only concerned with specific m-bit codes corresponding to specific

message blocks, initial values and counter values, all other possible m-bit code combinations will

be represented by ‘don’t care’ values (X) state in the truth table. Likewise since we want the

match signal to be activated only when specific m-bit codes are inputted, the match signal is

deactivated (set to 0) for all don’t care inputs; similarly, the memory addresses corresponding to

don’t care inputs are assigned don’t care values since they are not utilized in such cases. An

example of a truth table which can be used to configure the decoder is given in table 5. All the

values stated in the table are represented with hexadecimal numbers.

35

Table 5 Sample decoder truth table

Arbitrary values can be utilized in the decoder’s truth table when the system is

implemented. However, as the message processor begins to discover common message blocks,

the decoder needs to be reconfigured on the fly so that it can recognize these common message

blocks; therefore its truth table needs to be updated at run-time. This is achieved through run-

time reconfiguration. The run-time reconfiguration is initiated by the message preprocessor and

carried out by a reconfiguration processor. In order for the decoder and memory device to be

run-time reconfigurable, they should be implemented in a partially reconfigurable block of the

FPGA. All other components of the system should be placed in static blocks within the FPGA.

Message Block [511..0] Initial Value [255..0] Counter [63..0] Address[3..0] Match

1aef89712137b3dac890

93ef89712137b3dac890

2eaf89712137b3dac890

1a0f59712137b3dac890

5aef89712137b3dac890

33ef69712137b3dac890

47809001

6a09e667bb67ae85

3c6ef372a54ff53a

510e527f9b05688c

1f83d9ab5be0cd19

000000000000

512

1 1

11ea85610197b3decff0

53e080317139b3dfcfff

2eaf89712137b3dac8ff

1a0f59702137a3dac8ff

5aef89702137a3dac8ff

33ef69702137a3dac8ea

40808001

0ce8d4ef4dd7cd8d

62dfded9d4edb0a7

74ae6a41929a74da

23109e8f11139c87

000000000000

512

2 1

X X X X 0

36

4.4 System

 The overall system consists of all the above mentioned components interconnected to

achieve the desired goal. A top-level block diagram of the system is given in figure 10. Figure 11

Figure 10 System block diagram

shows more details of the interconnections between certain of the components of the system.

From figure 11, it is evident that the decoder selects the address of the memory location

containing the hash code corresponding to the inputted message block, counter value and initial

value. The ‘match’ signal, which is also generated by the decoder, is used as a select input of a

multiplexer. The multiplexer selects the hash code obtained from memory when the match

37

signal is activated (set to 1); otherwise it selects the hash code obtained from the hash function

computation unit.

Decoder
Memory

Original Blake

Message Block

Initial Value

address

match

sel

Inp1

Inp0

Output

match

hash codeCounter

Figure 11 Details of some system interconnections

 The system is self-learning. Initially, it has no knowledge of common message blocks

(assuming the decoder is initially configured with arbitrary values), but as messages are hashed,

the message preprocessor begins to discover common message blocks. The preprocessor then

sends appropriate signals to the reconfiguration processor to reconfigure the decoder and

memory using the newly discovered common message blocks and hash codes. Thus, in this

manner, the system builds up its knowledge of common message blocks.

From figure 10, we note that the Blake hash function is connected as a peripheral for a

processor labelled ‘hashing’ processor. With this arrangement, the processor serves as an

interface between the hash function and the external memory containing messages to be

hashed. The Blake hash perpheral only hashes single message blocks, thus in order to hash a

message, the hashing processor needs to break down the message into blocks. The hashing

processor also applies padding to the messages and applies initial and counter values to the

38

message blocks. It transfers the message block words along with the associated initial and

counter values to the Blake peripheral in a serial manner. The name ‘peripheral’ here implies a

device that is loosely attached to the processor; that is, it has some level of independence from

the processor. It can perform multi-cycle operations without interference from the processor. A

custom instruction on the other would imply a device that is closely attached to the processor.

The hashing processor retrieves the chain value from the Blake peripheral after the hash of the

message block has been completed and applies it as the initial value for the next message block.

It therefore supervises or conducts the entire hash operation.

Figure 12 ASM chart for controller unit of Blake

39

As mentioned earlier, the match signal is used to skip computations in the Blake

peripheral when a ‘known’ message block is inputted. The mechanism by which this occurs

deserves further explanation. Figure 12 shows an algorithm state machine (ASM) chart for the

controller unit within the Blake peripheral. The figure shows the ASM chart of the controller for

both the original Blake design and the proposed design. Comparison of the two charts shows

that the main difference is in the addition of a decision box containing the match signal in the

proposed design. This match signal, when activated with the controller in the IDL state, sets the

next state as FIN. Thus, at the active clock edge, the controller proceeds to the FIN state,

skipping the RND state. The computations of the g-functions occur only when the RND state is

activated; thus by skipping the RND state these computations are bypassed. At the FIN state, a

‘data valid’ signal labelled “VALIDOUT” is outputted. This signal indicates that the hash code has

been successfully obtained (either by computation or through retrieval from memory). Figure 13

illustrates how the FIN state can be implemented for both the controllers, using one-hot

encoding.

Q

Q
SET

CLR

D
FIN

ROUND[3]

ROUND[2]

ROUND[1]

ROUND[0]

CLOCK

Q

Q
SET

CLR

D
FIN

ROUND[3]

ROUND[2]

ROUND[1]

ROUND[0]

CLOCKIDL

MATCH

Original Controller Unit

Proposed Controller Unit

VALIDIN

Figure 13 Illustration of FIN state implementation in Blake controller unit

40

In the upper part of figure 13 (original controller unit), the FIN state can only be activated when

the ROUND signal (generated in the RND state) reaches a count of 13 (1101b); this is in

accordance with the ASM chart of figure 12. However, in lower part of the figure (proposed

controller unit), the FIN state can be activated) through an alternative path: this occurs when

the controller is in the IDL state (IDL is activated) and a message block is inputted (VALIDIN is

activated) and the message block is a common message block (MATCH is activated).

41

CHAPTER 5

5. Implementation and results

 In this chapter, we will look at how the design was implemented in the FPGA, and then

we will examine the tests that were carried out to verify the operation of the system and

determine its performance. The performance results obtained are then presented.

5.1 Hardware implementation

 The implementation of the system can be divided into hardware implementation and

software implementation. Hardware implementation consists of the implementation of the

Blake hash peripheral, the decoder, the memory and the multiplexer as shown in figure 11.

Hardware implementation also includes the implementation of the hardware components of

the hashing processor and the message preprocessor. Software implementation consists of the

programs written for both the hashing processor and the message preprocessor. In this section

we shall discuss hardware implementation.

Hardware design entry was done using both hardware description language (VHDL) and

schematic capture. VHDL was utilized for the design entry of individual components: the Blake

peripheral, the decoder, the memory and the multiplexer, while schematic capture (provided in

the Quartus II Block Editor tool) was utilized for the interconnection of these components. The

hashing processor was built from Altera’s Nios II soft-core processor Intellectual Property (IP).

The Nios II processor is a 32- bit RISC processor with a harvard architecture. The System On a

Programmable Chip (SOPC Builder) tool was used to configure the Nios II processor core and

attach useful peripherals such as memory controllers, JTAG UART to it. SOPC Builder was also

42

used to define the proposed Blake hash function (with the decoder and memory as shown in

figure 11) as a (custom) peripheral and attach it to the hashing processor through an

appropriate interface. There are numerous interfaces available within the FPGA fabric including

Avalon Memory Mapped Master, Avalon Memory Mapped Slave, and conduit interfaces. The

Blake peripheral was attached to the hashing processor as an Avalon Memory Mapped Slave.

Thus, the processor makes read and write transactions with the Blake peripheral using an

address assigned to it in the processor’s memory map. The valid output signal (VALIDOUT) of the

Blake peripheral was configured as an interrupt (of high priority). When the processor receives

the interrupt, an interrupt service routine (ISR) fetches the result (hash code) from the

peripheral. The interrupt is generated within a shorter period when a common message block is

hashed.

 The Cyclone II FPGA on the DE-2 development board was utilized for the

implementation of the system. The DE-2 board contains SRAM and SDRAM; these were used as

main memory for the hashing processor. SRAM and SDRAM memory controllers were attached

to the processor through SOPC Builder to access the memory chips. The Cyclone II FPGA does

not support partial reconfiguration (Cyclone V does); therefore we could not incorporate run-

time reconfiguration in the system. In particular we could not implement the decoder and

memory as run-time reconfigurable devices; instead they were implemented as static devices.

Also due to the low density of the Cyclone II device (in terms of logic and routing resources) and

non-availability of multiport memory on the DE-2 board we did not implement the message pre-

processor. However, the system components implemented (hashing processor, Blake peripheral

with a static decoder and memory) were sufficient to examine the operation of the system and

evaluate its performance. We recommend that the full system implementation be carried out in

future works.

43

5.2 Software implementation

 The software for the hashing processor was developed using the Nios II Build Tools for

Eclipse CAD tool. This CAD tools allows the user to write C language code and download it to a

selected processor in the FPGA. If there are multiple processors implemented in the FPGA, they

can be individually selected and programmed with the Nios II Build tools. The Nios II Build tool

creates a Board Support Package (BSP) application which includes a system header file. The

system header file contains all the memory mapped addresses of the peripherals attached to

processor. Through the use of pointers in the C- language, any peripherals can be accessed for

both read and write operations. Interrupts can be detected when they are registered and

enabled by special Hardware Abstraction Layer (HAL) functions. Interrupt Service Routines (ISRs)

can be created to execute specific instructions at the occurrence of interrupts. The hashing

processor's program includes a function to write message blocks to the Blake peripheral using

pointers and an ISR to read hash codes (or chain values) from the peripheral (also using

pointers). ANSI- C library functions such as printf, scanf can also be utilized; the Nios II Build

tools communicate with the processor in the FPGA through a JTAG-UART port. Thus, the

processor can read data entered by the user through the scanf function and also print out

results obtained to the Nios II console using the printf function.

5.3 Testing procedure

 After compilation of the design with the Quartus II CAD tool, it was tested with a

testbench written in VHDL. The Modelsim-Altera simulation CAD tool provided by Mentor

Graphics was used to carry out the tests. Modelsim-Altera contains pre-compiled Altera libraries

which enable the timing/ propagation delays present in a particular FPGA device to be

44

accurately depicted by the Simulator when a timing simulation is run. The EDA Netlist Writer

tool in Altera’s Quartus II produces simulation model files with a .vho extension suitable for

timing simulation. The testbench contained VHDL code for instantiating the design and applying

stimuli to it. The stimuli consist of clock and rest signals, read enable signal, write enable signal

and message blocks. Other stimuli are the initial values, the salt (which was set to 0) and the

counter values. Modelsim-Altera compiles the testbench and all relevant design files into the

simulator’s machine language. The machine language code is loaded into the simulation engine

and then the simulation is run.

The testbench was used to verify the functionality of the hash function by applying the

same message block, initial value and counter value used in the ‘intermediate values’ section of

the Blake submission document and comparing the output obtaining with the output given in

the submission document. The outputs were found to be the same; thus the functionality of the

system was verified. Next, stimuli were applied to evaluate the performance of the system. The

stimuli consist of messages without any common message blocks and messages with varying

numbers of common message blocks. The tests were carried out on both the original Blake

design and the proposed design. The results obtained are provided in the next section.

Apart from tests with the simulator, the design was also downloaded into the FPGA

using the programmer tool of the Quartus II software package. The program written for the

hashing processor was downloaded into the processor using the Nios II Build tools for Eclipse

and the system was tested through the “Run as Nios II hardware” command of the Nios II Build

tools. Observation of the output (hash code) printed on the Nios II console and the time taken to

obtain the output (using an interval timer) showed that the proposed design generates the

correct hash codes and achieves higher speed performance over the original Blake design when

common message blocks are encountered.

45

5.4 Results

 Table 6 and 7 give the performance analysis of the system as obtained from the

Modelsim-Altera simulation. The results are also displayed graphically in figures 14, 15, 16, 17.

In the upper section of table 6, the performance analysis for a single message with 10 message

blocks is presented. Specifically, the times taken to hash the message when they are various

numbers of common message blocks are presented for both the original Blake design and the

proposed design. It is evident from these results that as the number of common message blocks

increases, the proposed design achieves greater speed performance compared to the original

design. The time savings were obtained by computing the difference between the time taken by

the original design and the time taken by the proposed design and then expressing this as a

percentage. The average (arithmetic mean) of these time savings was also computed.

of messages = 1; # of blocks per message = 10; # of common blocks = k

of common

blocks k
0 1 2 3 4 5 6 7 8 9

Time Original (µs) 28 28 28 28 28 28 28 28 28 28

Time Proposed (µs) 28 27.3 26.6 25.9 25.2 24.5 23.8 23.1 22.4 21.7

Time savings (%) 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

Average Time Saving (%) 12.5

of messages = k; # of common blocks = 1; # of blocks per message = 10

of messages k 1 2 3 4 5 6 7 8 9 10

Time Original (µs) 28 56 84 112 140 168 196 224 252 280

Time Proposed (µs) 27.3 54.6 81.9 109.2 136.5 163.8 191.1 218.4 245.7 273.0

Time savings (%) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Average Time Saving (%) 2.5

Table 6 Results (1)

46

In the lower section of table 6, the performance analysis for messages with one

common message block is presented. This analysis shows how the time taken to hash an

increasing number of messages (all containing one common message block) varies for both the

original design and the proposed design. As observed from the table, when the number of

messages increases, the difference in time taken by the original and proposed design also

increases; thus, for a large number of messages, the proposed design utilizes a significantly

smaller amount of time compared to the original design (however, the percentage difference is

constant). Table 7 shows the results obtained when the number of common blocks is changed

from 1 to 5 and then to 9; while still using the same number of messages, k, and the same

number of blocks per messages as in the lower section table 6.

of messages = k; # of common blocks = 5; # of blocks per message = 10

of messages k 1 2 3 4 5 6 7 8 9 10

Time Original (µs) 28 56 84 112 140 168 196 224 252 280

Time Proposed (µs) 24.5 49.0 73.5 98.0 122.5 147.0 171.5 196.0 220.5 245.0

Time savings (%) 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Average Time Saving (%) 12.5

of messages = k; # of common blocks =9; # of blocks per message = 10

of messages k 1 2 3 4 5 6 7 8 9 10

Time Original (µs) 28 56 84 112 140 168 196 224 252 280

Time Proposed (µs) 21.7 43.4 65.1 86.8 108.5 130.2 151.9 173.6 195.3 217.0

Time savings (%) 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5

Average Time Saving (%) 22.5

Table 7 Results (2)

47

Figure 14 Time to hash versus # of common blocks k in original and proposed designs

Figure 15 Time to hash versus # of messages k with 1 common block per message

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

Ti
m

e
to

 h
as

h
 (u

s)

of common blocks k

Original

Proposed

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Ti
m

e
to

 h
as

h

(u
s)

of messages k

Original

Proposed

48

Figure 16 Time to hash versus # of messages k with 5 common blocks per message

Figure 17 Time to hash versus # of messages k with 9 common blocks per message

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 t

o
 h

as
h

 (
u

s)

of messages k

Original

Proposed

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 t

o
 h

as
h

 (
u

s)

of messages k

Original

Proposed

49

CHAPTER 6

6. Conclusion and future work

6.1 Conclusion

 In this thesis, high speed FPGA implementation of hash functions was explored using the

Blake hash function, one of the SHA-3 candidates. A new design for the Blake hash function

which incorporates the ability to recognize common message blocks, store the hash codes of the

common message blocks in memory and skip the computation of the hash codes of these blocks

when they are subsequently encountered was proposed. From the performance analysis of the

proposed design, it is evident that the speed of the Blake hash function can be improved by the

proposed design. The higher speed performance comes into play when common message blocks

are encountered in the messages being hashed. When there are no common message blocks,

the proposed design operates at the same speed as the original Blake design. The speed

improvement becomes more significant when a large number of messages with common

message blocks are hashed.

6.2 Future work

 The system implemented in this work did not include the message preprocessor and the

run-time reconfigurable decoder and memory (the decoder and memory were implemented as

static devices). Future implementations can include these components.

50

BIBLIOGRAPHY

[1] M. Bellare, R. Canetti and H. Krawczyk, "Keying hash functions for message

authentication," in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed: Springer Berlin

/ Heidelberg, 1996, pp. 1-15.

[2] J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P. Rogaway, "UMAC: fast and secure

message authentication," in Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed:

Springer Berlin / Heidelberg, 1999, pp. 79-79.

[3] P.W. Wong and N. Memon, "Secret and public key image watermarking schemes for

image authentication and ownership verification," Image Processing, IEEE Transactions

on, vol. 10, no. 10, pp. 1593-1601 2001.

[4] J.P. Aumasson, L. Henzen, M. Willi and C.W.R. Phan, SHA-3 Proposal BLAKE, January 11,

2011. Available: http://www.131002.net/blake/ [Accessed: August 2011].

[5] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.M. Schmidt and A. Szekely, “High-speed

hardware implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue,

Groestl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein”, Cryptology ePrint

Archive, report 2009/510 2009.

[6] L. Jianzhou and R. Karri, “Compact hardware architectures for BLAKE and LAKE hash

functions,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, 2010, pp. 2107-2110.

[7] I. Damgard, "A design principle for hash functions," in Advances in Cryptology — CRYPTO’

89 Proceedings, G. Brassard, Ed: Springer Berlin / Heidelberg, 1990, pp. 416-427.

51

[8] H. Dobbertin, “Cryptanalysis of MD4,” in Fast Software Encryption 1996 Proceedings,

volume 1039 of Lecture Notes in Computer Science, D. Gollmann, Ed: Springer, 1996,

pp. 53–69.

[9] X. Wang, H. Yu and Y. L. Yin, “Efficient collision search attacks on SHA-0,” in Advances in

Cryptology – CRYPTO 2005 Proceedings, volume 3621 of Lecture Notes in Computer

Science, V. Shoup, Ed: Springer, 2005, pp. 1–16.

[10] X. Wang, Y. L. Yin and H. Yu, “Finding collisions in the full SHA-1,” in Advances in

Cryptology – CRYPTO 2005 Proceedings, volume 3621 of Lecture Notes in Computer

Science, V. Shoup, Ed: Springer, 2005, pp. 17–36.

[11] E. Biham and O. Dunkelman, “A Framework for iterative hash functions — HAIFA,”

presented at the 2nd NIST hash function workshop, Santa Barbara, 2006.

[12] S. Lucks, “A failure-friendly design principle for hash functions,” in Advances in

Cryptology -ASIACRYPT 2005 Proceedings, volume 3788 of Lecture Notes in Computer

Science, B. Roy, Ed: Springer Berlin / Heidelberg, 2005, pp. 474–494.

[13] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R.P. McEvoy, W. Pan and W.P. Marnane,

"FPGA Implementations of SHA-3 Candidates: CubeHash, Groestl, LANE, Shabal and

Spectral Hash," in Digital System Design, Architectures, Methods and Tools, 2009. DSD

'09. 12th Euromicro Conference on, 2009, pp. 783-790.

[14] B. Baldwin, A. Byrne, Liang Lu, M. Hamilton, N. Hanley, M. O'Neill and W.P. Marnane,

"FPGA Implementations of the Round Two SHA-3 Candidates," in Field Programmable

Logic and Applications (FPL), 2010 International Conference on, 2010, pp. 400-407.

[15] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O'Neill and W.P. Marnane, "A

hardware wrapper for the SHA-3 hash algorithms," in Signals and Systems Conference

(ISSC 2010), IET Irish, 2010, pp. 1-6.

52

[16] J. Beuchat, E. Okamoto and T. Yamazaki, "Compact implementations of BLAKE-32 and

BLAKE-64 on FPGA," in Field-Programmable Technology (FPT), 2010 International

Conference on, 2010, pp. 170-177.

[17] S. Eiroa and I. Baturone, "Hardware authentication based on PUFs and SHA-3 2nd round

candidates," in Microelectronics (ICM), 2010 International Conference on, 2010, pp. 319-

322.

[18] M. El-Hadedy, M. Margala, D. Gligoroski and S.J. Knapskog, "Implementing the Blue

Midnight Wish Hash Function on Xilinx Virtex-5 FPGA Platform," in Reconfigurable

Computing and FPGAs (ReConFig), 2010 International Conference on, 2010, pp. 394-399.

[19] L. Henzen, J.-. Aumasson, W. Meier and R.C.-. Phan, "VLSI characterization of the

cryptographic hash function BLAKE," Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 19, no. 10, pp. 1746-1754 2011.

[20] P. Kitsos and N. Sklavos, "On the hardware implementation efficiency of SHA-3

candidates," in Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE International

Conference on, 2010, pp. 1240-1243.

[21] M. Knezevic, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, U. Kocabas, J. Fan, T.

Katashita, T. Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta, N. Homma and T. Aoki,

"Fair and consistent hardware evaluation of fourteen round two SHA-3 candidates,"

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1-

13 2011.

[22] K. Kobayashi, J. Ikegami, M. Knezevic, E.X. Guo, S. Matsuo, S. Huang, L. Nazhandali, U.

Kocabas, J. Fan, A. Satoh, I. Verbauwhede, K. Sakiyama and K. Ohta, "Prototyping

platform for performance evaluation of SHA-3 candidates," in Hardware-Oriented

Security and Trust (HOST), 2010 IEEE International Symposium on, 2010, pp. 60-63.

53

[23] L. Han and B. Guoqiang, "Hardware implementation analysis of SHA-3 candidates

algorithms," in Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE

International Conference on, 2010, pp. 266-268.

[24] A.H. Namin and M.A. Hasan, "Implementation of the compression function for selected

SHA-3 candidates on FPGA," in Parallel & Distributed Processing, Workshops and Phd

Forum (IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1-4.

[25] A.H. Namin, G. Li, J. Wu, J. Xu, Y. Huang, O. Nam, R. Elbaz and M.A. Hasan, "FPGA

implementation of CubeHash, Grostel, JH, and SHAvite-3 hash functions," in NEWCAS

Conference (NEWCAS), 2010 8th IEEE International, 2010, pp. 121-124.

[26] N. Sklavos and P. Kitsos, "BLAKE HASH Function Family on FPGA: From the Fastest to

the Smallest," in VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on, 2010,

pp. 139-142.

[27] X. Gao, J. Wang, H. Ou and X. Li, "RAM-Based Reconfigurable Implementation of the

MD6 Hash Function," in Embedded Software and Systems, 2009. ICESS '09. International

Conference on, 2009, pp. 27-31.

[28] Z. Chen, X. Guo, A. Sinha and P. Schaumont, "Data-oriented performance analysis of

SHA-3 candidates on FPGA accelerated computers," in Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2011, 2011, pp. 1-6.

54

VITA AUCTORIS

Olakunle Esuruoso was born in 1980 in Nigeria. He received his Bachelor of Engineering degree

from the University of East London in 2009. He is currently a candidate for the Master of Applied

Science Degree in the Department of Electrical and Computer Engineering at the University of

Windsor and hopes to graduate in Fall 2011.

	High Speed FPGA Implementation of Cryptographic Hash Function
	Recommended Citation

	tmp.1351257124.pdf.5t5ub

