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ABSTRACT 

 

In this thesis, a new method for implementing cryptographic hash functions is proposed. This 

method seeks to improve the speed of the hash function particularly when a large set of 

messages with similar blocks such as documents with common headers are to be hashed. The 

method utilizes the peculiar run-time reconfigurability feature of FPGA.  Essentially, when a 

block of message that is commonly hashed is identified, the hash value is stored in memory so 

that in subsequent occurrences of the message block, the hash value does not need to be 

recomputed; rather it is simply retrieved from memory, thus giving a significant increase in 

speed. The system is self-learning and able to dynamically build on its knowledge of frequently 

occurring message blocks without intervention from the user. The specific hash function to 

which this technique was applied is Blake, one of the SHA-3 finalists. 
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CHAPTER 1 

 

1. Introduction 

 

1.1 Cryptographic hash functions 

There is no doubt about the fact that electronic communication has revolutionized our 

world. The world has progressed from communication with mainly letters written on paper and 

sent through the post office to instant communication via email, chat and social networking 

websites like Facebook and Google+.  Many communication activities that were traditionally 

done via post are now done through electronic means. These activities include transferring 

documents, images, audio and video.  

Communication needs to be secure to avoid fraudulent activities, such as 

impersonation. Documents created by an institution such as transcripts can be digitally signed; 

images created by a camera can be digitally watermarked, all in an effort to ensure secure 

communication. Many schemes come into play when we are trying to provide information 

security. These schemes, such as digital signatures and digital watermarking, utilize a number of 

cryptographic primitives. Cryptographic hash functions are primitives or building blocks utilized 

in the schemes that are used to provide information security. The cryptographic hash functions 

on their own do not typically provide full information security; however, they play a critical role 

in the schemes that do provide information security. Hence the security and speed of the 

cryptographic hash function can significantly impact the overall security and computational 

efficiency of an information security scheme. 
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A cryptographic hash function is one which converts an input data of arbitrary length 

into a fixed-length output. Cryptographic hash functions are somewhat different from ordinary 

hash functions used in computer programs; however, for simplicity cryptographic hash functions 

will simply be referred to as hash functions throughout the rest of this thesis. The output of a 

hash function must have certain properties; these are: pre-image resistance, second pre-image 

resistance and collision resistance. These properties ensure that the hash function is secure. The 

properties stem from the ways in which hash functions have been attacked. Pre-image 

resistance implies that the hash function is a one-way function. That is, it should be infeasible 

for an attacker to determine the original data (or message) from a given hash code or digest (the 

digest is another name for the hash code or hash value).  Second pre-image resistance 

guarantees that even the slightest change in a message will change the digest. That is, if an 

attacker is given a message, it should be infeasible for the attacker to manipulate the message 

and still obtain the same digest as the original message digest. Collision resistance gives the 

general analogy of fingerprint with respect to the message digests. That is, every message is 

expected to have a unique hash code and it should be generally difficult for an attacker to find 

two messages with the same hash code. 

Mathematically, a hash function (H) is defined as follows: 

H:   {0, 1}* →   {0, 1}n     

In this notation, {0, 1}* refers to the set of binary elements of any length including the empty 

string while {0, 1}n refers to the set of binary elements of length n. Thus, the hash function maps 

a set of binary elements of arbitrary length to a set of binary elements of fixed length.  Similarly, 

the properties of a hash function are defined as follows: 

x   {0, 1}*; y   {0,1}n 

1. Pre-image resistance: given y= H(x), it should be difficult to find x. 
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2. Second pre-image resistance: given x, it should be difficult to find x’ such that H(x) = 

H(x’) (where x  x’). 

3. Collision resistance: it should be hard to find any pair of x and x’ (with x  x’) such that 

H(x) = H(x’) 

The properties of second pre-image resistance and collision resistance may seem similar 

but the difference is that in the case of second pre-image resistance, the attacker is given a 

message (x) to start with, but for collision resistance no message is given; it is simply up to the 

attacker to find any two messages that yield the same hash value. The word “difficult” or the 

phrase “hard to find” in this context implies that it will take a long time (many years) and a huge 

amount of memory for a computer to perform the computation. That is, for example, it will take 

many years and a lot of memory for a computer with today’s technology standards to compute 

a message from its digest value; thus, the computation is regarded as infeasible. It is interesting 

to note that as processing power of computers have increased over the decades, some hash 

functions that were previously considered secure (possessing all the properties of pre-image, 

second pre-image and collision resistance) are now considered “broken”. Also, if an attacker is 

able to prove that the time it will take to ‘break’ a hash function, though not small has been 

significantly reduced, that hash function will be considered weak. As computational power 

increased and cryptanalysis of hash functions were performed, certain hash function standards 

have also been revised because they were found to be weak. It is desirable to have a hash 

function that is secure and computationally efficient.  

In practise, the length of the input message to a hash function is not arbitrary, but it has 

a maximum value. However, compared to the length of the resulting hash code, the length of 

the input message may be considered arbitrary. A hash function operates by first breaking down 

a message into blocks of a fixed size (unless the entire message is smaller than or equal to the 
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block size). In this breaking down process, the message is usually “padded” so as to make it fit 

into a whole number of blocks without any ‘remainder’ or leftover bits. The block size (that is, 

the number of bits contained within a block) depends on the hash function. Padding a message 

consists of adding a certain number of zeros and ones to the end of the message. The padding 

also typically involves embedding the length of the message within the padding bits; other 

information may also be embedded within the padding bits depending on the hash function. 

With the message padded and broken down into blocks, the hash function operates on it in an 

iterative manner. The first message block is inputted to the hash function and the corresponding 

hash code obtained. The second message block is then inputted along with the hash code of the 

first block. Thus, the hash output from the first message block is called a chain or intermediate 

value and it is fed back to the input of the hash function as the initial value for the compression 

of the second message block. The initial value utilized for the compression of the first message 

block is a constant for a particular hash function and it is often called the ‘initialization vector’.  

The hash value obtained when the last message block is compressed is then taken as the hash 

code (or digest) of the message. 

 

1.2 Applications of hash functions 

As mentioned earlier, hash functions are used in certain information security schemes. 

These include: digital signatures, Message Authentication Codes (MACs) and digital image 

watermarking. There are also simple applications of hash functions such as password storage. In 

password storage application, the password entered by a user at the first log-in is not stored in 

the computer system; rather the hash of the password is stored. To log into the system at 

subsequent times, the user needs to enter the password; the system hashes it and compares it 

with the stored hash. If there is a match, the user is granted access to the system otherwise the 
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user is denied access. The advantage of this scheme lies in the fact that if an attacker manages 

to gain access to the system’s storage devices, only the hash of the password can be retrieved 

and this cannot be used to recover the original password since the hash function is a one-way 

function. 

In digital signatures, hash functions are used to improve the efficiency (speed) and 

reduce the bandwidth of the scheme. The digital signature provides a means of demonstrating 

the authenticity of a message. It relies on the use of asymmetric keys for encryption/ 

decryption. If party A encrypts a message with a private key, the only key that can decrypt that 

message is A’s public key. Conversely, if a message is successfully decrypted with A’s public key, 

it implies that the message could only have been encrypted with A’s private key or in other 

words - the message originated from A. The process of encrypting the message with A’s private 

key is known as (digitally) signing the message. However, in practise, the message itself is not 

signed, rather the digest (hash value) of the message is computed and that digest is signed. The 

advantage in doing this is that first of all, the digest is of a fixed length, so the input to the 

asymmetric encryption unit is always of a fixed known length, irrespective of the size of the 

original message. Thus, we can say the bandwidth of the input is fixed and reduced from what it 

would have been if the message itself was signed. Secondly, the process of encryption with an 

asymmetric key is computationally intensive; thus the smaller the size the input, the faster the 

operation.  

A Message Authentication Code (MAC) can be used to verify that a received message is 

identical to the one that was sent. That is, it can be used to verify that a message has not been 

corrupted or manipulated in transit. However, it cannot be used to verify the identity of the 

sender to a third party because the MAC can be computed by either the sender or the recipient. 

A MAC is computed with a keyed- hash function. A keyed-hash function is one whose input 
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includes a key in addition to the message. The success of the operation relies on the secrecy of 

the key. The sender and recipient must use the same key, yet the key must be kept secret from 

third parties. To generate a MAC, the sender inputs the message and key to the hash function 

(along with any applicable constant strings) in a manner specified by an algorithm such as HMAC 

[1] or UMAC [2]. The generated MAC and message are then sent to the receiver. To verify that 

the message has not been manipulated, the receiver also generates a MAC of the message using 

the same hash function and algorithm. If the MAC generated by the receiver is the same as the 

MAC received from the sender, then the receiver reckons that indeed the message has not been 

manipulated. The scheme provides an easy way to verify the integrity of a message. For 

efficiency in computing MACs by both the sender and the receiver, the hash function needs to 

be able to operate at high speed and in a computationally efficient manner 

 Another important application of hash functions is found in digital image watermarking. 

Digital image watermarking is the process of embedding information (known as a watermark) 

into a digital image. This serves the purpose of facilitating the detection of image manipulation. 

The original structure of the watermark utilized by a sender is expected to be known by the 

recipient. If the watermarked image is manipulated, the watermark is also affected; hence when 

a recipient extracts the watermark, it will be different from that which is expected. It is a clever 

means of providing information security in situations where the information is an image. Hash 

functions are utilized in the watermarking algorithms; a common example is the Wong’s 

watermarking algorithm [3]. In Wong’s algorithm, the image is divided into blocks of pixels and 

each block is hashed independently. This is done when embedding the watermark and also 

when extracting it for verification purposes. When embedding the watermark, the hash output 

is truncated to a desired size and then it is XORed with a binary watermark to give the output 

that will be encrypted and placed in the corresponding least significant bit positions of the pixels 
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of the image. Since the image can contain many blocks of pixels, it is imperative for the hash 

function to be able to operate at high speed and in a computationally efficient manner. 

 

1.3 Problem statement 

 Hash functions, as previously established, are very useful in information security 

schemes. Apart from the above mentioned applications (digital signatures, digital image 

watermarking and so on), hash functions are also utilized in generating pseudo random numbers 

which are in turn utilized in many cryptographic schemes. In most of these applications, 

particularly digital signatures, digital image watermarking and Message Authentication Codes, it 

is desirable to have the hash function operate as fast as possible especially when a huge traffic 

or load of messages are expected to be operated on. Consequently, a lot of research effort has 

been expended in the area of high speed implementation of standardized or widely used hash 

functions. The US National Institute of Standards and Technology (NIST) has organized a 

competition to select a new hash function standard that is expected to be atleast as secure as 

and significantly faster than the current hash function standard (SHA-2). This is in line with the 

objective of making the hash function run faster and increase overall performance when it is 

utilized along with other primitives in information security schemes. The goal of this thesis is to 

explore the high speed implementation of hash functions using Field Programmable Gate Arrays 

(FPGAs) and the Blake hash function (one of the final round candidates in the competition 

organized by NIST).  
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1.4 Literature review 

 As previously mentioned, a significant amount of research effort has been expended in 

the area of high speed implementation of hash functions. The Blake hash function like many 

other hash functions was designed with the intent of making it capable of running at high speed. 

It has a relatively simple algorithm; its compression function is a modified “double round” 

version of Bernstein’s stream cipher “chacha” which has been intensively analyzed and found to 

be of excellent performance and parallelizable [4]. Blake has been examined by researchers 

seeking ways of providing high speed operation. One of the techniques for speed optimization 

of Blake that is found in literature is parallelism [5]. Other speed optimization techniques that 

have been applied to Blake are pipelining (in an area of the algorithm where pipelining is 

feasible) [6] and the use of carry-save adders [6] in the compression function. These techniques 

focus on the main ‘core’ of the hash function. Nowhere, to the best of our knowledge has any 

attempt been made to improve the speed of the hash function by looking at the iterative/ 

repetitive process of hashing. 

 

1.5  Proposed work 

 Having examined the speed optimizations that have been applied to Blake in literature, 

we noted that these optimizations only affect the core of the hash function and do not take into 

consideration the iterative or repetitive process of hashing. The iterative/ repetitive process of 

hashing as mentioned here, refers to the process by which a message is broken down into 

blocks and each block is compressed in turn until the final hash code (digest of the message) is 

produced. In this process, it is possible for redundant computations to occur. This happens when 

the same message block is compressed more than once. For example, when two messages are 
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to be hashed in a digital signature scheme, if the first block of both messages is identical, then 

the hash function is going to repeat the same computation twice when it is compressing these 

blocks. Each compression takes a number of rounds or in other words, a number of clock cycles. 

In Blake-256 (the typical implementation of Blake which gives a 256 bit digest), each 

compression requires 14 clock cycles. If a thousand messages with the same initial message 

block are to be hashed in an information security scheme and these redundant computations 

can be somehow avoided, this gives rise to a savings of 1,000 x 14 = 14,000 clock cycles. This 

gives rise to a remarkable increase in speed. This work seeks to provide a means of recognizing 

and eliminating such redundant computations that may be encountered when hashing 

messages and by so doing, improve the speed and computational efficiency of the hash 

function. 

 

1.6 Thesis outline  

 The rest of this thesis is structured as follows: chapter 2 introduces and explains the 

concepts of operation of the Blake hash function, which are necessary for a proper 

understanding of both previous and current research works. Chapter 3 describes the speed 

optimizations that have been applied to Blake in literature. Chapter 4 explains our new 

proposed architecture which provides additional speed optimization for the Blake hash function. 

Chapter 5 presents the implementation of the proposed architecture and the results obtained. 

Finally, chapter 6 presents concluding remarks and recommendations for future work. 
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CHAPTER 2 

 

2. Background 

 

2.1  Current hash functions 

 The hash functions in use today evolved from weaknesses found in previous hash 

functions. The first publicly known hash function was developed by Ronald Rivest in 1989 and it 

was known as Message-Digest Algorithm (MD2). In 1990, Rivest developed another hash 

algorithm named MD4. MD4 was based on the Merkle-Damgard construction [7]. In 1991, Rivest 

again developed another hash algorithm to replace MD4; this new algorithm was named MD5. 

Meanwhile the National Institute of Standards and Technology (NIST) was also working on a 

hash function standard. In 1993, NIST developed the Secure Hash Standard (SHA). This standard 

was published by NIST as a US Federal Information Processing Standard (FIPS). However, shortly 

after the publication, the algorithm was withdrawn due to an undisclosed "significant flaw". It 

was replaced by a revised version named SHA-1. SHA-1 has been widely used in information 

security schemes such as Transport Layer Security (TLS), Secure Sockets Layer (SSL), Internet 

Protocol Security (IPsec), Secure Shell (SSH) and Pretty Good Privacy (PGP). SHA-2, a set of hash 

functions (SHA-224, SHA-256, SHA-384, and SHA-512) was designed by the National Security 

Agency (NSA) and published by NIST in 2001. These hash functions in SHA-2 are named 

according to the number of bits of their digest; SHA-256 for instance has 256 bits in its digest. 

SHA-2 was created as an update to the former standard (SHA-1).   

Many of the hash functions mentioned above have either been broken or weaknesses 

have been found in them. MD2, MD4 and MD5 have all been broken [8]. Collisions have been 
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found for SHA-0 [9] and some cryptographers have found algorithms that produce SHA-1 

collisions in fewer than the expected number of evaluations [10]. This implies that SHA-1 is 

weak. SHA-2 has some similarities to SHA-1 and since some weakness had already been found in 

SHA-1, NIST decided to update the hash standard to a new standard which will be called SHA-3. 

SHA-3 will not be derived from SHA-2; instead, NIST organised a competition in 2007 in which 

anybody is free to submit candidate hash algorithms for the SHA-3. A "Draft requirements and 

evaluation criteria of the SHA-3 algorithm" was published for public comment and the 

evaluation criteria was updated by NIST based on public feedback. The competition started off 

with 64 candidate submissions. Of the 64 submissions, NIST accepted 51 for the first round of 

evaluations. The first round candidates were posted online at the NIST website for public 

review; NIST also had its own internal review team. In 2009, based on public feedback and 

internal reviews, the list of 51 candidates was reduced to 14 candidates for the second round of 

the competition. After the second round of evaluations, the list of candidates was further 

reduced to 5 for the final round. These five candidates are Blake, Groestl, Keccak, JH, Skein. 

We selected the Blake hash function, one of the SHA-3 finalists, for this work on speed 

optimization of hash function due to its public recognition as a secure and efficient hash 

function. A description of the algorithm of Blake is provided in the following section. 

  

2.2 Blake hash function 

 The Blake hash function [4] is a SHA-3 proposal submitted to NIST by Jean-Philippe 

Aumasson, Luca Henzen, Willi Meier and Raphael C.-W. Phan. The original submission was made 

in October 2008 and a revision with some tweaks for the final round of the SHA-3 competition 

was submitted in January 2011. The names of the tweaked versions of the hash function were 

changed from BLAKE-28, BLAKE-32, BLAKE-48, BLAKE-64 to BLAKE-224, BLAKE-256, BLAKE-384 
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and BLAKE-512 respectively. These new names indicate the digest sizes for the various versions 

of the Blake hash function. These digest sizes are the same as those of SHA-2 making it easy to 

directly substitute Blake in applications utilizing SHA-2. The tweaks made on the original 

submission were the change of the recommended number of rounds for BLAKE-224, BLAKE-256 

to 14 (instead of 10) and the change of the recommended number of rounds for BLAKE-384, 

BLAKE-512 to 16 (instead of 14).  

A top-level diagram of Blake-256 with its inputs and outputs is shown in figure 1 below 

(when we make reference to the Blake hash function, we normally refer to its core functionality 

alone as depicted in figure 1; that is the unit that hashes only individual message blocks). The 

main input to the hash function is the message block input and the main output is the digest (or 

hash value). The message block input takes in a 512-bit message block which may represent 

text, image pixels or any kind of information. There are other inputs (salt and counter), one of 

which is optional.  

 

 

Figure 1   Top level diagram of Blake 
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The salt input is an optional input that the user may utilize to introduce a user-controlled 

parameter to compression of each message block. The salt is useful for randomized hashing. If 

the salt is not used, its value is simply set to 0. For this work of speed optimization, we will not 

make use of the salt. The counter input adds an extra security layer to the hash function. We 

shall take a closer look at the counter in a later section.   

 The designers of Blake did not re-invent the wheel; rather they put together 

components which had been previously analyzed and found to be secure and effective to form 

Blake. Blake works in an iterative manner just as most hash functions do; that is, the hash code 

of the previous message block is fedback to the input of the hash function for the compression 

of the next message block. However, Blake follows the Hash Iterative Framework (HAIFA) 

method proposed by Biham and Dunkelman [11] and not the Merkle-Damgard (MD) iteration [7] 

mode. HAIFA is an improved version of the MD construction. Blake does not follow HAIFA fully, 

but it borrows from it. The main ideas behind HAIFA are the introduction of the counter, a 

special initial value (IV) for each digest size and a salt to the input of the compression function. 

Also the length of the digest is included (in addition to the length of the message) in the padding 

of the message. The Merkle-Damgard construct only includes the length of the message in the 

padding. With Blake following the HAIFA iteration mode, it is able to provide resistance to 

certain attacks that the MD construct could not adequately prevent such as length-extension.  

Blake's internal structure is called a local-wide pipe structure [4]. The wide pipe 

construction [12] is a type of structure in which the internal state of the hash function (from 

which the hash value is extracted) is much larger (in number of bits) than the hash value. The 

local-wide pipe was inspired by the wide-pipe structure; in local-wide pipe, the large internal 

state is initialized from an initial value (or chain value), a salt and a counter. The advantage of 

the local-wide pipe structure is that it makes ‘local’ collisions impossible. Blake's compression 
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function borrows heavily from Daniel J Bernstein's stream cipher named "chacha". Bernstein, a 

professor of mathematics at the University of Illinios at Chicago also submitted a SHA-3 

candidate known as Cubehash to NIST, but Cubehash was eliminated in the second round of the 

competition. Blake's compression function is actually a modified 'double round' of chacha [4]. 

It’s a modified version because the designers of Blake added the input of a message word and a 

constant to the original chacha function. Chacha had been previously analyzed by Aumasson 

(one of the designers of Blake). From his analysis, Aumasson became convinced of the 

remarkable simplicity and security of chacha, leading to the adoption of chacha in Blake. Chacha 

was designed to be immune to all kinds of side-channel attacks and Blake automatically 

inherited this property. Side channel attacks are attacks which do not attack the compression 

function but attack its implementation on systems which leak data (such as timing and power 

analysis information). For example, the power consumption trace of a program running in a 

microcontroller is full of information. Chacha's performance was found to be excellent during 

the analysis and it was found to be strongly parallelizable. Again, Blake inherited these 

properties and this makes it an efficient hash function. 

The first step in hashing a message with Blake is to pad the message and break it into 

blocks of 512 bits. The details of the padding are explained in the next section. The block size of 

Blake-256 is 512 bits but the word size is 32 bits; thus each message block contains 16 words. 

Blake’s algorithm initializes an internal state from the initial (or chain) value and other input(s) 

(salt, counter) and then updates this internal state in a number of rounds by performing 

computations on the state in each round using pieces (words) of the message block and some 

constants. The salt input, when not used is set to 0; thus it acts as a constant for the initialization 

of the internal state.  After the rounds of state update have been all been completed, a 

finalization process is performed which extracts the hash code from the internal state. This hash 
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code could be the digest for the message or it could simply be an intermediate or chain value 

which will be used as the initial value for the initialization of the internal state for the next 

message block. However, if message block being processed is the last message block of the 

message, then the hash value obtained at the finalization stage is the digest of the message.   

 

2.2.1 Message padding 

 A message is padded before hashing it for a number of reasons; first of all, the message 

is padded so that it can be divided into an integral number of blocks. For example, if a message 

has 592 bits, without padding the first 512 bits of the message can be placed in a block but then 

80 bits are left ‘hanging’. To solve this kind of problem, the message is padded to make it a 1024 

bit message. Now it can be divided into 2 blocks. Padding is done by appending a number of 

zero and one bits at the end of the message. Padding is also done to embed certain properties 

of the message into the last message block. This enhances the security of the hash function 

against certain types of attacks. In Blake, a message (M) is padded by first extending its length, 

|M|, such that |M|= 447 mod 512. In effect, this means the remainder when |M| is divided by 

512 is 447. This length extension is done by appending a '1' bit to the end of the message 

followed by a sufficient number of ‘0’ bits. Having achieved length extension, the size of the 

digest and length of the message are then embedded into the message. 512-447 = 65; 64 bits 

are used to embed the length of the message while 1 bit is used to embed the size of the digest. 

The digest size is set to 1 for Blake-256, Blake-512 and set to 0 for Blake-224, Blake 384. Thus 

the padding operation can be summarized as 

            M <- M&1&00000.....&|d|&|M|  

where |d| is the digest size, |M| is the length of the original (unpadded) message; and ‘&’ 

represents concatenation. 
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2.2.2 Counter 

  The counter is an input that springs from the HAIFA iteration mode specification. Most 

of the recent proposals on the way compression functions are to be iterated such as randomized 

hashing and the enveloped Merkle-Damgard construction can all be instantiated as part of 

HAIFA. The counter represents the sum of the number of message bits that have been hashed so 

far and the number of message bits in the current block to be hashed. HAIFA makes the 

compression of each block a function of the counter. That is hi = C (hi-1, mi, #bits, salt) where 

‘#bits’ is the counter. This provides extra security against fixed-point attacks. A fixed-point is an 

initial value and message block pair (h, m) which when inputted to the hash function (H) gives H 

(h, m) = h. That is the hash code computed for an initial value and a message block is the same 

as the initial value.  A collision may be obtained if a fixed-point is found because m and m&m 

will give the same hash code. With the inclusion of the counter as an input for each message, 

the attacker is forced to work harder in order to find a fixed-point. Moreover, even if a fixed-

point of the form (h, m, #bits, salt) is found, so that h = (h, m, #bits, salt), the attacker cannot 

concatenate m to itself and still get the same hash code because the counter (#bits) would be 

different for m and m&m. The following example illustrates how the counter value for each 

message block in the Blake hash function is determined: suppose we have a message with 1020 

bits. After padding, this will be broken into 3 blocks of 512, 508 and 0 message bits. The term 

'message bits' is important because in the second and third blocks there will be some padding 

bits, but since we are only considering message bits, we do not consider these. Thus, the 

counter value for the first block is 512; for the second block it is 512+508 = 1020. For the third 

block, following the definition, we ought to have the counter value also set to 1020; however, 

whenever a block contains only padding bits without any message bits, the counter value is set 
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to 0 (irrespective of the number of bits that were previously hashed). Thus, for the third block in 

our example, the counter value is set to 0. 

 

2.2.3 State initialization 

 The internal state of Blake has a local-wide pipe structure. The state is a 4x4 matrix of 32 

bit state variables. Thus the state has 16 32-bit variables (or words). The internal state is a core 

component of the Blake hash function. The inputs (apart from the message block) are used to 

initialize the state; or in other words to determine the initial value of the state variables. The 

initialization of some state variables is done by simply assigning the corresponding value of the 

initial or chain value to the state variables. For some other state variables, the initialization is 

 

 

 

Figure 2   State initialization 
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done by first XORing a word of the salt and a constant or XORing a word of the counter and a 

constant and then assigning the result to the state variable. Figure 2 illustrates the state 

initialization for all the state variables. In figure 2, Vi represents a state variable; hoi represents a 

word of the initial or chain value; si represents a word of the salt; ci represents a constant word 

and ti represents a word of the counter. 

 

2.2.4 State update 

 The algorithm of Blake updates the internal state once it has been initialized; this is 

done by performing some operations on the state. These operations performed on the state 

change the values of the state variables. The state update utilizes words of the message block 

and it is performed by a compression function. Essentially the state update involves operations 

like addition, rotations, XOR. The compression function of Blake which performs these 

operations is called the g-function. The state is updated in a number of rounds. Each round 

consists of some operations performed by the g-function on the state to update it. Since the 

state is a 4x4 matrix; it has 4 rows and 4 columns. Each round of a state update can be broken 

down into the update of the state’s columns and diagonals. These columns and diagonals of the 

state are indicated by their distinct colours in figure 3. The state columns are first updated 

starting from the first column on the left as indicated by the index of the g-function in the figure. 

After all the columns have been updated, the four diagonals are updated in order. In Blake-256, 

a full or complete state update consists of 14 rounds of state update. Since each round typically 

takes one clock cycle, the full state update takes 14 clock cycles. A g-function operation on a 

state column or diagonal utilizes 2 message words. Thus, each round of state update utilizes 16 

message words (or 512 bits); in order words, each round of state update utilizes the entire 

message block.    
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Figure 3   State update: columns and diagonals   

 

2.2.5 G-function 

 The g-function has the following inputs: 4 state variables, 2 message words and 2 

constant words. It has 4 outputs which are same 4 inputted state variables. At the active clock 

edge, new values are assigned to the state variables are stored; figure 4 illustrates this. The g-

function performs operations such as addition, rotation and XOR on the state variables. The 

specific operations performed by the g-function depends on the column or diagonal of the state 

that it is acting on (represented by the’ i’ subscript of the g-function) and the round number 

(represented by ‘r’ subscript of σ) as given below. 
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Gi (Vx1, Vx2, Vx3, Vx4) at round, r, is evaluated as 

   vx1 = vx1+ vx2 + (mσr (2i) ^ Cσr (2i+ 1)) 

   vx4 = (vx4  ^ vx1) >>> 16 

  vx3 = vx3 + vx4 

  vx2 = (vx2  ^ vx3) >>> 12 

  vx1 = vx1+ vx2 + (mσr (2i+1) ^ Cσr (2i)) 

  vx4 = (vx4  ^ vx1) >>> 8 

  vx3 = vx3 + vx4 

  vx2 = (vx2  ^ vx3) >>> 7 

 

In the operations described above, ‘>>>’ represents a rotation to the left and ‘^’ represents a 

bitwise XOR operation.  Vx1, Vx2, Vx3, Vx4 are state variables. From figure 3, the state column or 

diagonal denoted by the subscript i in the notation Gi is evident. The message words (m) and 

constants (c) utilized during a g-function computation are determined by a permutation table 

named σ. 

  

 

G-function

Vx1[31..0]

Vx3[31..0]

Vx2[31..0]

Vx1[31..0]

Vx4[31..0]

Vx2[31..0]

Vx3[31..0]

Vx4[31..0]

Msg[63..0]

Const[63..0]

Q

Q
SET

CLR

D

 

Figure 4   G-function 
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The permutation table σ can be visualized as a 2-dimensional array of integers. The first array 

index specifies the row of the table, while the second array index specifies the column of the 

table.  The permutation table is displayed in table 1. The message block is also internally 

represented as an array of message words m(0) to m(15); similarly, the constants employed in 

the g-function are represented as an array of constant words c(0) to c(15). The notation mσr (2i) 

represents a message word whose array index is determined by the permutation σr (2i). For 

example, if the current round of the state update, r, = 2 and the second column of the state is 

being updated (i = 1) then σr (2i) = σ2 2; from permutation table this gives a value of 12. Thus, mσr 

(2i) = m (12). 

 

r\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 

2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 

3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 

4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 

5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 

6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 

7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 

8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 

9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 

10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 

12 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 

13 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 

 

Table 1   Permutation table (σrc) 
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The constants utilized in the g-function (such as Cσr (2i)) are determined in a similar manner. The 

array of 16 constants is given in table 2 below: 

 

c0 = 243F6A88 c1 = 85A308D3 c2 = 13198A2E c3 = 03707344 

c4 = A4093822 c5 = 299F31D0 c6 = 082EFA98 c7 = EC4E6C89 

c8 = 452821E6 c9 = 38D01377 c10 = BE5466CF c11 = 34E90C6C 

c12 = C0AC29B7 c13 = C97C50DD c14 = 3F84D5B5 c15 = B5470917 

 

Table 2   Blake constants 

 

2.2.6 Finalization 

 The finalization stage is the last process in the computation of the hash value of a 

message block. This hash value (or code) may be a chain value or the digest of the message. In 

this stage, the hash value is extracted from the updated state. The salt (s) and initial value (hi-1) 

which were used to initialize the state are again used in the extraction of the hash code, but the 

counter is not used.  

 

 

 

Table 3   Finalization 
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As previously mentioned, when the salt input is not used, its value is set to 0 and it simply 

functions as a constant. Essentially, a set of XOR operations are performed using the initial 

value, salt and 2 state variables as shown in table 3 in this stage. Table 4 gives the initial values 

used for the first block of a message (referred to as the initialization vector) in both the state 

initialization and the finalization processes. It may be recalled from previous discussions that for 

subsequent message blocks the initial value is given by the hash code (chain value) of the 

previous message block. 

 
  

IV0 = 6A09E667F3BCC908 IV1 = BB67AE8584CAA73B 

IV2 = 3C6EF372FE94F82B IV3 = A54FF53A5F1D36F1 

IV4 = 510E527FADE682D1 IV5 = 9B05688C2B3E6C1F 

IV6 = 1F83D9ABFB41BD6B IV7 = 5BE0CD19137E2179 

 

Table 4   Blake’s Initialization Vector (IV) 

 

2.3 Implementations of Blake 

 Blake has already been implemented on a wide variety of platforms. These include 

software implementations using C, Python, Matlab; hardware implementations with Application 

Specific Integrated Circuit (ASIC) and FPGA. In FPGA, Blake has been implemented on devices 

from the two main FPGA vendors (Altera and Xilinx). In these platforms there have been efforts 

to optimize the speed of operation of the hash function since this has huge advantages 

particularly when hashing a large amount of messages in the various information security 

schemes. Hardware implementations generally operate faster than software implementations. 
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In the next chapter we shall examine the speed optimizations that have already been done in 

hardware. 
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CHAPTER 3 

 

3. Previous works on high-speed implementation of Blake 

Certain techniques have been applied to hardware implementations of Blake in an 

attempt to optimize the speed of the hash function. These techniques are: parallelism, 

pipelining and the use of fast adders. In the following sections we shall examine each of these 

techniques. 

 

3.1 Parallelism 

 Parallelism [5] is one of the methods that have been applied for the speed optimization 

of Blake. The main task that consumes time in the hash function’s algorithm is the state update. 

The initialization is a process that simply depends on a few XOR gates and combinational logic; 

this doesn’t consume time. Similarly, the finalization is a process that depends on XOR gates and 

utilizes only combinational logic; it consumes a relatively small amount of time. However, for 

the state update; first of all it utilizes the g-functions which have addition, rotation operations; 

these can consume some time. Secondly, the full state update takes 14 rounds of similar g-

function operations. Thus, if the speed of the hash function is to be increased, one of the main 

areas to consider would be the state update. The update of the state columns and diagonals can 

be done sequentially; that is, one column (or diagonal) updated at a time or it could be done 

with all 4 columns updated simultaneously. However, all the columns must be updated before 

the diagonals are updated because the diagonal update makes use of the new state variable 

values obtained from the column update. Parallelism is applied to Blake by updating all the 

columns of the state simultaneously and then similarly updating all the diagonals of the state 
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simultaneously. This requires atleast 4 g-functions; alternatively 8 g-functions may be used, 

however the last four g-functions will be dependent on the first 4 g-functions for their inputs in 

this case. The speed of the hash function is improved by a factor of 4 through parallelism. 

 

3.2 Pipelining 

 In the g-function, some of the operations performed could take a relatively long period 

of time. The g-function is a modified ‘double’ round of the stream cipher chacha. The fact that it 

is a double round implies that the outputs of some operations in the g-function are inputs to 

some other operations in the same g-function. In particular, computations involving the XOR of 

message and constant words, one of which is given below: 

 

vx1 = vx1+ vx2 + (mσr (2i) ^ Cσr (2i+ 1))  

 

consume a longer time because there are three major operations involved. Thus, these 

operations constitute the critical path of the g-function (the path with the longest delay).The 

critical path influences the speed (throughput) of the overall computation. A long critical path 

delay requires a long the clock period and hence the speed of the hash function is reduced. 

However, a pipeline stage may be used to improve the speed. Since there are 14 rounds of 

repeated g-function computations, if a pipeline register is inserted into the critical path of the g-

function; thereby creating a two stage pipeline, then the first stage of the pipeline for the next 

round can be executed while the second stage of the pipeline for the current round is executing. 

The net effect is an increase in the clock rate and consequently an increase in speed 

(throughput) of the hash function. This pipeline technique was applied in [6]. Figure 5 illustrates 

the method. 
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Figure 5   Pipelining applied to Blake 

  

As seen in figure 5, when pipelining is applied, 3 g-function computations were accomplished 

within a time period of t2; whereas without pipelining only 2 g-functions were accomplished 

within the same time period.  

 

3.3 Fast adders 

 The third technique that has been applied for speed optimization in Blake is the use of 

carry-save and carry-lookahead adders in the g-function.  These are fast adders. The technique 

was applied in [6]. Carries are a major source of delay in additions when ripple adders are used 

because a carry needs to propagate to the last full adder before the sum can be considered 

valid. The additions in the g-function of Blake are 32-bit additions; thus if ripple adders are used, 

then the time it takes for a carry to propagate from the full adder (FA) at the least significant bit 

(LSB) position to the full adder at the most significant bit position (MSB) can be significant. To 
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overcome this source of delay, 2 carry-save adders (CSA) are used when three numbers are to 

be added, with a carry -lookahead adder (CLA) performing the final stage of the addition. This is 

shown in figure 6 for a 2 bit number. The CSA is a FA connected in such a way that it adds 

corresponding bits of the 3 numbers directly similar to the way we add numbers on paper. This 

saves a significant amount of time since the few carries generated are added with a CLA. The 

arrangement can be easily extended to 32 bits.  

 

 

 

Figure 6   Fast adders 
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CHAPTER 4 

 

4. Proposed design 

 The speed optimizations techniques discussed in the previous chapter essentially focus 

on the process of hashing one message block. These techniques are effective and aim at 

reducing the time spent in hashing each message block, thereby reducing the overall time spent 

in hashing a message which may contain many blocks. For example, if the time spent in hashing 

a message block has been reduced through the use of fast adders from 50ns to 45ns and there 

are 1000 messages to be hashed, each containing 10 message blocks; the minimum time that 

would be spent in hashing these messages would be reduced from 0.5ms to 0.45ms. Thus, the 

speed has been improved. A similar analogy holds for the techniques of parallelism and 

pipelining. However, there is a particular situation in which the speed of the hash function can 

be potentially increased further but these techniques cannot bring about the improvement. This 

situation occurs when many messages which have some identical message blocks are to be 

hashed.  For instance, if message blocks 1 and 2 out of the 10 message blocks in the messages of 

our previous example are identical but message blocks 3 to 10 are different, these messages will 

still give distinct hash codes. However, the chain values (intermediate hash values) obtained for 

message blocks 1 and 2 will be the same for all the messages. The implication of this, is that in 

computing the digests of the 1000 messages, the hash function will perform the same 

computation 2,000 times (the hash code of message block 1 will be computed 1000 times, the 

same goes for message block 2, so in total there will be 2,000 identical or repeated 

computations). If there was a way to bypass these repeated computations, this would certainly 
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lead to a significant increase in speed; the time taken to compute the hash codes would be 

reduced by an additional 0.1ms.   

 Our design takes the situation in which messages with common blocks are to be hashed 

into consideration and provides a way of bypassing the redundant computations that would 

otherwise have to be made; thus providing high speed operation. The design allows the 

previously discussed techniques of parallelism, pipelining and fast adders to be applied to the 

Blake hash function but in addition it provides a method of avoiding redundant computations, 

thereby leading to a further increase in the speed of the hash function.  The design is self-

learning; that is, it builds up its knowledge of common message blocks without intervention 

from the user. The design incorporates three major components to facilitate these:  

1. Message preprocessor: This component independently identifies common message 

blocks in the messages that are being hashed, determines their initial values, counter 

values and computes their hash codes.  

2. Memory: A memory device is used to store the hash code of any common message 

block that has been identified by the message preprocessor.  

3. Decoder: This component is used to determine if an inputted message block is a 

common message block. If the inputted message block is a common message block, the 

decoder outputs the address of the memory location containing the hash code of the 

common message block. In addition, it also outputs a signal which indicates to the hash 

function unit that the hash code of the inputted message block is already available in 

memory and consequently, there is no need to compute it.  

In the following sections we shall discuss each of these components and how they interconnect 

to achieve the desired operation. 
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4.1 Message preprocessor 

 The message preprocessor is a microprocessor with software running on it to perform 

the function of identifying any common message blocks within a sequence of messages. It has to 

be able to run independently; that is it should run concurrently with the hashing of the 

messages so that it does not delay or disrupt the hashing of the messages. In order to achieve 

this, the external memory device from which the messages to be hashed are fetched should be a 

multiport memory device, so that the message preprocessor has an independent access to the 

messages through one of its ports and the rest of the system also has access to the same 

messages through another port of the memory.  

The preprocessor initializes reconfiguration of the decoder whenever this is required. 

Figure 7 shows a block diagram of the preprocessor. An example of a preprocessing algorithm 

would be to place 10 messages occurring in sequence in arrays; with each array element 

containing a message block.  A 3-dimensional array could be used to place the messages into 

blocks; the first array index representing the message, the second array index representing the 

message block and the third array index representing the individual bits of a message block. A  

 

Message PreprocessorMultiport Memory
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Reconfig_data
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Figure 7   Message preprocessor 
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comparison can then be made between message blocks at corresponding array positions to 

determine if any of them have identical initial values and identical contents. The term “common 

message block” refers to a message block that has not only identical content with another (or 

multiple) message block(s), but also has identical counter and initial values. Thus if message 

blocks 1, 2 and 4 are identical for 2 messages, we can bypass the computation of the hash codes 

for message blocks 1 and 2 in the second message by using the results obtained from the first 

message but we cannot bypass the computation of message block 4 because it will have 

different initial values for both messages and consequently different hash codes. It should be 

noted that the counter value for two identical message blocks at the same block position with 

the same initial value will automatically be the same.  

After identifying any common blocks in the messages through comparison, the 

preprocessor will independently compute the hash codes of the common blocks (a separate 

hash peripheral will be utilized for this so that the normal hash process of the messages remains 

undisrupted). These hash codes will then be used to reconfigure the memory device and the 

corresponding message blocks, initial values and counter values will be used to reconfigure the 

decoder. The algorithm for these tasks can be written in C (or any other suitable programming 

language). 

 

4.2 Memory 

 A memory device is required for storing hash codes of common message blocks that 

have been identified by the preprocessor. The word size of the memory should be 256 bits in 

order to accommodate the 256-bit hash codes. However, a large number of memory words is 

typically not required since only a limited number of hash codes are expected to be stored at 

any given time. The address input of the memory is connected to the decoder.  Figure 8 
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illustrates the function of the memory device.  Hash codes are placed in memory locations 

through run-time reconfiguration. This reconfiguration is initiated by the preprocessor and 

carried out by a reconfiguration processor. 

 

Memory

address

hash code

 

 
Figure 8   Memory 

 
 

4.3 Decoder 

 When a message block is to be hashed, there needs to be a way of determining if the 

block is one of the common blocks that have been identified by the preprocessor and whose 

hash code has been stored in memory. If the block is one of such common blocks, then the 

address of the memory location where its hash code has been stored needs to be determined. 

Furthermore, a signal needs to be sent to the hash function computation unit to inform the unit 

that no computation needs to be made for that message block and that a valid output signal can 

be generated since the hash code is already available. In this way the entire 14 rounds of 

computations that would otherwise be required are skipped. The decoder performs these tasks.  

As shown in figure 9, the decoder can be visualized as an m-bit to n-bit code converter. 

That is, it maps the m-bit codes present at its input to corresponding n-bit output codes. The m-

bit code represents the message block concatenated with the initial value and counter value. 
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Thus, it is an 831-bit code (512 bits for the message, 256 bits for the initial value, and 64 bits for 

the counter).  
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Figure 9   Decoder 

 

The n-bit code represents the address of the memory location with the hash code of the 

message block contained in the input m-bit code, concatenated with a “match” signal. This 

match signal when activated indicates that a hash code is present in memory for the inputted 

message block. Thus it can be used to inform the hash function unit to skip computations for 

that message block. 

 Essentially, the decoder is created by a truth table with an m-bit input code and n-bit 

output code. Since we are only concerned with specific m-bit codes corresponding to specific 

message blocks, initial values and counter values, all other possible m-bit code combinations will 

be represented by ‘don’t care’ values (X) state in the truth table. Likewise since we want the 

match signal to be activated only when specific m-bit codes are inputted, the match signal is 

deactivated (set to 0) for all don’t care inputs; similarly, the memory addresses corresponding to 

don’t care inputs are assigned don’t care values since they are not utilized in such cases. An 

example of a truth table which can be used to configure the decoder is given in table 5. All the 

values stated in the table are represented with hexadecimal numbers.  
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Table 5   Sample decoder truth table 

 

Arbitrary values can be utilized in the decoder’s truth table when the system is 

implemented. However, as the message processor begins to discover common message blocks, 

the decoder needs to be reconfigured on the fly so that it can recognize these common message 

blocks; therefore its truth table needs to be updated at run-time. This is achieved through run-

time reconfiguration. The run-time reconfiguration is initiated by the message preprocessor and 

carried out by a reconfiguration processor.  In order for the decoder and memory device to be 

run-time reconfigurable, they should be implemented in a partially reconfigurable block of the 

FPGA. All other components of the system should be placed in static blocks within the FPGA. 

 

Message Block [511..0] Initial Value [255..0] Counter [63..0] Address[3..0] Match 

1aef89712137b3dac890 

93ef89712137b3dac890 

2eaf89712137b3dac890 

1a0f59712137b3dac890 

5aef89712137b3dac890 

33ef69712137b3dac890 

47809001 

6a09e667bb67ae85 

3c6ef372a54ff53a 

510e527f9b05688c 

1f83d9ab5be0cd19 

 

000000000000 

512 

1 1 

11ea85610197b3decff0 

53e080317139b3dfcfff 

2eaf89712137b3dac8ff 

1a0f59702137a3dac8ff 

5aef89702137a3dac8ff 
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4.4 System 

 The overall system consists of all the above mentioned components interconnected to 

achieve the desired goal. A top-level block diagram of the system is given in figure 10. Figure 11 

 

 

 

 

Figure 10   System block diagram 

 

shows more details of the interconnections between certain of the components of the system. 

From figure 11, it is evident that the decoder selects the address of the memory location 

containing the hash code corresponding to the inputted message block, counter value and initial 

value.  The ‘match’ signal, which is also generated by the decoder, is used as a select input of a 

multiplexer. The multiplexer selects the hash code obtained from memory when the match 
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signal is activated (set to 1); otherwise it selects the hash code obtained from the hash function 

computation unit. 

 

Decoder
Memory

Original Blake

Message Block

Initial Value

address

match

sel

Inp1

Inp0

Output 

match

hash codeCounter

 

 

Figure 11   Details of some system interconnections   

 

 The system is self-learning. Initially, it has no knowledge of common message blocks 

(assuming the decoder is initially configured with arbitrary values), but as messages are hashed, 

the message preprocessor begins to discover common message blocks. The preprocessor then 

sends appropriate signals to the reconfiguration processor to reconfigure the decoder and 

memory using the newly discovered common message blocks and hash codes. Thus, in this 

manner, the system builds up its knowledge of common message blocks. 

From figure 10, we note that the Blake hash function is connected as a peripheral for a 

processor labelled ‘hashing’ processor. With this arrangement, the processor serves as an 

interface between the hash function and the external memory containing messages to be 

hashed. The Blake hash perpheral only hashes single message blocks, thus in order to hash a 

message, the hashing processor needs to break down the message into blocks. The hashing 

processor also applies padding to the messages and applies initial and counter values to the 
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message blocks. It transfers the message block words along with the associated initial and 

counter values to the Blake peripheral in a serial manner. The name ‘peripheral’ here implies a 

device that is loosely attached to the processor; that is, it has some level of independence from 

the processor. It can perform multi-cycle operations without interference from the processor. A 

custom instruction on the other would imply a device that is closely attached to the processor. 

The hashing processor retrieves the chain value from the Blake peripheral after the hash of the 

message block has been completed and applies it as the initial value for the next message block. 

It therefore supervises or conducts the entire hash operation.     

   

 

 

 

Figure 12   ASM chart for controller unit of Blake 
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As mentioned earlier, the match signal is used to skip computations in the Blake 

peripheral when a ‘known’ message block is inputted. The mechanism by which this occurs 

deserves further explanation. Figure 12 shows an algorithm state machine (ASM) chart for the 

controller unit within the Blake peripheral. The figure shows the ASM chart of the controller for 

both the original Blake design and the proposed design. Comparison of the two charts shows 

that the main difference is in the addition of a decision box containing the match signal in the 

proposed design. This match signal, when activated with the controller in the IDL state, sets the 

next state as FIN. Thus, at the active clock edge, the controller proceeds to the FIN state, 

skipping the RND state. The computations of the g-functions occur only when the RND state is 

activated; thus by skipping the RND state these computations are bypassed. At the FIN state, a 

‘data valid’ signal labelled “VALIDOUT” is outputted. This signal indicates that the hash code has 

been successfully obtained (either by computation or through retrieval from memory). Figure 13 

illustrates how the FIN state can be implemented for both the controllers, using one-hot 

encoding. 
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Figure 13   Illustration of FIN state implementation in Blake controller unit 
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In the upper part of figure 13 (original controller unit), the FIN state can only be activated when 

the ROUND signal (generated in the RND state) reaches a count of 13 (1101b); this is in 

accordance with the ASM chart of figure 12. However, in lower part of the figure (proposed 

controller unit), the FIN state can be activated) through an alternative path: this occurs when 

the controller is in the IDL state (IDL is activated) and a message block is inputted (VALIDIN is 

activated) and the message block is a common message block (MATCH is activated).   
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CHAPTER 5 

 

5.  Implementation and results 

 In this chapter, we will look at how the design was implemented in the FPGA, and then 

we will examine the tests that were carried out to verify the operation of the system and 

determine its performance. The performance results obtained are then presented. 

 

5.1 Hardware implementation 

 The implementation of the system can be divided into hardware implementation and 

software implementation. Hardware implementation consists of the implementation of the 

Blake hash peripheral, the decoder, the memory and the multiplexer as shown in figure 11. 

Hardware implementation also includes the implementation of the hardware components of 

the hashing processor and the message preprocessor. Software implementation consists of the 

programs written for both the hashing processor and the message preprocessor. In this section 

we shall discuss hardware implementation.  

Hardware design entry was done using both hardware description language (VHDL) and 

schematic capture. VHDL was utilized for the design entry of individual components: the Blake 

peripheral, the decoder, the memory and the multiplexer, while schematic capture (provided in 

the Quartus II Block Editor tool) was utilized for the interconnection of these components. The 

hashing processor was built from Altera’s Nios II soft-core processor Intellectual Property (IP). 

The Nios II processor is a 32- bit RISC processor with a harvard architecture. The System On a 

Programmable Chip (SOPC Builder) tool was used to configure the Nios II processor core and 

attach useful peripherals such as memory controllers, JTAG UART to it. SOPC Builder was also 
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used to define the proposed Blake hash function (with the decoder and memory as shown in 

figure 11) as a (custom) peripheral and attach it to the hashing processor through an 

appropriate interface. There are numerous interfaces available within the FPGA fabric including 

Avalon Memory Mapped Master, Avalon Memory Mapped Slave, and conduit interfaces. The 

Blake peripheral was attached to the hashing processor as an Avalon Memory Mapped Slave. 

Thus, the processor makes read and write transactions with the Blake peripheral using an 

address assigned to it in the processor’s memory map. The valid output signal (VALIDOUT) of the 

Blake peripheral was configured as an interrupt (of high priority).  When the processor receives 

the interrupt, an interrupt service routine (ISR) fetches the result (hash code) from the 

peripheral. The interrupt is generated within a shorter period when a common message block is 

hashed. 

  The Cyclone II FPGA on the DE-2 development board was utilized for the 

implementation of the system. The DE-2 board contains SRAM and SDRAM; these were used as 

main memory for the hashing processor. SRAM and SDRAM memory controllers were attached 

to the processor through SOPC Builder to access the memory chips. The Cyclone II FPGA does 

not support partial reconfiguration (Cyclone V does); therefore we could not incorporate run-

time reconfiguration in the system. In particular we could not implement the decoder and 

memory as run-time reconfigurable devices; instead they were implemented as static devices. 

Also due to the low density of the Cyclone II device (in terms of logic and routing resources) and 

non-availability of multiport memory on the DE-2 board we did not implement the message pre-

processor.  However, the system components implemented (hashing processor, Blake peripheral 

with a static decoder and memory) were sufficient to examine the operation of the system and 

evaluate its performance. We recommend that the full system implementation be carried out in 

future works. 
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5.2 Software implementation 

 The software for the hashing processor was developed using the Nios II Build Tools for 

Eclipse CAD tool. This CAD tools allows the user to write C language code and download it to a 

selected processor in the FPGA. If there are multiple processors implemented in the FPGA, they 

can be individually selected and programmed with the Nios II Build tools.  The Nios II Build tool 

creates a Board Support Package (BSP) application which includes a system header file. The 

system header file contains all the memory mapped addresses of the peripherals attached to 

processor. Through the use of pointers in the C- language, any peripherals can be accessed for 

both read and write operations. Interrupts can be detected when they are registered and 

enabled by special Hardware Abstraction Layer (HAL) functions. Interrupt Service Routines (ISRs) 

can be created to execute specific instructions at the occurrence of interrupts. The hashing 

processor's program includes a function to write message blocks to the Blake peripheral using 

pointers and an ISR to read hash codes (or chain values) from the peripheral (also using 

pointers). ANSI- C library functions such as printf, scanf can also be utilized; the Nios II Build 

tools communicate with the processor in the FPGA through a JTAG-UART port. Thus, the 

processor can read data entered by the user through the scanf function and also print out 

results obtained to the Nios II console using the printf function. 

 

5.3 Testing procedure 

 After compilation of the design with the Quartus II CAD tool, it was tested with a 

testbench written in VHDL. The Modelsim-Altera simulation CAD tool provided by Mentor 

Graphics was used to carry out the tests. Modelsim-Altera contains pre-compiled Altera libraries 

which enable the timing/ propagation delays present in a particular FPGA device to be 
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accurately depicted by the Simulator when a timing simulation is run. The EDA Netlist Writer 

tool in Altera’s Quartus II produces simulation model files with a .vho extension suitable for 

timing simulation.  The testbench contained VHDL code for instantiating the design and applying 

stimuli to it. The stimuli consist of clock and rest signals, read enable signal, write enable signal 

and message blocks. Other stimuli are the initial values, the salt (which was set to 0) and the 

counter values. Modelsim-Altera compiles the testbench and all relevant design files into the 

simulator’s machine language. The machine language code is loaded into the simulation engine 

and then the simulation is run.  

The testbench was used to verify the functionality of the hash function by applying the 

same message block, initial value and counter value used in the ‘intermediate values’ section of 

the Blake submission document and comparing the output obtaining with the output given in 

the submission document. The outputs were found to be the same; thus the functionality of the 

system was verified. Next, stimuli were applied to evaluate the performance of the system. The 

stimuli consist of messages without any common message blocks and messages with varying 

numbers of common message blocks. The tests were carried out on both the original Blake 

design and the proposed design. The results obtained are provided in the next section.  

Apart from tests with the simulator, the design was also downloaded into the FPGA 

using the programmer tool of the Quartus II software package. The program written for the 

hashing processor was downloaded into the processor using the Nios II Build tools for Eclipse 

and the system was tested through the “Run as Nios II hardware” command of the Nios II Build 

tools. Observation of the output (hash code) printed on the Nios II console and the time taken to 

obtain the output (using an interval timer) showed that the proposed design generates the 

correct hash codes and achieves higher speed performance over the original Blake design when 

common message blocks are encountered. 
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5.4 Results 

 Table 6 and 7 give the performance analysis of the system as obtained from the 

Modelsim-Altera simulation. The results are also displayed graphically in figures 14, 15, 16, 17. 

In the upper section of table 6, the performance analysis for a single message with 10 message 

blocks is presented.  Specifically, the times taken to hash the message when they are various 

numbers of common message blocks are presented for both the original Blake design and the 

proposed design. It is evident from these results that as the number of common message blocks 

increases, the proposed design achieves greater speed performance compared to the original 

design. The time savings were obtained by computing the difference between the time taken by 

the original design and the time taken by the proposed design and then expressing this as a 

percentage. The average (arithmetic mean) of these time savings was also computed. 

 

# of messages = 1;   # of blocks per message = 10; # of common blocks = k 

# of common 

blocks k 
0 1 2 3 4 5 6 7 8 9 

Time Original (µs)  28 28 28 28 28 28 28 28 28 28 

Time Proposed (µs) 28 27.3 26.6 25.9 25.2 24.5 23.8 23.1 22.4 21.7 

Time savings (%) 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 

Average Time Saving (%) 12.5 

# of messages = k; # of common blocks = 1;   # of blocks per message = 10 

# of messages k 1 2 3 4 5 6 7 8 9 10 

Time Original (µs)  28 56 84 112 140 168 196 224 252 280 

Time Proposed (µs) 27.3 54.6 81.9 109.2 136.5 163.8 191.1 218.4 245.7 273.0 

Time savings (%) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Average Time Saving (%) 2.5 

 

Table 6   Results (1) 
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In the lower section of table 6, the performance analysis for messages with one 

common message block is presented. This analysis shows how the time taken to hash an 

increasing number of messages (all containing one common message block) varies for both the 

original design and the proposed design.  As observed from the table, when the number of 

messages increases, the difference in time taken by the original and proposed design also 

increases; thus, for a large number of messages, the proposed design utilizes a significantly 

smaller amount of time compared to the original design (however, the percentage difference is 

constant). Table 7 shows the results obtained when the number of common blocks is changed 

from 1 to 5 and then to 9; while still using the same number of messages, k, and the same 

number of blocks per messages as in the lower section table 6. 

 

# of messages = k; # of common blocks = 5;   # of blocks per message = 10 

# of messages k 1 2 3 4 5 6 7 8 9 10 

Time Original (µs)  28 56 84 112 140 168 196 224 252 280 

Time Proposed (µs) 24.5 49.0 73.5 98.0 122.5 147.0 171.5 196.0 220.5 245.0 

Time savings (%) 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 

Average Time Saving (%) 12.5 

# of messages = k; # of common blocks =9;   # of blocks per message = 10 

# of messages k 1 2 3 4 5 6 7 8 9 10 

Time Original (µs)  28 56 84 112 140 168 196 224 252 280 

Time Proposed (µs) 21.7 43.4 65.1 86.8 108.5 130.2 151.9 173.6 195.3 217.0 

Time savings (%) 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 

Average Time Saving (%) 22.5 

 

Table 7  Results (2) 
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Figure 14   Time to hash versus # of common blocks k in original and proposed designs 

 

 

 

 

 

 

Figure 15   Time to hash versus # of messages k with 1 common block per message 
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Figure 16   Time to hash versus # of messages k with 5 common blocks per message 

 

 

 

Figure 17   Time to hash versus # of messages k with 9 common blocks per message 
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CHAPTER 6 

 

6. Conclusion and future work 

 

6.1 Conclusion 

 In this thesis, high speed FPGA implementation of hash functions was explored using the 

Blake hash function, one of the SHA-3 candidates. A new design for the Blake hash function 

which incorporates the ability to recognize common message blocks, store the hash codes of the 

common message blocks in memory and skip the computation of the hash codes of these blocks 

when they are subsequently encountered was proposed.  From the performance analysis of the 

proposed design, it is evident that the speed of the Blake hash function can be improved by the 

proposed design. The higher speed performance comes into play when common message blocks 

are encountered in the messages being hashed. When there are no common message blocks, 

the proposed design operates at the same speed as the original Blake design.  The speed 

improvement becomes more significant when a large number of messages with common 

message blocks are hashed. 

 

6.2 Future work 

 The system implemented in this work did not include the message preprocessor and the 

run-time reconfigurable decoder and memory (the decoder and memory were implemented as 

static devices). Future implementations can include these components.  
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