
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2012

Adaptive Channel Estimation for Turbo Decoding Adaptive Channel Estimation for Turbo Decoding

YU QING GUO
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
GUO, YU QING, "Adaptive Channel Estimation for Turbo Decoding" (2012). Electronic Theses and
Dissertations. 127.
https://scholar.uwindsor.ca/etd/127

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/127?utm_source=scholar.uwindsor.ca%2Fetd%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Adaptive Channel Estimation for Turbo Decoding

by

Yuqing Guo

A Thesis
Submitted to the Faculty of Graduate Studies
through Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

2012

© 2012 Yuqing Guo

Adaptive Channel Estimation for Turbo Decoding

by

Yuqing Guo

APPROVED BY:

__
Dr. Luis Rueda

School of Computer Science

__
Dr. Huapeng Wu

Department of Electrical and Computer Engineering

__
Dr. Behnam Shahrrava, Advisor

Department of Electrical and Computer Engineering

__
Dr. Chunhong Chen, Chair of Defense

Department of Electrical and Computer Engineering

April 30, 2012

 iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

 iv

ABSTRACT

A new adaptive filter is proposed for the turbo decoding on Rayleigh fading

channels with noisy channel estimates. The turbo decoder that is used over Rayleigh

fading channels is exactly the same as the one used on Additive White Gaussian Noise

(AWGN) channel. The turbo decoder works very well on AWGN channel [1]-[2], but not

as well on Rayleigh fading channels at that time. In [5], the author assumes there already

exists a fading channel estimator with some estimation errors and develops a new channel

reliability factor and new decision variables for turbo decoding on Rayleigh fading

channels. Hence, Frenger, the author of [5] improved the performance of turbo decoding

over Rayleigh fading channels. Since then, most research has focused on the channel

estimation to reduce the error variances of estimating. However, the extrinsic information

generated from the turbo decoder has some priority information about the transmitted

data bits, which can help us better understand the channel characters. In this thesis, by

using the soft extrinsic information after each iteration of decoding, we re-estimate the

channel and the minimum mean square error (m.m.s.e.) and further update the channel

reliability factor and decision variables at each iteration. Simulations show that signal to

noise (SNR) gain is improved by up to about 1dB at bit error probability of 43.5 10−× .

 v

ACKNOWLEDGEMENTS

I would like to thank all of those who made this research possible: especially my

advisor, Dr. Behnam Shahrrava, for his kindness guidance and advice at every step of this

research. I would also like to thank the committee members, Dr. Luis Rueda and Dr.

Huapeng Wu, for their comments and encouragement. I would also like to thank my wife

Ying and my son Zhihao for their understanding and support of my study.

vi

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY.. iii

ABSTRACT... iv

ACKNOWLEDGEMENTS...v

LIST OF FIGURES ... viii

CHAPTER

I. INTRODUCTION

1.1 Review of the literature ..1

1.2 A new adaptive algorithm for turbo decoding................................3

1.3 Organization of the thesis ...4

II. CHANNEL MODELS

2.1 Basic elements of digital communication systems.........................5

2.2 Channel models ..6

2.2.1 AWGN channel ...6

2.2.2 Rayleigh fading channel ..7

III. TURBO CODES AND DECODING

3.1 Turbo encoder...9

3.2 Maximum a posteriori (MAP) algorithm over AWGN channel ..10

3.3 Turbo decoding over AWGN channel ..13

3.4 Turbo decoding over the Rayleigh fading channel.......................18

IV. ADAPTIVE TURBO DECODER

4.1 Block diagram of the proposed adaptive filter21

4.2 Estimation theory review..23

4.3 The proposed estimator (2) of channel a25

4.4 Implementation of the proposed adaptive filter............................28

4.5 The boundary of estimation error variance of the estimator (2) ...30

4.6 Decoding method comparison ..31

V. SIMULATION RESULTS

5.1 General settings ..33

5.2 BER performances with different settings....................................33

5.3 Step size and boundary ...36

 vii

VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of contributions ..39

6.2 Recommendations for future studies ..40

APPENDICES

Matlab scripts of the turbo decoder with adaptive filter...42

REFERENCES..61

VITA AUCTORIS...64

 viii

LIST OF FIGURES

FIGURE 1 BLOCK DIAGRAM OF A DIGITAL COMMUNICATION SYSTEM.................................. 5

FIGURE 2 AWGN CHANNEL MODEL.. 7

FIGURE 3 FADING CHANNEL MODEL... 8

FIGURE 4 TURBO ENCODER.. 9

FIGURE 5 RSC ENCODER.. 10

FIGURE 6 TURBO DECODER.. 16

FIGURE 7 BLOCK DIAGRAM OF ADAPTIVE FILTER... 22

FIGURE 8 IMPLEMENTATION OF THE ADAPTIVE FILTER.. 28

FIGURE 9 BER PERFORMANCE WHEN USING ADAPTIVE FILTER (SOLID) VS THE RESULTS OF

FRENGER’S (DASHED) .. 34

FIGURE 10 BER OF THE ADAPTIVE FILTER (SOLID) VS THE RESULTS OF FRENGER'S (DASHED)

WITH DIFFERENT
2
mσ .. 35

FIGURE 11 BER WITHOUT SELECTING CRITERIA.. 36

FIGURE 12 STEP SIZE VERSUS ITERATIONS... 37

FIGURE 13 THE BOUNDARY OF ESTIMATION ERROR VARIANCE OF THE ESTIMATOR (2) 38

1

CHAPTER I

INTRODUCTION

1.1 Review of the literature

Turbo codes, introduced in [1], have been proven to perform remarkably well on

additive white Gaussian noise (AWGN) channels [1], [2]. The performance of the turbo

codes on Rayleigh fading channels has also been studied since then [3] - [6]. In [6], the

author, Frenger, gave out the exact decoding metric for binary phase-shift keying (BPSK)

signalling on Rayleigh fading channels by assuming that there is a channel estimator

prior to the turbo decoder to provide us with an unbiased channel estimate with a certain

error variance. The conventional turbo decoding metric on AWGN channels needs the

estimation of signal to noise ratio (SNR) [7]. The exact turbo decoding metric over

Rayleigh fading channels needs both SNR and the channel fading factors [3], [8].

However, the channel parameters are assumed to be known by Frenger in [6]. Since then,

many researches have focused on the estimation of channel parameters and the

degradation caused by errors in these parameters, while there is not much research

directly working on the results of Frenger in [5] and [6]. This could be seen from the

number of citations in IEEE: [5] is only cited twice [9], while [6] is cited thirteen times so

far [10], [12].

The effect of SNR mismatch on the performance of the turbo decoding has been

studied in several works. Some research has been proposed for integrating the estimation

process into the turbo decoder over fading channels [9], [11]. In [9], a modified version

of Wiener filtering with initial pilot symbols is proposed, and the bit error rate (BER)

performance has been improved by 0.5dB at BER of 310− , comparing to the Wiener

 2

filtering algorithm with initial pilot symbols. In [10], the exact turbo decoding metric is

simplified. The BER performance is between that of the conventional decoding metric

and the exact decoding metric, but is very close to the BER performance of the exact

decoding metric. In [11], an in-service estimation of the channel reliability factor is

proposed, which uses the statistical computations of the block observations to get BER

performance similar to the exact decoding metric in [6]. In [13], they do not use the fixed

iterations with the turbo decoder, while they do use adaptive iterations for speeding up

the decoding process by aiming at a fixed BER. Once the aimed BER, say 410− , is reached,

no further iterations for the turbo decoder are needed. All these estimation schemes can

be seen as pilot symbol aided modulation (PSAM) or as blind channel estimation

methods. Most of these estimation methods ignore the feedback from the turbo decoder.

However, the extrinsic information generated during turbo decoding process has some

priori information about the transmitted data bits, which can help us refine the channel

fading factors.

 In [12], a novel idea has been proposed for integrating the extrinsic information

from the turbo decoder to re-estimate the fading channel. However, a mistake is made

during the mathematical derivation approach. There is no relation between the re-estimate

of the fading channel and the extrinsic information as expected. So an incorrect method is

used to make such a connection, which is to approximate the new channel estimate and

its error variance by taking their expected value on coded input data bits .There is no

mathematical reason to support this kind of approximation.

 3

1.2 A new adaptive algorithm for turbo decoding

In this thesis, based on the results in [6] and [12], we propose a new adaptive

channel estimation algorithm for turbo decoding on Rayleigh fading channels. The

mistake in [12] is corrected. However, the experiment does not go positively as expected

after the correction. The results of the experiment show that the extrinsic information

generated during the decoding process is not totally reliable. The extrinsic information of

some bits is helpful to the channel re-estimation, while the others are not. Future

researchers should pay attention to this point, avoiding unnecessary repeated experiments.

The adaptive decoding metric proposed by this thesis has successfully overcome this

problem by utilizing an effective stop-and-go strategy at the implementation stage as a

selecting criterion. In addition to that, the steep-decent algorithm of Newton’s method is

used to co-operate with the iterative nature of the turbo decoder. The varying step size is

also adopted to achieve faster convergence.

The observations received by the turbo decoder have two parts: the systematic

portion and parity portion. The proposed adaptive filter takes only the systematic

observations and the soft extrinsic information, which is the feedback from the turbo

decoder, as its inputs. This is one of the unique choices of this thesis. Some research

takes the hard decision as the input of the adaptive channel filter for only the amplitude

estimation [14], while some takes only the soft information as the input of the adaptive

filter for SNR estimation [13]. None of them split up the observations into two parts. The

conventional decoding algorithm that is used for AWGN channels is unchanged in this

thesis. However, the exact decoding metric that is derived by Frenger in [6] is updated

iteratively during the turbo decoding process.

 4

The proposed adaptive filter works better when the block size of the information

gets smaller or the estimation errors of the channel estimator in [6] get bigger. The gain

of using the proposed adaptive filter is about 1dB at the bit error probability of 43.5 10−×

with some settings. This gain is obtained with minimally increased complexity.

1.3 Organization of the thesis

The organization of this thesis is as follows: In Chapter 2, the basic elements of a

digital system and the channel models are introduced. In Chapter 3, the turbo encoder and

turbo decoding algorithm are reviewed. In Chapter 4, we propose an adaptive filter that

uses the soft information to update the exact turbo decoding metric iteratively over

Rayleigh fading channels. In Chapter 5, simulation results are presented. Finally,

conclusions and future research directions are given in Chapter 6. The whole Matlab

scripts of the proposed adaptive filter and the turbo encoder and decoder are presented at

the end as an Appendix.

 5

CHAPTER II

CHANNEL MODELS

To design a channel estimator and analyze the performance of turbo decoding

algorithms, we need to understand the channels that the transmitted data experiences. The

concept of the basic digital communication systems and two channel models are needed

to discuss our contributions

2.1 Basic elements of digital communication systems

The demand for efficient and reliable digital communication systems has rapidly

increased in recent years. It is necessary to minimize bit error probability at the receiver

end for higher quality communication. A block diagram of a digital communication

system is shown in Figure 1 [15].

Figure 1 Block diagram of a digital communication system

 The information source usually contains redundancy. The source encoder removes

the redundancy of the information to achieve efficiency. The source encoder changes

source information to information sequences. Then the channel encoder adds redundancy

to the information sequences in a controlled way to increase communication reliability.

Then the digital modulator transforms coded bits into a continuous time waveform, which

 6

is suitable for a physical channel. The transmitted bits will be distorted randomly both in

amplitude and phase due to many factors, such as reflection, refraction, multipath…

 At the receiver end, the digital demodulator produces an estimation of the

transmitted data. The channel decoder uses the redundancy and knowledge of the channel

code to detect and correct errors. Finally the source decoder reconstructs the original

information by using knowledge of the source encoding method.

 In this thesis, the main concern is channel decoding for binary phase shift keying

(BPSK) signalling over the Rayleigh fading channel.

2.2 Channel models

For better understanding of decoding strategies over the Rayleigh fading channel,

we first need to introduce the additive white Gaussian noise (AWGN) channel model, and

then the fading channel model.

2.2.1 AWGN channel

The AWGN channel model, together with BPSK modulator, is shown in Figure 2.

Where ()0,1kx ∈ are coded data bits. The coded data (systematic bits and parity bits) are

inputs to a BPSK modulator, which generates the transmitted channel symbols

(),l s sc E E∈ − . In an AWGN channel, Gaussian distributed random noise, ln , with

zero mean is added to the transmitted symbols. The variance of ln is:

 [] 2 0

2l n

N
E n σ= = (2.1)

 7

Figure 2 AWGN channel model

The signal to noise ratio (SNR) is:

2

0 2
b s

n

E E

N r σ
=

×
 (2.2)

where bE is the energy per information bit, sE is the energy per actual transmitted

symbol, r is the coding rate, and we have the relationship between the energies and the

code rate,

 s

b

E
r

E
= (2.3)

At the receiver end, we have,

 l l ly c n= + (2.4)

2.2.2 Rayleigh fading channel

The Rayleigh fading channel is a statistic model mostly used by wireless system.

The Rayleigh fading channel with independent additive white Gaussian noise and a

BPSK modulator is shown in Figure 3. Each of the channel symbols, lc , is transmitted on

such model. At the receiver end, we have [16],

 l l l ly a c n= + (2.5)

 8

where the noise ln and the channel coefficient la are complex valued, Gaussian

distributed random variables with zero mean that are independent of each other.

Figure 3 Fading channel model

The variances of la and ln are

2 2

2 2

[| |] 2 ,

[| |] 2

l a

l n

E a

E n

σ
σ

=

=
 (2.6)

At the receiver we need to know both the amplitude and phase distortion. Such

analysis is more complex than the analysis of the AWGN channel model. We can express

the complex valued channel coefficient la as follows,

 lj
l lr li la a ja re θ= + = (2.7)

The amplitude and phase probability density function (pdf) of the channel

coefficient la is [17]:

2

22
2

()

1
() 0, 2

2

l

a

r

l
l

a

l

r
f r e

f

σ

σ

θ π
π

−

=

= []

 (2.8)

where the amplitude is Rayleigh distributed and the phase is uniform distributed.

9

CHAPTER III

TURBO CODES AND DECODING

Turbo codes with maximum a posteriori (MAP) algorithm have been proven to

perform extraordinary well on AWGN channels [1], [2]. Turbo decoding on Rayleigh

fading channels has also been studied in [5], [6]. In this chapter, we first introduce the

concept of the Turbo encoder, then briefly review turbo decoding over AWGN channels

and Rayleigh fading channels separately.

3.1 Turbo encoder

Normally, a Turbo encoder [1] consists of two recursive systematic convolution

(RSC) encoders in parallel, separated by a random interleaver (I). The information

sequences are sent to the first encoder directly, while the second encoder receives the

interleaved information sequences. For code rate 1/ 3r = , there is no puncturing, the

code words are 1 2(, ,)s p p
l l lx x x ⋅ ⋅⋅ . We could puncture the code words to achieve a higher

code rate of ½. In this case, the output code words are 1 2
1 1(, , ,)s p s p

l l l lx x x x+ + ⋅ ⋅⋅ .

Figure 4 Turbo encoder

 10

A typical RSC encoder is depicted in Figure 5, where the kd is calculated as:

1

1
1

K

k k i k i
i

d u g d
−

−
=

= +∑ (3.1)

The corresponding code words are (,)s p
k kx x ,

 1

2
1

s
k k

K
p
k k i k i

i

x u

x d g d
−

−
=

 =



= +


∑
 (3.2)

Figure 5 RSC encoder

where the feedback generator is1 (11111)ig = , and the forward generator is2 (10001)ig = .

They correspond to octal notation 1 37ig = , and 2 21ig = .

3.2 Maximum a posteriori (MAP) algorithm over AWGN channel

MAP is the optimal symbol-by-symbol maximum a posteriori probability

algorithm [18]. However, MAP is not practical for implementation, primarily because of

the complexity associated with the representation of the probabilities. Log-MAP is a

transform of MAP, and works in the logarithmic domain, which has equivalent

performance and is more practical. We review the fundamentals of MAP/Log-MAP

below, which are thoroughly discussed in [16] and [19].

 11

For an information sequence of length N, we have 1 2(, ,...,)Nu u u u=� , where

(0,1)iu ∈ , and for the corresponding coded output sequence, we have 1 2(, ,...,)Nc c c c=� � � �
,

where the length of ic
�

 is n for a code rate of 1/r n= . We denote the encoder state at

time i is im . We know that the output and the current state of the convolutional code

encoder depend on the previous state and input, so we have the functions:

 1(,)
ci i ic f u m−=� (3.3)

 1(,)i s i im f u m−= (3.4)

It is clear that any state pair 1(,)i im m− corresponds to either 0iu = or 1iu = .

Hence, we have two sets of state pairs 0S and 1S , corresponding to 0iu = and 1iu = .

Based on observations at the receiver, 1 2(, ,...,)Ny y y y=� � � �
, we can apply the MAP rule to

find log-likelihood L values as:

1

0

1

1

0 1

(1|) (1,)
() ln ln

(0 |) (0,)

(, ,)
(,)

ln ln
(,) (, ,)

i i
i

i i

i i
S

i i
S

P u y P u y
L u

P u y P u y

P m m y
P S y

P S y P m m y

−

−

= == =
= =

= =
∑

∑

� �

� �

�
�

� �

 (3.5)

We define () (...)j
i i jy y y=� � �

, where i j≤ . Then we can write

 (1) ()
1 1(, ,)i N

i iy y y y−
+=� � � �

 (3.6)

and we have

 12

(1) ()
1 1 1 1

(1) () (1)
1 1 1 1 1

(1) (1) () (1)
1 1 1 1 1 1 1

(1)
1 1

(, ,) (, , , ,)

(, , ,) (| , , ,)

(,) (, | ,) (| , , ,)

(,) (, |

i N
i i i i i i

i N i
i i i i i i i

i i N i
i i i i i i i i

i
i i i

p m m y p m m y y y

p m m y y p y m m y y

p m y p m y m y p y m m y y

p m y p m y

−
− − +

− −
− + −

− − −
− − + −

−
−

=

=

=

=

� � � �

� � � � �

� � � � � �

� � ()
1 1

1 1 1

) (|)

() (,) ()

N
i i i

i i i i i i i

m p y m

m m m mα γ β
− +

− − −=

�
 (3.7)

where the first three steps follow from the chain rule, the forth step follows from Markov

properties [20], and the last step we define 1 1()i imα − − , ()i imβ , and 1(,)i i im mγ − as follows:

(1)
1 1 1 1

()
1

1 1

() (,)

() (|)

(,) (, |)

i
i i i

N
i i i i

i i i i i i

m p m y

m p y m

m m p m y m

α
β

γ

−
− − −

+

− −

=

=
=

�

�

�
 (3.8)

Hence the log-likelihood, L , becomes:

1 1

1 0

1 1

1 0

1
(,)

1
(,)

1 1 1
(,)

1 1 1
(,)

(, ,)

() ln
(, ,)

() (,) ()

ln
() (,) ()

i i

i i

i i

i i

i i
m m S

i
i i

m m S

i i i i i i i
m m S

i i i i i i i
m m S

p m m y

L u
p m m y

m m m m

m m m m

α γ β

α γ β

−

−

−

−

−
∈

−
∈

− − −
∈

− − −
∈

=

=

∑

∑

∑

∑

�

�

 (3.9)

We can compute ()i imα forward recursively as following:

1

1

1

1

()
1

(1)
1 1

(1) (1)
1 1 1 1

(1)
1 1 1

1 1 1

() (,)

(, , ,)

(,) (, | ,)

(,) (, |)

() (,)

mi

mi

mi

mi

i
i i i

i
i i i

S

i i
i i i i

S

i
i i i i

S

i i i i i
S

m p m y

p m m y y

p m y p m y m y

p m y p m y m

m m m

α

α γ

−

−

−

−

−
−

− −
− −

−
− −

− − −

=

=

=

=

=

∑

∑

∑

∑

�

� �

� � �

� �

 (3.10)

assuming that all initial states have a value of zero, that is

 13

 0
0 0

0

1 0
()

0 0

m
m

m
α

=
=  ≠

 (3.11)

And we compute 1 1()i imβ − − backward recursively as:

()
1 1

1 1

()
1 1 1

()
1 1

1

(|)

(, , |)

(, |) (| , ,)

(, |) (|)

(,) ()

mi

mi

mi

mi

N
i i i

N
i i i i

S

N
i i i i i i i

S

N
i i i i i

S

i i i i i
S

p y m

p y y m m

p m y m p y m y m

p m y m p y m

m m m

β

γ β

− −

+ −

− + −

− +

−

=

=

=

=

=

∑

∑

∑

∑

�

� �

� � �

� �

 (3.12)

assuming that the trellis is terminated in the all-zero state. Hence,

1 0

()
0 0

N
N N

N

m
m

m
β

=
=  ≠

 (3.13)

We compute 1(,)i i im mγ − as follows:

1 1

1 1

(,) (, |)

(|) (| ,)

() (|)

() (|)

i i i i i i

i i i i i

i i i

i i i

m m p m y m

p m m p y m m

P u p y u

P u p y c

γ − −

− −

=
=
=
=

�

�

�

� �

 (3.14)

The expression clearly shows that 1(,)i im mγ − depends on the prior probability of

the information at time i , and the channel characteristics.

3.3 Turbo decoding over AWGN channel

For an AWGN channel, we have l l ly c n= + . Let us consider the special case

when code rate 1/ 2r = , and the systematic convolution code uses BPSK modulation.

Under such a condition we have (,)s p
i i iy y y=� and (,)s p

i i ic c c=� , where s and p represent

systematic bit and parity bit, respectively. In order to calculate the log-likelihoodL , we

 14

need first to calculate the branch metric 1(,)i i im mγ − .According to formula (3.14), we

further need to calculate the probability of (|)i ip y c
� �

.

The pdf of y given c could be calculated through its cumulative distribution

function (CDF) as follows:

 | (|)
(|) l ly c i i

i i
i

F y c
p y c

y

∂
=

∂

� �
� �

� (3.15)

while

| (|) (|)

(|)

(|)

()

()

l l

i i

y c i i l i l i

l l i l i

l i l l i

l i i

y c

N

F y c P y y c c

P c n y c c

P n y c c c

P n y c

f dα α
−

−∞

= ≤ =

= + ≤ =
= ≤ − =
= ≤ −

= ∫
� �

� � � �

� �

� �

� �
 (3.16)

Therefore, we get:

| (|)
(|)

()

() | () ()

() 0

()

l l

i i

i i

y c i i
i i

i

y c

N
i

y c
N N i i N

N i i

N i i

F y c
p y c

y

f d
y

f f y c f

f y c

f y c

α α

α

−

−∞

−
−∞

∂
=

∂
∂=

∂

= = − − −∞
= − −
= −

∫
� �

� �

� �
� �

�

�

� �

� �

� �

 (3.17)

where ()Nf α is the pdf of the AWGN channel. So the branch metric is:

1

2 2

0 0

2 2 2 2

0 0 0

(,) () (|)

() () ()
exp

() () () () 2 21
exp ()exp

i i i i i

s s p p
i i i i i

s p s p s s p p
i i i i i i i i

i

m m P u p y c

P u y c y c

N N

y y c c y c y c
P u

N N N

γ

π

π

− =

 − + −= − 
 

   + + + += −   
   

� �

(3.18)

 15

Because of BPSK modulation, the term
2 2 2 2

0 0

() () () ()1
exp

s p s p
i i i iy y c c

N Nπ
 + + +− 
 

is independent of iu , and it could be cancelled from the numerator and the denominator

of the log-likelihood L values in the formula (3.9), as follows:

1 1

1 0

1 1
(,) 0

1 1
(,) 0

1 1
(0

0

2 2
() ()exp ()

() ln
2 2

() ()exp ()

2
() ()exp ()

4 (1)
ln ln

(0)

i i

i i

i

s s p p
i i i i

i i i i i
m m S

i s s p p
i i i i

i i i i i
m m S

p p
i i

i i i i i
mc s i

i
i

y c y c
m P u m

N
L u

y c y c
m P u m

N

y c
m P u m

E NP u
y

N P u

α β

α β

α β

−

−

−

− −
∈

− −
∈

− −

 +
 
 =
 +
 
 

 
 =  = + +

=

∑

∑

1 1

1 0

,)

1 1
(,) 0

2
() ()exp ()

() ()

i

i i

m S

p p
i i

i i i i i
m m S

s
c i a i e i

y c
m P u m

N

L y L u L u

α β
−

∈

− −
∈

 
 
 

= + +

∑

∑
(3.19)

where we define cL as the channel reliability factor [7], ()a iL u is a priori information,

and ()e iL u as the extrinsic information of the systematic bit s
iy , which is dependent on

the received parity bits.

1 1

1 0

0

1 1
(,) 0

1 1
(,) 0

4

(1)
() ln

(0)

2
() ()exp ()

() ln
2

() ()exp ()

i i

i i

c
c

i
a i

i

p p
i i

i i i i i
m m S

e i p p
i i

i i i i i
m m S

E
L

N

P u
L u

P u

y c
m P u m

N
L u

y c
m P u m

N

α β

α β

−

−

− −
∈

− −
∈

=

==
=

 
 
 =
 
 
 

∑

∑

 (3.20)

For turbo decoding, corresponding to the turbo encoder, we have two MAP decoders,

DEC1 and DEC2, which iteratively exchange extrinsic information as a priori

probability of each other. A de-multiplexer at beginning changes the received serial data

 16

bits ly into parallel data bits (1 2, ,s p py y y). Corresponding to the turbo encoder, the

received systematic bits sy and parity bits 1py are sent to the first MAP decoder, which

is depicted as DEC1 in Figure 6. The interleaved systematic data bits ()sy i and the

received parity data bits 2py , which are already interleaved at the turbo encoder, are sent

to the second MAP decoder, which is DEC2 depicted in Figure 6.

Figure 6 Turbo decoder

At the first iteration, we do not have the extrinsic information yet, assuming all

bits are equiprobable, and so set a priori probability value 1aL to zero. Thus we get the

first extrinsic information (1)
1eL from the first MAP decoder; the superscript represents the

iteration number of the decoding process.

(1) (1) (1) (1)
1 1 1 1

(1)
1

0s s
e A c a A c

s
A c

L L L y L L L y

L L y

= − − = − −

= −
 (3.21)

The first extrinsic information (1)
1eL after interleaved, becoming(1)

1 ()eL I , is sent to

the second MAP decoder. The second MAP decoder will take the extrinsic information

 17

from the first MAP decoder as its a priori probability 2aL of the transmitted data bits. In

the second decoder, after decoding, we get a new extrinsic information (1)
2eL :

(1) (1) (1)

2 2 2

(1) (1)
2 1

()

() ()

s
e A c a

s
A c e

L L L y I L

L L y I L I

= − −

= − −
 (3.22)

The (1)
2eL , after de-interleaved, becoming (1) 1

2 ()eL I − , is fed back to the first MAP

decoder as its a priori information of the next iteration.

(2) (2) (2)
1 1 1

(2) (1) 1
1 2()

s
e A c a

s
A c e

L L L y L

L L y L I −

= − −

= − −
 (3.23)

The general formula for the extrinsic information is as follows:

() () () () (1) 1
1 1 1 1 2

() () () () ()
2 2 2 2 1

()

() () ()

i i s i i s i
e A c a A c e

i i s i i s i
e A c a A c e

L L L y L L L y L I

L L L y I L L L y I L I

− −= − − = − −

= − − = − −
 (3.24)

with the number of iterations 1i ≥ , and (1) (0)
1 2 0a eL L= = . The capital letter I in brackets

represents the interleaver and de-interleaver with a negative power of 1. The whole

decoding process runs iteratively for the given times to improve the decoding

performance.

The upper part and the lower part of the turbo decoder is identical, except that

every piece of information that goes through the lower part must be interleaved and the

output of the lower part must be de-interleaved before using.

At the end of the iterative decoding process, we can make a decision ˆku by

comparing 2()A kL u to a threshold equal to zero,

 2

2

ˆ 1 () 0,

ˆ 0 () 0,
k A k

k A k

u if L u

u if L u

= ≥
= <

 (3.25)

 18

From Figure 6, we see that two pieces of information are needed by the turbo

decoder, channel reliability factor cL and observations ly or decision variables.

3.4 Turbo decoding over the Rayleigh fading channel

The structure of the turbo decoder over the Rayleigh fading channel is identical to

that over the AWGN channel. From the point of view of the turbo decoder, we still need

two pieces of information, i.e., the channel reliability factor and decision variables.

However, due to the different channel models, we need to modify those two pieces of

information. In [6], the author assumes that there already exists a channel estimator, in

this thesis we call it channel estimator (1). The channel estimator (1), lh , is modeled as

 l l lh a m= + (3.26)

where lm is the estimate error of the Rayleigh fading channel la , which is complex

valued and Gaussian distributed with

2 2

[] 0

[| |] 2

l

l m

E m

E m σ
=

=
 (3.27)

The estimate error of the estimator (1), lm , is independent of the channel la .

Further we have:

2 2 2 2

[] [] [] [] 0

[| |] [| |] [| |] [| |]

l l l l l

l l l l l

E h E a m E a E m

E h E a m E a E m

= + = + =

= + = +
 (3.28)

In [6], the author gives the new decision variables lz based on the received bits

ly and the estimation lh of the channel estimator (1):

 *
l l lz y h= (3.29)

Further, the cross correlation coefficient of ly and lh is defined as follows:

 19

* 2

2 2 2 2 2 2 2

[]

[| |] [| |] (| |)()
l l a l

l

l l l a n a m

E y h c

E y E h c

σµ
σ σ σ σ

=
+ +

≜ (3.30)

The author of [6] also derived the probability density function of lz conditioned on the

transmitted code symbol lc as follows:

*

2 2 2 2

0 2

[]1
(|) exp

2 (1 | |) (1 | |)

| |

(1 | |)

l l
l l

h y y h

l

y h

R z
p z c

z
K

µ
πσ σ µ σ σ µ

σ σ µ

 
=  − −  

 
×   − 

 (3.31)

Where ()oK x is the zeroth order Hankel function of x , and ()R x denotes the real

component of x . The author of [6] then uses MAP algorithm as mentioned in section

(3.2) to calculate the log likelihood ratio of a posteriori probabilities as follows:

1 1

1 0

1 1

1 0

1
(,)

1
(,)

1 1 1
(,)

1 1 1
(,)

(, ,)
(1|)

() ln ln
(0 |) (, ,)

() (,) ()

ln
() (,) ()

i i

i i

i i

i i

i i l
m m Si l

i
i l i i l

m m S

i i i i i
m m S

i i i i i
m m S

p m m z
P u z

L u
P u z p m m z

m m m m

m m m m

α γ β

α γ β

−

−

−

−

−
∈

−
∈

− − −
∈

− − −
∈

== =
=

=

∑

∑

∑

∑

 (3.32)

Similar to the formula (3.14), the author gets,

 1(,) () (|)i i i i i im m P u p z cγ − = (3.3)

Finally, the author of [6] gives out the new channel reliability factor cL as follows:

1

2 2 2 2

0 0

4 2
(1)c s

c a m a a

E E
L

N N
σ σ σ σ

−
 

= + + 
 

 (3.34)

For a perfect channel estimator (1), 2 0mσ = ,
0

4 c
c c

E
L L

N
= = .

 20

 The BER performance may be improved by up to1 dB at a bit error probability of

310− by applying new decision variables and the new channel reliability factor.

21

CHAPTER IV

ADAPTIVE TURBO DECODER

The exact turbo decoding metric (3.29) over Rayleigh fading channels assumes

there is an estimator (1) with an estimation error variance of 2
mσ . In [6], simulation

results show that the smaller the error variance, the better the BER performance. Many

works have been studied to reduce the error variance of the channel estimator (1). Most

of them ignored the extrinsic information (2eL) generated during the turbo decoding

process.

In this Chapter, we first propose a new adaptive algorithm for turbo decoding,

which uses the extrinsic information (2eL) and the systematic observations (sy) as its

inputs. Then we review the basic theory of the estimation. The optimal solutions of

minimum mean square error are modified to become more suitable to the iterative nature

of turbo decoding by combining the steep-decent method. Further, the optimal step size

of the steep-decent algorithm of the Newton’s method is also adapted to the iterative

nature of turbo decoding. At the implementation stage, the stop-and-go strategy makes

the proposed adaptive filter more realistic. The boundary of estimation error variance of

the estimator (2) is also discussed in detail.

4.1 Block diagram of the proposed adaptive filter

We follow the work of author [6]. There are two things that should be noticed.

First, the channel estimator (1) is imperfect; secondly, the channel estimator (1) does not

update iteratively as the Turbo decoder does. In other words, after getting the new

channel reliability factor and new decision variables, we do not need channel estimator

 22

(1) any more. However, the turbo decoder generates new information about the

transmitted data bits after each iteration. The extrinsic information generated by the turbo

decoder could help us better understand what we have received after each iteration. The

proposed algorithm makes use of this kind of information to re-estimate the channel

adaptively. In this thesis we will call it channel estimator (2), as depicted in Figure 7.

ˆ la
2
m̂σ

ˆ s
cLˆ s

lz

Figure 7 Block diagram of adaptive filter

Like in Figure 6, from the point view of the turbo decoder, we summarize two

pieces of information, the decision variables (zor y) and the channel reliability factor

(cL), as inputs of the turbo decoder for all the three situations, which are the conventional

turbo decoding metric, the exact decoding metric, and the proposed adaptive decoding

metric. Further in Figure 7, we split up these two pieces of information into two sets of

pairs. One set of pair is (,p p
cz L), which is related to the parity bits, the other is (,s s

cz L),

which is related to the systematic bits. The superscripts (,s p) represent systematic and

parity bits respectively. The proposed adaptive filter takes both the systematic

observations (sy) and the soft extrinsic information (2eL), which is from the output of

 23

the turbo decoder, as its inputs. This is one of the unique choices of this thesis. Some

research takes the hard decision as its input of the adaptive channel filter [13], while

some takes only the soft information as its input of the adaptive filter [14]. None of them

split up the two pieces of information (, cz L) into two sets of pairs. The basic motivation

to make such kind of choice is that we do not want any delay or memory in the proposed

algorithm. Any delay or register would increase the cost and complexity of the turbo

decoder. Because the length of the extrinsic information is N , which is the same as the

length of the systematic observations, we could simultaneously calculate the updated

channel without any delay or register. We then re-estimate the channel, and finally update

the channel reliability factor and decision variables after each iteration of the turbo

decoding process. Because the extrinsic information generated by the turbo decoder is

only related to the systematic data bits, we only update the channel reliability factors and

the decision variables that are related to the systematic bits. Once we get the updated

channel estimation and its variance, the fading compensator computes out the two

updated pieces of information that the turbo decoder needed as depicted in

Figure 6 and Figure 7, the updated channel reliability factor ˆs
cL and the updated decision

variables ̂ s
lz .

4.2 Estimation theory review

According to the theory of estimation discussed in [21], the minimum mean

square error estimator â of the unknown channel a , given observations y , is:

 ˆ oa w y= (4.1)

where ow is any solution that satisfies the normal equation,

 24

 1o
ay yw R R−= (4.2)

while the covariance yR and the cross-covariance ayR are defined as follows:

*

*

y

ay

R Eyy

R Eay

=

=
 (4.3)

The solution ow minimizes the cost function of the channel in the mean square

error sense,

 2ˆmin ()
ow

E a a− (4.4)

and the minimum mean square error (m.m.s.e.) is:

 1. . . . a ay y yam m s e R R R R−= − (4.5)

The optimal linear solution ow is clearly not sensitive to the iterations of the turbo

decoding process in general. In other words, no matter how many iterations we choose,

the optimal minimum mean square error solution remains the same. This also means that

the optimal linear solution ow is optimal for the whole of the iterations, not for each of

them. If we use the optimal linear solution ow directly in the each iteration of the turbo

decoding process, the turbo decoder must be disturbed at each of the iterations.

The any solution ow could also be achieved by the steepest-decent algorithm of

Newton’s method [21] iteratively, as follows:

1
1 1

1

[]i i y ya y iw w R R R w

w any initial guess

step size

µ

µ

−
− −

−

 = + −


= 
 =


 (4.6)

where i is the iterations of the Newton’s method.

 25

Because the steep-decent algorithm and the decoding process of the turbo decoder

have such similar iterative characteristics, they could help each other during the decoding

process.

4.3 The proposed estimator (2) of channel a

First we calculate the covariance yR and the cross-covariance ayR by using the

definition [20] as well as the channel model discussed in chapter 2,

* * 2 2

* * 2

* * 2

()() 2 2

() 2

() 2

y a n

ay a c

ya a c

R Eyy E ac n ac n

R Eay Ea ac n m

R Eya E ac n a m

σ σ

σ

σ

= = + + = +

= = + =

= = + =

 (4.7)

Then we get the solution to the Newton’s method

1
1 1

2 2 2
1

1 2 2

2 2 2
1

1 2 2

[]

[2 (2 2)]

2 2

[()]

i i y ya y i

a c a n i
i

a n

a c a n i
i

a n

w w R R R w

m w
w

m w
w

µ

µ σ σ σ
σ σ

µ σ σ σ
σ σ

−
− −

−
−

−
−

= + −

− += +
+

− += +
+

 (4.8)

where the mean value of the coded bits (cm) is related to the extrinsic information (2eL).

See formula (4.16) later.

The optimal step size oµ is calculated as follows [21]:

2 2

max min

2 1

2()
o

a n

µ
λ λ σ σ

= =
+ +

 (4.9)

where maxλ and minλ denote the maximum and minimum eigenvalues of the covariance

yR . Theoretically, the optimal step size is for the situation as the iteration i → ∞ . It is

clear again that the optimal step size is not sensitive to the iterations of the turbo

 26

decoding process as we see in the formula (4.9). Within the limited iterations of the

decoding process, we naturally want to take the biggest step size first then gradually

reduce the step size to reach the fastest convergence. In other words, we need relate the

optimal step size to the iterations of the turbo decoding process in some specific way, as

shown below.

We combine the solution to Newton’s method and the normal equation, as well as

based on the above considerations of the step size, the estimator (2) of the channel a is:

2 2 2
1

1 2 2

1

2 2

ˆ[()]
ˆ ˆ

ˆ

()

s s
s s s a c a n i
i i i

a n

l

a n

m y a
a w y a

a h

k

i

µ σ σ σ
σ σ

µ
σ σ

−
−

−

 − += = + + =

 =

× +

 (4.10)

In the above equation, we take the estimation of the estimator (1), both the

systematic and parity bit part, as the initial value of the estimator (2), which is 1ˆ la h− = as

shown in the formula. The size of the initial value 1â− is n N× with a code rate of

1/r n= , while the size of̂ s
ia , cm , iw and sy is N , which is the length of the information

sequence. After the initialization, we only calculate and update the systematic part ˆs
ia as

the superscript s indicated. And i is the iterations of the turbo decoder and/or Newton’s

method. Here, we combine them together and make no differentiation between them

afterwards. The step size is reversely proportional to the iteration of the turbo decoder by

practice and the above discussions.

 Hence, the minimum mean square error (m.m.s.e.) of the estimator (2) and the

variance of the estimation error is as following:

 27

2 2

1 2
2 2

(2)
. . . . 2

2 2
a c

a ay y ya a
a n

m
m m s e R R R R

σσ
σ σ

−= − = −
+

 (4.11)

2 2

2 2
ˆ 2 2

(1)a c
m a

a n

mσσ σ
σ σ

= −
+

 (4.12)

Finally we get the updated channel reliability factor ˆs
cL and updated decision

variables ̂ s
lz ,

1

2 2 2 2
ˆ

0 0

4 2ˆ (1)

ˆˆ

ss s
c a m a a

s s s
l l i

E E
L

N N

z y a

σ σ σ σ
−

 
= + + 

 

=

 (4.13)

where the size of ̂scL and ˆs
lz is also N , the length of the information sequence.

The proposed adaptive decoding metric (4.13) is the same as the one used in the

exact decoding metric (3.29), except that the error variance 2
m̂σ is updated iteratively

during the decoding process with the selecting criterion as follows.

 2 2
m̂ mσ σ< (4.14)

In the above equations we need to calculate the mean value of the coded bits. By

definition [7], we have

2

2

2

(1) (1)
ln ln ln

(0) (1) 1

1
(1) (1) (1)

e

e

k
e

k

L

L

c

P u P c p
L

P u P c p

e
p

e
f p c p cδ δ

= == =
= = − −

=
+

= − + − +

≜

 (4.15)

So the mean value of the coded bits is:

 2[] () 2 1 tanh()
2
e

c c

L
m E c cf c dc p

+∞

−∞
= = = − =∫ (4.16)

 28

The mean value of the coded bits is only related to the systematic bits, so we did

not put a superscript s around its right upper corner for simplicity.

One last thing we need to mention is that all the calculations are bit wised in the

formulas. This also means each systematic bit has gone through the channel with

different channel estimations. The square of cm in the equation (4.12) is calculated by

array power function with the Matlab, and the term s
cm y in the formula (4.10) is

calculated by array multiplication with the Matlab, and so are the array operations in the

other formulas. For simplicity, we did not put another notation around them to avoid

notation confusion. But they should be clear by the context.

4.4 Implementation of the proposed adaptive filter

Considering the results of the calculation and some practical additions to the

adaptive filter, we construct the adaptive filter as depicted in Figure 8. In the diagram

below, the proposed adaptive filter has two inputs and two outputs.

Figure 8 Implementation of the adaptive filter

 29

The two inputs are the extrinsic information from the turbo decoder and the

observations that are related to the systematic bits. The two outputs are the updated

observations and updated new channel reliability factor.

At the first iteration, the received coded data bits go through the estimator (1).

The estimator (1) produces two pieces of information, the new channel reliability factor

cL and the new decision variables lz , that the turbo decoder needed, as depicted in

Figure 6. We split these two pieces of information into a systematic part (,s s
cz L) and a

parity part (,p p
cz L). Both systematic part and parity part are the inputs to the turbo

decoder at the first iteration. After the first iteration, we get the extrinsic information

from the turbo decoder, which could help us better understand what we have received

about the transmitted data bits. In the meantime, we toggle the switch to the estimator (2).

The extrinsic information from the turbo decoder is first de-interleaved, and then, by a

simple function, we get the mean value of the systematic bits. Using the mean values we

immediately get the error variances of the updated channel or estimator (2) through the

formula (4.12). After the first iteration, we take the estimation values of the channel from

the channel estimator (1) as the initial guess of the adaptive channels estimator (2). Then

we get the updated channel reliability factor and decision variables by the formula (4.13).

Through practice we compare the error variances of the estimator (2) to the error

variances of estimator (1). We only update the information that has less error variances in

estimator (2). If the error variances or standard derivations of estimator (2) are bigger

than those of estimator (1), we skip further calculation for those bits. The comparison of

the error variances of estimator (1) and estimator (2) provides the proposed adaptive filter

with a stop-and-go character, which makes the adaptive filter more realistic.

 30

The extrinsic information from the turbo decoder is only related to the systematic

bits, so we only update the decision variables and the channel reliability factors (ˆˆ ,s s
cz L)

that are related to the systematic bits. While the parity part (,p p
cz L) remains the same

during the rest of the decoding iteration process.

4.5 The boundary of estimation error variance of the estimator (2)

The proposed adaptive filter has a selective criterion, as shown in Figure 8 and the

formula (4.14). We rewrite the formula (4.12), (4.14) and (4.16) here for convenience.

2 2

2 2
ˆ 2 2

(1)a c
m a

a n

mσσ σ
σ σ

= −
+

 (4.12)

 2 2
m̂ mσ σ< (4.14)

 2[] () 2 1 tanh()
2
e

c c

L
m E c cf c dc p

+∞

−∞
= = = − =∫ (4.16)

 The right side of the formula (4.14) is the estimation error variance of the

estimator (1), while the left side is the estimation error variance of the estimator (2),

which varies during the decoding process. We wish to get the smaller error variance of

the adaptive filter. So, the minimum variance or the boundary of the adaptive filter

happens when the mean value of the coded bits reach its maximum. From formula (4.16),

we know that the maximum value of 2cm in the formula (4.12) is 1, so we get the

boundary of estimation error variance of the estimator (2) as follows:

2

2 2 2
ˆ2 2

(1)a
a m m

a n

σσ σ σ
σ σ

− < <
+

 (4.17)

 31

which could be further simplified as:

2 2

2 2
ˆ2 2

a n
m m

a n

σ σ σ σ
σ σ

< <
+

 (4.18)

After some calculations and from formula (2.1), we get,

2

2 0
()/102 10

a s
n SNR dB

N E

r

σσ = =
×

 (4.19)

So, we relate the boundary to the signal-to-noise ratio as follows:

2

2 2
ˆ()/1010

a s
m mSNR dB

s

E

E r

σ σ σ< <
+ ×

 (4.20)

With the code rate of 1/ 2r = , and setting both 2
aσ and sE equal to 1, we get the

boundary of estimation error variance of the estimator (2) for the special case,

 2 2
ˆ()/10

2

2 10 m mSNR dB
σ σ< <

+
 (4.21)

4.6 Decoding method comparison

In this chapter, we derived a new adaptive turbo decoding metric (4.13) for BPSK

signaling on Rayleigh fading channels with the channel estimator (1) providing a certain

error variance.

In some studies, the performance of turbo decoding on Rayleigh fading channels

has also been studied [3], [4] and [22]. In [3], the amplitude and phase of the fading

channels are assumed to be known, and then the Rayleigh fading channel can be modified

as a special case of the AWGN channel conditioned on the known fading factors. In [4],

the phase of the fading channels is assumed to be known and the amplitude is unknown,

then the probability density function (pdf) of the received symbols is adopted

approximately as Gaussian by averaging the fading process over all possible values. Thus,

 32

the conventional decoding metric of AWGN may be used. In [22], the amplitude is

assumed to be constant and the phase is unknown, the decision variables are also

modified approximately as Gaussian and the conventional Turbo decoding metric is used

again. However, in practical communication systems, the channel information is

completely unknown at the receiver, and the fading channels must be estimated at the

receiver. In [6], such an estimator is assumed to provide us with an unbiased channel

estimate with a certain error variance, and the exact decoding metric on Rayleigh fading

channels is derived. In [10] and [11], the exact turbo decoding metric derived in [6] is

simplified with no performance degradation. All the above decoding methods for

Rayleigh fading channels have no feedback from the turbo decoder, while the adaptive

turbo decoding metric derived in this chapter takes the extrinsic information generated

during the turbo decoding process as feedback from the turbo decoder.

 33

CHAPTER V

SIMULATION RESULTS

5.1 General settings

In the simulation results, two generators of the constituent RSC encoder (1 37g =

and 2 21g = , in octal notation) have been used in Figure 4 and Figure 5. The code rate is

1/ 2r = , and we set both 2aσ and sE equal to 1. The channel estimator (1) in Figure 8 is

simulated. That is, lm in the formula (3.26) is generated randomly. The variance of lm is

set to 2 0.4mσ = in Figure 9 and Figure 11, and the variance of lm is set to 2 0.4,0.3,mσ =

and 0.1 in Figure 10 respectively. The turbo decoder with 8 iterations is used in all

situations. The block length of N = 840, 420, 210, and 100 are used in Figure 9

respectively, and the block length of 100N = is used in Figure 10 and Figure 11.

5.2 BER performances with different settings

In Figure 9 and Figure 10, we present the simulation improvements when using

the proposed adaptive filter (solid lines) against the results of Frenger’s (dashed lines) in

[6].

In Figure 9, we consider varying the block sizes of the information sequence. We

can see that, as the block size of the information gets smaller, from 840N = to 100N = ,

the performance of the turbo decoder degrades. The proposed adaptive filter does not

improve the performance much when the information block size is 840N = or greater

than that. This could be explained due to the turbo decoder getting more information

from the increased information size, which helps the decoding process. When the

information block size is 100N = , the proposed adaptive filter could help the turbo

 34

decoder to achieve better BER performance. Looking at the bit error rate of 43.5 10−× , we

see that the gain of using the proposed adaptive filter is about 1dB for the block length of

100N = . The improvement of the turbo decoder with the proposed adaptive filter gets

bigger when the information block size gets smaller.

Figure 9 BER performance when using adaptive filter (solid) vs the results of Frenger’s (dashed)

In Figure 10, we compare the simulation results of the proposed adaptive filter

(solid lines) versus the results of Frenger’s (dashed lines) in [6] with different error

variances (2
mσ) of the estimator (1) in Figure 8, while the information block size stays the

same as 100N = . When the error variance of the estimator (1) is 2 0.1mσ = or less, we see

that the proposed adaptive filter gets exactly the same curve with an SNR of less than

8dB. This is because we use the selection criterion as shown in Figure 8 and the formula

(4.14), and there are no or few estimation errors from the adaptive filter that satisfies the

 35

selection criterion. If the selection criterion is not satisfied, the proposed adaptive filter

does not update the channel. This could be also explained as the estimator (1) in Figure 8

having already done a better estimation of the fading channels. When the error variance

of the estimator (1) is 2 0.4mσ = , at the bit error rate of 43.5 10−× , we see that the gain of

using the proposed adaptive filter is about 1dB . We can see that as the error variance of

the estimator (1) gets bigger, the improvement of the turbo decoder with the estimator (2)

also gets bigger. This means when the channel estimator (1) gets worse, the proposed

channels estimator (2) has more room to improve the BER performance.

Figure 10 BER of the adaptive filter (solid) vs the results of Frenger's (dashed) with different 2
mσ

From both Figure 9 and Figure 10, we see that when either the block size of the

information gets smaller or the estimation errors of the channel estimator (1) get bigger,

 36

the proposed adaptive filter could help to improve the BER performance of the turbo

decoder.

In comparison, we also give out the simulation results with the settings of

100N = , 2 0.4mσ = and 8 iterations, but do not compare the error variance of the

estimator (2) to those of the estimator (1). That is, there is no selecting criterion (2 2
m̂ mσ σ<)

for the adaptive filter in Figure 8. The adaptive filter does not provide better performance

in this case.

1 2 3 4 5 6 7 8 9 10 11 12
10

-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

L-total = 100 (No Selecting)

No Select (1:12,8)

Frenger (1:12,8)

Figure 11 BER without selecting criteria

5.3 Step size and boundary

The step size of the steep-decent algorithm for the proposed adaptive filter, see

formula (4.10), is depicted in Figure 12. Please note that the formula (4.10) follows the

general convention of the steep-decent algorithm. The initial guess of the channel 1â− is

actually the first iteration of the decoding process. So, the actual step size of µ in the

 37

formula (4.10) begins to vary from iteration 2 of the decoding process. The adaptive

channel estimator (2) in Figure 8 takes its biggest step at the iteration 2 of the decoding

process to accelerate convergence, and then reduces the step size reversely to the

iterations.

Figure 12 Step size versus iterations

 In Figure 13, the boundary of estimation error variance of the estimator (2) for the

special case is given according to the formula (4.21). That is, the code rate 1/ 2r = , and

both 2
aσ and sE are set to 1. The arrow area is an example of the boundary with the

estimation error variance 2 0.4mσ = of the estimator (1). The arrow area shows that the

adaptive filter starts to improve BER after SNR greater than 6dB when 2 0.4mσ = , the

bigger SNR, the larger distance from 2 0.4mσ = to the lower boundary. This means more

ability to improve the BER performance. This could be verified by the BER

performances with different settings in Figure 9. When 2
mσ is 0.3, the adaptive filter starts

 38

to improve the BER after SNR greater than 7dB, and when 2
mσ is 0.1, the adaptive filter

does not improve the BER before SNR greater than 13dB. These could also be verified

by the BER performances with different settings in Figure 10.

Figure 13 The boundary of estimation error variance of the estimator (2)

 39

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of contributions

 In this thesis, a number of contributions have been made in turbo decoding for

BPSK signalling over Rayleigh fading channels with noise channel estimates.

 First, a new adaptive channel filter with estimator (2) for Rayleigh fading

channels is derived by assuming that the channel estimator (1) is available at first

iteration of the decoding process. Channel estimator (1) is imperfect with some

estimation errors. The proposed algorithm is based on the new turbo decoding metric

which is derived by Frenger in [6]. However, the new decoding metric in [6] is fixed

during the iterations of the turbo decoding process, see formula (3.29). The turbo decoder

provides soft extrinsic information of the transmitted data bits which is used by the

adaptive filter in this thesis to update the new decoding metric for the next iterations of

decoding, see formula (4.13). The resulting iterations between the channel estimator (2)

and the turbo decoder can improve the performance of both the channel estimator (2) and

the turbo decoder by using the updated information. The proposed adaptive filter works

better when the block size of the information gets smaller or the estimation errors of the

channel estimator (1) get bigger. The gain of using the adaptive filter is about 1dB at the

bit error probability of 43.5 10−× with the information block length of 100N = and

2 0.4mσ = . This gain is obtained with minimally increased complexity.

 The second highlight of this thesis is that we have proposed an effective stop-and-

go strategy at the implementation stage of the adaptive filter. That is, we set the selecting

criterion for the adaptive filter. If the estimation errors of the channel estimator (2) are

 40

bigger than those of the channel estimator (1), the proposed algorithm stops updating the

decoding metric. The proposed algorithm only continues when the selecting criterion is

satisfied.

In the end, we argue that the steep-decent algorithm used in this thesis is suitable

for the nature of the turbo decoder. The turbo decoder must go several iterations to

achieve a better decoding result, while the steep-decent algorithm also takes several steps

to get closer to the optimal point. They help each other during the decoding process

although the steep-decent method is not an optimal method. Normally, an optimal method

is achieved within one step comparing to the steep-decent method. If we use the normal

optimal method at each iteration of the decoding process, the turbo decoder is disturbed

by such a one step optimal method.

6.2 Recommendations for future studies

Because the proposed adaptive filter makes use of the extrinsic information from

the turbo decoder and the extrinsic information produced by the turbo decoder currently

is only related to the systematic bits, future research could develop a turbo decoder that

could produce the extrinsic information that are related to both systematic and parity bits.

Then, based on this research, it would be more interesting to develop an adaptive filter

that uses the extrinsic information of both systematic bits and parity bits.

It is more important for the future research to develop higher-order modulation

schemes based on the proposed algorithm, which is derived for the turbo decoding for the

BPSK signalling over Rayleigh fading channels. The higher-order modulation schemes

have much more spectrum efficiency in the modern wireless communication system. The

 41

higher-order schemes could be, for example, quadrature phase shift keying (QPSK) or M-

ary quadrature amplitude modulation (M-ary QAM).

Finally, the concept of the proposed adaptive turbo filter could be applied to

adaptive channel equalizer by using the extrinsic information of the turbo decoder. It is

important to develop an iterative turbo equalizer over the Rayleigh fading channels that

have intersymbol interference.

 42

APPENDICES

APPENDIX A

Matlab scripts of the turbo decoder with adaptive filter

1. Adaptive_Rayleigh_complex

% Turbo codes on Rayleigh fading channels using Log-MAP decoder

 % Copyright Oct. 2011 YuQing Guo

% Unversity of Windsor. guo14@uwindsor.ca

% for academic use only

 % Rayleigh Fading Channels

% to modify Frenger's result

clear;

clc;

diary AdaptiveFilter_YQ.txt;

% Paul Frenger's paper

L_total = 100; % 420 is the parameter in Frenger's paper

g = [1 1 1 1 1; 1 0 0 0 1]; % Frenger. or g1=37, g2=21 in octal form

sigma_a = sqrt(1); % variance of fading coefficient @ Frenger

% alpha_factor = 0.5; % 0 0.1 0.5 1

[n,K] = size(g);

m = K - 1;

nstates = 2^m;

puncture = 0; %puncturing into rate 1/2; % exactly result of Frenger %puncture = 1; %no puncturing rate 1/3

rate = 1/(2+puncture); % Code rate

niter = 8;% Number of iterations

Ferlim =[10];% Number of frame errors to count as a stop criterior

 43

SNR = [11]; % Signal to noise ratio

k1=0.0725; % step size coefficient

Fetch_iter = 1; % set up fetching iteration --yq

varian = 0.4; % set up sigma_m^2 -- yq

Error = zeros(length(SNR), niter); % bit error

Error_hat = zeros(length(SNR), niter);

BER = zeros(length(SNR), niter); % bit error rate

BER_hat = zeros(length(SNR), niter); % bit error rate

ErrorFrame = zeros(length(SNR), niter); % frame error

FER = zeros(length(SNR), niter); % frame error rate

FrameNum = zeros(length(SNR), 1); % transmitted frame numbers for each SNR

mu = zeros(length(SNR), niter); % step size --yq

fprintf('\n\n--\n');

fprintf(' Frame size = %6d\n',L_total);

fprintf(' code generator: \n');

for i = 1:n

 for j = 1:K

 fprintf('%6d', g(i,j));

 end

 fprintf('\n');

end

if puncture==0

 fprintf(' Punctured, code rate = 1/2 \n');

else

 fprintf(' Unpunctured, code rate = 1/3 \n');

end

fprintf(' iteration number = %6d\n', niter);

fprintf(' Eb / N0 (dB) = ');

for i = 1:length(SNR)

 fprintf('%10.2f',SNR(i));

 44

end

fprintf('\n--\n\n');

fprintf('+ + + + Please be patient. Wait a while to get the result. + + + +\n');

for nEN = 1:length(SNR) % each SNR(dB)

 Eb_N0 = 10^(SNR(nEN)/10); % convert Eb/N0 from unit db to normal numbers

 Es = 2*sigma_a*sigma_a; % average power per symbol

 Eb = Es/rate;

 N0 = Eb/Eb_N0;

 sigma_n = sqrt(N0/2); % standard deviation of AWGN noise Eb = Es

 sigma_m =sqrt(varian); %constant sigma_m^2 -- yq

 L_c_perfect = 4/N0; % the perfect value of channel reliability factor

 num = sigma_a^2;

 den = sigma_m.^2*(2*sigma_a^2/N0 + 1) + sigma_a^2;

 L_c = L_c_perfect*num./den; % Frenger's result % L_c = L_c_perfect; % conventional result

 a_a = 1+sigma_n^2/sigma_a^2; % --- yq

 nframe = 1;

 Length=zeros(1,niter); % ---yq

 Lth=zeros(1,niter); % ---yq

 AverageIndex=zeros(1,niter); % ---yq

 while ErrorFrame(nEN, niter) < Ferlim(nEN)

 x = round(rand(1, L_total-m)); % info. bits

 [temp, alpha] = sort(rand(1,L_total)); % random interleaver mapping

 en_output = encoderm(x, g, alpha, puncture) ; % encoder output (+1/-1)

 % Rayleigh Fading Channel (complex numbers)

 h = sigma_a*complex(randn(size(en_output)), randn(size(en_output)));

 45

 noise = sigma_n*complex(randn(size(en_output)), randn(size(en_output)));

 r = h.*en_output + noise; % received signals

 % channel estimates

 h_estimate = h + sigma_m.*complex(randn(size(h)), randn(size(h)));

 a_hat = h_estimate; % Adaptive start point ---yq

 sigma_m_hat(1:(puncture+2)*L_total) = sigma_m; % Adaptive start point ---yq

 % decision variable after matached filter

 z = r.*conj(h_estimate);

 %z_real = real(z);

 %yk = demultiplex(z_real,alpha,puncture); % demultiplex to get input for decoder 1 and 2

 %rec_s = 0.5*L_c*yk;

 z_real = L_c.*real(z); % -------yq

 yk = demultiplex(z_real,alpha,puncture); %

 rec_s = 0.5*yk; % -------yq

 % Initialize extrinsic information

 L_e(1:L_total) = zeros(1,L_total);

 index=[]; % --yq

 for iter = 1:niter

 % Decoder one (turbo 1 from Frenger) -- yq

 % deinterleave the extrinsic information for first decoder -yzh

 L_a(alpha) = L_e; % a priori info.

 L_all = logmapo(rec_s(1,:), g, L_a, 1); % complete info.

 L_e = L_all - 2*rec_s(1,1:2:2*L_total) - L_a; % extrinsic info.

 % Decoder two

 L_a = L_e(alpha); % a priori info.

 L_all = logmapo(rec_s(2,:), g, L_a, 2); % complete info.

 L_e = L_all - 2*rec_s(2,1:2:2*L_total) - L_a; % extrinsic info.

 x_hat(alpha) = (sign(L_all)+1)/2; % Estimate the info. bits

 46

 % caculate the BER at different SNR level %

 Error(nEN,iter) = length(find(x_hat(1:L_total-m) ~= x)) + Error(nEN,iter);

 BER(nEN,iter) = Error(nEN,iter)/(nframe*(L_total-m));

 if length(find(x_hat(1:L_total-m) ~= x)) > 0 % this frame contains at least one bit error

 ErrorFrame(nEN,iter) = 1 + ErrorFrame(nEN,iter); % frame error

 end

 FER(nEN,iter) = ErrorFrame(nEN,iter)/nframe; % frame error rate

 FrameNum(nEN) = nframe; %?? from previous fellow student, not used --- yq

 if iter == Fetch_iter % BELOW -- yq

 L_e_hat = L_e; % pick up extrinsic info at exact first iteration ---yq

 mu(nEN,1) = k1;

 end

 if iter > Fetch_iter % refining channel from (Fetch_iter + 1)

 M_c(alpha) = tanh(L_e_hat/2); % soft info of codewords, mean value deinterleaved ---yq

 mu(nEN,iter) = k1/(iter*(sigma_a^2+sigma_n^2)); %--- yq

 sigma=sigma_a*sqrt(1-M_c.^2/a_a); % m.m.s.e.-------yq

 index = find (sigma <sigma_m); % find m.m.s.e. less than previous one ---yq

 if puncture > 0 % unpuntured ---yq

 e_hat = (M_c(index).*r(3*index-2)/a_a - a_hat(3*index-2)); % -- yq

 a_hat(3*index-2)= a_hat(3*index-2)+ mu(nEN,iter)*e_hat; % -------yq

 sigma_m_hat(3*index-2)=sigma_a*sqrt(1-M_c(index).^2/a_a); % -------yq

 else % punctured

 e_hat = M_c(index).*r(2*index-1)/a_a - a_hat(2*index-1); % info bits error

 a_hat(2*index-1) = a_hat(2*index-1) + mu(nEN,iter)*e_hat; % adaptive filter-------yq

 sigma_m_hat(2*index-1)=sigma_a*sqrt(1-M_c(index).^2/a_a);

 end

 den_hat = sigma_m_hat.^2*(2*sigma_a^2/N0 + 1) + sigma_a^2; % -------yq

 L_c_hat = L_c_perfect*num./den_hat; % -------yq

 47

 z_hat = r.*conj(a_hat); % -------yq

 z_real_hat =L_c_hat.*real(z_hat); % -------yq

 yk_hat = demultiplex(z_real_hat,alpha,puncture); % -------yq

 rec_s_hat = 0.5*yk_hat; % -------yq

 % Decoder one for refined channel (turbo 2 from YuQing for direct comparison)

 L_a_hat(alpha) = L_e_hat; % a priori info.

 L_all_hat = logmapo(rec_s_hat(1,:), g, L_a_hat, 1); % complete info.

 L_e_hat = L_all_hat - 2*rec_s_hat(1,1:2:2*L_total) - L_a_hat; % extrinsic info.

 % Decoder two for refined channel

 L_a_hat = L_e_hat(alpha); % a priori info.

 L_all_hat = logmapo(rec_s_hat(2,:), g, L_a_hat, 2); % complete info.

 L_e_hat = L_all_hat - 2*rec_s_hat(2,1:2:2*L_total) - L_a_hat; % extrinsic info.

 x_hat_hat(alpha) = (sign(L_all_hat)+1)/2;

 % BER after refining channel for next iteration, -- yq

 Error_hat(nEN,iter) = length(find(x_hat_hat(1:L_total-m) ~= x)) + Error_hat(nEN,iter);

 BER_hat(nEN,iter) = Error_hat(nEN,iter)/(nframe*(L_total-m));

 end % end refining

 Length(1,iter) = length(index); % --- yq

 Lth(1,iter) = Length(1,iter)+Lth(1,iter);

 AverageIndex(1,iter) = Lth(1,iter)/nframe; % ABOVE --- yq

 end % iter

 % display the results after each frame has been decoded

 fprintf('***** SNR = %5.2f dB ********** Log-MAP ****** ****\n' , SNR(nEN));

 %fprintf('\n ******** Constant alpha_factor = %5.1f *********\n', alpha_factor);

 fprintf('\n **** Constant Variance = %5.1f *****\n',varian);

 fprintf('Info. size = %d, ', L_total);

 fprintf('code rate 1/%d, ', 2+puncture);

 fprintf(' %d frame errors to stop the simulation \n', Ferlim(nEN));

 48

 fprintf('%d frames transmitted, %d frames in error, ', nframe, ErrorFrame(nEN, niter));

 fprintf('\n CurrentindexLength (from iteration %d to iteration %d):\n',Fetch_iter+1,niter);

 for i=1:niter

 fprintf('%11.3d ',Length(1,i));

 end

 fprintf('\n AverageIndexLength (from iteration %d to iteration %d):\n',Fetch_iter+1,niter);

 for i=1:niter

 fprintf('%11.1f ', AverageIndex(1,i));

 end

 fprintf('\n K1 and Step Sizes (YuQing) (from iteration %d to iteration %d):\n', Fetch_iter+1,niter);

 for i=1:niter

 fprintf('%11.8f ', mu(nEN,i));

 end

 fprintf('\n Bit Error Rate (Frenger) (from iteration 1 to iteration %d):\n', niter);

 for i=1:niter

 fprintf('%8.4e ', BER(nEN,i));

 end

 fprintf('\n Bit Error Rate (YuQing) (from iteration %d to iteration %d):\n', Fetch_iter+1,niter);

 for i=1:niter

 fprintf('%8.4e ', BER_hat(nEN,i));

 end

 fprintf('\n **\ n\n');

 nframe = nframe + 1;

 end % while

 49

 FrameNum(nEN) = nframe;

end %nEN

diary off

2. bin_state

function bin_state = bin_state(int_state, m)

% Copyright Matt C. Valenti

% MPRG lab, Virginia Tech

% for academic use only

% converts an vector of integer into a matrix; the i-th row is the binary form

% of m bits for the i-th integer

for j = 1:length(int_state) % length(int_state)?=max_state? --yzh

 for i = m:-1:1

 state(j,m-i+1) = fix(int_state(j)/ (2^(i-1))); % FIX(X) rounds the elements of X to the nearest integers towards

zero. --yzh

 int_state(j) = int_state(j) - state(j,m-i+1)*2^(i-1); % remain of mod 2^(i-1), the leftmost bit is most significant -

yzh

 end

end

bin_state = state;

3. demultiplex

function subr = demultiplex(r, alpha, puncture);

% Copyright 1998, Yufei Wu

 50

% MPRG lab, Virginia Tech.

% for academic use only

% At receiver end, serial to paralle demultiplex to get the code word of each

% encoder

% alpha: interleaver mapping

% puncture = 0: use puncturing to increase rate to 1/2;

% puncture = 1; unpunctured, rate 1/3;

% Frame size, which includes info. bits and tail bits

L_total = length(r)/(2+puncture);

% Extract the parity bits for both decoders

if puncture == 1 % unpunctured

 for i = 1:L_total

 x_sys(i) = r(3*(i-1)+1);

 for j = 1:2

 subr(j,2*i) = r(3*(i-1)+1+j); % 1/3 rate, one info.bit, two parity bits -yzh

 end

 end

else % punctured, 1/2 rate

 for i = 1:L_total

 x_sys(i) = r(2*(i-1)+1);

 for j = 1:2

 subr(j,2*i) = 0;

 end

 if rem(i,2)>0 % even position,one check bit from ENC1, one from ENC2 alternatively --yzh

 subr(1,2*i) = r(2*i); % odd posisition is systematic bits,puntured parity bits are padded to zero -yzh

 else

 subr(2,2*i) = r(2*i);

 end

 51

 end

end

% Extract the systematic bits for both decoders

for j = 1:L_total

% For decoder one

 subr(1,2*(j-1)+1) = x_sys(j); % odd positions is reserved for systematic bits -yzh

% For decoder two: interleave the systematic bits

 subr(2,2*(j-1)+1) = x_sys(alpha(j)); % info.bits that are put into DEC2 are interleaved bits -yzh

end

4. encode_bit

function [output, state] = encode_bit(g, input, state)

% Copyright 1996 Matthew C. Valenti

% MPRG lab, Virginia Tech

% for academic use only

% This function takes as an input a single bit to be encoded,

% as well as the coeficients of the generator polynomials and

% the current state vector.

% It returns as output n encoded data bits, where 1/n is the

% code rate.

% the rate is 1/n

% k is the constraint length

% m is the amount of memory

[n,k] = size(g);

m = k-1;

 % determine the next output bit

 52

for i=1:n

 output(i) = g(i,1)*input; % the first bit a_k's contribution to output --yzh

 for j = 2:k

 output(i) = xor(output(i),g(i,j)*state(j-1)); % a_(k-j)'s contribution to output --yzh

 % why not use rem(g(i,j)*[input,state]'),j=1:k? --yzh

 end

end

state = [input, state(1:m-1)]; % shift one bit --yzh

 5. encoderm

function en_output = encoderm(x, g, alpha, puncture)

% Copyright Nov. 1998 Yufei Wu

% MPRG lab, Virginia Tech.

% for academic use only

% uses interleaver map 'alpha'

% if puncture = 1, unpunctured, produces a rate 1/3 output of fixed length

% if puncture = 0, punctured, produces a rate 1/2 output

% multiplexer chooses odd check bits from RSC1

% and even check bits from RSC2

% determine the constraint length (K), memory (m)

% and number of information bits plus tail bits.

[n,K] = size(g);

m = K - 1;

L_info = length(x);

L_total = L_info + m;

% generate the codeword corresponding to the 1st RSC coder

 53

% end = 1, perfectly terminated;

input = x;

output1 = rsc_encode(g,input,1); % why 1? terminated? --yzh

% make a matrix with first row corresponing to info sequence

% second row corresponsing to RSC #1's check bits.

% third row corresponsing to RSC #2's check bits.

y(1,:) = output1(1:2:2*L_total); % y: unpuncture output of encoder; y(1,:) has m bits more than input bits -yzh

y(2,:) = output1(2:2:2*L_total);

 % interleave input to second encoder

for i = 1:L_total

 input1(1,i) = y(1,alpha(i)); %alpha--index of interleaver, --yzh

end

output2 = rsc_encode(g, input1(1,1:L_total), -1); %input has been interleaved. L_total bits already.(see y(1,:)) so

unterminated --yzh

y(3,:) = output2(2:2:2*L_total);

% paralell to serial multiplex to get output vector

% puncture = 0: rate increase from 1/3 to 1/2;

% puncture = 1; unpunctured, rate = 1/3;

 if puncture > 0 % unpunctured

 for i = 1:L_total

 for j = 1:3

 en_output(1,3*(i-1)+j) = y(j,i); % put the 3 bits of the same colomn to a sequential outputs -yzh

 end

 end

else % punctured into rate 1/2

 for i=1:L_total

 54

 en_output(1,n*(i-1)+1) = y(1,i);

 if rem(i,2) % output check bits by turns -yzh

 % odd check bits from RSC1

 en_output(1,n*i) = y(2,i);

 else

 % even check bits from RSC2

 en_output(1,n*i) = y(3,i);

 end

 end

end

 % antipodal modulation: +1/-1

en_output = 2 * en_output - ones(size(en_output));

 6. int_state

function int_state = int_state(state)

% Copyright 1996 Matthew C. Valenti

% MPRG lab, Virginia Tech.

% for academic use only

% converts a row vector of m bits into a integer (base 10)

 [dummy, m] = size(state);

for i = 1:m

 vect(i) = 2^(m-i);

end

int_state = state*vect';

 7. logmapo

function L_all = logmapo(rec_s,g,L_a,ind_dec)

 55

% Copyright Nov 1998, Yufei Wu

% MPRG lab, Virginia Tech.

% for academic use only

% Log_MAP algorithm using straightforward method to compute branch metrics

% no approximation is used.

% Can be simplified to Max-Log-MAP by using approximation ln(e^x+e^y) = max(x,y).

% Input: rec_s: scaled received bits.

% rec_s = 0.5 * L_c * yk = (2 * a * rate * Eb/N0) * yk

% g: code generator for the component RSC code, in binary matrix form.

% L_a: a priori info. for the current decoder,

% scrambled version of extrinsic Inftyo. of the previous decoder.

% ind_dec: index of decoder. Either 1 or 2.

% Encoder 1 is assumed to be terminated, while encoder 2 is open.

%

% Output: L_all: log-likelihood ratio of the symbols. Complete information.

% Total number of bits: Inftyo. + tail

L_total = length(rec_s)/2;

[n,K] = size(g);

m = K - 1;

nstates = 2^m; % number of states in the trellis

% Set up the trellis

[next_out, next_state, last_out, last_state] = trellis(g);

Infty = 1e10;

% Initialization of Alpha

Alpha(1,1) = 0;

Alpha(1,2:nstates) = -Infty*ones(1,nstates-1); % first row of matrix Alpha

 56

% Initialization of Beta

if ind_dec==1

 Beta(L_total,1) = 0;

 Beta(L_total,2:nstates) = -Infty*ones(1,nstates-1); % the last row of matrix Beta --yzh

elseif ind_dec==2

 Beta(L_total,1:nstates) = zeros(1,nstates); % the last row of matrix Beta --yzh

else

 fprintf('ind_dec is limited to 1 and 2!\n');

end

% what's the meaning of Alpha and Beta and gama? --yzh

% Trace forward, compute Alpha

for k = 2:L_total+1

 for state2 = 1:nstates

 gamma = -Infty*ones(1,nstates);

 gamma(last_state(state2,1)) = (-rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,2))....

 -log(1+exp(L_a(k-1))); % why is "-rec_s(2*k-3)?" --yzh

 gamma(last_state(state2,2)) = (rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,4))....

 +L_a(k-1)-log(1+exp(L_a(k-1))); % what's the meaning of "log(1+exp(L_a(k-1))" --yzh

 if (sum(exp(gamma+Alpha(k-1,:)))<1e-300)

 Alpha(k,state2)=-Infty;

 else

 Alpha(k,state2) = log(sum(exp(gamma+Alpha(k-1,:))));

 end

 end

 tempmax(k) = max(Alpha(k,:));

 Alpha(k,:) = Alpha(k,:) - tempmax(k);

end

% Trace backward, compute Beta

for k = L_total-1:-1:1

 57

 for state1 = 1:nstates

 gamma = -Infty*ones(1,nstates);

 gamma(next_state(state1,1)) = (-rec_s(2*k+1)+rec_s(2*k+2)*next_out(state1,2))....

 -log(1+exp(L_a(k+1)));

 gamma(next_state(state1,2)) = (rec_s(2*k+1)+rec_s(2*k+2)*next_out(state1,4))....

 +L_a(k+1)-log(1+exp(L_a(k+1)));

 if (sum(exp(gamma+Beta(k+1,:)))<1e-300)

 Beta(k,state1)=-Infty;

 else

 Beta(k,state1) = log(sum(exp(gamma+Beta(k+1,:))));

 end

 end

 Beta(k,:) = Beta(k,:) - tempmax(k+1);

end

% Compute the soft output, log-likelihood ratio of symbols in the frame

for k = 1:L_total

 for state2 = 1:nstates

 gamma0 = (-rec_s(2*k-1)+rec_s(2*k)*last_out(state2,2))....

 -log(1+exp(L_a(k)));

 gamma1 = (rec_s(2*k-1)+rec_s(2*k)*last_out(state2,4))...

 +L_a(k)-log(1+exp(L_a(k)));

 temp0(state2) = exp(gamma0 + Alpha(k,last_state(state2,1)) + Beta(k,state2));

 temp1(state2) = exp(gamma1 + Alpha(k,last_state(state2,2)) + Beta(k,state2));

 end

 L_all(k) = log(sum(temp1)) - log(sum(temp0));

end

8. rsc_encode

function y = rsc_encode(g, x, terminated)

 58

% Copyright Nov. 1998 Yufei Wu

% MPRG lab, Virginia Tech.

% for academic use only

% encodes a block of data x (0/1)with a recursive systematic

% convolutional code with generator vectors in g, and

% returns the output in y (0/1).

% if terminated>0, the trellis is perfectly terminated

% if terminated<0, it is left unterminated;

% determine the constraint length (K), memory (m), and rate (1/n)

% and number of information bits.

[n,K] = size(g);

m = K - 1;

if terminated>0

 L_info = length(x); % L_info: lenght of information sequence? -yzh

 L_total = L_info + m; % L_total:m additional bits is used to terminate? -yzh

else

 L_total = length(x);

 L_info = L_total - m; % see the sequence for untermated in function encoderm for reason. length of x is L_total --yzh

end

 % initialize the state vector

state = zeros(1,m);

% generate the codeword

for i = 1:L_total

 if terminated<0 | (terminated>0 & i<=L_info)

 d_k = x(1,i); % d_k: information sequence -yzh

 elseif terminated>0 & i>L_info

 % terminate the trellis

 d_k = rem(g(1,2:K)*state', 2); % g(1,2:K): why is g(1,2:K)? not other recursive polynomial? -yzh

 59

 end

 % a_k??feedback polynomial is g(1:)? --yzh

 % for terminated>0 & i>L_info, a_k will be zero(heihei) -yzh

 % recursive encoding?right! --yzh

 a_k = rem(g(1,:)*[d_k state]', 2); % a_k: the bit to be put into the register -yzh

 [output_bits, state] = encode_bit(g, a_k, state);

 % since systematic, first output is input bit

 output_bits(1,1) = d_k;

 y(n*(i-1)+1:n*i) = output_bits; % n output bits for 1 input bit(recursiv encoder) --yzh

end

 9. trellis

function [next_out, next_state, last_out, last_state] = trellis(g)

% copyright Nov. 1998 Yufei Wu

% MPRG lab, Virginia Tech

% for academic use only

% set up the trellis given code generator g

% g given in binary matrix form. e.g. g = [1 1 1; 1 0 1];

 % next_out(i,1:2): trellis next_out (systematic bit; parity bit) when input = 0, state = i; next_out(i,j) = -1 or 1

% next_out(i,3:4): trellis next_out (systematic bit; parity bit) when input = 1, state = i;

% next_state(i,1): next state when input = 0, state = i; next_state(i,i) = 1,...2^m

% next_state(i,2): next state when input = 1, state = i;

% last_out(i,1:2): trellis last_out (systematic bit; parity bit) when input = 0, state = i; last_out(i,j) = -1 or 1

% last_out(i,3:4): trellis last_out (systematic bit; parity bit) when input = 1, state = i;

% last_state(i,1): previous state that comes to state i when info. bit = 0;

% last_state(i,2): previous state that comes to state i when info. bit = 1;

[n,K] = size(g);

m = K - 1;

 60

max_state = 2^m;

% set up next_out and next_state matrices for systematic code

for state=1:max_state

 state_vector = bin_state(state-1, m); % matrix state_vector is of max_state rows and m columns --yzh

 % when receive a 0

 d_k = 0;

 a_k = rem(g(1,:)*[0 state_vector]', 2);

 [out_0, state_0] = encode_bit(g, a_k, state_vector);

 out_0(1) = 0;

 % when receive a 1

 d_k = 1;

 a_k = rem(g(1,:)*[1 state_vector]', 2);

 [out_1, state_1] = encode_bit(g, a_k, state_vector);

 out_1(1) = 1;

 next_out(state,:) = 2*[out_0 out_1]-1; % BPSK? Each row has two possible outputs(according to input 1 or 0) --yzh

 next_state(state,:) = [(int_state(state_0)+1) (int_state(state_1)+1)]; % 2 next state for current state according to input

--yzh

end

% find out which two previous states can come to present state

last_state = zeros(max_state,2);

for bit=0:1

 for state=1:max_state

 last_state(next_state(state,bit+1), bit+1)=state; % row number is the next_state, column is the input bit --yzh

 last_out(next_state(state, bit+1), bit*2+1:bit*2+2) ... % row is the next_state value --yzh

 = next_out(state, bit*2+1:bit*2+2); % next_out is the output of current state with input 0 or 1 -yzh

 end

end

61

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting

coding and decoding: Turbo-codes,” In Proc.. IEEE International Conference on

Communications (ICC’93), Vol. 2, pp. 1064-1070, May 1993.

 [2] S. Benedetto and G. Montorsi, “Unveling turbo codes: Some results on parallel

concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409-428,

Mar. 1996.

[3] S.A. Barbulescu, “Iterative decoding of turbo codes and other concatenated codes,”

Ph.D. dissertation, School of Elect. Eng., Faculty of Eng., Univ. South Australia,

Feb. 1996.

[4] E. K. Hall and S. G. Wilson, “Design and analysis of turbo codes on Rayleigh fading

channels,” IEEE J. Select. Areas Commun., vol. 16, pp. 160-174, Feb. 1998.

[5] P. Frenger, “Turbo decoding on Rayleigh fading channels with noisy channel

estimates,” Proc. IEEE VTC’99, Huston, TX, pp. 884-888, May 1999.

[6] P. Frenger, “Turbo decoding for wireless systems with imperfect channel estimation,”

IEEE Transactions on Communications, Vol. 48, Issue 9, pp. 1437-1440, Sept.

2000

[7] B. Sklar, “A Prime on Turbo Code Concepts,” IEEE Communications Magazine, Vol.

35, Issue 12, pp. 94-102, Dec. 1997.

[8] T. Summers and S. G. Wilson, “SNR mismatch and online estimation in turbo

decoding,” IEEE Transactions on Communications, vol. 46 no. 5, pp. 421-423.

Apr. 1998.

62

[9] B. Mielczarek and A. Svensson, “Improved iterative channel estimation and turbo

decoding over flat-fading channels,” In Proc. VTC’02 Fall, pp. 975-980,

September 2002.

[10] K. Xu, J. Wang, and Z. Xu, “A simplified method for turbo decoding over Rayleigh

fading channels,” Signal Processing (ICSP), 2010 IEEE 10th International

Coference on, pp. 1601-1603, Issue: 24-28, Oct. 2010.

[11] H. Shin, J. Lee, “Channel reliability estimation for turbo decoding in Rayleigh

fading channels with imperfect channel estimates,” IEEE Communications

Letters, Vol.6, Iss.11, pp.503, 2002

[12] Y. Zhou and B. Shahrrava, “Turbo decoding with integrated fading compensation”,

Radio and Wireless Symposium, 2008 IEEE, On page(s): 535 -538, Volume:

Issue: , 22-24 Jan. 2008

[13] R.Yao, Y. Wang, D. Wang, J. Xu, , "Adaptive Algorithm for Turbo Decoding Based

on Logarithmic Cross Entropy," Communications, 2005 Asia-Pacific Conference

on , vol., no., pp.232-236, 5-5 Oct. 2005

[14] C. Wang, J. Hsu, and T. Chang, , "Adaptive channel estimation using the GOBA

algorithm for turbo codes in Rayleigh flat-fading channels," Circuits and Systems,

2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International

Symposium on , vol.4, pp.45-48, 2000

[15] R. E. Ziemer and R. L. Peterson, Introduction to Digital communication. New York:

Macmillan, Inc., 1992

[16] J. G. Proakis, Digital Communications, McGraw-Hill, 5rd edition, 2008.

63

[17] B. Black, P. Dipiazza, B. Ferguson, D. Voltmer, and F. Berry, Introduction to

Wireless Systems. Prentice-Hall, May 2008.

[18] L. Bahl, J. Cocke, F, Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Transaction on Information Theory, Vol.20,

Issue 2, pp. 284-287, Mar 1974

[19] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:

Turbo-codes,” IEEE Eansactions on Communications, vol. 44, no. 10, pp. 1261-

1271, Oct. 1996.

[20] R. Yates and D. Goodman, Probability and Stochastic Processes, John Wiley &

Sons, 2nd edition, 2005

[21] A. Sayed, Adaptive Filters, John Wiley & Sons, 2008

[22] E. K. Hall and S. G. Wilson, “Turbo codes for noncoherent channels,” in Proc. IEEE

Communication Theory Mini-Conf., Phoenix, AZ, Nov. 3–8, 1997, pp. 66–70.

64

VITA AUCTORIS

Yuqing Guo was born in Nanjing, China, in 1960. He received his Bachelor of

Engineering degree from the Radio Engineering Department of Southeast University in

1983. He taught at the Department of Information and Technology of Nanjing College for

Population Program Management from 1999 to 2005. He is currently a candidate for the

Master of Applied Science in Electrical and Computer Engineering at the University of

Windsor.

	Adaptive Channel Estimation for Turbo Decoding
	Recommended Citation

	/var/tmp/StampPDF/oYDLiCJGGE/tmp.1351257124.pdf.F24F5

