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ABSTRACT 

A new adaptive filter is proposed for the turbo decoding on Rayleigh fading 

channels with noisy channel estimates. The turbo decoder that is used over Rayleigh 

fading channels is exactly the same as the one used on Additive White Gaussian Noise 

(AWGN) channel. The turbo decoder works very well on AWGN channel [1]-[2], but not 

as well on Rayleigh fading channels at that time. In [5], the author assumes there already 

exists a fading channel estimator with some estimation errors and develops a new channel 

reliability factor and new decision variables for turbo decoding on Rayleigh fading 

channels. Hence, Frenger, the author of [5] improved the performance of turbo decoding 

over Rayleigh fading channels. Since then, most research has focused on the channel 

estimation to reduce the error variances of estimating. However, the extrinsic information 

generated from the turbo decoder has some priority information about the transmitted 

data bits, which can help us better understand the channel characters. In this thesis, by 

using the soft extrinsic information after each iteration of decoding, we re-estimate the 

channel and the minimum mean square error (m.m.s.e.) and further update the channel 

reliability factor and decision variables at each iteration. Simulations show that signal to 

noise (SNR) gain is improved by up to about 1dB at bit error probability of 43.5 10−× . 
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CHAPTER I 

INTRODUCTION 

1.1 Review of the literature 

Turbo codes, introduced in [1], have been proven to perform remarkably well on 

additive white Gaussian noise (AWGN) channels [1], [2]. The performance of the turbo 

codes on Rayleigh fading channels has also been studied since then [3] - [6]. In [6], the 

author, Frenger, gave out the exact decoding metric for binary phase-shift keying (BPSK) 

signalling on Rayleigh fading channels by assuming that there is a channel estimator 

prior to the turbo decoder to provide us with an unbiased channel estimate with a certain 

error variance. The conventional turbo decoding metric on AWGN channels needs the 

estimation of signal to noise ratio (SNR) [7]. The exact turbo decoding metric over 

Rayleigh fading channels needs both SNR and the channel fading factors [3], [8]. 

However, the channel parameters are assumed to be known by Frenger in [6]. Since then, 

many researches have focused on the estimation of channel parameters and the 

degradation caused by errors in these parameters, while there is not much research 

directly working on the results of Frenger in [5] and [6].  This could be seen from the 

number of citations in IEEE: [5] is only cited twice [9], while [6] is cited thirteen times so 

far [10], [12].  

The effect of SNR mismatch on the performance of the turbo decoding has been 

studied in several works. Some research has been proposed for integrating the estimation 

process into the turbo decoder over fading channels [9], [11]. In [9], a modified version 

of Wiener filtering with initial pilot symbols is proposed, and the bit error rate (BER) 

performance has been improved by 0.5dB at BER of 310− , comparing to the Wiener 
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filtering algorithm with initial pilot symbols. In [10], the exact turbo decoding metric is   

simplified. The BER performance is between that of the conventional decoding metric 

and the exact decoding metric, but is very close to the BER performance of the exact 

decoding metric. In [11], an in-service estimation of the channel reliability factor is 

proposed, which uses the statistical computations of the block observations to get BER 

performance similar to the exact decoding metric in [6]. In [13], they do not use the fixed 

iterations with the turbo decoder, while they do use adaptive iterations for speeding up 

the decoding process by aiming at a fixed BER. Once the aimed BER, say 410− , is reached, 

no further iterations for the turbo decoder are needed. All these estimation schemes can 

be seen as pilot symbol aided modulation (PSAM) or as blind channel estimation 

methods.  Most of these estimation methods ignore the feedback from the turbo decoder. 

However, the extrinsic information generated during turbo decoding process has some 

priori information about the transmitted data bits, which can help us refine the channel 

fading factors.  

 In [12], a novel idea has been proposed for integrating the extrinsic information 

from the turbo decoder to re-estimate the fading channel. However, a mistake is made 

during the mathematical derivation approach. There is no relation between the re-estimate 

of the fading channel and the extrinsic information as expected. So an incorrect method is 

used to make such a connection, which is to approximate the new channel estimate and 

its error variance by taking their expected value on coded input data bits .There is no 

mathematical reason to support this kind of approximation.  
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1.2 A new adaptive algorithm for turbo decoding 

In this thesis, based on the results in [6] and [12], we propose a new adaptive 

channel estimation algorithm for turbo decoding on Rayleigh fading channels. The 

mistake in [12] is corrected. However, the experiment does not go positively as expected 

after the correction. The results of the experiment show that the extrinsic information 

generated during the decoding process is not totally reliable. The extrinsic information of 

some bits is helpful to the channel re-estimation, while the others are not.  Future 

researchers should pay attention to this point, avoiding unnecessary repeated experiments.   

The adaptive decoding metric proposed by this thesis has successfully overcome this 

problem by utilizing an effective stop-and-go strategy at the implementation stage as a 

selecting criterion. In addition to that, the steep-decent algorithm of Newton’s method is 

used to co-operate with the iterative nature of the turbo decoder. The varying step size is 

also adopted to achieve faster convergence.   

The observations received by the turbo decoder have two parts: the systematic 

portion and parity portion. The proposed adaptive filter takes only the systematic 

observations and the soft extrinsic information, which is the feedback from the turbo 

decoder, as its inputs. This is one of the unique choices of this thesis. Some research 

takes the hard decision as the input of the adaptive channel filter for only the amplitude 

estimation [14], while some takes only the soft information as the input of the adaptive 

filter for SNR estimation [13]. None of them split up the observations into two parts. The 

conventional decoding algorithm that is used for AWGN channels is unchanged in this 

thesis. However, the exact decoding metric that is derived by Frenger in [6] is updated 

iteratively during the turbo decoding process.  
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The proposed adaptive filter works better when the block size of the information 

gets smaller or the estimation errors of the channel estimator in [6] get bigger. The gain 

of using the proposed adaptive filter is about 1dB at the bit error probability of 43.5 10−×  

with some settings. This gain is obtained with minimally increased complexity.  

1.3 Organization of the thesis 

The organization of this thesis is as follows: In Chapter 2, the basic elements of a 

digital system and the channel models are introduced. In Chapter 3, the turbo encoder and 

turbo decoding algorithm are reviewed. In Chapter 4, we propose an adaptive filter that 

uses the soft information to update the exact turbo decoding metric iteratively over 

Rayleigh fading channels. In Chapter 5, simulation results are presented. Finally, 

conclusions and future research directions are given in Chapter 6. The whole Matlab 

scripts of the proposed adaptive filter and the turbo encoder and decoder are presented at 

the end as an Appendix.  



 
 

 5  

CHAPTER II 

CHANNEL MODELS 

To design a channel estimator and analyze the performance of turbo decoding 

algorithms, we need to understand the channels that the transmitted data experiences. The 

concept of the basic digital communication systems and two channel models are needed 

to discuss our contributions 

2.1 Basic elements of digital communication systems 

The demand for efficient and reliable digital communication systems has rapidly 

increased in recent years. It is necessary to minimize bit error probability at the receiver 

end for higher quality communication. A block diagram of a digital communication 

system is shown in Figure 1 [15].  

 

Figure 1  Block diagram of a digital communication system 

 The information source usually contains redundancy. The source encoder removes 

the redundancy of the information to achieve efficiency. The source encoder changes 

source information to information sequences. Then the channel encoder adds redundancy 

to the information sequences in a controlled way to increase communication reliability. 

Then the digital modulator transforms coded bits into a continuous time waveform, which 
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is suitable for a physical channel. The transmitted bits will be distorted randomly both in 

amplitude and phase due to many factors, such as reflection, refraction, multipath… 

 At the receiver end, the digital demodulator produces an estimation of the 

transmitted data. The channel decoder uses the redundancy and knowledge of the channel 

code to detect and correct errors. Finally the source decoder reconstructs the original 

information by using knowledge of the source encoding method.  

 In this thesis, the main concern is channel decoding for binary phase shift keying 

(BPSK) signalling over the Rayleigh fading channel.  

2.2 Channel models 

For better understanding of decoding strategies over the Rayleigh fading channel, 

we first need to introduce the additive white Gaussian noise (AWGN) channel model, and 

then the fading channel model. 

2.2.1 AWGN channel 

The AWGN channel model, together with BPSK modulator, is shown in Figure 2. 

Where ( )0,1kx ∈  are coded data bits. The coded data (systematic bits and parity bits) are 

inputs to a BPSK modulator, which generates the transmitted channel symbols 

( ),l s sc E E∈ − . In an AWGN channel, Gaussian distributed random noise, ln , with 

zero mean is added to the transmitted symbols. The variance of ln  is: 

 [ ] 2 0

2l n

N
E n σ= =  (2.1) 
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Figure 2  AWGN channel model 

 

The signal to noise ratio (SNR) is:  

 
2

0 2
b s

n

E E

N r σ
=

×
 (2.2) 

where bE  is the energy per information bit, sE  is the energy per actual transmitted 

symbol, r  is the coding rate, and we have the relationship between the energies and the 

code rate,  

 s

b

E
r

E
=  (2.3) 

At the receiver end, we have, 

 l l ly c n= +  (2.4) 

2.2.2 Rayleigh fading channel 

The Rayleigh fading channel is a statistic model mostly used by wireless system. 

The Rayleigh fading channel with independent additive white Gaussian noise and a 

BPSK modulator is shown in Figure 3. Each of the channel symbols, lc , is transmitted on 

such model. At the receiver end, we have [16], 

 l l l ly a c n= +  (2.5) 
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where the noise ln  and the channel coefficient la  are complex valued, Gaussian 

distributed random variables with zero mean that are independent of each other.  

 

Figure 3 Fading channel model 

 

The variances of la  and ln  are 

 
2 2

2 2

[| | ] 2 ,

[| | ] 2

l a

l n

E a

E n

σ
σ

=

=
 (2.6) 

At the receiver we need to know both the amplitude and phase distortion. Such 

analysis is more complex than the analysis of the AWGN channel model. We can express 

the complex valued channel coefficient la  as follows, 

 lj
l lr li la a ja re θ= + =  (2.7) 

The amplitude and phase probability density function (pdf) of the channel 

coefficient la  is [17]: 

 

 

2

22
2

( )

1
( ) 0, 2

2

l

a

r

l
l

a

l

r
f r e

f

σ

σ

θ π
π

−

=

=     [  ]

 (2.8) 

where the amplitude is Rayleigh distributed and the phase is uniform distributed.  
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CHAPTER III 

TURBO CODES AND DECODING 

Turbo codes with maximum a posteriori (MAP) algorithm have been proven to 

perform extraordinary well on AWGN channels [1], [2]. Turbo decoding on Rayleigh 

fading channels has also been studied in [5], [6]. In this chapter, we first introduce the 

concept of the Turbo encoder, then briefly review turbo decoding over AWGN channels 

and Rayleigh fading channels separately. 

3.1 Turbo encoder 

Normally, a Turbo encoder [1] consists of two recursive systematic convolution 

(RSC) encoders in parallel, separated by a random interleaver (I). The information 

sequences are sent to the first encoder directly, while the second encoder receives the 

interleaved information sequences. For code rate 1/ 3r = , there is no puncturing, the 

code words are 1 2( , , )s p p
l l lx x x ⋅ ⋅⋅ . We could puncture the code words to achieve a higher 

code rate of ½. In this case, the output code words are 1 2
1 1( , , , )s p s p

l l l lx x x x+ + ⋅ ⋅⋅ .  

 

 

Figure 4 Turbo encoder 
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A typical RSC encoder is depicted in Figure 5, where the kd  is calculated as: 

 
1

1
1

K

k k i k i
i

d u g d
−

−
=

= +∑  (3.1) 

The corresponding code words are ( , )s p
k kx x , 

 1

2
1

s
k k

K
p
k k i k i

i

x u

x d g d
−

−
=

 =



= +


∑
 (3.2) 

 

Figure 5 RSC encoder 

where the feedback generator is1 (11111)ig = , and the forward generator is2 (10001)ig = . 

They correspond to octal notation 1 37ig = , and 2 21ig = . 

3.2 Maximum a posteriori (MAP) algorithm over AWGN channel 

MAP is the optimal symbol-by-symbol maximum a posteriori probability 

algorithm [18]. However, MAP is not practical for implementation, primarily because of 

the complexity associated with the representation of the probabilities. Log-MAP is a 

transform of MAP, and works in the logarithmic domain, which has equivalent 

performance and is more practical. We review the fundamentals of MAP/Log-MAP 

below, which are thoroughly discussed in [16] and [19]. 
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For an information sequence of length N, we have 1 2( , ,..., )Nu u u u=� , where 

(0,1)iu ∈ , and for the corresponding coded output sequence, we have 1 2( , ,..., )Nc c c c=� � � �
, 

where the length of ic
�

 is n  for a code rate of 1/r n= . We denote the encoder state at 

time i  is im . We know that the output and the current state of the convolutional code 

encoder depend on the previous state and input, so we have the functions: 

 1( , )
ci i ic f u m−=�  (3.3) 

 1( , )i s i im f u m−=  (3.4) 

It is clear that any state pair 1( , )i im m− corresponds to either 0iu =  or 1iu = . 

Hence, we have two sets of state pairs 0S  and 1S , corresponding to 0iu =  and 1iu = . 

Based on observations at the receiver, 1 2( , ,..., )Ny y y y=� � � �
, we can apply the MAP rule to 

find log-likelihood L  values as: 

 
1

0

1

1

0 1

( 1| ) ( 1, )
( ) ln ln

( 0 | ) ( 0, )

( , , )
( , )

ln ln
( , ) ( , , )

i i
i

i i

i i
S

i i
S

P u y P u y
L u

P u y P u y

P m m y
P S y

P S y P m m y

−

−

= == =
= =

= =
∑

∑

� �

� �

�
�

� �

 (3.5) 

We define ( ) ( ... )j
i i jy y y=� � �

, where i j≤ . Then we can write 

 ( 1) ( )
1 1( , , )i N

i iy y y y−
+=� � � �

 (3.6) 

and we have 
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( 1) ( )
1 1 1 1

( 1) ( ) ( 1)
1 1 1 1 1

( 1) ( 1) ( ) ( 1)
1 1 1 1 1 1 1

( 1)
1 1

( , , ) ( , , , , )

( , , , ) ( | , , , )

( , ) ( , | , ) ( | , , , )

( , ) ( , |

i N
i i i i i i

i N i
i i i i i i i

i i N i
i i i i i i i i

i
i i i

p m m y p m m y y y

p m m y y p y m m y y

p m y p m y m y p y m m y y

p m y p m y

−
− − +

− −
− + −

− − −
− − + −

−
−

=

=

=

=

� � � �

� � � � �

� � � � � �

� � ( )
1 1

1 1 1

) ( | )

( ) ( , ) ( )

N
i i i

i i i i i i i

m p y m

m m m mα γ β
− +

− − −=

�
 (3.7) 

where the first three steps follow from the chain rule, the forth step follows from Markov 

properties [20], and the last step we define 1 1( )i imα − − , ( )i imβ , and 1( , )i i im mγ −  as follows: 

 

( 1)
1 1 1 1

( )
1

1 1

( ) ( , )

( ) ( | )

( , ) ( , | )

i
i i i

N
i i i i

i i i i i i

m p m y

m p y m

m m p m y m

α
β

γ

−
− − −

+

− −

=

=
=

�

�

�
 (3.8) 

Hence the log-likelihood, L , becomes: 

 

1 1

1 0

1 1

1 0

1
( , )

1
( , )

1 1 1
( , )

1 1 1
( , )

( , , )

( ) ln
( , , )

( ) ( , ) ( )

ln
( ) ( , ) ( )

i i

i i

i i

i i

i i
m m S

i
i i

m m S

i i i i i i i
m m S

i i i i i i i
m m S

p m m y

L u
p m m y

m m m m

m m m m

α γ β

α γ β

−

−

−

−

−
∈

−
∈

− − −
∈

− − −
∈

=

=

∑

∑

∑

∑

�

�

 (3.9) 

We can compute ( )i imα forward recursively as following: 

 
1

1

1

1

( )
1

( 1)
1 1

( 1) ( 1)
1 1 1 1

( 1)
1 1 1

1 1 1

( ) ( , )

( , , , )

( , ) ( , | , )

( , ) ( , | )

( ) ( , )

mi

mi

mi

mi

i
i i i

i
i i i

S

i i
i i i i

S

i
i i i i

S

i i i i i
S

m p m y

p m m y y

p m y p m y m y

p m y p m y m

m m m

α

α γ

−

−

−

−

−
−

− −
− −

−
− −

− − −

=

=

=

=

=

∑

∑

∑

∑

�

� �

� � �

� �

 (3.10) 

assuming that all initial states have a value of zero, that is 
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 0
0 0

0

1          0
( )

0          0

m
m

m
α

=
=  ≠

 (3.11) 

And we compute 1 1( )i imβ − −  backward recursively as: 

 

( )
1 1

1 1

( )
1 1 1

( )
1 1

1

( | )

( , , | )

( , | ) ( | , , )

( , | ) ( | )

( , ) ( )

mi

mi

mi

mi

N
i i i

N
i i i i

S

N
i i i i i i i

S

N
i i i i i

S

i i i i i
S

p y m

p y y m m

p m y m p y m y m

p m y m p y m

m m m

β

γ β

− −

+ −

− + −

− +

−

=

=

=

=

=

∑

∑

∑

∑

�

� �

� � �

� �

 (3.12) 

assuming that the trellis is terminated in the all-zero state. Hence, 

 
1        0

( )
0        0

N
N N

N

m
m

m
β

=
=  ≠

 (3.13) 

We compute 1( , )i i im mγ −  as follows: 

 

1 1

1 1

( , ) ( , | )

( | ) ( | , )

( ) ( | )

( ) ( | )

i i i i i i

i i i i i

i i i

i i i

m m p m y m

p m m p y m m

P u p y u

P u p y c

γ − −

− −

=
=
=
=

�

�

�

� �

 (3.14) 

The expression clearly shows that 1( , )i im mγ −  depends on the prior probability of 

the information at time i , and the channel characteristics.  

3.3 Turbo decoding over AWGN channel 

For an AWGN channel, we have l l ly c n= + . Let us consider the special case 

when code rate 1/ 2r = , and the systematic convolution code uses BPSK modulation.  

Under such a condition we have ( , )s p
i i iy y y=�  and ( , )s p

i i ic c c=� , where s and p  represent 

systematic bit and parity bit, respectively. In order to calculate the log-likelihoodL , we 
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need first to calculate the branch metric 1( , )i i im mγ − .According to formula (3.14), we 

further need to calculate the probability of ( | )i ip y c
� �

. 

The pdf of y  given c  could be calculated through its cumulative distribution 

function (CDF) as follows: 

 | ( | )
( | ) l ly c i i

i i
i

F y c
p y c

y

∂
=

∂

� �
� �

�  (3.15) 

while  
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= ≤ =
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= ∫
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� �
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� �
 (3.16) 

Therefore, we get: 
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 (3.17) 

where ( )Nf α  is the pdf of the AWGN channel. So the branch metric is: 
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(3.18) 
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Because of BPSK modulation, the term 
2 2 2 2

0 0

( ) ( ) ( ) ( )1
exp

s p s p
i i i iy y c c

N Nπ
 + + +− 
 

 

is independent of iu , and it could be cancelled from the numerator and the denominator 

of the log-likelihood L  values in the formula (3.9), as follows: 
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(3.19) 

where we define cL as the channel reliability factor [7], ( )a iL u  is a priori information, 

and ( )e iL u  as the extrinsic information of the systematic bit s
iy , which is dependent on 

the received parity bits. 
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 (3.20) 

For turbo decoding, corresponding to the turbo encoder, we have two MAP decoders, 

DEC1 and DEC2, which iteratively exchange extrinsic information as a priori  

probability of each other. A de-multiplexer at beginning changes the received serial data 
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bits ly  into parallel data bits ( 1 2, ,s p py y y ). Corresponding to the turbo encoder, the 

received systematic bits sy  and parity bits 1py  are sent to the first MAP decoder, which 

is depicted as DEC1 in Figure 6. The interleaved systematic data bits  ( )sy i  and the 

received parity data bits 2py , which are already interleaved at the turbo encoder, are sent 

to the second MAP decoder, which is DEC2 depicted in Figure 6. 

 

Figure 6 Turbo decoder 

At the first iteration, we do not have the extrinsic information yet, assuming all 

bits are equiprobable, and so set a priori probability value 1aL to zero. Thus we get the 

first extrinsic information (1)
1eL  from the first MAP decoder; the superscript represents the 

iteration number of the decoding process. 

 
(1) (1) (1) (1)
1 1 1 1

(1)
1

0s s
e A c a A c

s
A c

L L L y L L L y

L L y

= − − = − −

= −
 (3.21) 

The first extrinsic information (1)
1eL  after interleaved, becoming(1)

1 ( )eL I , is sent to 

the second MAP decoder. The second MAP decoder will take the extrinsic information 
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from the first MAP decoder as its a priori probability 2aL  of the transmitted data bits. In 

the second decoder, after decoding, we get a new extrinsic information (1)
2eL : 

 
(1) (1) (1)

2 2 2

(1) (1)
2 1

( )

( ) ( )

s
e A c a

s
A c e

L L L y I L

L L y I L I

= − −

= − −
 (3.22) 

The (1)
2eL , after de-interleaved, becoming (1) 1

2 ( )eL I − , is fed back to the first MAP 

decoder as its a priori information of the next iteration. 

 
(2) (2) (2)
1 1 1

(2) (1) 1
1 2( )

s
e A c a

s
A c e

L L L y L

L L y L I −

= − −

= − −
 (3.23) 

The general formula for the extrinsic information is as follows: 

 
( ) ( ) ( ) ( ) ( 1) 1
1 1 1 1 2

( ) ( ) ( ) ( ) ( )
2 2 2 2 1

( )

( ) ( ) ( )
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i i s i i s i
e A c a A c e

L L L y L L L y L I

L L L y I L L L y I L I

− −= − − = − −

= − − = − −
 (3.24) 

with the number of iterations 1i ≥ , and (1) (0)
1 2 0a eL L= = . The capital letter I in brackets 

represents the interleaver and de-interleaver with a negative power of 1. The whole 

decoding process runs iteratively for the given times to improve the decoding 

performance.  

The upper part and the lower part of the turbo decoder is identical, except that 

every piece of information that goes through the lower part must be interleaved and the 

output of the lower part must be de-interleaved before using. 

At the end of the iterative decoding process, we can make a decision ˆku  by 

comparing 2( )A kL u  to a threshold equal to zero, 

 2

2

ˆ 1 ( ) 0,

ˆ 0 ( ) 0,
k A k

k A k

u if L u

u if L u

=       ≥
=       <

 (3.25) 
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From Figure 6, we see that two pieces of information are needed by the turbo 

decoder, channel reliability factor cL and observations ly  or decision variables. 

3.4 Turbo decoding over the Rayleigh fading channel 

The structure of the turbo decoder over the Rayleigh fading channel is identical to 

that over the AWGN channel. From the point of view of the turbo decoder, we still need 

two pieces of information, i.e., the channel reliability factor and decision variables. 

However, due to the different channel models, we need to modify those two pieces of 

information. In [6], the author assumes that there already exists a channel estimator, in 

this thesis we call it channel estimator (1). The channel estimator (1), lh , is modeled as 

 l l lh a m= +  (3.26) 

where lm  is the estimate error of the Rayleigh fading channel la , which is complex 

valued and Gaussian distributed with  

 
2 2

[ ] 0

[| | ] 2

l

l m

E m

E m σ
=

=
 (3.27) 

The estimate error of the estimator (1), lm , is independent of the channel la . 

Further we have: 

 
2 2 2 2

[ ] [ ] [ ] [ ] 0

[| | ] [| | ] [| | ] [| | ]

l l l l l

l l l l l

E h E a m E a E m

E h E a m E a E m

= + = + =

= + = +
 (3.28) 

In [6], the author gives the new decision variables lz  based on the received bits 

ly  and the estimation lh  of the channel estimator (1): 

 *
l l lz y h=  (3.29) 

Further, the cross correlation coefficient of ly  and lh  is defined as follows: 
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* 2

2 2 2 2 2 2 2

[ ]

[| | ] [| | ] (| | )( )
l l a l
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E y h c

E y E h c

σµ
σ σ σ σ

=
+ +

≜  (3.30) 

The author of [6] also derived the probability density function of lz  conditioned on the 

transmitted code symbol lc  as follows: 
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 (3.31) 

Where ( )oK x  is the zeroth order Hankel function of x , and ( )R x  denotes the real 

component of x . The author of [6] then uses MAP algorithm as mentioned in section  

(3.2) to calculate the log likelihood ratio of a posteriori probabilities as follows: 
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 (3.32) 

Similar to the formula (3.14), the author gets, 

 1( , ) ( ) ( | )i i i i i im m P u p z cγ − =  (3.3) 

Finally, the author of [6] gives out the new channel reliability factor cL  as follows: 
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4 2
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For a perfect channel estimator (1), 2 0mσ = ,
0

4 c
c c

E
L L

N
= = . 
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 The BER performance may be improved by up to1 dB at a bit error probability of 

310−  by applying new decision variables and the new channel reliability factor. 
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CHAPTER IV 

ADAPTIVE TURBO DECODER  

The exact turbo decoding metric (3.29) over Rayleigh fading channels assumes 

there is an estimator (1) with an estimation error variance of 2
mσ . In [6], simulation 

results show that the smaller the error variance, the better the BER performance. Many 

works have been studied to reduce the error variance of the channel estimator (1). Most 

of them ignored the extrinsic information (2eL ) generated during the turbo decoding 

process.  

In this Chapter, we first propose a new adaptive algorithm for turbo decoding, 

which uses the extrinsic information (2eL ) and the systematic observations (sy ) as its 

inputs. Then we review the basic theory of the estimation. The optimal solutions of 

minimum mean square error are modified to become more suitable to the iterative nature 

of turbo decoding by combining the steep-decent method. Further, the optimal step size 

of the steep-decent algorithm of the Newton’s method is also adapted to the iterative 

nature of turbo decoding. At the implementation stage, the stop-and-go strategy makes 

the proposed adaptive filter more realistic. The boundary of estimation error variance of 

the estimator (2) is also discussed in detail.  

4.1 Block diagram of the proposed adaptive filter 

We follow the work of author [6]. There are two things that should be noticed. 

First, the channel estimator (1) is imperfect; secondly, the channel estimator (1) does not 

update iteratively as the Turbo decoder does. In other words, after getting the new 

channel reliability factor and new decision variables, we do not need channel estimator 
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(1) any more. However, the turbo decoder generates new information about the 

transmitted data bits after each iteration. The extrinsic information generated by the turbo 

decoder could help us better understand what we have received after each iteration. The 

proposed algorithm makes use of this kind of information to re-estimate the channel 

adaptively. In this thesis we will call it channel estimator (2), as depicted in Figure 7. 

 

ˆ la
2
m̂σ

ˆ s
cLˆ s

lz

 

Figure 7 Block diagram of adaptive filter 

Like in Figure 6, from the point view of the turbo decoder, we summarize two 

pieces of information, the decision variables (zor y ) and the channel reliability factor 

( cL ), as inputs of the turbo decoder for all the three situations, which are the conventional 

turbo decoding metric, the exact decoding metric, and the proposed adaptive decoding 

metric. Further in Figure 7, we split up these two pieces of information into two sets of 

pairs. One set of pair is ( ,p p
cz L ), which is related to the parity bits, the other is ( ,s s

cz L ), 

which is related to the systematic bits. The superscripts ( ,s p) represent systematic and 

parity bits respectively. The proposed adaptive filter takes both the systematic 

observations ( sy ) and the soft extrinsic information (2eL ), which is from the output of 
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the turbo decoder, as its inputs. This is one of the unique choices of this thesis. Some 

research takes the hard decision as its input of the adaptive channel filter [13], while 

some takes only the soft information as its input of the adaptive filter [14]. None of them 

split up the two pieces of information (, cz L ) into two sets of pairs. The basic motivation 

to make such kind of choice is that we do not want any delay or memory in the proposed 

algorithm. Any delay or register would increase the cost and complexity of the turbo 

decoder. Because the length of the extrinsic information is N , which is the same as the 

length of the systematic observations, we could simultaneously calculate the updated 

channel without any delay or register. We then re-estimate the channel, and finally update 

the channel reliability factor and decision variables after each iteration of the turbo 

decoding process. Because the extrinsic information generated by the turbo decoder is 

only related to the systematic data bits, we only update the channel reliability factors and 

the decision variables that are related to the systematic bits. Once we get the updated 

channel estimation and its variance, the fading compensator computes out the two 

updated pieces of information that the turbo decoder needed as depicted in  

Figure 6 and Figure 7, the updated channel reliability factor ˆs
cL  and the updated decision 

variables ̂ s
lz . 

4.2 Estimation theory review 

According to the theory of estimation discussed in [21], the minimum mean 

square error estimator â  of the unknown channel a , given observations y , is: 

 ˆ oa w y=  (4.1) 

where ow is any solution that satisfies the normal equation, 
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 1o
ay yw R R−=  (4.2) 

while the covariance yR  and the cross-covariance ayR  are defined as follows: 

 
*

*

y

ay

R Eyy

R Eay

=

=
 (4.3) 

The solution ow minimizes the cost function of the channel in the mean square 

error sense,  

 2ˆmin ( )
ow

E a a−  (4.4) 

and the minimum mean square error (m.m.s.e.) is: 

 1. . . . a ay y yam m s e R R R R−= −  (4.5) 

The optimal linear solution ow  is clearly not sensitive to the iterations of the turbo 

decoding process in general. In other words, no matter how many iterations we choose, 

the optimal minimum mean square error solution remains the same. This also means that 

the optimal linear solution ow is optimal for the whole of the iterations, not for each of 

them. If we use the optimal linear solution ow  directly in the each iteration of the turbo 

decoding process, the turbo decoder must be disturbed at each of the iterations. 

The any solution ow  could also be achieved by the steepest-decent algorithm of 

Newton’s method [21] iteratively, as follows: 

 

1
1 1

1

[ ]i i y ya y iw w R R R w

w any initial guess

step size

µ

µ

−
− −

−

 = + −


=   
 =  


 (4.6) 

where i  is the iterations of the Newton’s method.  
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Because the steep-decent algorithm and the decoding process of the turbo decoder 

have such similar iterative characteristics, they could help each other during the decoding 

process. 

4.3 The proposed estimator (2) of channel a  

First we calculate the covariance yR  and the cross-covariance ayR by using the 

definition [20] as well as the channel model discussed in chapter 2, 
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* * 2
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 (4.7) 

Then we get the solution to the Newton’s method 
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 (4.8) 

where the mean value of the coded bits (cm ) is related to the extrinsic information (2eL ). 

See formula (4.16) later.  

The optimal step size oµ  is calculated as follows [21]: 

 
2 2

max min

2 1

2( )
o

a n

µ
λ λ σ σ

= =
+ +

 (4.9) 

where maxλ  and minλ  denote the maximum and minimum eigenvalues of the covariance 

yR . Theoretically, the optimal step size is for the situation as the iteration i → ∞ . It is 

clear again that the optimal step size is not sensitive to the iterations of the turbo 
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decoding process as we see in the formula (4.9). Within the limited iterations of the 

decoding process, we naturally want to take the biggest step size first then gradually 

reduce the step size to reach the fastest convergence. In other words, we need relate the 

optimal step size to the iterations of the turbo decoding process in some specific way, as 

shown below. 

We combine the solution to Newton’s method and the normal equation, as well as 

based on the above considerations of the step size, the estimator (2) of the channel a  is: 
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 (4.10) 

In the above equation, we take the estimation of the estimator (1), both the 

systematic and parity bit part, as the initial value of the estimator (2), which is 1ˆ la h− =  as 

shown in the formula. The size of the initial value 1â−  is n N×  with a code rate of  

1/r n= , while the size of̂ s
ia , cm , iw  and sy  is N , which is the length of the information 

sequence. After the initialization, we only calculate and update the systematic part ˆs
ia  as 

the superscript s indicated. And i  is the iterations of the turbo decoder and/or Newton’s 

method. Here, we combine them together and make no differentiation between them 

afterwards. The step size is reversely proportional to the iteration of the turbo decoder by 

practice and the above discussions.  

 Hence, the minimum mean square error (m.m.s.e.) of the estimator (2) and the 

variance of the estimation error is as following: 
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 (4.12) 

Finally we get the updated channel reliability factor ˆs
cL  and updated decision 

variables ̂ s
lz , 
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where the size of ̂scL  and ˆs
lz  is also N , the length of the information sequence.  

The proposed adaptive decoding metric (4.13) is the same as the one used in the 

exact decoding metric (3.29), except that the error variance 2
m̂σ  is updated iteratively 

during the decoding process with the selecting criterion as follows. 

 2 2
m̂ mσ σ<  (4.14) 

In the above equations we need to calculate the mean value of the coded bits. By 

definition [7], we have 
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 (4.15) 

So the mean value of the coded bits is: 
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The mean value of the coded bits is only related to the systematic bits, so we did 

not put a superscript s around its right upper corner for simplicity.  

One last thing we need to mention is that all the calculations are bit wised in the 

formulas. This also means each systematic bit has gone through the channel with 

different channel estimations. The square of cm  in the equation (4.12) is calculated by 

array power function with the Matlab, and the term s
cm y  in the formula (4.10) is 

calculated by array multiplication with the Matlab, and so are the array operations in the 

other formulas. For simplicity, we did not put another notation around them to avoid 

notation confusion. But they should be clear by the context. 

4.4 Implementation of the proposed adaptive filter 

Considering the results of the calculation and some practical additions to the 

adaptive filter, we construct the adaptive filter as depicted in Figure 8.  In the diagram 

below, the proposed adaptive filter has two inputs and two outputs.  

 

 

Figure 8 Implementation of the adaptive filter 
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The two inputs are the extrinsic information from the turbo decoder and the 

observations that are related to the systematic bits. The two outputs are the updated 

observations and updated new channel reliability factor. 

At the first iteration, the received coded data bits go through the estimator (1). 

The estimator (1) produces two pieces of information, the new channel reliability factor 

cL  and the new decision variables lz , that the turbo decoder needed, as depicted in 

Figure 6. We split these two pieces of information into a systematic part ( ,s s
cz L ) and a 

parity part ( ,p p
cz L ). Both systematic part and parity part are the inputs to the turbo 

decoder at the first iteration. After the first iteration, we get the extrinsic information 

from the turbo decoder, which could help us better understand what we have received 

about the transmitted data bits. In the meantime, we toggle the switch to the estimator (2). 

The extrinsic information from the turbo decoder is first de-interleaved, and then, by a 

simple function, we get the mean value of the systematic bits. Using the mean values we 

immediately get the error variances of the updated channel or estimator (2) through the 

formula (4.12). After the first iteration, we take the estimation values of the channel from 

the channel estimator (1) as the initial guess of the adaptive channels estimator (2). Then 

we get the updated channel reliability factor and decision variables by the formula (4.13). 

Through practice we compare the error variances of the estimator (2) to the error 

variances of estimator (1). We only update the information that has less error variances in 

estimator (2). If the error variances or standard derivations of estimator (2) are bigger 

than those of estimator (1), we skip further calculation for those bits. The comparison of 

the error variances of estimator (1) and estimator (2) provides the proposed adaptive filter 

with a stop-and-go character, which makes the adaptive filter more realistic.  
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The extrinsic information from the turbo decoder is only related to the systematic 

bits, so we only update the decision variables and the channel reliability factors ( ˆˆ ,s s
cz L ) 

that are related to the systematic bits. While the parity part ( ,p p
cz L ) remains the same 

during the rest of the decoding iteration process. 

4.5 The boundary of estimation error variance of the estimator (2) 

The proposed adaptive filter has a selective criterion, as shown in Figure 8 and the 

formula (4.14). We rewrite the formula (4.12), (4.14) and (4.16) here for convenience. 
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 The right side of the formula (4.14) is the estimation error variance of the 

estimator (1), while the left side is the estimation error variance of the estimator (2), 

which varies during the decoding process. We wish to get the smaller error variance of 

the adaptive filter. So, the minimum variance or the boundary of the adaptive filter 

happens when the mean value of the coded bits reach its maximum. From formula (4.16), 

we know that the maximum value of 2cm  in the formula (4.12) is 1, so we get the 

boundary of estimation error variance of the estimator (2) as follows: 
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which could be further simplified as: 
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After some calculations and from formula (2.1), we get, 
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So, we relate the boundary to the signal-to-noise ratio as follows: 
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With the code rate of 1/ 2r = , and setting both 2
aσ  and sE  equal to 1, we get the 

boundary of estimation error variance of the estimator (2) for the special case, 

 2 2
ˆ( )/10

2

2 10 m mSNR dB
σ σ< <

+
 (4.21) 

4.6 Decoding method comparison 

In this chapter, we derived a new adaptive turbo decoding metric (4.13) for BPSK 

signaling on Rayleigh fading channels with the channel estimator (1) providing a certain 

error variance.  

In some studies, the performance of turbo decoding on Rayleigh fading channels 

has also been studied [3], [4] and [22]. In [3], the amplitude and phase of the fading 

channels are assumed to be known, and then the Rayleigh fading channel can be modified 

as a special case of the AWGN channel conditioned on the known fading factors. In [4], 

the phase of the fading channels is assumed to be  known and the amplitude is unknown, 

then the probability density function (pdf) of the received symbols is adopted 

approximately as Gaussian by averaging the fading process over all possible values. Thus, 
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the conventional decoding metric of AWGN may be used. In [22], the amplitude is 

assumed to be constant and the phase is unknown, the decision variables are also 

modified approximately as Gaussian and the conventional Turbo decoding metric is used 

again. However, in practical communication systems, the channel information is 

completely unknown at the receiver, and the fading channels must be estimated at the 

receiver. In [6], such an estimator is assumed to provide us with an unbiased channel 

estimate with a certain error variance, and the exact decoding metric on Rayleigh fading 

channels is derived. In [10] and [11], the exact turbo decoding metric derived in [6] is 

simplified with no performance degradation. All the above decoding methods for 

Rayleigh fading channels have no feedback from the turbo decoder, while the adaptive 

turbo decoding metric derived in this chapter takes the extrinsic information generated 

during the turbo decoding process as feedback from the turbo decoder.  
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CHAPTER V 

SIMULATION RESULTS 

5.1 General settings 

In the simulation results, two generators of the constituent RSC encoder (1 37g =  

and 2 21g = , in octal notation) have been used in Figure 4 and Figure 5. The code rate is 

1/ 2r = , and we set both 2aσ  and sE  equal to 1. The channel estimator (1) in Figure 8 is 

simulated. That is, lm  in the formula (3.26) is generated randomly. The variance of lm  is 

set to 2 0.4mσ =  in Figure 9 and Figure 11, and the variance of lm  is set to 2 0.4,0.3,mσ =  

and 0.1 in Figure 10 respectively. The turbo decoder with 8 iterations is used in all 

situations. The block length of N = 840, 420, 210, and 100 are used in Figure 9 

respectively, and the block length of 100N =  is used in Figure 10 and Figure 11.  

5.2 BER performances with different settings 

In Figure 9 and Figure 10, we present the simulation improvements when using 

the proposed adaptive filter (solid lines) against the results of Frenger’s (dashed lines) in 

[6].  

In Figure 9, we consider varying the block sizes of the information sequence. We 

can see that, as the block size of the information gets smaller, from 840N =  to 100N = ,  

the performance of the turbo decoder degrades. The proposed adaptive filter does not 

improve the performance much when the information block size is 840N =  or greater 

than that. This could be explained due to the turbo decoder getting more information 

from the increased information size, which helps the decoding process. When the 

information block size is 100N = , the proposed adaptive filter could help the turbo 



 
 

 34  

decoder to achieve better BER performance. Looking at the bit error rate of 43.5 10−× , we 

see that the gain of using the proposed adaptive filter is about 1dB for the block length of 

100N = . The improvement of the turbo decoder with the proposed adaptive filter gets 

bigger when the information block size gets smaller.  

 

Figure 9 BER performance when using adaptive filter (solid) vs the results of Frenger’s (dashed) 

In Figure 10, we compare the simulation results of the proposed adaptive filter 

(solid lines) versus the results of Frenger’s (dashed lines) in [6] with different error 

variances ( 2
mσ ) of the estimator (1) in Figure 8, while the information block size stays the 

same as 100N = . When the error variance of the estimator (1) is 2 0.1mσ =  or less, we see 

that the proposed adaptive filter gets exactly the same curve with an SNR of less than 

8dB. This is because we use the selection criterion as shown in Figure 8 and the formula 

(4.14), and there are no or few estimation errors from the adaptive filter that satisfies the 
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selection criterion. If the selection criterion is not satisfied, the proposed adaptive filter 

does not update the channel. This could be also explained as the estimator (1) in Figure 8 

having already done a better estimation of the fading channels. When the error variance 

of the estimator (1) is 2 0.4mσ = , at the bit error rate of 43.5 10−× , we see that the gain of 

using the proposed adaptive filter is about 1dB . We can see that as the error variance of 

the estimator (1) gets bigger, the improvement of the turbo decoder with the estimator (2) 

also gets bigger. This means when the channel estimator (1) gets worse, the proposed 

channels estimator (2) has more room to improve the BER performance.  

 

Figure 10 BER of the adaptive filter (solid) vs the results of Frenger's (dashed) with different 2
mσ  

From both Figure 9 and Figure 10, we see that when either the block size of the 

information gets smaller or the estimation errors of the channel estimator (1) get bigger, 
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the proposed adaptive filter could help to improve the BER performance of the turbo 

decoder. 

In comparison, we also give out the simulation results with the settings of 

100N = , 2 0.4mσ =  and 8 iterations, but do not compare the error variance of the 

estimator (2) to those of the estimator (1). That is, there is no selecting criterion (2 2
m̂ mσ σ< ) 

for the adaptive filter in Figure 8. The adaptive filter does not provide better performance 

in this case. 
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Figure 11 BER without selecting criteria 

5.3 Step size and boundary 

The step size of the steep-decent algorithm for the proposed adaptive filter, see 

formula (4.10), is depicted in Figure 12. Please note that the formula (4.10) follows the 

general convention of the steep-decent algorithm. The initial guess of the channel 1â−  is 

actually the first iteration of the decoding process. So, the actual step size of µ  in the 
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formula (4.10) begins to vary from iteration 2 of the decoding process. The adaptive 

channel estimator (2) in Figure 8 takes its biggest step at the iteration 2 of the decoding 

process to accelerate convergence, and then reduces the step size reversely to the 

iterations. 

 

Figure 12 Step size versus iterations 

 In Figure 13, the boundary of estimation error variance of the estimator (2) for the 

special case is given according to the formula (4.21). That is, the code rate 1/ 2r = , and 

both 2
aσ  and sE  are set to 1.  The arrow area is an example of the boundary with the 

estimation error variance 2 0.4mσ =  of the estimator (1). The arrow area shows that the 

adaptive filter starts to improve BER after SNR greater than 6dB when 2 0.4mσ = , the 

bigger SNR, the larger distance from 2 0.4mσ =  to the lower boundary. This means more 

ability to improve the BER performance. This could be verified by the BER 

performances with different settings in Figure 9. When 2
mσ  is 0.3, the adaptive filter starts 
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to improve the BER after SNR greater than 7dB, and when 2
mσ  is 0.1, the adaptive filter 

does not improve the BER before SNR greater than 13dB. These could also be verified 

by the BER performances with different settings in Figure 10. 

 

Figure 13 The boundary of estimation error variance of the estimator (2) 



 
 

 39  

CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary of contributions 

 In this thesis, a number of contributions have been made in turbo decoding for 

BPSK signalling over Rayleigh fading channels with noise channel estimates. 

 First, a new adaptive channel filter with estimator (2) for Rayleigh fading 

channels is derived by assuming that the channel estimator (1) is available at first 

iteration of the decoding process. Channel estimator (1) is imperfect with some 

estimation errors. The proposed algorithm is based on the new turbo decoding metric 

which is derived by Frenger in [6]. However, the new decoding metric in [6] is fixed 

during the iterations of the turbo decoding process, see formula (3.29). The turbo decoder 

provides soft extrinsic information of the transmitted data bits which is used by the 

adaptive filter in this thesis to update the new decoding metric for the next iterations of 

decoding, see formula (4.13). The resulting iterations between the channel estimator (2) 

and the turbo decoder can improve the performance of both the channel estimator (2) and 

the turbo decoder by using the updated information. The proposed adaptive filter works 

better when the block size of the information gets smaller or the estimation errors of the 

channel estimator (1) get bigger. The gain of using the adaptive filter is about 1dB at the 

bit error probability of 43.5 10−×  with the information block length of 100N =  and 

2 0.4mσ = . This gain is obtained with minimally increased complexity. 

 The second highlight of this thesis is that we have proposed an effective stop-and-

go strategy at the implementation stage of the adaptive filter. That is, we set the selecting 

criterion for the adaptive filter. If the estimation errors of the channel estimator (2) are 
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bigger than those of the channel estimator (1), the proposed algorithm stops updating the 

decoding metric. The proposed algorithm only continues when the selecting criterion is 

satisfied.  

In the end, we argue that the steep-decent algorithm used in this thesis is suitable 

for the nature of the turbo decoder. The turbo decoder must go several iterations to 

achieve a better decoding result, while the steep-decent algorithm also takes several steps 

to get closer to the optimal point. They help each other during the decoding process 

although the steep-decent method is not an optimal method. Normally, an optimal method 

is achieved within one step comparing to the steep-decent method. If we use the normal 

optimal method at each iteration of the decoding process, the turbo decoder is disturbed 

by such a one step optimal method.  

6.2 Recommendations for future studies 

Because the proposed adaptive filter makes use of the extrinsic information from 

the turbo decoder and the extrinsic information produced by the turbo decoder currently 

is only related to the systematic bits, future research could develop a turbo decoder that 

could produce the extrinsic information that are related to both systematic and parity bits. 

Then, based on this research, it would be more interesting to develop an adaptive filter 

that uses the extrinsic information of both systematic bits and parity bits.  

It is more important for the future research to develop higher-order modulation 

schemes based on the proposed algorithm, which is derived for the turbo decoding for the 

BPSK signalling over Rayleigh fading channels. The higher-order modulation schemes 

have much more spectrum efficiency in the modern wireless communication system. The 
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higher-order schemes could be, for example, quadrature phase shift keying (QPSK) or M-

ary quadrature amplitude modulation (M-ary QAM). 

Finally, the concept of the proposed adaptive turbo filter could be applied to 

adaptive channel equalizer by using the extrinsic information of the turbo decoder. It is 

important to develop an iterative turbo equalizer over the Rayleigh fading channels that 

have intersymbol interference. 
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APPENDICES 

APPENDIX A 

Matlab scripts of the turbo decoder with adaptive filter 

1. Adaptive_Rayleigh_complex 

 

% Turbo codes on Rayleigh fading channels using Log-MAP decoder 

 % Copyright Oct. 2011 YuQing Guo 

% Unversity of Windsor.  guo14@uwindsor.ca 

% for academic use only 

 % Rayleigh Fading Channels 

% to modify Frenger's result 

  

clear; 

clc; 

  

diary AdaptiveFilter_YQ.txt; 

  

% Paul Frenger's paper 

L_total = 100; % 420 is the parameter in Frenger's paper 

g = [1 1 1 1 1; 1 0 0 0 1]; % Frenger. or g1=37, g2=21 in octal form 

sigma_a = sqrt(1); % variance of fading coefficient @ Frenger 

% alpha_factor = 0.5; % 0 0.1 0.5 1 

  

[n,K] = size(g);  

m = K - 1; 

nstates = 2^m; 

puncture = 0; %puncturing into rate 1/2; % exactly result of Frenger %puncture = 1; %no puncturing rate 1/3 

rate = 1/(2+puncture);   % Code rate 

niter = 8;% Number of iterations 

Ferlim =[10];% Number of frame errors to count as a stop criterior 
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SNR = [11]; % Signal to noise ratio 

k1=0.0725; % step size coefficient 

Fetch_iter = 1;  % set up fetching iteration --yq 

varian = 0.4;  % set up sigma_m^2  -- yq 

  

Error = zeros(length(SNR), niter); % bit error 

Error_hat = zeros(length(SNR), niter); 

BER = zeros(length(SNR), niter); % bit error rate 

BER_hat = zeros(length(SNR), niter); % bit error rate 

ErrorFrame = zeros(length(SNR), niter); % frame error 

FER = zeros(length(SNR), niter); % frame error rate 

FrameNum = zeros(length(SNR), 1); % transmitted frame numbers for each SNR 

mu = zeros(length(SNR), niter); % step size --yq 

fprintf('\n\n----------------------------------------------------\n');  

fprintf(' Frame size = %6d\n',L_total); 

fprintf(' code generator: \n'); 

for i = 1:n 

    for j = 1:K 

        fprintf( '%6d', g(i,j)); 

    end 

    fprintf('\n'); 

end         

if  puncture==0 

    fprintf(' Punctured, code rate = 1/2 \n'); 

else 

    fprintf(' Unpunctured, code rate = 1/3 \n'); 

end 

fprintf(' iteration number =  %6d\n', niter); 

fprintf(' Eb / N0 (dB) = '); 

for i = 1:length(SNR) 

    fprintf('%10.2f',SNR(i)); 



 
 

 44  

end 

fprintf('\n----------------------------------------------------\n\n'); 

  

fprintf('+ + + + Please be patient. Wait a while to get the result. + + + +\n'); 

  

for nEN = 1:length(SNR) % each SNR(dB) 

    Eb_N0 = 10^(SNR(nEN)/10);      % convert Eb/N0 from unit db to normal numbers 

    Es = 2*sigma_a*sigma_a;  % average power per symbol 

    Eb = Es/rate; 

    N0 = Eb/Eb_N0; 

    sigma_n = sqrt(N0/2);   % standard deviation of AWGN noise Eb = Es 

    sigma_m =sqrt(varian); %constant sigma_m^2  -- yq 

    L_c_perfect = 4/N0; % the perfect value of channel reliability factor 

     

    num = sigma_a^2; 

    den = sigma_m.^2*(2*sigma_a^2/N0 + 1) + sigma_a^2;     

    L_c = L_c_perfect*num./den; % Frenger's result % L_c = L_c_perfect; % conventional result 

    a_a = 1+sigma_n^2/sigma_a^2;  % --- yq 

    nframe = 1; 

    Length=zeros(1,niter); % ---yq 

    Lth=zeros(1,niter); % ---yq 

    AverageIndex=zeros(1,niter); % ---yq 

        

    while ErrorFrame(nEN, niter) < Ferlim(nEN) 

     

        x = round(rand(1, L_total-m));    % info. bits 

        [temp, alpha] = sort(rand(1,L_total));        % random interleaver mapping 

        en_output = encoderm( x, g, alpha, puncture ) ; % encoder output (+1/-1) 

         

        % Rayleigh Fading Channel (complex numbers) 

        h = sigma_a*complex(randn(size(en_output)), randn(size(en_output))); 
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        noise = sigma_n*complex(randn(size(en_output)), randn(size(en_output))); 

         

        r = h.*en_output + noise; % received signals 

        % channel estimates 

           h_estimate = h + sigma_m.*complex(randn(size(h)), randn(size(h)));          

           a_hat =  h_estimate;  % Adaptive start point ---yq 

           sigma_m_hat(1:(puncture+2)*L_total) = sigma_m; % Adaptive start point ---yq 

        % decision variable after matached filter 

        z = r.*conj(h_estimate); 

        %z_real = real(z); 

        %yk = demultiplex(z_real,alpha,puncture); % demultiplex to get input for decoder 1 and 2 

        %rec_s = 0.5*L_c*yk;                  

        z_real = L_c.*real(z);   % -------yq   

        yk = demultiplex(z_real,alpha,puncture); %         

        rec_s = 0.5*yk;          % -------yq 

        % Initialize extrinsic information 

        L_e(1:L_total) = zeros(1,L_total); 

             index=[];  % --yq 

               

        for iter = 1:niter 

            % Decoder one (turbo 1 from Frenger) -- yq 

            % deinterleave the extrinsic information for first decoder   -yzh             

            L_a(alpha) = L_e;  % a priori info.  

            L_all = logmapo(rec_s(1,:), g, L_a, 1);  % complete info. 

            L_e = L_all - 2*rec_s(1,1:2:2*L_total) - L_a;  % extrinsic info. 

             

            % Decoder two          

            L_a = L_e(alpha);  % a priori info. 

            L_all = logmapo(rec_s(2,:), g, L_a, 2);  % complete info.  

            L_e = L_all - 2*rec_s(2,1:2:2*L_total) - L_a;  % extrinsic info. 

            x_hat(alpha) = (sign(L_all)+1)/2;  % Estimate the info. bits   
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             % caculate the BER at different SNR level %            

            Error(nEN,iter) = length(find(x_hat(1:L_total-m) ~= x)) + Error(nEN,iter); 

            BER(nEN,iter) = Error(nEN,iter)/(nframe*(L_total-m));                         

             

            if  length(find(x_hat(1:L_total-m) ~= x)) > 0 % this frame contains at least one bit error 

                ErrorFrame(nEN,iter) = 1 + ErrorFrame(nEN,iter); % frame error 

            end 

            FER(nEN,iter) = ErrorFrame(nEN,iter)/nframe; % frame error rate 

            FrameNum(nEN) = nframe;  %?? from previous fellow student, not used --- yq 

            

           if  iter ==  Fetch_iter  % BELOW -- yq 

              L_e_hat = L_e;  % pick up extrinsic info at exact first iteration  ---yq 

              mu(nEN,1) = k1; 

           end 

              

           if  iter > Fetch_iter % refining channel from (Fetch_iter + 1) 

                 M_c(alpha) = tanh(L_e_hat/2); % soft info of codewords, mean value deinterleaved  ---yq                   

                 mu(nEN,iter) = k1/(iter*(sigma_a^2+sigma_n^2));  %--- yq                             

                 sigma=sigma_a*sqrt(1-M_c.^2/a_a);    % m.m.s.e.-------yq  

                   index = find ( sigma <sigma_m);   % find m.m.s.e. less than previous one ---yq 

               if  puncture > 0   % unpuntured  ---yq 

                   e_hat = (M_c(index).*r(3*index-2)/a_a - a_hat(3*index-2));  %  -- yq 

                   a_hat(3*index-2)= a_hat(3*index-2)+ mu(nEN,iter)*e_hat;   % -------yq 

                   sigma_m_hat(3*index-2)=sigma_a*sqrt(1-M_c(index).^2/a_a);   % -------yq 

              else          % punctured  

                  e_hat = M_c(index).*r(2*index-1)/a_a - a_hat(2*index-1); % info bits error 

                  a_hat(2*index-1) = a_hat(2*index-1) + mu(nEN,iter)*e_hat;   % adaptive filter-------yq                   

                  sigma_m_hat(2*index-1)=sigma_a*sqrt(1-M_c(index).^2/a_a);  

              end                 

            den_hat = sigma_m_hat.^2*(2*sigma_a^2/N0 + 1) + sigma_a^2;   % -------yq 

            L_c_hat = L_c_perfect*num./den_hat;   % -------yq 
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            z_hat = r.*conj(a_hat);  % -------yq 

            z_real_hat =L_c_hat.*real(z_hat);        % -------yq 

            yk_hat = demultiplex(z_real_hat,alpha,puncture); %    -------yq    

            rec_s_hat = 0.5*yk_hat;                % -------yq 

             

           % Decoder one for refined channel (turbo 2 from YuQing for direct comparison) 

            L_a_hat(alpha) = L_e_hat;  % a priori info.  

            L_all_hat = logmapo(rec_s_hat(1,:), g, L_a_hat, 1);  % complete info. 

            L_e_hat = L_all_hat - 2*rec_s_hat(1,1:2:2*L_total) - L_a_hat;  % extrinsic info. 

           % Decoder two  for refined channel        

            L_a_hat = L_e_hat(alpha);  % a priori info. 

            L_all_hat = logmapo(rec_s_hat(2,:), g, L_a_hat, 2);  % complete info.  

            L_e_hat = L_all_hat - 2*rec_s_hat(2,1:2:2*L_total) - L_a_hat;  % extrinsic info. 

             

            x_hat_hat(alpha) = (sign(L_all_hat)+1)/2; 

            % BER after refining channel for next iteration,  -- yq 

            Error_hat(nEN,iter) = length(find(x_hat_hat(1:L_total-m) ~= x)) + Error_hat(nEN,iter); 

            BER_hat(nEN,iter) = Error_hat(nEN,iter)/(nframe*(L_total-m)); 

           end % end refining       

            Length(1,iter) = length(index);   % --- yq 

            Lth(1,iter) = Length(1,iter)+Lth(1,iter); 

            AverageIndex(1,iter) = Lth(1,iter)/nframe;    % ABOVE --- yq           

        end % iter         

         

        % display the results after each frame has been decoded 

        fprintf('***** SNR = %5.2f dB **********  Log-MAP    ****** ****\n' , SNR(nEN)); 

        %fprintf('\n ******** Constant alpha_factor = %5.1f    *********\n', alpha_factor);  

        fprintf('\n ****  Constant Variance = %5.1f *****\n',varian); 

        fprintf('Info. size = %d, ', L_total); 

        fprintf('code  rate 1/%d, ', 2+puncture); 

        fprintf('  %d frame errors to stop the simulation \n', Ferlim(nEN)); 
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        fprintf('%d frames transmitted, %d frames in error, ', nframe, ErrorFrame(nEN, niter));    

         

        fprintf('\n CurrentindexLength (from iteration %d to iteration %d):\n',Fetch_iter+1,niter); 

        for i=1:niter 

            fprintf('%11.3d    ',Length(1,i)); 

        end 

         

        fprintf('\n AverageIndexLength (from iteration %d to iteration %d):\n',Fetch_iter+1,niter); 

        for i=1:niter 

            fprintf('%11.1f    ', AverageIndex(1,i)); 

        end 

         

        fprintf('\n K1 and Step Sizes (YuQing)  (from iteration %d to iteration %d):\n', Fetch_iter+1,niter);         

        for i=1:niter 

            fprintf('%11.8f    ', mu(nEN,i)); 

        end 

         

        fprintf('\n Bit Error Rate (Frenger) (from iteration 1 to iteration %d):\n', niter); 

        for i=1:niter 

            fprintf('%8.4e    ', BER(nEN,i)); 

        end 

         

        fprintf('\n Bit Error Rate (YuQing)  (from iteration %d to iteration %d):\n', Fetch_iter+1,niter); 

        for i=1:niter 

            fprintf('%8.4e    ', BER_hat(nEN,i)); 

        end 

                       

        fprintf('\n **********************************************\ n\n'); 

         

        nframe = nframe + 1; 

    end % while  
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   FrameNum(nEN) = nframe; 

     

end %nEN 

  

diary off 

 

2. bin_state 

 

function bin_state = bin_state( int_state, m ) 

% Copyright Matt C. Valenti 

% MPRG lab, Virginia Tech 

% for academic use only 

  

% converts an vector of integer into a matrix; the i-th row is the binary form  

% of m bits for the i-th integer 

  

for j = 1:length( int_state )   % length(int_state)?=max_state?  --yzh 

   for i = m:-1:1 

       state(j,m-i+1) = fix( int_state(j)/ (2^(i-1)) );     % FIX(X) rounds the elements of X to the nearest integers towards 

zero.  --yzh 

       int_state(j) = int_state(j) - state(j,m-i+1)*2^(i-1);    % remain of mod 2^(i-1), the leftmost bit is most significant  -

yzh 

   end 

end 

  

bin_state = state; 

 

3. demultiplex 

function subr = demultiplex(r, alpha, puncture); 

% Copyright 1998, Yufei Wu 
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% MPRG lab, Virginia Tech. 

% for academic use only 

  

% At receiver end, serial to paralle demultiplex to get the code word of each 

% encoder 

% alpha: interleaver mapping  

% puncture = 0: use puncturing to increase rate to 1/2; 

% puncture = 1; unpunctured, rate 1/3; 

  

% Frame size, which includes info. bits and tail bits 

L_total = length(r)/(2+puncture); 

  

% Extract the parity bits for both decoders 

if  puncture == 1        % unpunctured 

  for i = 1:L_total   

      x_sys(i) = r(3*(i-1)+1); 

      for j = 1:2 

          subr(j,2*i) = r(3*(i-1)+1+j); % 1/3 rate, one info.bit, two parity bits   -yzh 

      end 

   end 

else            % punctured, 1/2 rate 

   for i = 1:L_total 

       x_sys(i) = r(2*(i-1)+1); 

       for j = 1:2 

          subr(j,2*i) = 0; 

       end    

       if  rem(i,2)>0    % even position,one check bit from ENC1, one from ENC2 alternatively  --yzh 

          subr(1,2*i) = r(2*i); % odd posisition is systematic bits,puntured parity bits are padded to zero   -yzh 

       else 

          subr(2,2*i) = r(2*i);  

       end       
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   end 

end        

  

% Extract the systematic bits for both decoders 

for j = 1:L_total 

% For decoder one 

   subr(1,2*(j-1)+1) = x_sys(j);    % odd positions is reserved for systematic bits  -yzh 

% For decoder two: interleave the systematic bits   

   subr(2,2*(j-1)+1) = x_sys(alpha(j)); % info.bits that are put into DEC2 are interleaved bits -yzh 

end     

 

4. encode_bit 

 

function [output, state] = encode_bit(g, input, state) 

% Copyright 1996 Matthew C. Valenti 

% MPRG lab, Virginia Tech 

% for academic use only 

  

% This function takes as an input a single bit to be encoded, 

% as well as the coeficients of the generator polynomials and 

% the current state vector. 

% It returns as output n encoded data bits, where 1/n is the 

% code rate. 

  

% the rate is 1/n 

% k is the constraint length 

% m is the amount of memory 

[n,k] = size(g); 

m = k-1; 

 % determine the next output bit 
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for i=1:n 

   output(i) = g(i,1)*input;    % the first bit a_k's contribution to output  --yzh 

   for j = 2:k 

      output(i) = xor(output(i),g(i,j)*state(j-1)); % a_(k-j)'s contribution to output  --yzh 

      % why not use rem(g(i,j)*[input,state]'),j=1:k?  --yzh 

   end 

end 

  

state = [input, state(1:m-1)];  % shift one bit  --yzh 

  

 5. encoderm 

 

function en_output = encoderm( x, g, alpha, puncture ) 

% Copyright Nov. 1998 Yufei Wu 

% MPRG lab, Virginia Tech. 

% for academic use only 

  

% uses interleaver map 'alpha' 

% if puncture = 1, unpunctured, produces a rate 1/3 output of fixed length 

% if puncture = 0, punctured, produces a rate 1/2 output  

% multiplexer chooses odd check bits from RSC1  

% and even check bits from RSC2 

  

% determine the constraint length (K), memory (m)  

% and number of information bits plus tail bits. 

  

[n,K] = size(g);  

m = K - 1; 

L_info = length(x);  

L_total = L_info + m;   

% generate the codeword corresponding to the 1st RSC coder 
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% end = 1, perfectly terminated; 

input = x; 

output1 = rsc_encode(g,input,1);    % why 1? terminated?  --yzh 

  

% make a matrix with first row corresponing to info sequence 

% second row corresponsing to RSC #1's check bits. 

% third row corresponsing to RSC #2's check bits. 

  

y(1,:) = output1(1:2:2*L_total);    % y: unpuncture output of encoder; y(1,:) has m bits more than input bits   -yzh 

y(2,:) = output1(2:2:2*L_total); 

  

 % interleave input to second encoder 

for i = 1:L_total 

   input1(1,i) = y(1,alpha(i));     %alpha--index of interleaver,   --yzh 

end 

output2 = rsc_encode(g, input1(1,1:L_total), -1 );  %input has been interleaved. L_total bits already.(see y(1,:)) so 

unterminated  --yzh 

y(3,:) = output2(2:2:2*L_total); 

  

% paralell to serial multiplex to get output vector 

% puncture = 0: rate increase from 1/3 to 1/2; 

% puncture = 1; unpunctured, rate = 1/3; 

  

 if  puncture > 0     % unpunctured 

   for i = 1:L_total 

       for j = 1:3 

           en_output(1,3*(i-1)+j) = y(j,i); % put the 3 bits of the same colomn to a sequential outputs  -yzh 

       end 

   end 

else            % punctured into rate 1/2 

   for i=1:L_total 
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       en_output(1,n*(i-1)+1) = y(1,i); 

       if  rem(i,2)  % output check bits by turns    -yzh 

      % odd check bits from RSC1 

          en_output(1,n*i) = y(2,i); 

       else 

      % even check bits from RSC2 

          en_output(1,n*i) = y(3,i); 

       end  

    end   

end 

 % antipodal modulation: +1/-1 

en_output = 2 * en_output - ones(size(en_output)); 

  

 6. int_state 

 

function int_state = int_state( state ) 

% Copyright 1996 Matthew C. Valenti 

% MPRG lab, Virginia Tech. 

% for academic use only 

  

% converts a row vector of m bits into a integer (base 10) 

 [dummy, m] = size( state ); 

  

for i = 1:m 

   vect(i) = 2^(m-i); 

end 

  

int_state = state*vect'; 

  

 7. logmapo 

function L_all = logmapo(rec_s,g,L_a,ind_dec) 
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% Copyright Nov 1998, Yufei Wu 

% MPRG lab, Virginia Tech. 

% for academic use only 

  

% Log_MAP algorithm using straightforward method to compute branch metrics 

% no approximation is used. 

% Can be simplified to Max-Log-MAP by using approximation ln(e^x+e^y) = max(x,y). 

% Input: rec_s: scaled received bits.  

%               rec_s = 0.5 * L_c * yk = ( 2 * a * rate * Eb/N0 ) * yk 

%        g: code generator for the component RSC code, in binary matrix form. 

%        L_a: a priori info. for the current decoder,  

%               scrambled version of extrinsic Inftyo. of the previous decoder. 

%        ind_dec: index of decoder. Either 1 or 2.  

%               Encoder 1 is assumed to be terminated, while encoder 2 is open. 

% 

% Output: L_all: log-likelihood ratio of the symbols. Complete information. 

   

% Total number of bits: Inftyo. + tail 

L_total = length(rec_s)/2; 

[n,K] = size(g);  

m = K - 1; 

nstates = 2^m;          % number of states in the trellis 

  

% Set up the trellis 

[next_out, next_state, last_out, last_state] = trellis(g); 

  

Infty = 1e10; 

  

% Initialization of Alpha 

Alpha(1,1) = 0;  

Alpha(1,2:nstates) = -Infty*ones(1,nstates-1);  % first row of matrix Alpha 
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% Initialization of Beta 

if  ind_dec==1 

   Beta(L_total,1) = 0; 

   Beta(L_total,2:nstates) = -Infty*ones(1,nstates-1); % the last row of matrix Beta  --yzh 

elseif ind_dec==2 

   Beta(L_total,1:nstates) = zeros(1,nstates); % the last row of matrix Beta  --yzh 

else 

   fprintf('ind_dec is limited to 1 and 2!\n'); 

end 

% what's the meaning of Alpha and Beta and gama?  --yzh  

% Trace forward, compute Alpha 

for k = 2:L_total+1 

    for state2 = 1:nstates 

      gamma = -Infty*ones(1,nstates); 

      gamma(last_state(state2,1)) = (-rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,2)).... 

           -log(1+exp(L_a(k-1)));   % why is "-rec_s(2*k-3)?"  --yzh 

      gamma(last_state(state2,2)) = (rec_s(2*k-3)+rec_s(2*k-2)*last_out(state2,4)).... 

           +L_a(k-1)-log(1+exp(L_a(k-1)));  % what's the meaning of "log(1+exp(L_a(k-1))"  --yzh 

  

      if (sum(exp(gamma+Alpha(k-1,:)))<1e-300) 

         Alpha(k,state2)=-Infty; 

      else 

         Alpha(k,state2) = log( sum( exp( gamma+Alpha(k-1,:) ) ) );   

      end    

    end 

    tempmax(k) = max(Alpha(k,:)); 

    Alpha(k,:) = Alpha(k,:) - tempmax(k); 

end      

  

% Trace backward, compute Beta 

for k = L_total-1:-1:1 
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  for state1 = 1:nstates 

     gamma = -Infty*ones(1,nstates); 

     gamma(next_state(state1,1)) = (-rec_s(2*k+1)+rec_s(2*k+2)*next_out(state1,2)).... 

           -log(1+exp(L_a(k+1))); 

     gamma(next_state(state1,2)) = (rec_s(2*k+1)+rec_s(2*k+2)*next_out(state1,4)).... 

           +L_a(k+1)-log(1+exp(L_a(k+1))); 

     if (sum(exp(gamma+Beta(k+1,:)))<1e-300) 

        Beta(k,state1)=-Infty; 

     else 

        Beta(k,state1) = log(sum(exp(gamma+Beta(k+1,:)))); 

     end    

  end 

  Beta(k,:) = Beta(k,:) - tempmax(k+1); 

end 

  

% Compute the soft output, log-likelihood ratio of symbols in the frame 

for k = 1:L_total 

  for state2 = 1:nstates 

     gamma0 = (-rec_s(2*k-1)+rec_s(2*k)*last_out(state2,2)).... 

           -log(1+exp(L_a(k))); 

     gamma1 = (rec_s(2*k-1)+rec_s(2*k)*last_out(state2,4))... 

           +L_a(k)-log(1+exp(L_a(k))); 

     temp0(state2) = exp(gamma0 + Alpha(k,last_state(state2,1)) + Beta(k,state2)); 

     temp1(state2) = exp(gamma1 + Alpha(k,last_state(state2,2)) + Beta(k,state2)); 

  end 

  L_all(k) = log(sum(temp1)) - log(sum(temp0)); 

end 

  

8. rsc_encode 

 

function y = rsc_encode(g, x, terminated) 
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% Copyright Nov. 1998 Yufei Wu 

% MPRG lab, Virginia Tech. 

% for academic use only 

  

% encodes a block of data x (0/1)with a recursive systematic 

% convolutional code with generator vectors in g, and 

% returns the output in y (0/1). 

% if terminated>0, the trellis is perfectly terminated 

% if terminated<0, it is left unterminated; 

% determine the constraint length (K), memory (m), and rate (1/n) 

% and number of information bits. 

[n,K] = size(g); 

m = K - 1; 

if  terminated>0 

  L_info = length(x);   % L_info: lenght of information sequence?  -yzh 

  L_total = L_info + m; % L_total:m additional bits is used to terminate?  -yzh 

else 

  L_total = length(x); 

  L_info = L_total - m; % see the sequence for untermated in function encoderm for reason. length of x is L_total  --yzh 

end   

  

 % initialize the state vector 

state = zeros(1,m); 

  

% generate the codeword 

for i = 1:L_total 

   if  terminated<0 | (terminated>0 & i<=L_info) 

      d_k = x(1,i);     % d_k: information sequence -yzh 

   elseif terminated>0 & i>L_info 

      % terminate the trellis 

      d_k = rem( g(1,2:K)*state', 2 ); % g(1,2:K): why is g(1,2:K)? not other recursive polynomial?  -yzh 
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   end 

   % a_k??feedback polynomial is g(1:)? --yzh 

   % for terminated>0 & i>L_info, a_k will be zero(heihei)  -yzh  

   % recursive encoding?right!    --yzh 

   a_k = rem( g(1,:)*[d_k state]', 2 );     % a_k: the bit to be put into the register    -yzh 

   [output_bits, state] = encode_bit(g, a_k, state); 

   % since systematic, first output is input bit 

   output_bits(1,1) = d_k; 

   y(n*(i-1)+1:n*i) = output_bits;  % n output bits for 1 input bit(recursiv encoder)  --yzh 

end 

  

 9. trellis 

 

function [next_out, next_state, last_out, last_state] = trellis(g) 

% copyright Nov. 1998 Yufei Wu 

% MPRG lab, Virginia Tech 

% for academic use only 

  

% set up the trellis given code generator g 

% g given in binary matrix form. e.g. g = [ 1 1 1; 1 0 1 ]; 

 % next_out(i,1:2): trellis next_out (systematic bit; parity bit) when input = 0, state = i; next_out(i,j) = -1 or 1 

% next_out(i,3:4): trellis next_out  (systematic bit; parity bit) when input = 1, state = i; 

% next_state(i,1): next state when input = 0, state = i; next_state(i,i) = 1,...2^m 

% next_state(i,2): next state when input = 1, state = i; 

% last_out(i,1:2): trellis last_out (systematic bit; parity bit) when input = 0, state = i; last_out(i,j) = -1 or 1 

% last_out(i,3:4): trellis last_out  (systematic bit; parity bit) when input = 1, state = i; 

% last_state(i,1): previous state that comes to state i when info. bit = 0; 

% last_state(i,2): previous state that comes to state i when info. bit = 1; 

  

[n,K] = size(g); 

m = K - 1; 
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max_state = 2^m; 

  

% set up next_out and next_state matrices for systematic code 

for state=1:max_state 

   state_vector = bin_state( state-1, m );  % matrix state_vector is of max_state rows and m columns  --yzh 

    

   % when receive a 0 

   d_k = 0; 

   a_k = rem( g(1,:)*[0 state_vector]', 2 ); 

   [out_0, state_0] = encode_bit(g, a_k, state_vector); 

   out_0(1) = 0; 

   

   % when receive a 1 

   d_k = 1; 

   a_k = rem( g(1,:)*[1 state_vector]', 2 ); 

   [out_1, state_1] = encode_bit(g, a_k, state_vector); 

   out_1(1) = 1; 

   next_out(state,:) = 2*[out_0 out_1]-1;   % BPSK? Each row has two possible outputs(according to input 1 or 0)  --yzh 

   next_state(state,:) = [(int_state(state_0)+1) (int_state(state_1)+1)];   % 2 next state for current state according to input  

--yzh 

end 

  

% find out which two previous states can come to present state 

last_state = zeros(max_state,2); 

for bit=0:1 

   for state=1:max_state 

      last_state(next_state(state,bit+1), bit+1)=state; % row number is the next_state, column is the input bit  --yzh 

      last_out(next_state(state, bit+1), bit*2+1:bit*2+2) ...   % row is the next_state value  --yzh 

         = next_out(state, bit*2+1:bit*2+2);    % next_out is the output of current state with input 0 or 1  -yzh 

   end  

end 
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