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ABSTRACT

A new adaptive filter is proposed for the turboattiog on Rayleigh fading
channels with noisy channel estimates. The turlcodier that is used over Rayleigh
fading channels is exactly the same as the onears@diditive White Gaussian Noise
(AWGN) channel. The turbo decoder works very wellldVGN channel [1]-[2], but not
as well on Rayleigh fading channels at that timg?5Il, the author assumes there already
exists a fading channel estimator with some estonadrrors and develops a new channel
reliability factor and new decision variables forlio decoding on Rayleigh fading
channels. Hence, Frenger, the author of [5] impddbe performance of turbo decoding
over Rayleigh fading channels. Since then, mogtaref has focused on the channel
estimation to reduce the error variances of estimgaHowever, the extrinsic information
generated from the turbo decoder has some priofitymation about the transmitted
data bits, which can help us better understandfthanel characters. In this thesis, by
using the soft extrinsic information after eachat®n of decoding, we re-estimate the
channel and the minimum mean square error (m.masd.further update the channel

reliability factor and decision variables at eatenation. Simulations show that signal to

noise (SNR) gain is improved by up to about 1dBitgrror probability 0f3.5x 10*.
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CHAPTER |
INTRODUCTION

1.1 Review of the literature

Turbo codes, introduced in [1], have been provegmetdorm remarkably well on
additive white Gaussian noise (AWGN) channels[H]}, The performance of the turbo
codes on Rayleigh fading channels has also bedredtaince then [3] - [6]. In [6], the
author, Frenger, gave out the exact decoding mieiricinary phase-shift keying (BPSK)
signalling on Rayleigh fading channels by assuntirad there is a channel estimator
prior to the turbo decoder to provide us with abiased channel estimate with a certain
error variance. The conventional turbo decodingimen AWGN channels needs the
estimation okignal to noise ratio (SNRY]. The exact turbo decoding metric over
Rayleigh fading channels needs both SNR and thenehdading factors [3], [8].
However, the channel parameters are assumed todvenkby Frenger in [6]. Since then,
many researches have focused on the estimatidmeohel parameters and the
degradation caused by errors in these paramethiig, threre is not much research
directly working on the results of Frenger in [Bjdg[6]. This could be seen from the
number of citations IlEEE: [5] is only cited twice [9], while [6] is citechirteen times so

far [10], [12].

The effect of SNR mismatch on the performance efttinbo decoding has been
studied in several works. Some research has be@osed for integrating the estimation
process into the turbo decoder over fading charf@gl§l1]. In [9], a modified version

of Wiener filtering with initial pilot symbols isrpposed, and the bit error rate (BER)

performance has been improved by 0.5dB at BEROOf, comparing to the Wiener



filtering algorithm with initial pilot symbols. 1fil0], the exact turbo decoding metric is
simplified. The BER performance is between thahefconventional decoding metric
and the exact decoding metric, but is very clogh@BER performance of the exact
decoding metric. In [11], an in-service estimatadrthe channel reliability factor is
proposed, which uses the statistical computatiétiseoblock observations to get BER
performance similar to the exact decoding metriG]nin [13], they do not use the fixed

iterations with the turbo decoder, while they de adaptive iterations for speeding up

the decoding process by aiming at a fixed BER. @Qheaimed BER, sd¥*, is reached,
no further iterations for the turbo decoder aredeele All these estimation schemes can
be seen as pilot symbol aided modulation (PSAMj=0blind channel estimation
methods. Most of these estimation methods ignwddedback from the turbo decoder.
However, the extrinsic information generated dutumpo decoding process has some
priori information about the transmitted data bitkjch can help us refine the channel

fading factors.

In [12], a novel idea has been proposed for integgahe extrinsic information
from the turbo decoder to re-estimate the fadirapolel. However, a mistake is made
during the mathematical derivation approach. Tier® relation between the re-estimate
of the fading channel and the extrinsic informati@expected. So an incorrect method is
used to make such a connection, which is to apprate the new channel estimate and
its error variance by taking their expected valoeoded input data bits .There is no

mathematical reason to support this kind of appnation.



1.2 A new adaptive algorithm for turbo decoding

In this thesis, based on the results in [6] and, W2 propose a new adaptive
channel estimation algorithm for turbo decodingRayleigh fading channels. The
mistake in [12] is corrected. However, the expentrdoes not go positively as expected
after the correction. The results of the experinsfow that the extrinsic information
generated during the decoding process is notyatibble. The extrinsic information of
some bits is helpful to the channel re-estimatvame the others are not. Future
researchers should pay attention to this pointidavg unnecessary repeated experiments.
The adaptive decoding metric proposed by this shiess successfully overcome this
problem by utilizing an effective stop-and-go st at the implementation stage as a
selecting criterion. In addition to that, the stekgzent algorithm of Newton’s method is
used to co-operate with the iterative nature ofttineo decoder. The varying step size is

also adopted to achieve faster convergence.

The observations received by the turbo decoder tvavgarts: the systematic
portion and parity portion. The proposed adaptikerftakes only the systematic
observations and the soft extrinsic informationjahtis the feedback from the turbo
decoder, as its inputs. This is one of the unidw@aes of this thesis. Some research
takes the hard decision as the input of the adajtisannel filter for only the amplitude
estimation [14], while some takes only the sofoimnfation as the input of the adaptive
filter for SNR estimation [13]. None of them spip the observations into two parts. The
conventional decoding algorithm that is used for @MW/channels is unchanged in this
thesis. However, the exact decoding metric theersved by Frenger in [6] is updated

iteratively during the turbo decoding process.



The proposed adaptive filter works better whenbtloek size of the information

gets smaller or the estimation errors of the chiestemator in [6] get bigger. The gain

of using the proposed adaptive filter is about adBhe bit error probability 08.5x 10*

with some settings. This gain is obtained with mially increased complexity.

1.3 Organization of the thesis

The organization of this thesis is as follows: Ima@ter 2, the basic elements of a
digital system and the channel models are intradluceChapter 3, the turbo encoder and
turbo decoding algorithm are reviewed. In Chapteve propose an adaptive filter that
uses the soft information to update the exact tddxmding metric iteratively over
Rayleigh fading channels. In Chapter 5, simulatesults are presented. Finally,
conclusions and future research directions arengiv&hapter 6. The whole Matlab
scripts of the proposed adaptive filter and thbduencoder and decoder are presented at

the end as an Appendix.



CHAPTER I
CHANNEL MODELS

To design a channel estimator and analyze the peaface of turbo decoding
algorithms, we need to understand the channelghibatansmitted data experiences. The
concept of the basic digital communication systams two channel models are needed

to discuss our contributions

2.1 Basic elements of digital communication systems

The demand for efficient and reliable digital conmaation systems has rapidly
increased in recent years. It is necessary to neiiit error probability at the receiver
end for higher quality communication. A block diagr of a digital communication

system is shown in Figure 1 [15].

m Uy, Xy
Information .| Source Channel Digital
source "] encoder g encoder "] modulator
G
Channel (at) n
ﬁ ﬁk Yi
A
Information | Source | Channel B Digital
sink decoder decoder demodulator

Figure 1 Block diagram of a digital communicationsystem

The information source usually contains redundafbg source encoder removes
the redundancy of the information to achieve efficly. The source encoder changes
source information to information sequences. Tihenchannel encoder adds redundancy
to the information sequences in a controlled wayntoease communication reliability.

Then the digital modulator transforms coded bits & continuous time waveform, which



is suitable for a physical channel. The transmiktiési will be distorted randomly both in
amplitude and phase due to many factors, suchflastren, refraction, multipath...

At the receiver end, the digital demodulator priian estimation of the
transmitted data. The channel decoder uses thedaduy and knowledge of the channel
code to detect and correct errors. Finally thes®decoder reconstructs the original
information by using knowledge of the source encgdnethod.

In this thesis, the main concern is channel dexpfiir binary phase shift keying

(BPSK) signalling over the Rayleigh fading channel.

2.2 Channel models

For better understanding of decoding strategies theRayleigh fading channel,
we first need to introduce the additive white Garssoise (AWGN) channel model, and

then the fading channel model.

2.2.1 AWGN channel

The AWGN channel model, together with BPSK modulatshown in Figure 2.
Where X, D(O,l) are coded data bits. The coded data (systemésiehd parity bits) are
inputs to a BPSK modulator, which generates thestratted channel symbols

G D(—\/E\/E) In an AWGN channel, Gaussian distributed randome) n, , with

zero mean is added to the transmitted symbolsv&hance ofn is:

N

=g’=-2
E[n]=0; 5

(2.1)



AWGN M

- BPSK

Figure 2 AWGN channel model

The signal to noise ratio (SNR) is:

5E__& (2.2)

N, rx2o°

where E, is the energy per information biE, is the energy per actual transmitted

symbol, r is the coding rate, and we have the relationsbtpiéen the energies and the

code rate,

E
—S = 2.3
E, ' 2:3)

At the receiver end, we have,

Y¥=6+n (2.4)

2.2.2 Rayleigh fading channel

The Rayleigh fading channel is a statistic modestiyaised by wireless system.
The Rayleigh fading channel with independent adelitvhite Gaussian noise and a
BPSK modulator is shown in Figure 3. Each of thenttel symbolsg, , is transmitted on

such model. At the receiver end, we have [16],

Yy=8¢+n (2.5)



where the nois&y, and the channel coefficieat are complex valued, Gaussian

distributed random variables with zero mean thatizdependent of each other.

al n;

Xy Yi
- BPSK

Figure 3 Fading channel model

The variances o§, andn are

Ell a [1=20;,

(2.6)
Elln F1=20;

At the receiver we need to know both the amplitadé phase distortion. Such

analysis is more complex than the analysis of tiéGN channel model. We can express

the complex valued channel coefficiestas follows,

3 =g +jg =re’ (2.7)
The amplitude and phase probability density fumc{jedf) of the channel

coefficient g, is [17]:

I'|2

f (I’| = #e_z"g 28)
1

He=-

[0, 271}

where the amplitude is Rayleigh distributed andpthase is uniform distributed.



CHAPTER IlI
TURBO CODES AND DECODING

Turbo codes with maximum a posteriori (MAP) aldomit have been proven to
perform extraordinary well on AWGN channels [1]].[2urbo decoding on Rayleigh
fading channels has also been studied in [5],If6his chapter, we first introduce the
concept of the Turbo encoder, then briefly revievbd decoding over AWGN channels

and Rayleigh fading channels separately.

3.1 Turbo encoder

Normally, a Turbo encoder [1] consists of two retug systematic convolution
(RSC) encoders in parallel, separated by a randterieaver (I). The information
sequences are sent to the first encoder directijevihe second encoder receives the

interleaved information sequences. For code raté/ 3, there is no puncturing, the

code words arec’, x'°, X " [IJJ. We could puncture the code words to achieve herig

code rate of %. In this case, the output code warels¢’, x'°, x3,, .2 [IJ.

U RSC X

Encoder 1

RSC
Encoder 2

Figure 4 Turbo encoder



A typical RSC encoder is depicted in Figure 5, wethtbie d, is calculated as:
K-1
dy =uk+z g dei (3.1)
i=1
The corresponding code words &€, x"),

s —
X = Uy

K-1 3.2
kazdk+_z_1;g2iq<—i (82

Figure 5 RSC encoder

where the feedback generatogjs=(11111), and the forward generatorgs = (10001).

They correspond to octal notatigy) =37, andg,, =21.

3.2 Maximuma posteriori(MAP) algorithm over AWGN channel

MAP is the optimal symbol-by-symbol maximuaposterioriprobability
algorithm [18]. However, MAP is not practical fanplementation, primarily because of
the complexity associated with the representaticheprobabilities. Log-MAP is a
transform of MAP, and works in the logarithmic domavhich has equivalent
performance and is more practical. We review tmelfumentals of MAP/Log-MAP

below, which are thoroughly discussed in [16] at®@l] [

10



For an information sequence of lengthwe havet = (u, u,,...,u, ), where
u, J(0,1), and for the corresponding coded output sequevedavec = (¢, <C,....G ),
where the length of, is n for a code rate of =1/n. We denote the encoder state at
time i is m. We know that the output and the current statb@fonvolutional code

encoder depend on the previous state and inpuigdtave the functions:

Ol
1

(4, m.,) (3.3)

m fs(q’ rTi]—l) (34)

It is clear that any state pgim, m_,) corresponds to eithef =0 or u, =1.
Hence, we have two sets of state p&ysand S, corresponding ta, =0 andu, =1.

Based on observations at the receiver (y,, V,,..., ¥ ), we can apply the MAP rule to

find log-likelihood L values as:

L(u)=1In Py :1”!) =In P(Lr'zl’:Y)
P(u=01y)  P(u=0,y)

P(M_, M, 3.5
P(S,Sb:m; (M MY (3.5)

P($, Y X2 Rm, my
S

=In

We definey” = (¥...%; ), wherei < j . Then we can write

y=(%" ¥ ¥ (3.6)

and we have

11



p(M, M Y= i my, My, 5y %)
=p(my, m, ¥,y € o, MYy
=p(m, ¥ Amyl m,”§) 6% 1 m, ¥y 37
= p(m_y, X)) Homy yImoy) p(Y | m)
=a_,(Mm_)y(m, mA(m

where the first three steps follow from the chailey the forth step follows from Markov

properties [20], and the last step we defing(m_,), B(m), and y;(m_,, m) as follows:

a,, (M) = ply, Y_l))
B(m)=p(¥Y I m) (3.8)
yi(m_yp,m)y=gmyl m)

Hence the log-likelihoodl. , becomes:

z pP(M_y, M,y
L I (Mm4,m)IOSg
)= S ey
(Mma.m)IOS
(3.9)
> anmoy)y(my, mA(m
- In (M4mO
> a Moy (my, mA(m
(M4mO

We can computer, (m) forward recursively as following:

a,(m)=p(m Y‘)
- z p(m—l’ m, )f ™ _.'
‘Z p(my, %) fm, 7yl m, 7 §) (3.10)

—Z p(M_, ¥ ™) (m 7yl m,)

=Z LMoy (Mo, m)

assuming that all initial states have a value ob zéhat is

12



1 =0
ao(mo)={0 T{)i X (3.11)

And we computeS_,(m_,) backward recursively as:

Igi—l = p(yi(N) | m—l)
ZZP(YJ{NH, m|m,)
ST‘
=2 p(m yImy) ) | moy m) (3.12)
S"\

=> p(m, ¥ my) 5 | m
S"\

> v (Mo, m)B (m)

S,r|

assuming that the trellis is terminated in thezelle state. Hence,

|1 m, =0
ﬁN(mN)_{O mN £ C (313)

We computey; (m_,, m) as follows:

yi(my,m)y=dgdm7yl m)
=p(m | my) [yl m m)
=P(u) (Y| y)
=PU) )(YI¢)

(3.14)

The expression clearly shows thgim_;, m) depends on the prior probability of

the information at time, and the channel characteristics.

3.3 Turbo decoding over AWGN channel

For an AWGN channel, we hawe = g + . Let us consider the special case
when code rate =1/ 2, and the systematic convolution code uses BPSKutatidn.
Under such a condition we hawe=(y’, y°) andc =(¢’, ¢"), wheres and p represent

systematic bit and parity bit, respectively. Inartb calculate the log-likelihodd, we

13



need first to calculate the branch metyj¢ém_,, m).According to formula (3.14), we
further need to calculate the probability pfy, | G).
The pdf of y given c could be calculated through its cumulative disttitn

function (CDF) as follows:

- 1= aFy|q(Y||¢)
/ = A 7 - 3.15
p(Y; 1 €) % (3.15)
while
Fy||q (yl |Q): P(ys _yl p:_;c)
=P(gtnsyle=7¢)
=P(n<¥-¢le=7) (3.16)
=P(n<y-70)
=" t,(@)da
Therefore, we get:
- = _aFy||q (yllél)
p(Y If;)——ayi
0 (9%
"5 "y (a)da
= fN(a') E/Lo_q: fN (yi_Q)_ fN (_°°) (3-17)
=fy(¥,-¢)-0
= fN(yi _é)
where f (@) is the pdf of the AWGN channel. So the branch imedr
yim, my)= Ry) gyl 9
_PM) o O @) (Y- £)° (3.18)
ITNO NO
S\ 2 2 s\ 2 2 S AS
:Lexp(_m (YD) +(6)*+ (6D jp(q )ex{” .c+2iy‘1c‘]
ﬂNO NO NO

14



Because of BPSK modulation, the te%;_ exp
0

(_(yﬁ)z+(yip)2+(¢)2+<c;p>2j
NO

is independent of,, and it could be cancelled from the numeratortardienominator

of the log-likelihoodL values in the formula (3.9), as follows:

5 ai-1<m-1)P<u)exp(W]ﬁi(m)

L(y) = In @708 No

> ai-1<m-1)P(u)exp[W]/5:(m)

(M4mO No

pd

4,JE =
=—\,{F' yS+In P - Y | mamos 0 (3.19)
0

P =0 > ai-l(m-l)P(u)exp(z o

(M.mES

<

NO

2 ai-l(m-l)P(u)exp[ZMpqp]ﬁ(m)
]/5.’ (m)
=Ly +L(u)+ L(w)

where we defind._as the channel reliability factor [71,,(u,) is a priori information,

and L (u,) as the extrinsic information of the systematic yjit which is dependent on

the received parity bits.

_» Pu=1
L.(u)= |n—P(q ~0) (3.20)

2 ai-l(m-l)P(u)exp[ZT\ilpquﬁ(m)

Le(ui) =In (M. mMOS

)y ai-l(m-l)P(u)exp(zi’QW]ﬁ(m)

(M4, MO

For turbo decoding, corresponding to the turbo dacove have two MAP decoders,
DEC1 and DEC2, which iteratively exchange extrinsformation as a priori

probability of each other. A de-multiplexer at begng changes the received serial data

15



bits y, into parallel data bitsy®, y*°, y*?). Corresponding to the turbo encoder, the
received systematic bitg® and parity bitsy'® are sent to the first MAP decoder, which
is depicted as DECL1 in Figure 6. The interleavesiesyatic data bitsy*(i) and the

received parity data bitg*®, which are already interleaved at the turbo engaate sent

to the second MAP decoder, which is DEC2 depiateigure 6.

Lc La]
yS |_> LA] L} LE]
—>{ X} > DEC1 » Lay—L. ¥y —L_ > 1
I
D y]p I__>
y'/ E \ 4
o—> I\U/I , I L
c
X LAZ L’ Lez
yZp »] DEC2 » L —L v () —T . +—> I
——( X ) > I L
T |_> ________ o
(o] LC > 171 ﬁk O

A 4
7

Figure 6 Turbo decoder

At the first iteration, we do not have the extrogiformation yet, assuming all
bits are equiprobable, and so set a priori prolighialue L, to zero. Thus we get the
first extrinsic informationLy) from the first MAP decoder; the superscript repngs the

iteration number of the decoding process.

L9 =19-Ly - L9=19-Ly*-0

3.21
=19 -L.y (3:21)

The first extrinsic informatiorl?) after interleaved, becoming(1), is sent to

the second MAP decoder. The second MAP decodetald the extrinsic information
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from the first MAP decoder as its a priori probapilL,, of the transmitted data bits. In

the second decoder, after decoding, we get a namsig informationLt) :

LY =19 — L vs( - LD
e2 (?)2 cys( ) (z;j (322)
=L Ly (D-L(1)
The LY, after de-interleaved, becoming))(1 ™), is fed back to the first MAP
decoder as its a priori information of the nextaten.

@ =@ _| $_|@
Lel - LAl LCy Lal

) (3.23)
=LY - Ly - L807)
The general formula for the extrinsic informatisrais follows:
L9 =19 - Ly -1 = 190 Ly - L2017 .

Lo =L~ Loy (1) - L = L% - Ly (1) - La(1)
with the number of iterations>1, and L) = LY =0. The capital letter I in brackets

represents the interleaver and de-interleaver avitbgative power of 1. The whole
decoding process runs iteratively for the giveresno improve the decoding

performance.

The upper part and the lower part of the turbo decé identical, except that
every piece of information that goes through thvedopart must be interleaved and the

output of the lower part must be de-interleaveateetising.
At the end of the iterative decoding process, wernake a decisiod, by

comparingd-,,(u,) to a threshold equal to zero,

G, =1 if L,(u)=0,

- : (3.25)
u =0 if L,@u,)<O,
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From Figure 6, we see that two pieces of infornmatice needed by the turbo

decoder, channel reliability factdr, and observationy, or decision variables.

3.4 Turbo decoding over the Rayleigh fading channel

The structure of the turbo decoder over the Raljl&agding channel is identical to
that over the AWGN channel. From the point of vigithe turbo decoder, we still need
two pieces of information, i.e., the channel raligbfactor and decision variables.
However, due to the different channel models, wedrte modify those two pieces of
information. In [6], the author assumes that treready exists a channel estimator, in

this thesis we call it channel estimator (1). Tharmel estimator (1)} , is modeled as
h=g+m (3.26)
wherem is the estimate error of the Rayleigh fading cledran, which is complex

valued and Gaussian distributed with

E[m] =0
(=0 327)
Ellm [']=20,
The estimate error of the estimator (fr),, is independent of the chanrgl
Further we have:
E[h] = +m = + 0
[hl=Ha+m=Ega+[Em (3.28)

Ellh F1=Hla+ mFl= & afl+ B m’
In [6], the author gives the new decision variatiedased on the received bits
y, and the estimatiol of the channel estimator (1):
z=yh (3.29)

Further, the cross correlation coefficientypfand hy is defined as follows:
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. E[y h] _ 7 ¢

2 = (3.30)
JEI Y FIEI QP U ¢ Bol+a))o2+02)

The author of [6] also derived the probability dgniunction of z conditioned on the

transmitted code symbal as follows:

B 1 RIZ4]
p(z]¢)= 21070 (1 | F)ex{ayah & |t ):l

Y]
7,0,@-uf)

Where K, (x) is the zeroth order Hankel function ®f and R(X) denotes the real

(3.31)

component ofx. The author of [6] then uses MAP algorithm as nogred in section

(3.2) to calculate the log likelihood ratio @fposterioriprobabilities as follows:

- > p(my.m )
E(ui) =In P(y=1]7) = |n (MmO S

P(u=0]z) > pmy,m,2

(M-, MmO

_ o _ (3.32)
> AL my)y(m, mA(m
=In (M. m)O§ _
> aumy)y(m, mA(m
(MmO
Similar to the formula (3.14), the author gets,
y(m_y,m)=HRu) gzl 9 (3.3)
Finally, the author of [6] gives out the new chdmeéiability factor L, as follows:
-1
N =
L .= \/_C o’ {ari(ZES oi+l)+ 02} (3.34)
NO NO

, — _4JE
For a perfect channel estimator (&, =0, L, = \/_c =L,.
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The BER performance may be improved by up tol Bkt error probability of

107 by applying new decision variables and the newnbhreliability factor.
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CHAPTER IV
ADAPTIVE TURBO DECODER

The exact turbo decoding metric (3.29) over Rayiéagling channels assumes
there is an estimator (1) with an estimation evariance ofg?’ . In [6], simulation
results show that the smaller the error variartee petter the BER performance. Many
works have been studied to reduce the error vagiahthe channel estimator (1). Most

of them ignored the extrinsic informatiob, () generated during the turbo decoding

process.

In this Chapter, we first propose a new adaptigerhm for turbo decoding,
which uses the extrinsic informatioh, () and the systematic observations) as its

inputs. Then we review the basic theory of theneatiion. The optimal solutions of
minimum mean square error are modified to becomee mitable to the iterative nature
of turbo decoding by combining the steep-decenhotktFurther, the optimal step size
of the steep-decent algorithm of the Newton’s metisalso adapted to the iterative
nature of turbo decoding. At the implementatiorgstahe stop-and-go strategy makes
the proposed adaptive filter more realistic. Tharmary of estimation error variance of

the estimator (2) is also discussed in detail.

4.1 Block diagram of the proposed adaptive filter

We follow the work of author [6]. There are twortgs that should be noticed.
First, the channel estimator (1) is imperfect; selty, the channel estimator (1) does not
update iteratively as the Turbo decoder does.Herovords, after getting the new

channel reliability factor and new decision vares)lwe do not need channel estimator

21



(1) any more. However, the turbo decoder generaasinformation about the
transmitted data bits after each iteration. Thersit information generated by the turbo
decoder could help us better understand what we reoeived after each iteration. The
proposed algorithm makes use of this kind of infation to re-estimate the channel

adaptively. In this thesis we will call it chanmsitimator (2), as depicted in Figure 7.

c Le2
Om > Decoded

3 b

ye zP L {i
: - T
—— DEMUX Estima%or 1) Turbo decoder

N Y
1%y

o—|
I~

Al

o—

output

Fading 2 .
compensator Uﬁn Estimator (2)

Adaptive Filter

Figure 7 Block diagram of adaptive filter

Like in Figure 6, from the point view of the turbdecoder, we summarize two

pieces of information, the decision variableo(¢ y) and the channel reliability factor
(L.), as inputs of the turbo decoder for all the trsig@ations, which are the conventional

turbo decoding metric, the exact decoding metnd, the proposed adaptive decoding

metric. Further in Figure 7, we split up these pigces of information into two sets of
pairs. One set of pair is{, L”), which is related to the parity bits, the otree(z®, L),
which is related to the systematic bits. The supats (s, p) represent systematic and
parity bits respectively. The proposed adaptiverfitakes both the systematic

observations ¥*) and the soft extrinsic informatiorL(, ), which is from the output of
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the turbo decoder, as its inputs. This is one efuihique choices of this thesis. Some
research takes the hard decision as its inputechtiaptive channel filter [13], while
some takes only the soft information as its induhe adaptive filter [14]. None of them

split up the two pieces of informatiorz,(L,) into two sets of pairs. The basic motivation

to make such kind of choice is that we do not veamt delay or memory in the proposed
algorithm. Any delay or register would increase ¢bst and complexity of the turbo
decoder. Because the length of the extrinsic in&bion is N , which is the same as the
length of the systematic observations, we couldiganeously calculate the updated
channel without any delay or register. We thenstavgate the channel, and finally update
the channel reliability factor and decision varesbafter each iteration of the turbo
decoding process. Because the extrinsic informagererated by the turbo decoder is
only related to the systematic data bits, we oplgate the channel reliability factors and
the decision variables that are related to theegyatic bits. Once we get the updated
channel estimation and its variance, the fadingpeamator computes out the two

updated pieces of information that the turbo decodeded as depicted in

Figure 6 and Figure 7, the updated channel reiigl@ctor I:§ and the updated decision

variablesZz’.

4.2 Estimation theory review

According to the theory of estimation discusseffit], the minimum mean

square error estimatd of the unknown channel, given observationy, is:
a=wy (4.1)

wherew’is any solution that satisfies the normal equation,
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w =R, R! (4.2)
while the covariancdR, and the cross-covariand®, are defined as follows:

R, = Eyy

4.3
R, = Eay (43)

The solutionw® minimizes the cost function of the channel in theamsquare

error sense,
min E(a- a)° (4.4)
and the minimum mean square error (m.m.s.e.) is:
mmse= R- B R | (4.5)

The optimal linear solution’ is clearly not sensitive to the iterations of theo
decoding process in general. In other words, naeamhbw many iterations we choose,

the optimal minimum mean square error solution remthe same. This also means that
the optimal linear solutiom” is optimal for the whole of the iterations, not &ach of

them. If we use the optimal linear solutiefi directly in the each iteration of the turbo

decoding process, the turbo decoder must be dedfuabeach of the iterations.

The any solutionn® could also be achieved by the steepest-decentithigoof

Newton’s method [21] iteratively, as follows:

W =w_,+uR{R,— R w]
W, = any initial guess (4.6)
U = step size

wherei is the iterations of the Newton’s method.
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Because the steep-decent algorithm and the decpdigss of the turbo decoder
have such similar iterative characteristics, theyld help each other during the decoding

process.

4.3 The proposed estimator (2) of chanael
First we calculate the covariané® and the cross-covariandg by using the
definition [20] as well as the channel model disagsin chapter 2,

R, = Eyy = H ac- ) ae¢ N =20, +20,
R,=Eay = Ed ag- ) =20, m 4.7)
R.=Eya= Hace ha=20 m

Then we get the solution to the Newton’s method

w=w_,+uR{R,— R w]
H20,m, — (20, + 207 )w,,]

:\Ni—1+ 20.2 + 20.2 (48)
2 2
- + .
- \Ni—l + lu[o-amc go-a 20-5) VV|—1]
o, t0o,

where the mean value of the coded bitg Xis related to the extrinsic informatiof. ).

See formula (4.16) later.
The optimal step sizg/° is calculated as follows [21]:

o2 1
Ao T Amin 202 +07)

max min

(4.9)

where A ., and A, denote the maximum and minimum eigenvalues otthvariance
R, . Theoretically, the optimal step size is for titeation as the iteration - . It is

clear again that the optimal step size is not sgedo the iterations of the turbo
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decoding process as we see in the formula (4.2hikMihe limited iterations of the
decoding process, we naturally want to take thgdsgstep size first then gradually
reduce the step size to reach the fastest conveggknother words, we need relate the
optimal step size to the iterations of the turboading process in some specific way, as
shown below.

We combine the solution to Newton’s method andntbrenal equation, as well as

based on the above considerations of the steptBzestimator (2) of the channelis:
LHoemy —(o7+0) )]
=Wy =+ 7+ 07

=h (4.10)

L
ix(0; +0,)

ﬂ:

In the above equation, we take the estimation @ettimator (1), both the

systematic and parity bit part, as the initial eabf the estimator (2), which &, =h as
shown in the formula. The size of the initial valéig is nx N with a code rate of
r =1/n, while the size o&*,m.,w and y*® is N, which is the length of the information

sequence. After the initialization, we only cal¢aland update the systematic pgttas
the superscrips indicated. Andi is the iterations of the turbo decoder and/or Nevet
method. Here, we combine them together and makgffawentiation between them
afterwards. The step size is reversely proportitméhe iteration of the turbo decoder by

practice and the above discussions.

Hence, the minimum mean square error (m.m.s.dljeostimator (2) and the

variance of the estimation error is as following:
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2 2 2
mmse= R- B R R= mi—% (4.12)

0.2 2
J;f}jz ) (4.12)

a n

o:=0%(1-

Finally we get the updated channel reliability tﬂcfi and updated decision

variablesZ’,
-1
4,/E
R ke
N, ) (4.13)
7= yE

where the size of° and 2° is alsoN , the length of the information sequence.

The proposed adaptive decoding metric (4.13) is#émee as the one used in the
exact decoding metric (3.29), except that the eravianceo?, is updated iteratively

during the decoding process with the selecting@ah as follows.

2

o2 <og? (4.14)

In the above equations we need to calculate thenwedae of the coded bits. By

definition [7], we have

_In P(uk :1):|n P(C:]') Aln p

® TPy =0  Pc=-1) 1-p

eLeZ

P=1t o= (4.15)

fo = pa(c-1)+(1- p)d(ct+1)

So the mean value of the coded bits is:

m = Hd :j: cf( ¢ d=2 plztanh%) (4.16)
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The mean value of the coded bits is only relateithéosystematic bits, so we did
not put a superscrigtaround its right upper corner for simplicity.

One last thing we need to mention is that all tlewdations are bit wised in the
formulas. This also means each systematic bit bas through the channel with

different channel estimations. The squarepfin the equation (4.12) is calculated by

array power function with the Matlab, and the temyy® in the formula (4.10) is

calculated by array multiplication with the Matlamd so are the array operations in the
other formulas. For simplicity, we did not put dmat notation around them to avoid

notation confusion. But they should be clear bydbetext.

4.4 Implementation of the proposed adaptive filter

Considering the results of the calculation and spraetical additions to the
adaptive filter, we construct the adaptive filterdepicted in Figure 8. In the diagram

below, the proposed adaptive filter has two in@uid two outputs.

yr zr Laz u
y > > J1 Lt ___f
— DEMUX | y* Estima%or (1)| 7z |Turbo decoder| 7.,
> Om T Decoded
Z""l b l output
e EEte I P it
! Z“T Lj i
| v |
: - m. /1 !
| O < Opm [* L |
| |
| " I
: a ; |
i Estimaztor (2) tanh (=% |
: > O m - :
I i
| |
[ |

Adaptive Filter

Figure 8 Implementation of the adaptive filter
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The two inputs are the extrinsic information frame turbo decoder and the
observations that are related to the systemasc bite two outputs are the updated
observations and updated new channel reliabilityofa

At the first iteration, the received coded data lgiv through the estimator (1).

The estimator (1) produces two pieces of infornrmgtthe new channel reliability factor

L. and the new decision variables that the turbo decoder needed, as depicted in
Figure 6. We split these two pieces of informaticio a systematic parz, L) and a

parity part (z°, L?). Both systematic part and parity part are theiispo the turbo

decoder at the first iteration. After the firstraBon, we get the extrinsic information

from the turbo decoder, which could help us betteterstand what we have received
about the transmitted data bits. In the meantingetoggle the switch to the estimator (2).
The extrinsic information from the turbo decodefinist de-interleaved, and then, by a
simple function, we get the mean value of the syatee bits. Using the mean values we
immediately get the error variances of the updateahnel or estimator (2) through the
formula (4.12). After the first iteration, we taktee estimation values of the channel from
the channel estimator (1) as the initial guesfiefadaptive channels estimator (2). Then
we get the updated channel reliability factor aadision variables by the formula (4.13).
Through practice we compare the error variancéseéstimator (2) to the error
variances of estimator (1). We only update thermfation that has less error variances in
estimator (2). If the error variances or standadvetions of estimator (2) are bigger
than those of estimator (1), we skip further caltioh for those bits. The comparison of
the error variances of estimator (1) and estim@pprovides the proposed adaptive filter

with a stop-and-go character, which makes the adafplter more realistic.
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The extrinsic information from the turbo decodeomy related to the systematic

bits, so we only update the decision variablesthadhannel reliability factorsz, ES)

that are related to the systematic bits. Whilepdety part z°, L?) remains the same

during the rest of the decoding iteration process.

4.5 The boundary of estimation error variance efaéktimator (2)

The proposed adaptive filter has a selective ooiteias shown in Figure 8 and the

formula (4.14). We rewrite the formula (4.12), @) &and (4.16) here for convenience.

2 _ oo GaM
o: =01 = +05) (4.12)
o2 <a? (4.14)
m=Hd :j: cf( § d=2 p—lztanh%) (4.16)

The right side of the formula (4.14) is the estioraerror variance of the
estimator (1), while the left side is the estimateror variance of the estimator (2),
which varies during the decoding process. We wostet the smaller error variance of
the adaptive filter. So, the minimum variance @& loundary of the adaptive filter

happens when the mean value of the coded bits rsactaximum. From formula (4.16),
we know that the maximum value of in the formula (4.12) is 1, so we get the

boundary of estimation error variance of the esttimé?) as follows:

2 Uj 2 2
o,(1-—2=)<o,<0; (4.17)

a
a n
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which could be further simplified as:

2 =2

oo,

A< gl <o (4.18)
02 +07

N o’
"2 T kiR (419

So, we relate the boundary to the signal-to-nasie as follows:

a,E,
.+ 0o <0 < (4.20)

With the code rate of =1/ 2, and setting bottw’ and E_ equal to 1, we get the
boundary of estimation error variance of the estom¢?) for the special case,

2

YT LT <gi<0’ (4.21)

4.6 Decoding method comparison

In this chapter, we derived a new adaptive turtmodmg metric (4.13) for BPSK
signaling on Rayleigh fading channels with the e¢terstimator (1) providing a certain

error variance.

In some studies, the performance of turbo decodmBayleigh fading channels
has also been studied [3], [4] and [22]. In [3§ #mplitude and phase of the fading
channels are assumed to be known, and then theiBayading channel can be modified
as a special case of the AWGN channel conditiomethe known fading factors. In [4],
the phase of the fading channels is assumed tnbe/n and the amplitude is unknown,
then the probability density function (pdf) of thexeived symbols is adopted

approximately as Gaussian by averaging the fadiaggss over all possible values. Thus,
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the conventional decoding metric of AWGN may beduse [22], the amplitude is
assumed to be constant and the phase is unknogvdethision variables are also
modified approximately as Gaussian and the coneeatiTurbo decoding metric is used
again. However, in practical communication systetims channel information is
completely unknown at the receiver, and the fadimgnnels must be estimated at the
receiver. In [6], such an estimator is assumedawige us with an unbiased channel
estimate with a certain error variance, and theteaacoding metric on Rayleigh fading
channels is derived. In [10] and [11], the exadbdudecoding metric derived in [6] is
simplified with no performance degradation. All tigove decoding methods for
Rayleigh fading channels have no feedback frontut® decoder, while the adaptive
turbo decoding metric derived in this chapter takesextrinsic information generated

during the turbo decoding process as feedback fnenturbo decoder.
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CHAPTER V
SIMULATION RESULTS

5.1 General settings

In the simulation results, two generators of thestibuent RSC encodegl = 37
and g2 = 21, in octal notation) have been used in Figure 4Fgdre 5. The code rate is
r =1/2, and we set bot? and E, equal to 1. The channel estimator (1) in Figuie 8
simulated. That ismn in the formula (3.26) is generated randomly. Tagance ofm is
set too? =0.4 in Figure 9 and Figure 11, and the variancepfs set too? = 0.4,0.3

and 0.1 in Figure 10 respectively. The turbo decedth 8 iterations is used in all
situations. The block length df =840, 420, 210, and 100 are used in Figure 9

respectively, and the block length Bf=100 is used in Figure 10 and Figure 11.

5.2 BER performances with different settings

In Figure 9 and Figure 10, we present the simulatigorovements when using
the proposed adaptive filter (solid lines) agathstresults of Frenger’s (dashed lines) in
[6].

In Figure 9, we consider varying the block sizethefinformation sequence. We
can see that, as the block size of the informagets smaller, fronN =840 to N =100,
the performance of the turbo decoder degradespiidposed adaptive filter does not
improve the performance much when the informatilmchsize iN =840 or greater
than that. This could be explained due to the taldmder getting more information
from the increased information size, which helgsdkcoding process. When the

information block size isl =100, the proposed adaptive filter could help the turbo
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decoder to achieve better BER performance. Loo#trthe bit error rate 08.5x 10*, we
see that the gain of using the proposed adaptiee i about 1dB for the block length of
N =100. The improvement of the turbo decoder with theppeed adaptive filter gets

bigger when the information block size gets smaller

L

————————————————————————————————— | toital = 100
—A— | {otal = 210
i |_total = 420
e | fotal = 540

BER

— Ll

1 LI LL|

Ul — L

Figure 9 BER performance when using adaptive filtesolid) vs the results of Frenger’s (dashed)

In Figure 10, we compare the simulation resulthefproposed adaptive filter

(solid lines) versus the results of Frenger’s (éddimes) in [6] with different error
variances ¢2) of the estimator (1) in Figure 8, while the infation block size stays the
same asN =100. When the error variance of the estimator (1¥fs=0.1 or less, we see

that the proposed adaptive filter gets exactlysdmme curve with an SNR of less than
8dB. This is because we use the selection critexsoshown in Figure 8 and the formula

(4.14), and there are no or few estimation ernamfthe adaptive filter that satisfies the
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selection criterion. If the selection criteriomigt satisfied, the proposed adaptive filter
does not update the channel. This could be alslaiega as the estimator (1) in Figure 8

having already done a better estimation of thenigdhannels. When the error variance
of the estimator (1) ig? =0.4, at the bit error rate d.5x 10", we see that the gain of

using the proposed adaptive filter is about 1dBe. 8&n see that as the error variance of
the estimator (1) gets bigger, the improvemenhefturbo decoder with the estimator (2)
also gets bigger. This means when the channel &stir(iL) gets worse, the proposed

channels estimator (2) has more room to imprové3tée performance.
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Figure 10 BER of the adaptive filter (solid) vs theesults of Frenger's (dashed) with differentcsﬁ1
From both Figure 9 and Figure 10, we see that velither the block size of the

information gets smaller or the estimation errdrthe channel estimator (1) get bigger,
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the proposed adaptive filter could help to imprtwve BER performance of the turbo

decoder.

In comparison, we also give out the simulation ltsswith the settings of
N =100, 07, =0.4 and 8 iterations, but do not compare the erraanae of the
estimator (2) to those of the estimator (1). Thathere is no selecting criterioar{ < o?)

for the adaptive filter in Figure 8. The adaptiutef does not provide better performance

in this case.

L-total = 100 ( No Selecting )

SNR (dB)

Figure 11 BER without selecting criteria

5.3 Step size and boundary

The step size of the steep-decent algorithm foptbposed adaptive filter, see
formula (4.10), is depicted in Figure 12. Please=toat the formula (4.10) follows the

general convention of the steep-decent algorithime. iitial guess of the channal, is

actually the first iteration of the decoding praxzeSo, the actual step size gfin the
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formula (4.10) begins to vary from iteration 2 bétdecoding process. The adaptive
channel estimator (2) in Figure 8 takes its biggésp at the iteration 2 of the decoding
process to accelerate convergence, and then rethestep size reversely to the

iterations.

0.03

0.025

0.02

Step size

0.015

0.01

0.005

lterations

Figure 12 Step size versus iterations

In Figure 13, the boundary of estimation errotiataze of the estimator (2) for the

special case is given according to the formulal(4.Phat is, the code rate=1/2, and

both 2 and E, are setto 1. The arrow area is an example dfdedary with the
estimation error variance? = 0.4 of the estimator (1). The arrow area shows that th
adaptive filter starts to improve BER after SNRagee than 6dB whew? = 0.4, the

bigger SNR, the larger distance framj = 0.4 to the lower boundary. This means more
ability to improve the BER performance. This cobklverified by the BER

performances with different settings in Figure el g? is 0.3, the adaptive filter starts
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to improve the BER after SNR greater than 7dB,shdn o2 is 0.1, the adaptive filter

does not improve the BER before SNR greater tha®18hese could also be verified

by the BER performances with different setting&igure 10.
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Figure 13 The boundary of estimation error varianceof the estimator (2)
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of contributions

In this thesis, a number of contributions havenob@ade in turbo decoding for
BPSK signalling over Rayleigh fading channels withse channel estimates.

First, a new adaptive channel filter with estimg®) for Rayleigh fading
channels is derived by assuming that the chantiet&wr (1) is available at first
iteration of the decoding process. Channel estim@jas imperfect with some
estimation errors. The proposed algorithm is basethe new turbo decoding metric
which is derived by Frenger in [6]. However, thevreecoding metric in [6] is fixed
during the iterations of the turbo decoding proceses formula (3.29). The turbo decoder
provides soft extrinsic information of the transieit data bits which is used by the
adaptive filter in this thesis to update the newoding metric for the next iterations of
decoding, see formula (4.13). The resulting iteragibetween the channel estimator (2)
and the turbo decoder can improve the performahbeth the channel estimator (2) and
the turbo decoder by using the updated informafitve. proposed adaptive filter works
better when the block size of the information getsller or the estimation errors of the

channel estimator (1) get bigger. The gain of usiegadaptive filter is about 1dB at the
bit error probability of3.5x 10 with the information block length dfl =100 and
02 =0.4. This gain is obtained with minimally increasedngdexity.

The second highlight of this thesis is that weehproposed an effective stop-and-
go strategy at the implementation stage of thetadafilter. That is, we set the selecting

criterion for the adaptive filter. If the estimatierrors of the channel estimator (2) are
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bigger than those of the channel estimator (1)ptioposed algorithm stops updating the
decoding metric. The proposed algorithm only carggiwhen the selecting criterion is
satisfied.

In the end, we argue that the steep-decent algouited in this thesis is suitable
for the nature of the turbo decoder. The turbo decanust go several iterations to
achieve a better decoding result, while the stesgeiat algorithm also takes several steps
to get closer to the optimal point. They help eattter during the decoding process
although the steep-decent method is not an optime#thod. Normally, an optimal method
is achieved within one step comparing to the stigent method. If we use the normal
optimal method at each iteration of the decodiragess, the turbo decoder is disturbed

by such a one step optimal method.

6.2 Recommendations for future studies

Because the proposed adaptive filter makes udeeabitrinsic information from
the turbo decoder and the extrinsic informatiordpieed by the turbo decoder currently
is only related to the systematic bits, future aesle could develop a turbo decoder that
could produce the extrinsic information that afdatel to both systematic and parity bits.
Then, based on this research, it would be moreastieg to develop an adaptive filter
that uses the extrinsic information of both systiéeriaits and parity bits.

It is more important for the future research toelep higher-order modulation
schemes based on the proposed algorithm, whiogrigedl for the turbo decoding for the
BPSK signalling over Rayleigh fading channels. fiflgher-order modulation schemes

have much more spectrum efficiency in the modemneless communication system. The
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higher-order schemes could be, for example, quaidrghase shift keying (QPSK) or M-
ary quadrature amplitude modulation (M-ary QAM).

Finally, the concept of the proposed adaptive tdilber could be applied to
adaptive channel equalizer by using the extringiermation of the turbo decoder. It is
important to develop an iterative turbo equalizezrdahe Rayleigh fading channels that

have intersymbol interference.
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APPENDICES
APPENDIX A

Matlab scripts of the turbo decoder with adaptiiterf

1. Adaptive_Rayleigh_complex

% Turbo codes on Rayleigh fading channels usingMédP decoder
% Copyright Oct. 2011 YuQing Guo

% Unversity of Windsor. guol4@uwindsor.ca

% for academic use only

% Rayleigh Fading Channels

% to modify Frenger's result

clear;

clc;

diary AdaptiveFilter_YQ.txt

% Paul Frenger's paper

L_total = 100% 420 is the parameter in Frenger's paper
g=[11111;1000 1} Frenger. or g1=37, g2=21 in octal form
sigma_a = sqrt(1)}y variance of fading coefficient @ Frenger

% alpha_factor=0.5;%00.1051

[n.K] = size(g);

m=K-1;

nstates = 2"m;

puncture = 0%puncturing into rate 1/2; % exactly result of Fgen%puncture = 1; %no puncturing rate 1/3
rate = 1/(2+puncture);% Code rate

niter = 8% Number of iterations

Ferlim =[10]% Number of frame errors to count as a stop cateri
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SNR =[11];% Signal to noise ratio
k1=0.0725% step size coefficient
Fetch_iter = 1;% set up fetching iteration --yq

varian = 0.4;% set up sigma_m"2 --yq

Error = zeros(length(SNR), nitef)) bit error

Error_hat = zeros(length(SNR), niter);

BER = zeros(length(SNR), nitef)) bit error rate

BER_hat = zeros(length(SNR), nite}; bit error rate

ErrorFrame = zeros(length(SNR), nite¥y;frame error

FER = zeros(length(SNR), nite€); frame error rate

FrameNum = zeros(length(SNR), ¥;transmitted frame numbers for each SNR
mu = zeros(length(SNR), nitef)) step size --yq

fprintf("\n\n \n);

fprintf(' Frame size = %6d\b"_total);
fprintf(' code generator: )y’
fori=1:n

forj=1:K

fprintf('%6d; g(i,)));

end

fprintf(\n);
end
if puncture==

fprintf(' Punctured, code rate = 1/2)\n'
else

fprintf( Unpunctured, code rate = 1/3)\n'
end
fprintf(" iteration number = %6d\miter);
fprintf(" Eb / NO (dB) =);
fori = 1:length(SNR)

fprintf(%10.2f,SNR(i));
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end

fprintf("\n \n\n);

fprintf('+ + + + Please be patient. Wait a while to getrésailt. + + + +\1);

for nEN = 1:length(SNRYo each SNR(dB)
Eb_NO = 10°(SNR(nEN)/10); % convert Eb/NO from unit db to normal numbers
Es = 2*sigma_a*sigma_&j average power per symbol
Eb = Es/rate;
NO = Eb/Eb_NO;
sigma_n = sqrt(N0/2):% standard deviation of AWGN noise Eb = Es
sigma_m =sqrt(varianypconstant sigma_m”"2 -- yq

L_c_perfect = 4/NO% the perfect value of channel reliability factor

num = sigma_a”’2;

den = sigma_m."2*(2*sigma_a”2/NQ + 1) + signf®;a

L_c =L_c_perfect*num./defip Frenger's result % L_c = L_c_perfect; % converaioesult
a_a = l+sigma_n”2/sigma_a’%; --- yq

nframe = 1;

Length=zeros(1,niteryp ---yq

Lth=zeros(1,niter)% ---yq

Averagelndex=zeros(1,nitef); ---yq

while ErrorFrame(nEN, niter) < Ferlim(nEN)

x = round(rand(1, L_total-m));% info. bits

[temp, alpha] = sort(rand(1,L_total)); % random interleaver mapping

en_output = encoderm( X, g, alpha, punctyfé encoder output (+1/-1)

% Rayleigh Fading Channel (complex numbers)

h = sigma_a*complex(randn(size(en_outpuadn(size(en_output)));
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noise = sigma_n*complex(randn(size(en_ot)jprandn(size(en_output)));

r = h.*en_output + nois&} received signals
% channel estimates
h_estimate = h + sigma_m.*complex(rasi(h)), randn(size(h)));
a_hat = h_estimaté) Adaptive start point ---yq
sigma_m_hat(1:(puncture+2)*L_total) graa_m;% Adaptive start point ---yq
% decision variable after matached filter
z = r.*conj(h_estimate);
%z_real = real(z);
%yk = demultiplex(z_real,alpha,puncture); % denplét to get input for decoder 1 and 2
%rec_s = 0.5*L_c*yk;
z_real = L_c.*real(z);% ------- vq
yk = demultiplex(z_real,alpha,punctuiig);
rec_s = 0.5*yk; % ------- vq
% Initialize extrinsic information
L_e(1:L_total) = zeros(1,L_total);

index=[];% --yq

for iter = L:niter
% Decoder one (turbo 1 from Frenger) -- yq
% deinterleave the extrinsic information for fidgicoder -yzh
L_a(alpha) = L_e% a priori info.
L_all = logmapo(rec_s(1,:), g, L_a, ¥;complete info.

L_e=L_all-2*rec_s(1,1:2:2*L_total}._a; % extrinsic info.

% Decoder two

L_a=L_e(alpha)yo a priori info.

L_all = logmapo(rec_s(2,:), g, L_a, 2; complete info.
L_e=L_all-2*rec_s(2,1:2:2*L_total)._a; % extrinsic info.

x_hat(alpha) = (sign(L_all)+1)/2% Estimate the info. bits
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% caculate the BER at different SNR level %
Error(nEN,iter) = length(find(x_hat(1:total-m) ~= x)) + Error(nEN,iter);

BER(nEN,iter) = Error(nEN,iter)/(nfraffe_total-m));

if length(find(x_hat(1:L_total-m) ~= x)) >% this frame contains at least one bit error
ErrorFrame(nEN,iter) = 1 + Errorf@&nEN,iter) % frame error

end
FER(nEN.,iter) = ErrorFrame(nEN,iterjyarhe;% frame error rate

FrameNum(nEN) = nframé&?? from previous fellow student, not used --- yq

if iter == Fetch_iter%o BELOW -- yq
L_e hat=L_e&% pick up extrinsic info at exact first iteratioryq
mu(nEN,1) = k1;

end

if iter > Fetch_itePo refining channel from (Fetch_iter + 1)
M_c(alpha) = tanh(L_e_hat/2);soft info of codewords, mean value deinterleaveriq
mu(nEN,iter) = k1/(iter*(sigma_afdgma_n"2));%--- yq
sigma=sigma_a*sqrt(1-M_c.*2/a_&)h m.m.s.e.------- vq
index = find ( sigma <sigma_n#) find m.m.s.e. less than previous one ---yq
if puncture > 0% unpuntured ---yq
e_hat = (M_c(index).*r(3*indejf@_a - a_hat(3*index-2))% -- yq
a_hat(3*index-2)= a_hat(3*ind®&%- mu(nEN,iter)*e_hat; % ------- yq
sigma_m_hat(3*index-2)=sigma _catEl-M_c(index)."2/a_a);% ------- yq
else % punctured
e_hat = M_c(index).*r(2*index-a)/a - a_hat(2*index-1)5 info bits error
a_hat(2*index-1) = a_hat(2*indEx+ mu(nEN,iter)*e_hat;% adaptive filter------- vq
sigma_m_hat(2*index-1)=sigma_at&gM_c(index).”2/a_a);
end
den_hat = sigma_m_hat.A2*(2*sigma_a®#\L) + sigma_a”"2;% ------- vq

L_c_hat=L_c_perfectrnum./den_hatj ------- vq
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z_hat = r.*conj(a_haty ------- yq
z_real_hat =L_c_hat.*real(z_hat); % ------- yq
yk_hat = demultiplex(z_real_hat,alphagture);%  ------- yq

rec_s_hat = 0.5*yk_hat; 7 — e

% Decoder one for refined channel (turbo 2 from YagJor direct comparison)
L_a_hat(alpha) = L_e_hat a priori info.
L_all_hat =logmapo(rec_s_hat(1,:).ga_hat, 1);% complete info.
L_e hat=L_all_hat- 2*rec_s_hat(1:2*2_total) - L_a_hat;% extrinsic info.
% Decoder two for refined channel
L_a hat=L_e_hat(alph&)g a priori info.
L_all_hat = logmapo(rec_s_hat(2,:).ga_hat, 2);% complete info.

L_e hat=L_all_hat- 2*rec_s_hat(2;2*2_total) - L_a_hat;% extrinsic info.

x_hat_hat(alpha) = (sign(L_all_hat)21)/
% BER after refining channel for next iteration,yg
Error_hat(nEN,iter) = length(find(x_hhaat(1:L_total-m) ~= x)) + Error_hat(nEN,iter);
BER_hat(nEN,iter) = Error_hat(nEN,itémjrame*(L_total-m));
end% end refining
Length(1,iter) = length(index)f --- yq
Lth(1,iter) = Length(1,iter)+Lth(1,ider
Averagelndex(1,iter) = Lth(1,iter)/nfn@; % ABOVE --- yq

end% iter

% display the results after each frame has beeodeec

fprintf(***** SNR = %5.2f dB ***ixkiiik | gg-MAP  *rxxxx wki\nt SNR(NEN));
%fprintf(‘\n ******** Constant alpha_factor = %5.1f *****<**\n'" alpha_factor);
fprintf(\n **** Constant Variance = %5.1f *****\n)varian);

fprintf(Info. size = %d,,'L_total);

fprintf(code rate 1/%d, 2+puncture);

fprintf( %d frame errors to stop the simulation Kerlim(nEN));

47



fprintf(%d frames transmitted, %d frames in erronframe, ErrorFrame(nEN, niter));

fprintf(\n CurrentindexLength (from iteration %d to itéoat%d):\n,Fetch_iter+1,niter);
for i=1:niter
fprintf(%611.3d ,Length(1,i));

end

fprintf(\n AveragelndexLength (from iteration %d to it@vat%d):\n,Fetch_iter+1,niter);
for i=1:niter
fprintf(%11.1f | Averagelndex(1,i));

end

fprintf(\n K1 and Step Sizes (YuQing) (from iteration %dteration %d):\n'Fetch_iter+1,niter);
for i=1:niter
fprintf(%11.8f | mu(nEN,i));

end

fprintf(\n Bit Error Rate (Frenger) (from iteration 1 teration %d):\n'niter);
for i=1:niter
fprintf(%08.4e ,'BER(NEN,i));

end

fprintf(\n Bit Error Rate (YuQing) (from iteration %d iteration %d):\n' Fetch_iter+1,niter);
for i=1:niter
fprintf(%68.4e ,'BER_hat(nEN,j));

end

fprintf(\n * * \ n\n);

nframe = nframe + 1;

end% while
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FrameNum(nEN) = nframe;

end%nEN

diary off

2. bin_state

functionbin_state = bin_state( int_state, m)
% Copyright Matt C. Valenti
% MPRG lab, Virginia Tech

% for academic use only

% converts an vector of integer into a matrix;ittfie row is the binary form

% of m bits for the i-th integer

for j = 1:length( int_state )% length(int_state)?=max_state? --yzh
fori=m:-1:1
state(j,m-i+1) = fix( int_state(j)/ (27(i-1); % FIX(X) rounds the elements of X to the nearet#ders towards
zero. --yzh
int_state(j) = int_state(j) - state(j,m-i*¥2)(i-1); % remain of mod 2/(i-1), the leftmost bit is mosfrsficant -
yzh
end

end

bin_state = state;

3. demultiplex

functionsubr = demultiplex(r, alpha, puncture);

% Copyright 1998, Yufei Wu
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% MPRG lab, Virginia Tech.

% for academic use only

% At receiver end, serial to paralle demultiplexy&s the code word of each
% encoder

% alpha: interleaver mapping

% puncture = 0: use puncturing to increase rafg2p

% puncture = 1; unpunctured, rate 1/3;

% Frame size, which includes info. bits and tai$ bi

L_total = length(r)/(2+puncture);

% Extract the parity bits for both decoders
if puncture == % unpunctured
fori=1:L_total
x_sys(i) = r(3*(i-1)+1);
forj=1:2

subr(j,2*i) = r(3*(i-1)+1+j)% 1/3 rate, one info.bit, two parity bits -yzh

end
end
else % punctured, 1/2 rate
fori=1:L_total

x_sys(i) = r(2*(i-1)+1);

forj=1:2
subr(j,2*) = 0;
end

if rem(i,2)>0 % even position,one check bit from ENC1, one frodCR alternatively --yzh
subr(1,2*) = r(2*)% odd posisition is systematic bits,puntured pdity are padded to zero -yzh
else
subr(2,2%) = r(2%);

end
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end

end

% Extract the systematic bits for both decoders
for j = 1:L_total
% For decoder one
subr(1,2*(j-1)+1) = x_sys(j); % odd positions is reserved for systematic bitgh-y
% For decoder two: interleave the systematic bits
subr(2,2*(j-1)+1) = x_sys(alpha(j)$ info.bits that are put into DEC2 are interleabéd -yzh

end

4. encode_bit

function[output, state] = encode_bit(g, input, state)
% Copyright 1996 Matthew C. Valenti
% MPRG lab, Virginia Tech

% for academic use only

% This function takes as an input a single biteeehcoded,
% as well as the coeficients of the generator pmiyials and
% the current state vector.

% It returns as output n encoded data bits, wherésthe

% code rate.

% the rate is 1/n

% k is the constraint length

% m is the amount of memory
[n,K] = size(g);

m = k-1;

% determine the next output bit
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fori=1:n
output(i) = g(i,1)*input; % the first bit a_k's contribution to output --yzh
forj=2k
output(i) = xor(output(i),g(i,j)*state(j-1)¥p a_(k-j)'s contribution to output --yzh
% why not use rem(g(i,j)*[input,state]’),j=1:k?yzh
end

end

state = [input, state(1:m-1)Pb6 shift one bit --yzh

5. encoderm

functionen_output = encoderm( x, g, alpha, puncture )
% Copyright Nov. 1998 Yufei Wu
% MPRG lab, Virginia Tech.

% for academic use only

% uses interleaver map 'alpha’

% if puncture = 1, unpunctured, produces a rate@tfut of fixed length
% if puncture = 0, punctured, produces a rate Lifpud

% multiplexer chooses odd check bits from RSC1

% and even check bits from RSC2

% determine the constraint length (K), memory (m)

% and number of information bits plus tail bits.

[n,K] = size(qg);
m=K-1;

L_info = length(x);
L_total = L_info + m;

% generate the codeword corresponding to the 1Sté&8er

52



% end = 1, perfectly terminated,
input = x;

outputl = rsc_encode(g,input,1)% why 1? terminated? --yzh

% make a matrix with first row corresponing to irsiequence
% second row corresponsing to RSC #1's check bits.

% third row corresponsing to RSC #2's check bits.

y(1,:) = outputl(1:2:2*L_total); % y: unpuncture output of encoder; y(1,:) has ra bibre than input bits -yzh

y(2,:) = outputl(2:2:2*L _total);

% interleave input to second encoder
fori=1:L_total
inputl(1,i) = y(1,alpha(i)); %alpha--index of interleaver, --yzh
end
output2 = rsc_encode(g, inputl(1,1:L_total), -PQinput has been interleaved. L_total bits alreade (y(1,:)) so
unterminated --yzh

y(3,:) = output2(2:2:2*L_total);

% paralell to serial multiplex to get output vector
% puncture = 0: rate increase from 1/3 to 1/2;

% puncture = 1; unpunctured, rate = 1/3;

if puncture >0 % unpunctured
fori=1:L_total
forj=1:3

en_output(1,3*(i-1)+j) = y(j,i% put the 3 bits of the same colomn to a sequentigduts -yzh

end
end
else % punctured into rate 1/2
for i=1:L_total

53



en_output(1,n*(i-1)+1) = y(1,i);
if rem(i,2) % output check bits by turns  -yzh
% odd check bits from RSC1
en_output(1,n*) = y(2,i);
else
% even check bits from RSC2
en_output(1,n*) = y(3,i);
end
end
end
% antipodal modulation: +1/-1

en_output = 2 * en_output - ones(size(en_output));

6. int_state

functionint_state = int_state( state )
% Copyright 1996 Matthew C. Valenti
% MPRG lab, Virginia Tech.

% for academic use only

% converts a row vector of m bits into a integexrsi@ 10)

[dummy, m] = size( state );

fori=1.m

vect(i) = 27 (m-i);

end

int_state = state*vect';

7. logmapo

functionL_all = logmapo(rec_s,g,L_a,ind_dec)
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% Copyright Nov 1998, Yufei Wu
% MPRG lab, Virginia Tech.

% for academic use only

% Log_MAP algorithm using straightforward methodctompute branch metrics

% no approximation is used.

% Can be simplified to Max-Log-MAP by using apprmogtion In(e”x+e”y) = max(x,y).
% Input: rec_s: scaled received bits.

% rec s=05*L c*yk=(2*adte*Eb/NO) *yk

% g: code generator for the component RSi& ¢ binary matrix form.

% L_a: a priori info. for the current decode

% scrambled version of extrinsic yoftof the previous decoder.
% ind_dec: index of decoder. Either 1 or 2.

% Encoder 1 is assumed to be termihathile encoder 2 is open.

%

% Output: L_all: log-likelihood ratio of the symisolComplete information.

% Total number of bits: Inftyo. + tail
L_total = length(rec_s)/2;

[n.K] = size(g);

m=K-1;

nstates = 2"\m; % number of states in the trellis

% Set up the trellis

[next_out, next_state, last_out, last_state] dis(g);

Infty = 1e10;

% Initialization of Alpha

Alpha(1,1) = 0;

Alpha(1,2:nstates) = -Infty*ones(1,nstates-4);first row of matrix Alpha

55



% Initialization of Beta
if ind_dec==1
Beta(L_total,1) = 0;
Beta(L_total,2:nstates) = -Infty*ones(1,nstat¢s¥ the last row of matrix Beta --yzh
elseifind_dec==
Beta(L_total,1:nstates) = zeros(1,nstat&s)he last row of matrix Beta --yzh
else
fprintf(ind_dec is limited to 1 and 2!)p'
end
% what's the meaning of Alpha and Beta and garagzh -
% Trace forward, compute Alpha
for k = 2:L_total+1
for state2 = 1:nstates
gamma = -Infty*ones(1,nstates);
gamma(last_state(state2,1)) = (-rec_s(2*ke&)+s(2*k-2)*last_out(state2,2))
-log(1+exp(L_a(k-1)));% why is "-rec_s(2*k-3)?" --yzh
gamma(last_state(state2,2)) = (rec_s(2*k-&)+s(2*k-2)*last_out(state2,4))

+L_a(k-1)-log(1+exp(L_a(k-1))o what's the meaning of "log(1+exp(L_a(k-1))" Hhyz

if (sum(exp(gamma-+Alpha(k-1,:)))<1e-300)
Alpha(k,state2)=-Infty;
else
Alpha(k,state2) = log( sum( exp( gamma-k-1,:) ) ) );
end
end
tempmax(k) = max(Alpha(k,:));
Alpha(k,:) = Alpha(k,:) - tempmax(k);

end

% Trace backward, compute Beta

for k = L_total-1:-1:1
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for statel = 1:nstates
gamma = -Infty*ones(1,nstates);
gamma(next_state(statel,1)) = (-rec_s(2*k+d9+s(2*k+2)*next_out(statel,2))
-log(1+exp(L_a(k+1)));
gamma(next_state(statel,2)) = (rec_s(2*k+X)+s€2*k+2)*next_out(statel,4))
+L_a(k+1)-log(1+exp(L_a(k+1)));
if (sum(exp(gamma+Beta(k+1,:)))<1e-300)
Beta(k,statel)=-Infty;
else
Beta(k,statel) = log(sum(exp(gamma-+Beta(ihl;
end
end
Beta(k,:) = Beta(k,:) - tempmax(k+1);

end

% Compute the soft output, log-likelihood ratiosginbols in the frame
for k = 1:L_total
for state2 = 1:nstates
gamma0 = (-rec_s(2*k-1)+rec_s(2*k)*last_ou(s®,2))...
-log(1+exp(L_a(k)));
gammal = (rec_s(2*k-1)+rec_s(2*k)*last_out{sPad))..
+L_a(k)-log(1+exp(L_a(k)));
tempO(state2) = exp(gamma0 + Alpha(k,lasteéstdte2,1)) + Beta(k,state2));
templ(state2) = exp(gammal + Alpha(k,lastetstdte2,2)) + Beta(k,state2));
end
L_all(k) = log(sum(templ)) - log(sum(temp0));

end

8. rsc_encode

functiony = rsc_encode(g, X, terminated)
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% Copyright Nov. 1998 Yufei Wu
% MPRG lab, Virginia Tech.

% for academic use only

% encodes a block of data x (0/1)with a recursystesnatic
% convolutional code with generator vectors inrg a
% returns the output in y (0/1).
% if terminated>0, the trellis is perfectly termied
% if terminated<0, it is left unterminated,;
% determine the constraint length (K), memory (@md rate (1/n)
% and number of information bits.
[n.K] = size(g);
m=K-1;
if terminated>0
L_info =length(x); % L_info: lenght of information sequence? -yzh
L_total = L_info + m% L_total:m additional bits is used to terminatgzh
else
L_total = length(x);
L_info = L_total - m% see the sequence for untermated in function emooébr reason. length of x is L_total --yzh

end

% initialize the state vector

state = zeros(1,m);

% generate the codeword
fori=1:L_total
if terminated<0 | (terminated>0 & i<=L_info)
d_k=x(1,i); % d_k: information sequence -yzh
elseifterminated>0 & i>L_info
% terminate the trellis

d_k =rem( g(1,2:K)*state’, 2% g(1,2:K): why is g(1,2:K)? not other recursiveypmmial? -yzh
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end

% a_k??feedback polynomial is g(1:)? --yzh

% for terminated>0 & i>L_info, a_k will be zero(hei) -yzh

% recursive encoding?right!  --yzh

a_k =rem( g(1,:)*d_k state]', 2 ); % a_k: the bit to be put into the register -yzh
[output_bits, state] = encode_bit(g, a_k, state)

% since systematic, first output is input bit

output_bits(1,1) = d_k;

y(n*(i-1)+1:n*)) = output_bits;% n output bits for 1 input bit(recursiv encoderyzh

end

9. trellis

function[next_out, next_state, last_out, last_state] Hig(g)
% copyright Nov. 1998 Yufei Wu
% MPRG lab, Virginia Tech

% for academic use only

% set up the trellis given code generator g

% g given in binary matrix form. e.g.g=[11101];

% next_out(i,1:2): trellis next_out (systematit; piarity bit) when input = 0, state = i; next_oy}E -1 or 1
% next_out(i,3:4): trellis next_out (systematit piarity bit) when input = 1, state = i;

% next_state(i,1): next state when input = 0, statenext_state(i,i) = 1,...2"m

% next_state(i,2): next state when input = 1, state

% last_out(i,1:2): trellis last_out (systematic Ipiarity bit) when input = 0, state = i; last_oyj@F -1 or 1
% last_out(i,3:4): trellis last_out (systematit parity bit) when input = 1, state =1;

% last_state(i,1): previous state that comes te stahen info. bit = 0;

% last_state(i,2): previous state that comes te stahen info. bit = 1;

[n,K] = size(g);

m=K-1;
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max_state = 2"\m;

% set up next_out and next_state matrices for s)atte code

for state=1:max_state

state_vector = bin_state( state-1, n¥9;matrix state_vector is of max_state rows and larens --yzh

% when receive a 0

a_k =rem( g(1,:)*[0 state_vector]', 2 );
[out_0, state_0] = encode_bit(g, a_k, state orgct

out_0(1) =0;

% when receive a 1

a_k=rem( g(1,:)*1 state_vector]', 2 );

[out_1, state_1] = encode_bit(g, a_k, state orgct

out_1(1)=1;

next_out(state,:) = 2*out_0 out_1]-1% BPSK? Each row has two possible outputs(accordimgput 1 or 0) --yzh

next_state(state,:) = [(int_state(state_0)+1f) ftate(state_1)+1)]% 2 next state for current state according to input
--yzh

end

% find out which two previous states can come &sent state
last_state = zeros(max_state,2);
for bit=0:1
for state=1:max_state
last_state(next_state(state,bit+1), bit+Btesto row number is the next_state, column is the ifyitut-yzh
last_out(next_state(state, bit+1), bit*2+#®+2) ... % row is the next_state value --yzh
= next_out(state, bit*2+1:bit*2+2);% next_out is the output of current state with inpor 1 -yzh
end

end
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