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Abstract 

 
Continuing improvements in integrated circuit technology over the past few decades 

enables increasingly large and complex Systems-on-Chip. Due to the large number of 

components used, the traditional bus-based interconnect scheme becomes cumbersome 

and restrictive.  Hence, the Network-on-Chip interconnect paradigm becomes appealing 

due to its many advantages such as scalability and superior performance.  Much research 

remains to be done exploring NoC architectures using real world benchmarks. In this 

thesis we describe the design space exploration of two major NoC components; a flexible 

adapter based on the Altera Avalon standard and a parameterizable wormhole router. Two 

well known NoC architectures, torus and ring, were synthesized for Altera FPGAs using 

these NoC components.  The architectures were compared on the basis of packet latency, 

area and throughput, using a benchmark application. Simulation results show that the ring 

architecture gives superior area versus performance tradeoffs for the benchmark used.  
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Chapter 1 

Introduction 

 
As humankind pushes forward through the Information Age, digital technology becomes 

smaller, and more powerful.  It follows without surprise that devices embedded with 

digital technology are becoming more widespread and common, such as cell phones, 

digital cameras, and global positioning systems.  Such embedded computing systems, or 

simply “embedded systems”, are structures of electronic hardware designed to perform 

singular functions repeatedly within tightly constrained design metrics [1]. 

 As Moore‟s Law - Integrated Circuit (IC) designs double in capacity nearly every 

two years - continues to hold true for the past half decade, the design of embedded 

systems becomes increasingly difficult and complex.  To combat this, designers have 

shifted their focus from micro-level design to macro-level system design through the 

employment of hardware reuse.  This shift in focus is known as System-on-Chip (SoC) 

and involves interfacing pre-made hardware modules together to form a coherent system.  

Those hardware blocks are known as Intellectual Property (IP) cores and they vary from 

Central Processing Units (CPU), to Random Access Memory (RAM) modules, to 

counters and to other specific logic designs.  Flexibility in IP cores is embraced by means 

of parameters, which offer increased compatibility and proficiency to otherwise black-

box modules. 

 In SoCs, interconnect structures between IP cores traditionally use a shared bus 

design, a point-to-point design or a hybrid thereof.  Systems level designers have been 

facing constriction with bus-based, computation-centric interconnection systems [2].  
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While bus-based interconnections proved to be sufficient for small embedded systems 

involving few IP cores, the routing of the bus wires, the increasingly difficult custom 

interconnect design process (such as [3]) and the decreasing performance due to the 

increasing amount of cores attached to the bus/buses have shown that a paradigm shift is 

imminent.  Borrowing from macro-network communication architectures, Network-on-

Chip (NoC) provides a communication-centric design that shows promise in providing 

the scalability and performance needed for large SoCs [4]. 

 An NoC consists of four major components – IP cores, the network adapters, 

routing nodes and links.  These are similar to the components in a macro computer 

network, where an IP core is similar to a desktop computer, the network adapters are the 

wireless network and LAN cards, the routing nodes are the switches and routers and the 

links are the physical cables connecting the system together.  Figure 1 demonstrates an 

overview of NoC components in a simple 4x4 mesh topology with one core per routing 

node.  As with macro networks, there are many different architectures, mechanisms, 

parameters and techniques involved in NoCs and hence, many areas remain open for 

research. 

 

Figure 1 - NoC Component Overview 

 Numerous NoCs [5] [6] [7] [8] have been proposed to address the growing 

complexity of SoCs and their communication infrastructure needs.  Due to the nature of 
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NoCs and the systems they are integrated in, designing and simulating test applications is 

troublesome and time consuming, hence the more favourable traffic generator evaluation 

tool is used.  A traffic generator injects artificial distributions of network traffic in order 

to simulate a realistic system [9].  While traffic generators provide an elegant approach 

for NoC comparison, it provides a ham-fisted investigation which does not address 

specific applications and hence misses out on important optimizations due to unique or 

“bursty” traffic patterns (such as in [10]). 

 Furthermore, an assortment of NoC parameters, such as topology and channel 

width, requires additional exploration.  The massive design space of NoCs means that 

even a simple design of an NoC component is a valuable research contribution since it 

expands on existing understandings and provides reinforcement to existing theories. 

 Existing IP cores utilize standard socket interfaces such as Wishbone [11], Avalon 

[12], AMBA [13] and CoreConnect [13], so conforming NoC protocols to these pre-

existing bus protocols presents a practical challenge.  Thus, the feasibility of instantiating 

NoCs in existing SoCs and their supporting Integrated Development Environments (IDE) 

holds as a valuable research topic since it ties theory with practicality. 

 The requirement for reducing time-to-market for digital designs has quickly led to 

the creation of Field Programmable Gate Arrays (FPGA).  An FPGA is an integrated 

circuit containing pre-designed resources which can be programmed and configured to 

act like the desired digital hardware description.  This provides a means of a quick 

prototyping medium for IC designs due to the flexibility of the programmable 

components, the liberty of manufacturing problems and the fast design cycles.  These 

traits make FPGAs an irreplaceable platform for research purposes. 

 The task of this thesis is to explore the implementation of a practical NoC.  It 

follows that discrete components need to be created and investigated in order to design an 

NoC, which includes a network adapter, router and supporting modules.  This leads to the 

study of designing an NoC architecture, the automation of realizing NoC modules with 

C++ programs, the effects of different NoC parameters on high level NoC and FPGA 

evaluation metrics and the challenges and issues of using real world SoC software. 
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1.1  Thesis Objectives 

The end goal of this research is to explore the feasibility, implementation, design space 

exploration and evaluation of a practical NoC, targeting FPGAs.  In order to achieve this 

goal, discrete NoC components need to be designed and made flexible for use in an even 

further parameterizable NoC system.  Thus, the effects on higher level evaluation metrics 

can be studied against an assortment of NoC parameters.  There are several major 

objectives: 

1. Design and evaluate a network adapter to interface a standard socket with the 

NoC protocol, while providing easy and powerful flexibility through the use of 

VHDL generics. 

2. Design and evaluate a worm-hole router that provides the parameters needed in 

order to be instantiated within a wide range of NoC architectures. 

3. Design the required support modules needed for a functional NoC system. 

4. Automate the construction of an NoC architecture using the above modules with a 

C++ program based on user input. 

5. Create a series of NoCs with different topologies and channel widths for 

evaluation. 

6. Instantiate the NoC architectures within a realistic benchmark SoC using existing 

design and simulation software. 

7. Utilize high level evaluation metrics to obtain results in an automatic fashion and 

without adding additional resources or performance degradation. 

8. Synthesize the NoCs targeting an FPGA for area results. 

9. Synthesize individual NoC components with varying parameters targeting an 

FPGA for area, power and latency results. 

After the NoC protocol was established in the NoC adapter, it was designed to address 

the initial goal of interfacing with a standard socket.  Wishbone [11] was chosen due to 

its open source nature and was later adapted for Avalon [12] interface for use with 

Altera‟s SoPC Builder [14] design software.  Using VHDL generics, the wormhole router 

was designed in order to be flexible enough to fit a designer‟s needs merely by specifying 

generic maps.  FIFOs and address-to-destination modules were created in order to fulfill 
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goal number three to create a functional NoC component library.  Goal four and five were 

addressed by using C++ and VHDL component maps to create full NoCs using user 

input.   The sixth goal was validated by using Altera‟s Quartus II [15], SOPC Builder 

[14], Nios II IDE [16] and Mentor Graphic‟s Modelsim [17] to implement and simulate 

the NoC architectures.  Using VHDL file I/O functions and Modelsim variable watching, 

throughput and average packet latency were measured with the aid of a C++ parser 

program in order to meet goal seven‟s requirements.  For goal eight, Altera Quartus II 

[15] was used to synthesize the eight NoC variants for resource usage measurements.  

Finally, goal nine was achieved by using Altera Quartus II‟s synthesis, fitting, timing and 

power analyzer tools with the variations of individual NoC components. 

1.2  Thesis Organization 

This thesis aims to explore NoC prototyping on FPGAs through component design, 

implementation and parameter evaluation.  It begins with background and related work 

regarding FPGAs and NoCs, granting the reader the needed technological understandings 

for the topics contained in this thesis.  Chapter 3 continues on with in-depth descriptions 

of the adapter and router discrete NoC components.  Chapter 4 covers the system 

benchmark and supporting topics required for high level NoC evaluation.  In Chapter 5, 

the process of the design of the NoC is detailed, as well as the NoC Generator program.  

Chapter 6 explains the evaluations and results of the NoCs and discrete components.  

Chapter 7 concludes the thesis and explains possible future work. 
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Chapter 2 

Background and Previous Work 

 
This chapter covers a detailed overview of Network-on-Chip research beginning with its 

relation to the computer network OSI model.  It then flows through each of the four 

related layers, beginning at the top-most layer, describing the aspects of the NoC 

paradigm.  This is followed by the standard socket section, which goes in depth about the 

Avalon [12] and Wishbone [11] interfaces.  Following this, FPGA technology is covered, 

detailing the benefits and some explanations about the technology.  The CAD tools used 

in this thesis are briefed and the chapter concludes with a subsection describing related 

research. 

 

2.1  Network-on-Chip Overview 

The Network-on-Chip (NoC) paradigm is an architecture inspired by macro computer 

networks, where data communication is enabled through the use of communication-

centric hardware and protocols.  [18] shows an excellent example of an NoC overview in 

Figure 2, where the switch nodes are responsible for routing data between the IP cores, 

the links are responsible for connecting the nodes, the network interfaces decouple the 

cores from the NoC and the IP cores carry out higher level functions. 
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Figure 2 - NoC Example System 

It follows that an NoC is similarly structured after the layered Open Systems Interconnect 

(OSI) model of macro networks, but due to the limited scope in which on-chip 

communication encompasses, some layers can be compressed [19].  A 4-layer stack can 

be utilized, based on a compressed OSI model. 

 The Application Layer is formed from the Application, Presentation and Session 

layers of the OSI model, which is the top-most layer.  It consists of Intellectual Property 

(IP) cores and the communication between them. The Transaction Layer consists of the 

Transport and Network layers of the OSI models.  This layer consists of the network 

adapters, which link the IP cores and the NoC through (de)packetization, error handling 

and end-to-end connection. The Data Link Layer consists of the inner workings of the 

routers themselves and is responsible for the flow of traffic between two routers. The 

Physical Layer is the actual link between the switches - the size of the links, as well as 

the handshaking protocol between them, lie within this layer‟s responsibilities. [20] 

illustrates these layers and how they are interconnected.  A more practical structure for 

NoC architecture explanation uses four categories: System, adapter, network and link.  

[4] 
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Figure 3 – NoC OSI Layers 

2.1.1  Application Layer - System 

The Application layer covers the IP cores themselves, including communication between 

them.  This thesis uses many IP cores, most of which are common and straightforward to 

a computer engineer, but the CPU itself is worthy of attention.  Figure 4 contains the 

components used in this thesis. 

 

Figure 4 - Components Used In NoC System 

The Nios II is a general purpose RISC soft-core configurable CPU, provided by Altera 

Corporation in Quartus II [15] and SOPC [14] Builder software[21].  It can have features 

added and removed in order to optimize resource usage and meet performance 

requirements.  The Nios II [21] CPU interfaces with other cores via the Avalon [12] 

system interconnect fabric.  There are three basic versions of the Nios II: Nios II/e, Nios 
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II/s and Nios II/f, standing for Economy, Standard and Fast, respectively.  The Economy 

is designed for the least area usage, while Fast provides the most features and 

performance.  Standard provides a reasonable compromise between the two. 

 While the exact topology of the NoC does not lie within the Application layer, the 

mapping of the IP cores within the NoC does and is known as clustering.  Clustering, or 

mapping, is when the NoC designer decides where different IP cores are embedded in the 

network in order to optimize certain metrics [22].  Methodologies for regular topologies 

to optimize energy usage and performance of IP mapping [23][24] have been proposed 

while irregular topologies is still an open area for research. 

 The IP cores are further divided by their homogeneity and granularity.  

Traditional parallel computers have course-grained and homogeneous cores, while NoCs 

are more flexible [4].  An MPSoC, using the Nios II CPU, was used to form 

homogeneous processing clusters to perform a JPEG encoding benchmark using a 

packet-switched NoC in [25]. 

2.1.2  Transaction Layer – Adapter 

At this layer, the cores are interfaced with the NoC through a Network Adapter (NA).  

The NA encapsulates the messages from the cores into packets or streams usable by the 

NoC, effectively decoupling the cores from the network [4].  Through the use of standard 

socket protocols, such as OCP [26], Wishbone [27], Avalon [28] and VCI [29], the 

reusability of an adapter increases.  This comes with a price, where conforming to a 

socket adds additional resources and latency.  In a packet-switched NoC, the packets are 

delimitated into three sections: The packet, the flit and the phit.  A message is the data 

generated by the core, which is encapsulated by the packet, which contains additional 

information such as source and destination addresses, tail information and so on.  A 

packet is subdivided into flits, which is a basic datagram.  The phit is the physical unit 

that can be transmitted, which is commonly the same as the flit. 
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Figure 5 - Network Adapter [4] 

2.1.3  Data Link Layer – Network 

The Data Link layer, or network, it the heart of the NoC since it is responsible for 

delivering the messages to their destination.  Since there are so many different designs for 

this layer, it is further subdivided into sections – Topology, Protocol, Flow Control and 

Quality of Service (QoS). 

2.1.3.1  Topology 

Topology concerns the logical and physical layout of the network and is divided into 

regular and irregular topologies.  While irregular topologies are generally superior, they 

are difficult to design and lack flexibility [30].  Regular topologies offer simpler physical 

mapping onto ASICs as well as simpler routing schemes and predictable power and area 

scaling.  Typical regular topologies include mesh, torus, ring, star and binary tree.  Mesh 

and torus are the most common topologies used in NoC research [31].  The main 

components which make up an NoC is the topology and protocol. 

2.1.3.2  Protocol 

The protocol of an NoC deals with the strategy of how data moves through the network.  

It is further broken down into three categories – switching, routing and connection 

mechanism. 

 Switching involves the methodology of data transportation while routing is the 

intelligence behind it.  Circuit switching is akin to bus-based systems, where a path 

between cores is set up and data flows between them asynchronously.  Packet switching 
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involves encapsulating messages within a datagram, which then pushes through the NoC 

by means of buffers.  The key trade-off between the two is that circuit-switched 

techniques have increased bandwidth at the expense of channel set-up time, while packet-

switched techniques allow reactive performance.  It has been shown in [32] that packet-

switched NoCs perform better when the amount of active links is below 40%. 

 Routing involves the specific path that the data takes through the NoC and is a 

key component in reducing congestion in the network as well as affecting average latency 

and power.  Routing strategies are either deterministic or adaptive.  A deterministic 

strategy‟s routing path is set according to the source and destination alone, where an 

adaptive strategy adjusts the path mid-traversal according to other factors, such as 

congestion and priority.  A minimal routing scheme always utilizes the shortest path 

possible between cores, while a non-minimal scheme does not.  The control mechanism 

for routing is either centralized or not; a bus-based system has a centralized arbiter, while 

a router can have routing decisions made locally inside each node. 

 The connection mechanism concerns the coordination of connection paths 

between cores.  A connection-oriented mechanism creates the path between cores before 

transmission, while a connection-less mechanism performs pathing on a per-hop basis.  A 

circuit-switching technique is always connection-oriented, while a packet-switched 

technique can be either. 

2.1.3.3  Flow Control 

The flow control defines the mechanisms of how packets flow through the NoC routes, 

which in turn encompasses local and global issues [33]. 

 One concept of flow control is the Virtual Channel (VC).  The VC involves 

sharing a physical link between routers by means of Time Division Multiplexing (TDM), 

which, at the expense of additional logic, reduces congestion, improves wire utilization, 

improves performance and reduces deadlocking.  Deadlocking is a situation when 

network resources become indefinitely frozen waiting for successive interdependent 

resources to free.  Figure 6 illustrates an example of deadlock.  Router 1 needs to send to 

router 4‟s local port, router 2 needs to send to router 3‟s local port and so on, but router 

1‟s east port is waiting for router 2‟s south port, whom is waiting for router 4‟s west port, 

whom is waiting for router 3‟s north port, whom is waiting for router 1‟s east port.  
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Virtual channels can break the loop, as can proper routing and placement to avoid these 

situations [4]. 

 

 The forwarding strategy involves the methodology behind packet storage and 

flow within and between nodes for packet-switching techniques.  The Store and Forward 

(S&F) strategy buffers the entire packet within a node and routes the whole packet 

through the network.  While this offers a simple design, the routers have large buffers 

which consume a lot of area.  Wormhole routing involves routing flits instead of packets.  

Each router contains one flit so the packet spans multiple nodes.  This allows for reduced 

buffer space but it causes congestion issues as the worm spans multiple routers.  The 

Virtual-Cut Through (VCT) strategy is a mix between worm-hole and store-and-forward 

strategies. Before the first flit is sent, look-ahead mechanisms guarantee an open path 

before creating a worm; if the path is blocked, then the packet is buffered, similar to 

store-and-forward. 

2.1.3.4  Quality of Service 

Quality of Service (QoS) is the set of priorities and guarantees regarding specific 

performance metrics provided to the cores by the network.  The services could be latency, 

power, throughput, jitter and so on.  There are two identities of QoS – Best Effort (BE) 

and Guaranteed Service (GS).  Best Effort attempts to improve performance and resource 

use at the cost of reduced predictability of traffic.  Guaranteed Service QoS is inherently 

connection-oriented and provides the maximum predictability for traffic. 

1 

2 

3 

4 

Figure 6 - Example of Deadlock 
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2.1.4  Physical Layer – Link 

Links are the physical or virtual channels between nodes in an NoC.  While research 

regarding link design is more relevant to ASIC implemented NoCs, there are still some 

metrics regarding links on FPGAs.  Handshaking protocol and bit width can reduce 

FPGA resource usage as well as power consumption.  Most of the issues regarding 

physical wire problems, such as crosstalk, swing, noise and so on, are generally not issues 

on FPGAs. 

2.2  Standard Sockets 

SoC core reusability is increased by the use of standard sockets.  The interfaces used in 

this thesis include Silicore/Opencore.org‟s Wishbone and Altera‟s Avalon. 

2.2.1  Wishbone 

Wishbone is an open-source synchronous SoC interconnection architecture, intended to 

be a general purpose interface between IP core modules.  A handshaking protocol for 

transfers allows variable transfer speeds. 

2.2.1.1  Signals 

Wishbone has a variety of signals, used to provide flexibility and compatibility for 

attached IP cores.  The signals common to both master and slave devices are: 

CLK_I – Clock input.  All Wishbone output signals are registered on the rising clock 

edge. 

DAT_I – Input data array, with a maximum size of 64 bits. 

DAT_O – Output data array, with a maximum size of 64 bits. 

RST_I – Synchronous reset signal 

TGD_I – Input data tag array, containing information regarding the DAT_I signal.  The 

data tag contains user defined information. 

TGD_O – Output data tag array, associated with the DAT_O signal. 

Master signals include: 
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ACK_I – Acknowledge signal used for the handshaking protocol, which indicates the 

termination of a bus cycle. 

ADR_O – Address output array 

CYC_O – Cycle output signal, indicating a valid bus cycle when asserted.  For burst and 

block cycles, the CYC_O signal is held high for multiple transfers until the final cycle. 

ERR_I – Error input signal, used as an alternative to ACK_I to indicate a failed transfer.  

The exact functionality of this signal depends on the IP core. 

LOCK_O – Lock output signal, used to ensure a transfer is uninterruptable.  The exact 

functionality of this signal depends on the IP core. 

RTY_I – Retry input signal, used as an alternative to ACK_I.  The exact functionality of 

RTY_I depends on the IP core. 

SEL_O – Select output array, used for fine control over data granularity.  The size of 

SEL_O depends on the data width and granularity.  For example, 8 bits are used for a 64 

bit data bus with byte granularity. 

STB_O – Strobe output signal, used to indicate valid data transfer cycles.  Unlike 

CYC_O, STB_O is deasserted after a transfer. 

TGA_O – Address tag output signal, used to contain tag information associated with the 

ADR_O signal.  For burst transfers, the TGA_O tag contains Cycle Tag Identifier (CTI), 

and Burst Type Extension (BTE) tags regarding burst specifics. 

TGC_O – Cycle tag output signal, used to contain tag information regarding a bus cycle.  

It can be used to distinguish between a single, block or RMW cycle. 

WE_O – Write enable output signal, used to indicate a write transfer. 

Slave signals receive the exact same master signals, but in an opposite direction.  For 

example, CYC_I receives the cycle output signal, whereas ACK_I sends an acknowledge 

response from the slave to the master‟s ACK_O signal.  The types of Wishbone bus 

cycles are divided into three sections – Single, block and burst. 
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 Single transfers use a handshaking protocol shown in Figure 7.  The master core 

initiates a transfer with the strobe signal, where the slave responds with ACK, ERR or 

RTY.  Strobe is held high until a response is received, where the stobe signal is then de-

asserted.  A cycle termination signal (ACK, RTY or ERR) must be asserted according to 

the logical AND of STB and CYC. 

 

Figure 7 - Single Transfer Handshaking Protocol for Wishbone 

A more detailed waveform is shown in Figure 8, where a sample single read transfer is 

shown.  CYC and STB are asserted to indicate a read request, where the address, selection 

and associated tags are also applied.  The slave responds with an acknowledge signal at 

clock edge (1), as well as the data and associated tags.   

 

Figure 8 - Single Read Transfer for Wishbone 
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A single write request is very similar, shown in Figure 9, where WE_O is asserted, data is 

provided by the master on DAT_O and the slave terminates the transfer with an 

acknowledge at edge (1). 

 

Figure 9 - Single Write Request for Wishbone 

These two requests can be performed in a Read-Modify-Write (RMW) request, shown in 

Figure 10.  The CYC signal is held high for the duration of the transfer, while the separate 

strobe signals perform the actual individual transfers. 
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Figure 10 - Wishbone RMW 

The block transfers operate slightly differently, where the acknowledge signal may be 

held high for a number of cycles for multiple transfers for increased bandwidth and 

reduced delay.  A block read request is shown in 

 

Figure 11.  Note that CYC is asserted for the entire duration of the transfer. 
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Figure 11 - Block Read Request for Wishbone 

Burst transfers address the issue of the additional delays involved when cycle termination 

signals, in order to reduce wire routing delay, become synchronous.  Additional tag 

signals are used in order to let the slave know of predictable transfers in advance.  The 

Address Tag contains two additional identifiers, used to specify burst characteristics: 

Cycle Tag Identifier (CTI) and Burst Type Extension (BTE).  CTI is 3 bits, and BTE is 2 

bits.  They are shown in Table 1 and Table 2. 

CTI(2:0) Description 

000 Classic cycle 

001 Constant address burst cycle 

010 Incrementing address burst cycle 

011-110 Unused 

111 End-of-Burst 

Table 1 - Cycle Type Identifier 

BTE(1:0) Description 

00 Linear burst 
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01 4-beat wrap burst 

10 8-beat wrap burst 

11 16-beat wrap burst 

Table 2 - Burst Type Extension 

 

The Classic Cycle is not a burst transfer, where no information about future master cycles 

is given.  End-of-Burst is used to indicate that the current cycle is the last cycle in the 

burst.  Constant address cycle causes a continual access to the same address, until End-of-

Burst is given.  Lastly, Incrementing address burst uses the Burst Type Extension tag to 

further define the address behavior.  Consecutive addresses, based on BTE are applied.  

Linear burst simply adds one to the address per cycle, while the beat wrap bursts are 

modulo the wrap size.  Figure 12 is an example of a incrementing address burst transfer. 

 

Figure 12 - Incrementing Bursts for Wishbone 

2.2.2  Avalon Interface 

Altera‟s Avalon interface is a flexible interconnection architecture aimed at SoCs on 

FPGAs.  While Avalon has six different types of interface – Memory Mapped, 
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Streaming, Tristate, Clock, Interrupt and Conduit – the Memory Mapped interface will be 

the main focus due to the nature of the research.  The other types will be briefly 

explained. 

2.2.2.1  Avalon-MM 

The slave interface uses the following signals.  Note that not all of them are required. 

Read – Read is asserted to indicate a read transfer, where readdata is required. 

Write – Write is asserted to indicate a write transfer, where writedata is required. 

Address – Contains the address used for read and write requests, and can be up to 32 bits. 

Readdata – Contains the data for a read response. 

Writedata – Contains the data for a write request. 

Byteenable – Used for fine control over data granularity.  Selects a specific byte lane for 

transfer, and has the available bit widths of 1, 2, 4, 8, 16, 32, 64 and 128. 

Begintransfer – Asserted for the first cycle of each transfer, regardless of waitrequest. 

Waitrequest – Asserted by the slave to indicate that it is unable to respond to a request. 

Readdatavalid – Asserted when data is supplied in response to a read request. 

Burstcount – Indicates the number of transfers that a burst contains, with a maximum size 

of 32 bits. 

Beginbursttransfer – Asserted on the first burst cycle to indicate the start of a burst 

transfer. 

Figure 13 demonstrates examples of slave read and write transfers using Avalon-MM. 
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Figure 13 - Example Avalon-MM Transfer 

2.2.2.2  Avalon-ST 

Avalon Streaming (Avalon-ST) interfaces are used for driving unidirectional and high 

bandwidth data, where applications include DSP, packets and multiplexed streams.  

Connected components act as either a source or a sink, with data flowing from the source 

into the sink. 

2.2.2.3  Avalon-MM Tristate 

Avalon Memory-Mapped tristate interfaces allow off-chip components to be used.  It is 

relatively similar to Avalon-MM, but with the inclusion of Chip Select (CS) and Output 

Enable (OE) signals, as well as a bidirectional data line.  When chip select is present, all 

signals are ignored unless CS is asserted.  When OE is deasserted, the slave will not drive 

its data lines. 

2.2.2.4  Clock 

Clock provides synchronization for the Avalon interface and includes a synchronous reset 

signal.  All internal logic returns to initial states when reset is asserted. 
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2.2.2.5  Interrupt 

Each applicable slave device has an interrupt output signal (IRQ), which is asserted when 

service is needed.  The master device receives up to 32 interrupt signals and, depending 

on the IRQ scheme, services each interrupt according to a priority table. 

2.2.2.6  Conduit 

The Conduit interface is used with Altera‟s SOPC Builder software and is used for 

exporting signals for connection with external FPGA pins. 

2.3 FPGA Technology 

Field Programmable Gate Arrays (FPGA) are special integrated circuits, which provide 

pre-fabricated components and switches.  They can be used to instantiate user-defined 

logic with Hardware Description Lanuages (HDL), such as VHDL or Verilog.  Since 

FPGAs have grown alongside traditional Application Specific Integrated Circuit (ASIC) 

manufacturing processes, they contain millions of gate elements and provide an excellent 

prototype medium for integrated circuit designs.  A typical FPGA contains Logic 

Elements (LE), in the form of look-up tables, which are used to implement custom logic.  

Newer FPGAs contain more advanced components, such as DSPs, block memories, 

multipliers, registers and even CPUs.  In this thesis, an Altera Stratix II EP2S60F672C3 

FPGA is targeted for synthesis analysis in order to provide component area usage as well 

as power and clock frequency. 

2.4  CAD Tools for NoC Implementation on FPGAs 

2.4.1  Altera Quartus II 

Altera Corporation‟s Quartus II software is a design environment targeting Altera 

FPGAs.  It provides solutions for all phases of FPGA design flow, shown in Figure 14.  

The Design Entry consists of writing the HDL files and setting their compilation 

hierarchy.  Synthesis involves compiling and analyzing the design files in order to find 

the required FPGA resources and their connectivity to realize the design, and Place and 

Route fits the design onto the FPGA hardware using the available resources.  Timing 

Analysis analyzes the performance of the logic and attempts to meet timing requirements.  
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Simulation is a verification tool, and the FPGA hardware implementation is the final 

Programming and Configuration stage.  Version 9.0 running in CentOS 4.7 was used in 

this research, where Synthesis was only used for the NoC, and up to Timing Analysis is 

used for individual components. 

 

Figure 14 - Quartus II Design Flow 

2.4.2  Altera SOPC Builder 

System-On-a-Programmable-Chip (SOPC) Builder is included with the Quartus II 

software and allows for design of embedded systems using the softcore Nios II CPU.  

Devices use the Avalon interconnection fabric and the NoC component is imported and 

customized with VHDL generics. 

2.4.3  Nios II Embedded Design Suite (EDS) 

The Nios II EDS provides a design environment for configuring, programming, 

debugging and simulating the Nios II CPUs.  The Eclipse IDE in the Nios II EDS 

provides a C/C++ compiler, linker and assembler for Nios II programs.  Other such 

features include in-circuit debugging and Flash programming. 
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2.4.4  Mentor Graphics ModelSim 

Mentor Graphic‟s ModelSim [17] is a simulation engine for VHDL and Verilog designs.  

It includes code coverage, assertion tests, breakpoints and in-depth signal and variable 

simulation that are otherwise not provided by Quartus II‟s [14] simulation engine.  This 

tool was used to simulate and evaluate the NoC architectures. 

2.5  Related Work 

In this work, many different areas are touched on.  We start with the Avalon-Wishbone 

glue logic and look at related work in that area.  Next, we look at related work in the area 

of NoC adapters, followed by related work that builds an NoC with the Nios II CPU and 

supporting software.  Other areas of related work include similar routers synthesized for 

FPGAs and their evaluation methodologies.  Nevertheless, this paper demonstrates the 

similarity between the two standard sockets. 

 Regarding the glue logic between the Wishbone and Avalon interface sockets, a 

Wishbone compatible I2C controller was ported to the Avalon bus [34].  The glue logic 

was verified with simulation results.  While the logic is correct for single transfers, there 

is much missing in the way of variable latency support and high speed Avalon block 

transfers.  The readdatavalid signal is not supported in this paper and block transfers will 

not be queued and hence, forced into a wait state.  Lastly, there is no mention of burst 

transfer glue logic. 

 A packet-switched wormhole router was implemented [27], utilizing Virtex-4 

SRL16 components for FIFO implementation, which increases efficiency but decreases 

portability and design reuse.  A Wishbone adapter was included, which supports burst 

transfers.  Since the routers are input queued, deadlock becomes an issue and was solved 

by adding a separate read request buffer into the Wishbone adapters, which halts any 

incoming request when the buffer fills.  They tested the design with 16 switches, 

memories and transaction generators.  The individual router was synthesized for Xilinx 

FPGAs with four and five ports and was compared to related work. 

 In [35], a 4x4 packet-switched mesh NoC was implemented with SOPC Builder 

using Nios II CPUs.  Multiple Stratix II FPGA boards running at 50MHz were used in 

order to fit the entire design, which results in an on-board throughput of 650Mbps.  Inter-
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board communication operates at 50Mbps.  A software driver is used to access NoC 

functions within the Nios II CPUs.  The system was verified by probing certain NoC 

components as a message traverses the network and returns to the sender, and thus was 

found that the maximum communication rate was 43.4 kPackets/s.  This large difference 

between the theoretical bandwidth of 640Mbps is due to the large amount of time 

required for the packet to traverse the software routines. 

 In [36], a packet-switched wormhole router with input queuing was designed and 

analyzed.  The router has four regional ports and one local port, and uses X-Y routing.  A 

3x3 mesh NoC architecture was implemented with traffic generators attached.  The buffer 

size and traffic patterns were analyzed and explored, resulting in overall increased 

performance as buffer size increased.  A 2x2 NoC was synthesized targeting a Xilinx 

XC2V1000 FPGA. 

 In [37], evaluation schemes for NoCs are developed in order to compare 

performance and characteristics of NoCs.  Throughput is defined as the total number flits 

traversed per time per number of IP cores.  Transport latency is defined as the average 

number of cycles required for a packet to traverse the network.  These evaluation 

methodologies were analyzed using a wormhole router simulator contrasted with various 

network topologies.  The topologies used were SPIN, OCTO, CLICHÉ, Folded torus and 

BFT.  They also compared traffic generator injection loads with throughput and average 

transport latency.  They conclude by stating that this is an important basis for NoC 

evaluation methodology. 

 Æthereal [7] is a wormhole-routing NoC developed at Philips Research 

Laboratories which provides two types of services – guaranteed and best effort, as a 

result of combing a GS and a BE router.  A six port router was implemented for ASIC 

technology using 0.175 mm² and a four port network interface was implemented for the 

same technology, using 0.172 mm².  They were both implemented on 0.13 µm 

technology running at 500 MHz. 

 In [38], a store-and-forward packet-switched router is designed targeting FPGAs.  

X-Y routing is used and the router is designed in order to reduce FPGA resource usage.  

A single five port router was found to use 352 Xilinx Virtex-II Pro FPGA slices (2.57% 

of a XC2VP30).  A 3x3 mesh network is implemented, using 28% of the XC2VP30 
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FPGA.  To conclude, timing results required to transmit a packet were shown for various 

flit sizes and mesh sizes. 

2.6  Summary 

This chapter has educated the reader on NoCs, socket standards, FPGAs and supporting 

software.  It began with an overview of NoCs, which was further broken down into four 

sections based on the OSI model.  Each section covered the details and design techniques 

involved in NoCs.  The Wishbone and Avalon socket standards were discussed next, 

educating the reader on the operation of such standards.  A brief description of FPGAs is 

covered, and is concluded with discussions on the software tools used in this work.    

Related work is discussed.  Chapter 3 begins to detail the design and structure of the 

discrete NoC components developed in this thesis.  
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Chapter 3 

NoC Adapter and Router Design 

 
This chapter discusses the design and structure of the discrete NoC components 

developed in this thesis.  It begins with the NoC adapter, where the NoC protocol is 

established as well as the supporting modules including awb and adr2dest.  The chapter 

concludes with a discussion on the wormhole router‟s design and details. 

3.1  Adapter Overview 

he PWR adapter is responsible for sending and receiving packets from the NoC 

and converting them into Wishbone [11] or Avalon [12] signals.  It essentially 

makes the IP cores compatible with the NoC. 

 The PWR project began being Wishbone-compliant but switched to Avalon to 

make use of Altera‟s CAD tools.  Thus, the Wishbone aspects of the adapter remain 

largely untested and are an open area for research. 

 The adapter is divided into two types of adapters – Master and Slave.  As 

illustrated in Figure 15, the Master adapter is responsible for receiving requests from a 

master component (such as a CPU) and applying the response signals.  The Slave adapter 

is responsible for applying the master requests and receiving the slave responses. 

T 
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 The adapter contains a variety of VHDL generics, offering a degree of design 

flexibility.  The adapter is designed to be compatible with a wide range of signal widths 

and to conform to Avalon and Wishbone standards.  Avalon interface compatibility is 

obtained through the use of a glue logic module.  The logic utilization of the glue logic is 

very small, and hence negligible.  These parameters are divided up into three sections: 

Interface, NoC and internal.  Interface parameters provide flexibility with the 

Wishbone/Avalon interfacing.  NoC parameters allow the adapter to operate in a variety 

of different NoC architectures.  Internal parameters concern the internal operation of the 

adapter. 

 Common for both adapters, data width (WB_width), address width (adr_width), 

address tag width (tga_width), cycle tag width (tgc_width), data tag width (tgd_width) 

and selection width (sel_width) are VHDL generics used to specify Wishbone interface 

parameters.  Specific to the slave adapter, cti_lsb and bte_lsb both indicate cycle type 

identifier and burst type extension least significant bit locations, respectively. 

 NoC parameters are flit_size, fifo_depth, src_width and dest_width.  Flit_size is 

the size of a flit, in bits.  Fifo_depth is the number of registers in the adapter‟s FIFOs, 

which allows the adapter to queue up flits if the NoC is congested.  Sr_c and dest_width 

are the bit widths of the source and destination NoC addresses, respectively.  They should 

both be equal, where the separate parameters are present for future optimization allowing 

lower bits for source addresses. 

Master 

Core 

Master  

Adapter 

NoC 

Slave 

Core 

Slave 

Adapt

er 

Figure 15 - Adapter Overview 
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 The internal parameters are fast_burst, burst_depth, burst_tag_en, no_ack, 

sdram_delay and Avalon_bursts.  Fast_burst indicates that burst and block transfers are 

to be queued up using a burst buffer, thus opening request types 4 and 5.  Burst_depth is 

the size of the burst buffer – this parameter is useful if there is a small flit size but large 

packet size (due to large data width, for example) since more requests can be queued and 

hence the CPU does not get stalled.  Burst_tag_en is used to enable burst tags for 

Wishbone transfers – 1 to enable, 0 to disable.  No_ack is used when there is no 

acknowledge signal for reads and writes – For this thesis, it is set to 1.  Sdram_delay is 

used with single transfers and delays forming a packet by one cycle – this was needed for 

interfacing with SDRAM in single transfer mode.  Avalon_bursts is used if Avalon block 

transfers are used – this distinction is required since Wishbone block transfers are 

different from Avalon‟s as explained in chapter 2. 

 Packets are made up of flits and the minimum packet size is three bits.  The first 

three bits in a packet is always the request type, while the rest of the packet depends on 

the request type.  The adapter analyses the request (or response) of the IP core and 

chooses the appropriate request type.  Table 3 indicates all the request types and their 

size.  In the case of this research, only request types 3, 4 and 7 are used due to the 

exclusive use of Avalon block transfers. 

 

 

 The complete adapter is formed of five modules – adr2dest, awb, fifo, 

master/slave sampler and master/slave top.  Adr2dest is responsible for converting the 

address signals into NoC destinations.  Awb is the Avalon-Wishbone glue logic.  FIFO is 

the first-in, first-out register bank used to queue incoming and outgoing flits for the 

adapter.  The sampler is the main logic of the adapter, responsible for packetizing and de-

tgd Address tgc tga C L S W Source Dest 001/011 

Data A E R Dest 101/11

1 
Address L S W Dest 010/100 Data tgd tgc tga sel C Source 

A E R Dest 110/000 Source 

Single/burst read request from master 

Single/burst read response from slave 

Single/burst write request from master 

Single/burst write response from slave 

Table 3 - Request Type Design 
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packetizing the interface requests and responses.  Finally, the „top‟ module is responsible 

for the hand-shaking protocol between the sampler and FIFOs, and the sampler and NoC.  

Each component is described below. 

 

 Adr2dest (address to destination) is a simple look-up table for destinations.  For a 

specific range of addresses, a destination is output.  There are two unique VHDL generics 

in this module: routing_table and address_ranges.  Routing table is an array of integers 

and contains the destinations that are to be outputted.  There are 33 elements in this array 

and can be expanded by editing the quick_convert package.  The quick_convert package 

contains functions and VHDL types used in the source code.  Address_ranges contains 

the lower and upper addresses in order to output the destination.  For address_ranges 0 

and 1, routing_table 0 is outputted.  For 2 and 3, routing_table 1 is outputted and so on.  

Figure 17 demonstrates this functionality. 

Master/Slavetop 

Master/Slave 

sampler 

Input 

FIFO 

Output 

FIFO 

Adr2dest 
Awb 

IP Core 

NoC 

Figure 16 - Adapter Design Overview 
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 Awb is the Avalon-Wishbone glue logic.  It contains both the slave and master 

adapter interfaces, indicated with a prefix wbs/wbm or avs/avm for Wishbone and 

Avalon, respectively.  Most of the logic is simple name changes for the signals to make 

building in SOPC Builder [14] easier and the component interface conversion is 

bidirectional.  There is additional clocked logic used to delay the de-assertion of Avalon 

read/write signals by one cycle since de-asserting these signals is not allowed 

immediately when the wait_request signal is de-asserted as well.  The connections are 

illustrated in Figure 18. 

 

 FIFO is an array of registers, responsible for queuing flits in to and out of the 

adapter.  An extra „overflow‟ register is provided to help stop issues with control signal 

latency.  The FIFO‟s depth is specified with VHDL generics.  „Empty‟ and „Full‟ are 

used to indicate when the FIFO can be read from or written to. 

 The samplers have two unique versions – master and slave.  The operation of the 

samplers is based around the idea of „sampling‟ and saving bus signals, yet the operation 
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of the adapters is more complicated than this.  Simply sampling the bus at specific 

intervals, placing in a packet and sending over the network would cause a lot of wasted 

packets being sent since some transaction signals are predictable.  The Wishbone 

operation handles three types of transactions: Single, block and burst.  Single transactions 

in the adapter perform one complete transaction at a time.  Block transactions is 

essentially the same as single transactions for Wishbone, but with a key difference in that 

the acknowledge signal is predicted to be asserted for write requests and is done so 

artificially, thus increasing the speed of the adapter.  Read transactions for Wishbone 

block transfers operate the same as single transfers, since a response is required and 

cannot be predicted.  Burst transfers include the cycle and address tags (CTI and BTE, 

respectively) so read requests can be sped up, similar to how block writes work.  The 

Avalon block transfers operate differently in that requests can be „queued‟ without an 

acknowledgement for the previous request.  Thus, a specific VHDL generic 

(Avalon_bursts) is used to switch the adapter into Avalon‟s block request queuing mode.  

The operation of the master adapter in this mode is illustrated in Figure 19, and the slave 

adapter is shown in Figure 20. 
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 The Top modules (mastertop and slavetop) connect the samplers with input and 

output FIFOs.  The top modules are also responsible for providing the handshaking 

protocol between the FIFOs  and the NoC.  This is done with two flip-flops –

wait_for_noc_ack and noc_sent.  Wait_for_noc_ack is set when an output FIFO sends a 

flit and is cleared when the NoC acknowledges (via deasserting the receive_ready 

signal).  Noc_sent is similar, where it only writes the first flit to the input FIFO until 

noc_send is deasserted. 

 

3.2  Router Overview 

The PWR router is a packet-switched wormhole router with two deterministic routing 

schemes – X-Y routing and source routing, and a general top view of the module is 

shown in Figure 21.  Note that the number of ports is defined by the VHDL generics. 
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For source routing, the protocol is routed in that a unique routing lookup table is present 

in each router.  The arbitration is round-robin and flow control uses a send/acknowledge 

protocol.  The switching mechanism uses VHDL FOR loops to implement a full crossbar 

switch.  A simplified data view of the router is shown in Figure 22. 
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 Each output port has a storage register, large enough to hold a single flit.  

Incoming flits are stored after internal routing and arbitration by means of obtaining the 

destination address.  In the case of the destination address not being obtainable in the first 

incoming flit, a special “input buffer” register is used to store incoming flits.  Once the 

flit is stored, the input and output ports are locked and a counter is started.  Once the 

counter reaches zero, the worm is complete, meaning the entire packet has been 

successfully sent through the node.  The input and output ports are unlocked and the 

priority table of the output port is adjusted so that the input port has the lowest priority. 

 There are a number of VHDL generics which allows flexibility in the router 

design, and these are broken up into three sections: Interface, NoC and Internal.  The 

Interface parameters include the bus interconnect bit-widths: WB_width, adr_width, 

tga_width, tgc_width, tgd_width, and sel_width.  These parameters are used to create the 

constants required to create the flit worm.  The parameters fast_burst, burst_depth, 

cti_lsb, bte_lsb and burst_tag_en are unused.  The NoC parameters are flit_size, 

routing_table, src_width and dest_width.  The Internal parameters include num_ports, 

num_local_ports, routing_type, xy_col and xy_row.  Num_slave and num_master are 
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unused.  Num_ports is used to indicate the amount of ports in the router, where 

num_local_ports is for local ports.  Routing_type is set to 1 to indicate source routing and 

2 for xy routing.  Xy_col and xy_row are used to indicate the location of the router for xy 

routing. 

 The basic port of the router operates with a handshaking protocol involving the 

signals noc_receive_ready, noc_next_receive_ready, noc_send_ready and 

noc_next_send_ready.  These signals are named differently for local ports, but operate 

the same.  Noc_receive_ready is de-asserted for one cycle to indicate to the previous port 

that the send was successful.  Noc_next_receive_ready is simply an input signal from the 

next router‟s noc_receive_ready signal.  Noc_send_ready is asserted when the port 

wishes to send its flit and remains high until noc_next_receive_ready is 0.  

Noc_next_send_ready is the send signal from the next router. 

 The input and output ports are locked via a flip-flop for the count of flits inside 

the packet.  Once the last flit is received and successfully sent to the next router, the input 

and output ports are unlocked and the priority of that input port is set to the lowest 

priority.  

 More detail on the arbitration handling in the router is as follows.  The priority 

table consists of a table of priorities per input port, per output port.  Each output port 

contains an array of priority values for each input port, where a high value indicates a 

high priority.  When multiple input ports try to route a flit to the same output 

(destination) port, the highest priority input port gets precedence.  That input port‟s 
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priority gets reduced to 1 and all other port priorities are incremented.   

 The PWR router‟s QoS mechanism is Guaranteed Service (GS).  The flits that 

form a packet cannot get “mixed up” or corrupted.  If an issue ever arises, it would be due 

to a malformed packet from the adapter and may result in an assertion error when the 

router cannot understand the request type (first three bits) in a packet.  Deadlocking can 

occur if the adapters freeze up due to FIFOs becoming full and not emptying, and 

interdependent resources become locked in a permanent wait state.  Livelocking occurs 

when resources get frozen in perpetually changing states, such as through re-sending or 

redirection of packets [4].  Since PWR uses deterministic routing schemes, it becomes up 

to the NoC designer to guarantee that livelocking cannot occur, as well as to minimize 

deadlocking with careful placement and routing.  Through the use of directed graphs, a 

deadlock-free system can be realized [22]. 

3.3  Summary 

This chapter discussed the design and structure of the discrete NoC components designed 

in this work.  It began with a description of the NoC adapter, followed by design 

architectures of the supporting modules including awb and adr2dest.  The details of the 

adapter are discussed, which is followed by the wormhole router‟s design.  The chapter 

concludes with discussion on the router.  The upcoming Chapter 4 discusses the 

implementation of the NoC and the framework to evaluate the design.  
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Chapter 4 

NoC Implementation and Evaluation 

Framework 

 
Chapter 4 begins with a discussion of the test system to be enabled by the NoC, including 

the components used and the operation of the system.  The NoC is applied to this system, 

detailing certain difficulties involved, which follows with in-depth details of the 

operation of the benchmark system.  Chapter 4 concludes with a discussion of the 

evaluation environment. 

4.1  Multi-CPU Benchmark System 

he goal is to have real traffic from a practical system, as well as to have this 

traffic change and flow according to the performance of the system.  Work with 

NoCs using real systems has been done [22], but in general, there needs to be 

more research on the topic.  A multi-processor design example was chosen from Altera‟s 

website, with the intention to replace the Avalon [12] bus fabric with an NoC.  It was 

modified to suit a simulation environment and to reduce the amount of components.  The 

modified multiprocessor example, shown in Figure 4, contains three Nios [21] II/f soft 

core CPUs, three 1 ms timers, 16 MB of flash memory (AMD29LV128M123R_BYTE), 

a mutex, 64 KB of on-chip RAM, 1 KB of message buffer RAM (on-chip), 256 Mbit (16 

bit) SDRAM (Nios Development Board, Stratix II), a JTAG UART interface module, a 

sysid module and an LED PIO.  The system operates by means of initially booting off the 

Flash memory, followed by reading the data and instruction code from the DDR 

T 
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SDRAM.  Each timer is responsible for sending interrupt requests to the CPUs, who then 

take turns attempting to acquire a mutex lock.  Once a lock is established, the CPU writes 

a message to the message buffer; CPU two and three also send the signal to the LED PIO.  

CPU one is responsible for reading this buffer, clearing it and sending the message to the 

JTAG UART interface module.  Each CPU sends a total of five messages and then idles 

indefinitely.  The program code is contained within the SDRAM for all three CPUs, 

within separate locations.  All the CPUs have their reset vector in FLASH memory.  CPU 

one‟s interrupt vector is contained within the on-chip memory module, while CPU two 

and three‟s interrupt vectors are in the SDRAM.  The functionality of this design is as 

follows – Each CPU attempts to acquire the mutex, which results in them writing a 

message to the message buffer.  CPU one is responsible for reading the message, sending 

it to the UART module and clearing the message.  Of course, CPU one must have a 

mutex lock.  The timers interrupt their respective CPUs, which cause them to attempt to 

acquire a mutex lock. 

4.2  Implementation of NoC in SOPC Builder 

 The NoC is added into SOPC‟s [14] component editor.  To clear confusion, 

master and slave adapters are connected to master and slave IP cores, respectively.  A 

master adapter‟s Avalon interface is called “slave” for reasons that the Nios II master 

interface needs to be connected to a slave interface.  The Avalon parameter maximum 

pending reads is set to 8 due to the block transfers of the Nios II being in groups of 8 and 

to increase performance.  The parameters in SOPC Builder were set according to Figure 

24. 
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Figure 24 - NoC Parameters in SOPC Builder 

The component is then added to the system and the interfaces are connected.  Figure 25 

shows the torus NoC implemented in SOPC Builder.  Each address is assigned manually, 

where the address bus from the Nios II is 32 bits and the address bus from the NoC is 27 

bits.  This means the upper 5 bits are ignored by the NoC but are used by the Avalon 

fabric‟s arbitration.  Since masters are connected to their own buses, then master adapters 

can have the same addresses. 

 

Figure 25 - Torus NoC Implemented in SOPC Builder 

The slave components are assigned addresses manually, but each component must have a 

unique address range in the range of 27 bits.  Figure 26 illustrates the Torus NoC 

connected to the slave components and their respective assigned addresses. 
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Figure 26 - Torus NoC Connected to Slave Components 

 

Once the component is created, a Tcl script is automatically created by SOPC Builder.  

This script must be manually modified in order to make the master adapters act as bridges 

so the reset and exception vectors can be set in the Nios II CPUs.  Figure 27 illustrates 

the concept of bridges, where the Nios II “sees” a master adapter as being directly 

connected to a memory module.  Since each Nios II has their reset and exception vectors 

pointing to different memory components, and that an interface can only bridge to one 

other component, it follows that there must be two adapters – one for each vector.  If the 

reset and exception vectors pointed to the same memory module, then only one adapter 

would be needed.  For each master adapter, the set_interface_property bridgesToMaster 

parameters must be modified so they contain the slave adapter‟s name. 

The last issue involves the number of adapters for each Nios II CPU.  Four were used for 

each Nios II adapter so that each Nios II bus (data and instruction) gets its own adapter, 
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Figure 27 - Bridging Example 
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which is then divided again due to the bridging issue.  Due to the adapters queuing 

requests and responding when ready, this caused problems when the bus arbiter was not 

granting access to the correct bus when the adapters were responding.  Having separate 

adapters overcomes this issue. 

4.3  Nios II Programming 

Before getting into details about the benchmark program, an issue with Nios 2 EDS [16] 

must be addressed.  Since each program resides in different portions of the same memory 

block and that Nios 2 EDS overwrites the data block when compiling the code for each 

CPU, a script was set up to copy and concatenate the program files after each compile. 

 Each CPU attempts to acquire a mutex lock, which results in them writing an 

incrementing counter to the message buffer.  The counters stop at five, after which no 

more messages are sent from that CPU.  The three CPUs are numbered one to three, 

where CPU one is responsible for clearing the message buffer and writing to the message 

to UART.  CPUs two and three do not clear the message buffer or write to UART, but 

they write to the PIO.  They have the exact same code, but different program locations in 

the SDRAM.  The timers interrupt their respective CPUs, which cause them to attempt to 

acquire a mutex lock.  Figure 28 and Figure 28 illustrate the flowcharts of the programs. 
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4.4  Modelsim Simulation Environment 

Modelsim [17] allows for very fine-grained simulation, and hence is perfect for the 

purposes of this research.  Using Altera‟s built-in scripts, the program code is loaded into 

Modelsim and the automatically generated project files are used.  The JTAG UART 

module outputs its messages to Modelsim‟s console, which is then used as a basis for 

simulation end-time.  Once each CPU outputs its 5 messages (CPU #: Num: #), the 

runtime is recorded at the final write operation to SDRAM.  Figure 30 shows a sample of 

the router regional handshaking protocol as seen in Modelsim.  At period 1, the router 

sets the send bit to high on port number two.  Four cycles later, at period 2, there is a 

response on the receive signal from port number two, indicating that it has received the 

flit.  The router deasserts the send signal on port two and, one cycle later, reasserts it to 

send another flit.  This is just an example of what is seen in Modelsim in order to verify 

the operation of the system. 
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Figure 30 - Router Regional Handshaking 

The performance data of the NoC is recorded through Modelsim by viewing the 

Messages VHDL variable inside each master adapter.  When a packet is formed or 

received, the Messages variable is incremented by 1.  When the program is complete, 

each variable is accumulated in order to measure throughput.  The traversal time is 

measured by means of VHDL file IO functions, executed when a packet is formed and 

absorbed.  A continuous timer‟s value, the packet value and whether or not the packet is 

absorbed or formed is written to file.  A C++ program matches the formed and absorbed 

tags and subtracts the timer values, thus calculating the traversal time in cycles.  

Modelsim also provides simulation time, which represents the time taken to run the 

program.  The simulated clock period is 20 ns, or 50 MHz. 

4.5  Summary 

This chapter covered the test system enabled by the NoC and the details of its 

components and operation.  Issues involved in implementing the NoC within this system 

as well as the details of the system operation were discussed.  It concluded with a 

discussion of the ModelSim evaluation environment used in this thesis.  Chapter 5 will 

discuss the details of the NoCs implemented in this thesis.   
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Chapter 5 

FPGA Implementation of Torus and Ring NoC 

Architectures 

 
This chapter discusses the details of the two NoC architectures designed in this thesis.  It 

begins with a network topology discussion, followed by details of the IP core placement 

in each NoC.  The routing of such cores is discussed in detail, which concludes with a 

briefing on the NoC Generator program. 

5.1  Topology 

Two regular topologies were implemented and simulated in Modelsim – Torus and ring.  

The torus topology is similar to the mesh topology, in that all nodes have the same 

number of neighbours by means of „wrapping‟ node links to opposite sides [39].  Figure 

31 illustrates the differences between the two topologies. 
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As mentioned in [31], the ring topology is one of the least studied NoC topologies and 

was chosen for that reason.  Conversely, mesh and torus topologies are the most studied 

cases.  The ring topology‟s nodes have two ports, which daisy-chain the connections until 

a loop is formed.  Figure 32 illustrates an example ring topology. 

 

For the ring topology, one router is included per IP core.  The 4x4 torus was designed to 

contain n² nodes and since the root of fourteen is irrational, then there will be two pure 

routing nodes. 
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5.2  Placement and Routing 

The goal of placement and routing in both topologies was to have the smallest path 

between cores, while avoiding congestion.  This was done somewhat arbitrarily as seen in 

Figure 33.  Routers 3 and 10 are pure routing nodes, with no cores attached. 

 

To aid the process of routing, the core placement is summarized in Figure 34, which 

better visualizes the wrapped connectivity property of the torus topology that is available 

for routing. 
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In general, each CPU has dependencies for on other cores and is summarized in Table 4.  

For example, CPU 1 depends on Timer 1, but CPU 2 does not depend on Timer 2.  While 

the routing allows for a path between non-dependent cores, in general this should not 

happen and is merely included for fullness.  Table 4 summarizes these dependencies, 

which apply to both topologies. 

 CPU 1 CPU 2 CPU 3 

Flash Yes Yes Yes 

DDR Yes Yes Yes 

Timer 1 Yes No No 

Timer 2 No Yes No 

Timer 3 No No Yes 

JTAG 

UART 

Yes No No 

Mutex Yes Yes Yes 

Message 

Buffer 

Yes Yes Yes 

PIO No Yes Yes 

On-Chip Yes No No 
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RAM 

Sysid Yes Yes Yes 

Table 4 - Master-Slave Dependencies 

An overview of the routing goals is shown in Figure 35, which demonstrates the routing 

to each dependent core from the three CPUs.  Figure 36 shows all the routing paths for all 

14 destinations.  The extra adapters used for bridging and separate bus and data bus paths 

are the same as destinations 0, 9 and 2 for CPUs 1, 2 and 3, respectively. 

 

The placement of the cores in the ring network was relatively straight forward, where 

cores were placed in order to minimize routes and keep high throughput cores close 

together.  The placement is summarized in Figure 37 and the routing is summarized in 

Figure 38. 
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Figure 36 - Torus Source Routing Paths 
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5.3  NoC Generator 

In order to ease the production of the topologies, a C++ program was written, called 

noc_gen.  Noc_gen accepts input parameters from the user either by a keyboard 

Figure 38 - Ring Routing 
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peripheral or a file input.  The generator then uses VHDL components, signals and 

mapping to repeatedly instantiate and connects the routers and adapters.  Any user input 

is saved to a file for easy reproduction.  The input parameters and ordering of noc_gen is 

listed below. 

a) File name 

b) Number of slaves (adapters) 

c) Number of masters (adapters) 

d) Flit size 

e) Routing type (1=source, 2=xy) 

f) Data bus width 

g) Address width 

h) Cycle tag width 

i) Data tag width 

j) Select line width 

k) Destination width 

l) Source width 

m) Use bursts? (true or false) 

a. If true – Burst count width 

n) Number of routers 

a. If burst true - Fast burst? 

b. Burst depth 

c. CTI least-significant bit 

d. BTE least significant bit 

e. Burst tag enable 

o) Number of ports 

p) Number of local ports 

a. Repeat O and P for each router 

q) For each router port – Connect to router # 

r) Connect to port # 

a. Repeat Q and R for all router ports, until they are all connected 

s) For each local port – Connect to adapter 
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a. Repeat S for each local port 

t) Routing table – Input for each router 

u) FIFO depth 

v) Source Number 

w) No acknowledge (no_ack) 

a. Repeat u-w for all master adapters 

x) FIFO depth 

y) No_ack 

a. Repeat x and y for all slave adapters 

z) Routing table 

aa) Routing table ranges 

a. Repeat Z and AA for all Address To Destination modules (adr2dest) 

bb) Number of beats 

cc) Line wrap burst (true or false) 

a. Repeat BB and CC for all Avalon-Wishbone modules (awb) 

Only two NoC architectures (torus and ring) were implemented with noc_gen.  The flit 

size was varied using SoPC Builder‟s VHDL generic assignment functionality. 

5.4  Summary 

This chapter covered the details of the NoC architectures implemented in this thesis.  The 

details of the IP core placement within the NoC designs and routing algorithms between 

them were described and discussed.  Chapter 5 concludes with a discussion of the NoC 

Generator C++ program which was used to fabricate the NoC architectures.  Chapter 6 

evaluates the two NoC architectures with different metrics and synthesizes the NoCs and 

discrete components.  
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Chapter 6 

Component Evaluation and Architecture 

Comparison 

 
Chapter 6 evaluates the NoC designs and components in this thesis by first synthesizing 

the discrete NoC components for a Stratix II FPGA.  This follows with a discussion of 

the evaluation metrics utilized.  The chapter concludes with in-depth details and 

discussion of the NoC evaluations. 

6.1  Design Space Exploration of Adapter and Router 

The area, clock frequency and power usage of the router and adapter is measured from 

Quartus II‟s [15] synthesis tools to yield ALUT and register usage.  For the router, the 

port size is varied from 2 to 6 with a constant flit size of 64 bits, and conversely flit size 

is varied from 4 to 64 in binary incremental, with a constant port number of 5.  The two 

adapters have their flit sizes varied from 4 to 64.  Power is measured with a constant 

signal change rate of 12%.  The FIFO buffer module is also synthesized in order to 

observe area effects as flit size increases.  Figure 39, Figure 40, Figure 41 and Figure 42 

present the FPGA resource usages of the router, master adapter, slave adapter and FIFO 

with a varying flit size.  Figure 43 presents the router FPGA resource usages as the 

number of ports changes. 
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Figure 39 - Individual Router Area vs. Flit size 

 

Figure 40 - Master Adapter Area 
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Figure 41 - Slave Adapter Area 

 

Figure 42 - FIFO Area 
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Figure 43 - Router Area vs. Number of Ports 

In order to decrease compilation time, the router is set to 3 ports for power 

measurements.  The PowerPlay Power Analyzer Tool in Quartus is set to use a 12.5% I/O 

signal toggle rate.  These final results are fitted and timing is analyzed in Figure 44, 

Figure 45 and Figure 46. 

 

Figure 44 - Router Area vs Flit Size 
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Figure 45 - Power Usage of Discrete NoC Components 

 

Figure 46 - Clock Frequency of Discrete NoC Components 
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traverse the NoC.  The C++ code also outputs the total amount of each packet type.  

Throughput is calculated with the following formula: 

 

Number of messages is the total amount of packets sent in the simulation – an 

accumulator in each adapter counts the total messages sent at the point of 

(de)packetization, which is shown in Modelsim [17].  Message length is the average 

number of flits contained in a message.  Number of IPs is the total count of functional 

cores attached to the network (it is a constant of 14 in this case).  Total time taken is the 

number of cycles required to run the simulation.  Since the program loops indefinitely, 

the total time taken is marked at the final write to DDR SDRAM. 

6.3  Comparison of Torus and Ring 

The interrupt timers were originally set to 0.5ms and there were issues with the 8 bit flize 

size system running incorrectly due to the NoC delay being too long and hence Nios II 

[16] data becomes corrupted.  1 ms interrupt times were used for all measurements. This 

decreases throughput since the benchmark takes longer to run, hence Total time taken 

increases.  Regardless of interrupt time, packet latency measurements were unaffected.  

The average latency of both NoCs is shown in Figure 47, with the torus topology clearly 

having the longest latency, regardless of flit size. 
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Figure 47 - Average Latency of Two NoC Topologies 

The total time for the software benchmark to complete is shown in Figure 48.  While this 

data is not too useful on its own, it is useful for future researchers interested in comparing 

the raw data.  The ring NoC with 64 bit flit sizes takes 1154153 cycles, which is 197919 

cycles less than the torus architecture.  The goal of this research is not to prove whether 

or not bus systems are superior or not and hence those systems are not compared.  

Research has already been done on the topic, such as in [40], which demonstrates 

increased performance and scalability as the system increases.  

 

Figure 48 - Total Time to Complete Nios II Program 
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The throughput of the two NoCs, previously discussed as flits per cycle per core, is 

shown in Figure 49, demonstrating somewhat competitive performance for both NoCs 

and its impact on flit size.  The bandwidth is shown in Figure 50, which is shown for 

comparative purposes. 

 

Figure 49 – Throughput Comparison of Two NoC Topologies 

 

Figure 50 – Bandwidth Comparison of Two NoC Topologies 

The FPGA resource usage of the two NoCs is shown in Figure 51 and Figure 52, showing 

ALUT and register usage, respectively.  Clearly, the ring topology uses less area 
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Figure 51 - NoC Area – ALUTs 

 

Figure 52 - NoC Area - Registers 
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majority of the traffic and the placement in the torus topology has room for optimization.  

The ring topology has a distinct disadvantage in that there are only two neighbours 

allowed due to the number of ports being set to 2 for all routers.  This means one of the 

CPUs is required to have a 2-hop delay for SDRAM transactions.  Regardless of the 

ring‟s downside, the average packet latencies were overall lower due to the somewhat 

improved placement.  This means if the placement of the DDR SDRAM were fully 

optimized, then overall packet latency would improve.  PWR also includes real routers 

and adapter delay into packet latency, while [37] does not. 

 One must consider that a real system is used, which is based on a 1 ms timer.  

This means there will be moments when the CPUs are simply waiting for an interrupt and 

no requests are made (roughly 900us delays), which makes overall Total time taken 

increase.  In [37], the traffic generator creates “dead traffic” moments but is not accurate 

according to real traffic [22].  Concerning bandwidth, results from [37] were in the Gbps 

range whereas PWR‟s were in the lower Mbps.  Again, this is due to bandwidth relying 

on the Total time taken.  Concerning the comparison of ring versus torus topologies as 

well as results versus flit size - It is interesting to note that for bandwidth, the torus 

topology begins to level off after 32 bits, whereas the ring topology still increases – this 

is most likely due to the placement of cores resulting in higher average latency.  For 

average message latency, the plots for both topologies are relatively the same, with the 

torus having an overall higher latency.  It is difficult to compare these two plots since 

message latency is affected by placement and routing in both topologies.  Finally, 

throughput, which is a measure of efficiency, remains on the torus‟ side except for 64 bit 

flit sizes, where ring takes over.  Again this is most likely due to placement of the DDR 

SDRAM creating a higher average latency in the torus topology. 

 Rather expectedly, the torus architecture takes up significantly more FPGA 

resources, compared to ring.  This is due to each router having twice as many ports, as 

well as the additional two pure routing nodes.  This shows a classic case of performance 

versus resources, where the low performance of the single-digit flit sizes results in the 

lowest resource count and vice versa for 64 bit flit sizes. 

 In order to recommend an optimal channel width based off the results of the torus 

and ring evaluations, one must compare the effect of channel width with respect to the 
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area resource usage difference.  Since a flit size of 16 bits uses the least ALUT resources, 

it was thus chosen as the basis of comparison between the other flit sizes.  The difference 

in performance between the flit size of attention and 16 bit flit sizes is divided by the 

difference in area between the two.  The following two figures illustrate these plots. 

 

Figure 53 - Latency Change vs. Area Change, with Respect To 16 Bit Flit Size 

 

Figure 54 - Throughput Change vs Area Change, With Respect To 16 Bit Flit Size 
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with register resources.  This means that if a designer wishes to have the most efficient 

use of registers for message latency, an 8 bit flit size is recommended, while a 16 bit flit 

size has the best efficiency for general area resources for message latency. 

 For the efficiency of area for throughput, a high throughput difference per added 

resource is ideal.  It can be seen that an 8 bit flit size offers the highest ALUT efficiency 

for throughput, and the 32 and 64 bit flit sizes offer lower area efficiency for throughput 

compared with 8 and 16 bit flit sizes.  From these results, it can be deduced that a 16 bit 

flit size is an optimal channel width to use for general designs, due to the efficiency of an 

FPGA‟s resources for message latency and throughput.  For area-constrained 

environments, an 8 bit flit size is recommended due to its higher area resource efficiency 

at the expense of larger message latencies. 

6.4  Summary 

This chapter evaluated the design of the NoC architectures and its discrete components.  

The evaluation metrics involved in these evaluations were discussed, and the results of 

these evaluations were discussed.  Chapter 7 discusses the conclusions that were drawn 

from this thesis.  
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Chapter 7 

Conclusions and Future Work 

 
s integrated circuit technology expands, allowing for larger and increasingly 

complicated systems-on-chip, the traditional bus-based communication 

system becomes cumbersome and restricting.  As the communication 

architecture shifts towards the network-on-chip paradigm, it becomes apparent that there 

is a large design space available to designers.  Combine an NoC‟s massive parameter 

space with various applications and it becomes clear that there is no single solution. 

 While traffic generators provide a reasonable means of evaluating NoC designs, 

they are not accurate [22].  Since real traffic and real systems are rarely tested in NoC 

research, this became an important task to pursue in this thesis.  Very little work has been 

done implementing NoCs in traditional SoC design software, such as Altera‟s SOPC 

Builder.  Lastly, certain topologies remain largely popular, such as mesh and torus, while 

others require additional research, such as hierarchy and ring, which is the reason why the 

torus and ring topologies are compared. 

 Key research contributions include developing a realistic system benchmark for 

evaluating an NoC.  Altera‟s SOPC Builder provided a satisfactory means of instantiating 

the NoCs, but there were problems to overcome.  Bridging of a single adapter to multiple 

memory modules was not possible and hence caused additional resources to be wasted.  

The lack of control over the bus arbitrator also caused problems, resulting in adapters not 

knowing whether or not the control outputs will be received; again, this resulted in 

additional adapters, wasting resources. 

 Another unique contribution includes the glue logic between Wishbone and 

Avalon communication fabrics.  While single-transfer transactions are extremely similar 

A 
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between the two interfaces, the block transfers include a large difference.  While 

Wishbone requires the acknowledge signal and its assertion in order to start another 

transaction, the Avalon block transfer rule allows for multiple transfers to be „queued‟ 

without a preceding acknowledgement signal. 

 While worm-hole switching router designs are relatively common, the effect of 

channel width on high level evaluation metrics is an open research area [22].  This was 

studied by analyzing the flit width versus throughput, average packet latency, area, power 

and clock frequency.  The flexibility and parameter selection of the router is also a unique 

trait, which provides a frame for future research. 

 Interfacing a core using a standard socket with the NoC is not to be overlooked.  

The adapter, originally designed for Wishbone, was modified for use with the Avalon 

interface.  By providing a huge amount of flexibility through signal vector widths, FIFO 

depths and more, the adapter functions in most SoC designs and offers a large design 

space that should not be overlooked. 

 Concerning the topology comparison, overall the ring topology utilizes the least 

FPGA resources, provides the lowest packet latency and competitive throughput versus 

the torus for the system benchmark.  From a designer perspective, the ring topology was 

also much easier to route, map and place.  Conversely, the torus topology provides 

greater flexibility by means of the larger node neighbour count and flexible routing paths. 

 It can be seen from the results that flit size has a large effect on various evaluation 

metrics for NoCs and related components.  A low average latency results from high flit 

size, due to the smaller worm being transmitted.  Throughput has an interesting 

relationship with flit size, as a low flit size results in the torus having the largest 

throughput.  A low flit size results in larger worms and hence the NoC becomes more 

active.  Interestingly, flit size seems to have little effect on the clock frequency of the 

individual NoC components, while having a predictable effect on area and power.  From 

the area efficiency results, it can be deduced that a 16 bit flit size is an optimal channel 

width to use for general designs, due to the efficiency of an FPGA‟s resources for 

message latency and throughput.  For area-constrained environments, an 8 bit flit size is 

recommended due to its higher area resource efficiency at the expense of larger message 

latencies.  A 64 bit flit size offers the lowest message latency but uses the most FPGA 
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resources. 

 Future work includes implementing additional system benchmarks in order to 

further evaluate the two topologies.  Additional topologies can also be implemented, 

including hierarchy, star and customized architectures.  While the effect of FIFO depth 

was compared with resource usage, it would be interesting to compare it with high level 

performance metrics, such as throughput and packet latency.  There are more NoC 

parameters, such as switching, arbitration, routing and placement that will provide a 

suitable area for research.  
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