
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

NoC Prototyping on FPGAs: Component Design, Architecture NoC Prototyping on FPGAs: Component Design, Architecture

Implementation and Comparison Implementation and Comparison

Matt Murawski
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Murawski, Matt, "NoC Prototyping on FPGAs: Component Design, Architecture Implementation and
Comparison" (2010). Electronic Theses and Dissertations. 134.
https://scholar.uwindsor.ca/etd/134

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/134?utm_source=scholar.uwindsor.ca%2Fetd%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NoC Prototyping on FPGAs: Component Design, Architecture Implementation and

Comparison

By

Matt Murawski

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2010

© 2010 Matt Murawski

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise

retained in a retrieval system or transmitted in any form, on any medium by any means

without prior written permission of the author

NoC Prototyping on FPGAs: Component Design, Architecture Implementation and

Comparison

By

Matt Murawski

APPROVED BY:

A.C. Sodan

Computer Science

J. Wu

Electrical and Computer Engineering

M. A. S Khalid, Advisor

Electrical and Computer Engineering

Dr. Rashidzadeh, Chair of Defense

Electrical and Computer Engineering

May 18, 2010

iv

Author’s Declaration of Originality

 I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

 I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone‟s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

 I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

v

Abstract

Continuing improvements in integrated circuit technology over the past few decades

enables increasingly large and complex Systems-on-Chip. Due to the large number of

components used, the traditional bus-based interconnect scheme becomes cumbersome

and restrictive. Hence, the Network-on-Chip interconnect paradigm becomes appealing

due to its many advantages such as scalability and superior performance. Much research

remains to be done exploring NoC architectures using real world benchmarks. In this

thesis we describe the design space exploration of two major NoC components; a flexible

adapter based on the Altera Avalon standard and a parameterizable wormhole router. Two

well known NoC architectures, torus and ring, were synthesized for Altera FPGAs using

these NoC components. The architectures were compared on the basis of packet latency,

area and throughput, using a benchmark application. Simulation results show that the ring

architecture gives superior area versus performance tradeoffs for the benchmark used.

vi

Acknowledgements

It is an honor for me to have worked with Dr. Mohammed A. S. Khalid throughout my

Masters degree here at the University of Windsor. His guidance, encouragement, wisdom

and support carried me through the course of this thesis. My deepest gratitude goes out to

him.

 I would like to extend my gratitude to Dr. Jonathan Wu and Dr. Angela C. Sodan

for serving on my committee and providing constructive criticism of this work. Dr.

Rashid Rashidzadeh has been of tremendous help regarding CAD tool issues and I‟d like

to thank him for his patience and support.

 My thanks goes out to my office colleagues, Mike, Mohan, Thuan, Krunal,

Abdelrazag and Omar, for their friendly attitude and support whenever needed.

 My gratitude goes to the ECE Dept. staff members Don Tersigni, Frank Cicchello

and Andria Ballo for their help and assistance.

 Gratitude goes to my parents and siblings for providing support and

encouragement throughout my work. Their understanding has been greatly appreciated.

My gratitude also goes to my brother, Peter, for all the cooking and cleaning I neglected

to do!

 My friends Dan and Nathan deserve acknowledgement. Thanks for the great

stress relief of weekly Baldur‟s Gate and your understanding of Masters student

hardships. We had great times in World of Warcraft every Friday with Matt, Mike,

Trinh, and Chris. Scott, your friendship, aid and understanding will not go unnoticed.

 Lastly, 7-11, thanks for all the pop.

vii

Table of Contents

Author‟s Declaration of Originality ... iv

Abstract ... v

Acknowledgements .. vi

List of Figures ... x

List of Tables .. xii

List of Abbreviations ... xiii

Chapter 1 Introduction... 16

1.1 Thesis Objectives ... 19

1.2 Thesis Organization.. 20

Chapter 2 Background and Previous Work ... 21

2.1 Network-on-Chip Overview ... 21

2.1.1 Application Layer - System ... 23

2.1.2 Transaction Layer – Adapter ... 24

2.1.3 Data Link Layer – Network ... 25

2.1.4 Physical Layer – Link .. 28

2.2 Standard Sockets .. 28

2.2.1 Wishbone ... 28

2.2.2 Avalon Interface .. 34

2.3 FPGA Technology... 37

viii

2.4 CAD Tools for NoC Implementation on FPGAs ... 37

2.4.1 Altera Quartus II .. 37

2.4.2 Altera SOPC Builder ... 38

2.4.3 Nios II Embedded Design Suite (EDS) ... 38

2.4.4 Mentor Graphics ModelSim .. 39

2.5 Related Work.. 39

2.6 Summary .. 41

Chapter 3 NoC Adapter and Router Design .. 42

3.1 Adapter Overview .. 42

3.2 Router Overview .. 49

3.3 Summary .. 53

Chapter 4 NoC Implementation and Evaluation Framework .. 54

4.1 Multi-CPU Benchmark System .. 54

4.2 Implementation of NoC in SOPC Builder ... 55

4.3 Nios II Programming .. 58

4.4 Modelsim Simulation Environment ... 59

4.5 Summary .. 60

Chapter 5 FPGA Implementation of Torus and Ring NoC Architectures 61

5.1 Topology .. 61

5.2 Placement and Routing... 63

5.3 NoC Generator ... 66

5.4 Summary .. 68

Chapter 6 Component Evaluation and Architecture Comparison 69

6.1 Design Space Exploration of Adapter and Router ... 69

6.2 Experimental Framework and Evaluation Metrics ... 73

ix

6.3 Comparison of Torus and Ring .. 74

6.4 Summary .. 80

Chapter 7 Conclusions and Future Work .. 81

References ... 84

VITA AUCTORIS .. 89

x

List of Figures

Figure 1 - NoC Component Overview .. 17

Figure 2 - NoC Example System .. 22

Figure 3 – NoC OSI Layers .. 23

Figure 4 - Components Used In NoC System ... 23

Figure 5 - Network Adapter[4] ... 25

Figure 6 - Example of Deadlock ... 27

Figure 7 - Single Transfer Handshaking Protocol for Wishbone 30

Figure 8 - Single Read Transfer for Wishbone ... 30

Figure 9 - Single Write Request for Wishbone ... 31

Figure 10 - Wishbone RMW... 32

Figure 11 - Block Read Request for Wishbone .. 33

Figure 12 - Incrementing Bursts for Wishbone .. 34

Figure 13 - Example Avalon-MM Transfer .. 36

Figure 14 - Quartus II Design Flow .. 38

Figure 15 - Adapter Overview .. 43

Figure 16 - Adapter Design Overview .. 45

Figure 17 - Address to Destination Parameter Design.. 46

Figure 18 - Avalon-Wishbone Glue Logic for Master .. 46

Figure 19 - Master Sampler 3-Concurrent Process Flowchart in Burst Mode 48

Figure 20 - Slave Sampler 3-Concurrent Process Flowchart in Burst Mode 49

Figure 21 - Router Overview Diagram ... 50

Figure 22 - Internal Router Design ... 51

Figure 23 - Priority Table Design ... 52

Figure 24 - NoC Parameters in SOPC Builder ... 56

file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722888
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722897
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722898
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722899
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722900
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722901
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722902
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722903
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722904
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722905

xi

Figure 25 - Torus NoC Implemented in SOPC Builder .. 56

Figure 26 - Torus NoC Connected to Slave Components ... 57

Figure 27 - Bridging Example .. 57

Figure 28 - CPU 1 Benchmark Flowchart .. 58

Figure 29 - CPU 2 and 3 Benchmark Flowchart ... 59

Figure 30 - Router Regional Handshaking ... 60

Figure 31 - Mesh vs. Torus ... 62

Figure 32 - 10-Node Ring Example .. 62

Figure 33 - Torus Core Placement .. 63

Figure 34 - Placement for Routing.. 64

Figure 35 - Torus CPU Routing .. 65

Figure 36 - Torus Source Routing Paths ... 65

Figure 37 - Ring Placement .. 66

Figure 38 - Ring Routing .. 66

Figure 39 - Individual Router Area vs. Flit size ... 70

Figure 40 - Master Adapter Area .. 70

Figure 41 - Slave Adapter Area .. 71

Figure 42 - FIFO Area .. 71

Figure 43 - Router Area vs. Number of Ports ... 72

Figure 44 - Router Area vs Flit Size ... 72

Figure 45 - Power Usage of Discrete NoC Components .. 73

Figure 46 - Clock Frequency of Discrete NoC Components .. 73

Figure 47 - Average Latency of Two NoC Topologies .. 75

Figure 48 - Total Time to Complete Nios II Program .. 75

Figure 49 – Throughput Comparison of Two NoC Topologies 76

Figure 50 – Bandwidth Comparison of Two NoC Topologies ... 76

Figure 51 - NoC Area – ALUTs ... 77

Figure 52 - NoC Area - Registers ... 77

Figure 53 - Latency Change vs. Area Change, with Respect To 16 Bit Flit Size............. 79

Figure 54 - Throughput Change vs Area Change, With Respect To 16 Bit Flit Size 79

file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722909
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722910
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722911
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722913
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722914
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722915
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722916
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722917
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722918
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722919
file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722920

xii

List of Tables

Table 1 - Cycle Type Identifier ... 33

Table 2 - Burst Type Extension .. 34

Table 3 - Request Type Design ... 44

Table 4 - Master-Slave Dependencies .. 65

file:///C:/skool/year%205/thesis/defense/thesis_052710.docx%23_Toc262722939

xiii

List of Abbreviations

Abbreviation Definition

ALUT Adaptive Look Up Table

ASIC Application Specific Integrated Circuit

AVM Avalon Master

AVS Avalon Slave

AWB Avalon-Wishbone

BE Best Effort

BTE Burst Type Extension

CAD Computer Aided Design

CLK Clock

CPU Central Processing Unit

CS Chip Select

CTI Cycle Tag Identifier

DDR Double Data Rate

EDS Embedded Design Suite

FIFO First In, First Out

FPGA Field Programmable Gate Array

GS Guaranteed Service

HDL Hardware Description Language

I/O Input / Output

IC Integrated Circuit

IDE Integrated Development Environment

IP Intellectual Property

IRQ Interrupt Request

xiv

JPEG Joint Photographic Experts Group

JTAG Joint Test Action Group

KB Kilo Byte

LAN Local Area Network

LE Logic Element

LED Light Emitting Diode

MB Mega Byte

MPSoC Multi-Processor System on Chip

NA Network Adapter

NoC Network on Chip

OCP Open Core Protocol

OE Output Enable

OSI Open Systems Interconnection

PIO Peripheral Input Output

PWR Parameterizable Wormhole Router

QoS Quality of Service

RAM Random Access Memory

RISC Reduced Instruction Set Computer

S&F Store and Forward

SDRAM Synchronous Dynamic Random Access Memory

SoC System on Chip

SOPC System on Programmable Chip

TDM Time Division Multiplexing

UART Universal Asynchronous Receiver/Transmitter

VC Virtual Channel

VCI Virtual Component Interface

VCT Virtual Cut Through

VHDL Very High Speed Integrated Circuit Hardware Description

Language

VLSI Very Large Scale Integration

WB Wishbone

xv

WBM Wishbone Master

WBS Wishbone Slave

WH Wormhole

16

Chapter 1

Introduction

As humankind pushes forward through the Information Age, digital technology becomes

smaller, and more powerful. It follows without surprise that devices embedded with

digital technology are becoming more widespread and common, such as cell phones,

digital cameras, and global positioning systems. Such embedded computing systems, or

simply “embedded systems”, are structures of electronic hardware designed to perform

singular functions repeatedly within tightly constrained design metrics [1].

 As Moore‟s Law - Integrated Circuit (IC) designs double in capacity nearly every

two years - continues to hold true for the past half decade, the design of embedded

systems becomes increasingly difficult and complex. To combat this, designers have

shifted their focus from micro-level design to macro-level system design through the

employment of hardware reuse. This shift in focus is known as System-on-Chip (SoC)

and involves interfacing pre-made hardware modules together to form a coherent system.

Those hardware blocks are known as Intellectual Property (IP) cores and they vary from

Central Processing Units (CPU), to Random Access Memory (RAM) modules, to

counters and to other specific logic designs. Flexibility in IP cores is embraced by means

of parameters, which offer increased compatibility and proficiency to otherwise black-

box modules.

 In SoCs, interconnect structures between IP cores traditionally use a shared bus

design, a point-to-point design or a hybrid thereof. Systems level designers have been

facing constriction with bus-based, computation-centric interconnection systems [2].

17

While bus-based interconnections proved to be sufficient for small embedded systems

involving few IP cores, the routing of the bus wires, the increasingly difficult custom

interconnect design process (such as [3]) and the decreasing performance due to the

increasing amount of cores attached to the bus/buses have shown that a paradigm shift is

imminent. Borrowing from macro-network communication architectures, Network-on-

Chip (NoC) provides a communication-centric design that shows promise in providing

the scalability and performance needed for large SoCs [4].

 An NoC consists of four major components – IP cores, the network adapters,

routing nodes and links. These are similar to the components in a macro computer

network, where an IP core is similar to a desktop computer, the network adapters are the

wireless network and LAN cards, the routing nodes are the switches and routers and the

links are the physical cables connecting the system together. Figure 1 demonstrates an

overview of NoC components in a simple 4x4 mesh topology with one core per routing

node. As with macro networks, there are many different architectures, mechanisms,

parameters and techniques involved in NoCs and hence, many areas remain open for

research.

Figure 1 - NoC Component Overview

 Numerous NoCs [5] [6] [7] [8] have been proposed to address the growing

complexity of SoCs and their communication infrastructure needs. Due to the nature of

18

NoCs and the systems they are integrated in, designing and simulating test applications is

troublesome and time consuming, hence the more favourable traffic generator evaluation

tool is used. A traffic generator injects artificial distributions of network traffic in order

to simulate a realistic system [9]. While traffic generators provide an elegant approach

for NoC comparison, it provides a ham-fisted investigation which does not address

specific applications and hence misses out on important optimizations due to unique or

“bursty” traffic patterns (such as in [10]).

 Furthermore, an assortment of NoC parameters, such as topology and channel

width, requires additional exploration. The massive design space of NoCs means that

even a simple design of an NoC component is a valuable research contribution since it

expands on existing understandings and provides reinforcement to existing theories.

 Existing IP cores utilize standard socket interfaces such as Wishbone [11], Avalon

[12], AMBA [13] and CoreConnect [13], so conforming NoC protocols to these pre-

existing bus protocols presents a practical challenge. Thus, the feasibility of instantiating

NoCs in existing SoCs and their supporting Integrated Development Environments (IDE)

holds as a valuable research topic since it ties theory with practicality.

 The requirement for reducing time-to-market for digital designs has quickly led to

the creation of Field Programmable Gate Arrays (FPGA). An FPGA is an integrated

circuit containing pre-designed resources which can be programmed and configured to

act like the desired digital hardware description. This provides a means of a quick

prototyping medium for IC designs due to the flexibility of the programmable

components, the liberty of manufacturing problems and the fast design cycles. These

traits make FPGAs an irreplaceable platform for research purposes.

 The task of this thesis is to explore the implementation of a practical NoC. It

follows that discrete components need to be created and investigated in order to design an

NoC, which includes a network adapter, router and supporting modules. This leads to the

study of designing an NoC architecture, the automation of realizing NoC modules with

C++ programs, the effects of different NoC parameters on high level NoC and FPGA

evaluation metrics and the challenges and issues of using real world SoC software.

19

1.1 Thesis Objectives

The end goal of this research is to explore the feasibility, implementation, design space

exploration and evaluation of a practical NoC, targeting FPGAs. In order to achieve this

goal, discrete NoC components need to be designed and made flexible for use in an even

further parameterizable NoC system. Thus, the effects on higher level evaluation metrics

can be studied against an assortment of NoC parameters. There are several major

objectives:

1. Design and evaluate a network adapter to interface a standard socket with the

NoC protocol, while providing easy and powerful flexibility through the use of

VHDL generics.

2. Design and evaluate a worm-hole router that provides the parameters needed in

order to be instantiated within a wide range of NoC architectures.

3. Design the required support modules needed for a functional NoC system.

4. Automate the construction of an NoC architecture using the above modules with a

C++ program based on user input.

5. Create a series of NoCs with different topologies and channel widths for

evaluation.

6. Instantiate the NoC architectures within a realistic benchmark SoC using existing

design and simulation software.

7. Utilize high level evaluation metrics to obtain results in an automatic fashion and

without adding additional resources or performance degradation.

8. Synthesize the NoCs targeting an FPGA for area results.

9. Synthesize individual NoC components with varying parameters targeting an

FPGA for area, power and latency results.

After the NoC protocol was established in the NoC adapter, it was designed to address

the initial goal of interfacing with a standard socket. Wishbone [11] was chosen due to

its open source nature and was later adapted for Avalon [12] interface for use with

Altera‟s SoPC Builder [14] design software. Using VHDL generics, the wormhole router

was designed in order to be flexible enough to fit a designer‟s needs merely by specifying

generic maps. FIFOs and address-to-destination modules were created in order to fulfill

20

goal number three to create a functional NoC component library. Goal four and five were

addressed by using C++ and VHDL component maps to create full NoCs using user

input. The sixth goal was validated by using Altera‟s Quartus II [15], SOPC Builder

[14], Nios II IDE [16] and Mentor Graphic‟s Modelsim [17] to implement and simulate

the NoC architectures. Using VHDL file I/O functions and Modelsim variable watching,

throughput and average packet latency were measured with the aid of a C++ parser

program in order to meet goal seven‟s requirements. For goal eight, Altera Quartus II

[15] was used to synthesize the eight NoC variants for resource usage measurements.

Finally, goal nine was achieved by using Altera Quartus II‟s synthesis, fitting, timing and

power analyzer tools with the variations of individual NoC components.

1.2 Thesis Organization

This thesis aims to explore NoC prototyping on FPGAs through component design,

implementation and parameter evaluation. It begins with background and related work

regarding FPGAs and NoCs, granting the reader the needed technological understandings

for the topics contained in this thesis. Chapter 3 continues on with in-depth descriptions

of the adapter and router discrete NoC components. Chapter 4 covers the system

benchmark and supporting topics required for high level NoC evaluation. In Chapter 5,

the process of the design of the NoC is detailed, as well as the NoC Generator program.

Chapter 6 explains the evaluations and results of the NoCs and discrete components.

Chapter 7 concludes the thesis and explains possible future work.

21

Chapter 2

Background and Previous Work

This chapter covers a detailed overview of Network-on-Chip research beginning with its

relation to the computer network OSI model. It then flows through each of the four

related layers, beginning at the top-most layer, describing the aspects of the NoC

paradigm. This is followed by the standard socket section, which goes in depth about the

Avalon [12] and Wishbone [11] interfaces. Following this, FPGA technology is covered,

detailing the benefits and some explanations about the technology. The CAD tools used

in this thesis are briefed and the chapter concludes with a subsection describing related

research.

2.1 Network-on-Chip Overview

The Network-on-Chip (NoC) paradigm is an architecture inspired by macro computer

networks, where data communication is enabled through the use of communication-

centric hardware and protocols. [18] shows an excellent example of an NoC overview in

Figure 2, where the switch nodes are responsible for routing data between the IP cores,

the links are responsible for connecting the nodes, the network interfaces decouple the

cores from the NoC and the IP cores carry out higher level functions.

22

Figure 2 - NoC Example System

It follows that an NoC is similarly structured after the layered Open Systems Interconnect

(OSI) model of macro networks, but due to the limited scope in which on-chip

communication encompasses, some layers can be compressed [19]. A 4-layer stack can

be utilized, based on a compressed OSI model.

 The Application Layer is formed from the Application, Presentation and Session

layers of the OSI model, which is the top-most layer. It consists of Intellectual Property

(IP) cores and the communication between them. The Transaction Layer consists of the

Transport and Network layers of the OSI models. This layer consists of the network

adapters, which link the IP cores and the NoC through (de)packetization, error handling

and end-to-end connection. The Data Link Layer consists of the inner workings of the

routers themselves and is responsible for the flow of traffic between two routers. The

Physical Layer is the actual link between the switches - the size of the links, as well as

the handshaking protocol between them, lie within this layer‟s responsibilities. [20]

illustrates these layers and how they are interconnected. A more practical structure for

NoC architecture explanation uses four categories: System, adapter, network and link.

[4]

23

Figure 3 – NoC OSI Layers

2.1.1 Application Layer - System

The Application layer covers the IP cores themselves, including communication between

them. This thesis uses many IP cores, most of which are common and straightforward to

a computer engineer, but the CPU itself is worthy of attention. Figure 4 contains the

components used in this thesis.

Figure 4 - Components Used In NoC System

The Nios II is a general purpose RISC soft-core configurable CPU, provided by Altera

Corporation in Quartus II [15] and SOPC [14] Builder software[21]. It can have features

added and removed in order to optimize resource usage and meet performance

requirements. The Nios II [21] CPU interfaces with other cores via the Avalon [12]

system interconnect fabric. There are three basic versions of the Nios II: Nios II/e, Nios

24

II/s and Nios II/f, standing for Economy, Standard and Fast, respectively. The Economy

is designed for the least area usage, while Fast provides the most features and

performance. Standard provides a reasonable compromise between the two.

 While the exact topology of the NoC does not lie within the Application layer, the

mapping of the IP cores within the NoC does and is known as clustering. Clustering, or

mapping, is when the NoC designer decides where different IP cores are embedded in the

network in order to optimize certain metrics [22]. Methodologies for regular topologies

to optimize energy usage and performance of IP mapping [23][24] have been proposed

while irregular topologies is still an open area for research.

 The IP cores are further divided by their homogeneity and granularity.

Traditional parallel computers have course-grained and homogeneous cores, while NoCs

are more flexible [4]. An MPSoC, using the Nios II CPU, was used to form

homogeneous processing clusters to perform a JPEG encoding benchmark using a

packet-switched NoC in [25].

2.1.2 Transaction Layer – Adapter

At this layer, the cores are interfaced with the NoC through a Network Adapter (NA).

The NA encapsulates the messages from the cores into packets or streams usable by the

NoC, effectively decoupling the cores from the network [4]. Through the use of standard

socket protocols, such as OCP [26], Wishbone [27], Avalon [28] and VCI [29], the

reusability of an adapter increases. This comes with a price, where conforming to a

socket adds additional resources and latency. In a packet-switched NoC, the packets are

delimitated into three sections: The packet, the flit and the phit. A message is the data

generated by the core, which is encapsulated by the packet, which contains additional

information such as source and destination addresses, tail information and so on. A

packet is subdivided into flits, which is a basic datagram. The phit is the physical unit

that can be transmitted, which is commonly the same as the flit.

25

Figure 5 - Network Adapter [4]

2.1.3 Data Link Layer – Network

The Data Link layer, or network, it the heart of the NoC since it is responsible for

delivering the messages to their destination. Since there are so many different designs for

this layer, it is further subdivided into sections – Topology, Protocol, Flow Control and

Quality of Service (QoS).

2.1.3.1 Topology

Topology concerns the logical and physical layout of the network and is divided into

regular and irregular topologies. While irregular topologies are generally superior, they

are difficult to design and lack flexibility [30]. Regular topologies offer simpler physical

mapping onto ASICs as well as simpler routing schemes and predictable power and area

scaling. Typical regular topologies include mesh, torus, ring, star and binary tree. Mesh

and torus are the most common topologies used in NoC research [31]. The main

components which make up an NoC is the topology and protocol.

2.1.3.2 Protocol

The protocol of an NoC deals with the strategy of how data moves through the network.

It is further broken down into three categories – switching, routing and connection

mechanism.

 Switching involves the methodology of data transportation while routing is the

intelligence behind it. Circuit switching is akin to bus-based systems, where a path

between cores is set up and data flows between them asynchronously. Packet switching

26

involves encapsulating messages within a datagram, which then pushes through the NoC

by means of buffers. The key trade-off between the two is that circuit-switched

techniques have increased bandwidth at the expense of channel set-up time, while packet-

switched techniques allow reactive performance. It has been shown in [32] that packet-

switched NoCs perform better when the amount of active links is below 40%.

 Routing involves the specific path that the data takes through the NoC and is a

key component in reducing congestion in the network as well as affecting average latency

and power. Routing strategies are either deterministic or adaptive. A deterministic

strategy‟s routing path is set according to the source and destination alone, where an

adaptive strategy adjusts the path mid-traversal according to other factors, such as

congestion and priority. A minimal routing scheme always utilizes the shortest path

possible between cores, while a non-minimal scheme does not. The control mechanism

for routing is either centralized or not; a bus-based system has a centralized arbiter, while

a router can have routing decisions made locally inside each node.

 The connection mechanism concerns the coordination of connection paths

between cores. A connection-oriented mechanism creates the path between cores before

transmission, while a connection-less mechanism performs pathing on a per-hop basis. A

circuit-switching technique is always connection-oriented, while a packet-switched

technique can be either.

2.1.3.3 Flow Control

The flow control defines the mechanisms of how packets flow through the NoC routes,

which in turn encompasses local and global issues [33].

 One concept of flow control is the Virtual Channel (VC). The VC involves

sharing a physical link between routers by means of Time Division Multiplexing (TDM),

which, at the expense of additional logic, reduces congestion, improves wire utilization,

improves performance and reduces deadlocking. Deadlocking is a situation when

network resources become indefinitely frozen waiting for successive interdependent

resources to free. Figure 6 illustrates an example of deadlock. Router 1 needs to send to

router 4‟s local port, router 2 needs to send to router 3‟s local port and so on, but router

1‟s east port is waiting for router 2‟s south port, whom is waiting for router 4‟s west port,

whom is waiting for router 3‟s north port, whom is waiting for router 1‟s east port.

27

Virtual channels can break the loop, as can proper routing and placement to avoid these

situations [4].

 The forwarding strategy involves the methodology behind packet storage and

flow within and between nodes for packet-switching techniques. The Store and Forward

(S&F) strategy buffers the entire packet within a node and routes the whole packet

through the network. While this offers a simple design, the routers have large buffers

which consume a lot of area. Wormhole routing involves routing flits instead of packets.

Each router contains one flit so the packet spans multiple nodes. This allows for reduced

buffer space but it causes congestion issues as the worm spans multiple routers. The

Virtual-Cut Through (VCT) strategy is a mix between worm-hole and store-and-forward

strategies. Before the first flit is sent, look-ahead mechanisms guarantee an open path

before creating a worm; if the path is blocked, then the packet is buffered, similar to

store-and-forward.

2.1.3.4 Quality of Service

Quality of Service (QoS) is the set of priorities and guarantees regarding specific

performance metrics provided to the cores by the network. The services could be latency,

power, throughput, jitter and so on. There are two identities of QoS – Best Effort (BE)

and Guaranteed Service (GS). Best Effort attempts to improve performance and resource

use at the cost of reduced predictability of traffic. Guaranteed Service QoS is inherently

connection-oriented and provides the maximum predictability for traffic.

1

2

3

4

Figure 6 - Example of Deadlock

28

2.1.4 Physical Layer – Link

Links are the physical or virtual channels between nodes in an NoC. While research

regarding link design is more relevant to ASIC implemented NoCs, there are still some

metrics regarding links on FPGAs. Handshaking protocol and bit width can reduce

FPGA resource usage as well as power consumption. Most of the issues regarding

physical wire problems, such as crosstalk, swing, noise and so on, are generally not issues

on FPGAs.

2.2 Standard Sockets

SoC core reusability is increased by the use of standard sockets. The interfaces used in

this thesis include Silicore/Opencore.org‟s Wishbone and Altera‟s Avalon.

2.2.1 Wishbone

Wishbone is an open-source synchronous SoC interconnection architecture, intended to

be a general purpose interface between IP core modules. A handshaking protocol for

transfers allows variable transfer speeds.

2.2.1.1 Signals

Wishbone has a variety of signals, used to provide flexibility and compatibility for

attached IP cores. The signals common to both master and slave devices are:

CLK_I – Clock input. All Wishbone output signals are registered on the rising clock

edge.

DAT_I – Input data array, with a maximum size of 64 bits.

DAT_O – Output data array, with a maximum size of 64 bits.

RST_I – Synchronous reset signal

TGD_I – Input data tag array, containing information regarding the DAT_I signal. The

data tag contains user defined information.

TGD_O – Output data tag array, associated with the DAT_O signal.

Master signals include:

29

ACK_I – Acknowledge signal used for the handshaking protocol, which indicates the

termination of a bus cycle.

ADR_O – Address output array

CYC_O – Cycle output signal, indicating a valid bus cycle when asserted. For burst and

block cycles, the CYC_O signal is held high for multiple transfers until the final cycle.

ERR_I – Error input signal, used as an alternative to ACK_I to indicate a failed transfer.

The exact functionality of this signal depends on the IP core.

LOCK_O – Lock output signal, used to ensure a transfer is uninterruptable. The exact

functionality of this signal depends on the IP core.

RTY_I – Retry input signal, used as an alternative to ACK_I. The exact functionality of

RTY_I depends on the IP core.

SEL_O – Select output array, used for fine control over data granularity. The size of

SEL_O depends on the data width and granularity. For example, 8 bits are used for a 64

bit data bus with byte granularity.

STB_O – Strobe output signal, used to indicate valid data transfer cycles. Unlike

CYC_O, STB_O is deasserted after a transfer.

TGA_O – Address tag output signal, used to contain tag information associated with the

ADR_O signal. For burst transfers, the TGA_O tag contains Cycle Tag Identifier (CTI),

and Burst Type Extension (BTE) tags regarding burst specifics.

TGC_O – Cycle tag output signal, used to contain tag information regarding a bus cycle.

It can be used to distinguish between a single, block or RMW cycle.

WE_O – Write enable output signal, used to indicate a write transfer.

Slave signals receive the exact same master signals, but in an opposite direction. For

example, CYC_I receives the cycle output signal, whereas ACK_I sends an acknowledge

response from the slave to the master‟s ACK_O signal. The types of Wishbone bus

cycles are divided into three sections – Single, block and burst.

30

 Single transfers use a handshaking protocol shown in Figure 7. The master core

initiates a transfer with the strobe signal, where the slave responds with ACK, ERR or

RTY. Strobe is held high until a response is received, where the stobe signal is then de-

asserted. A cycle termination signal (ACK, RTY or ERR) must be asserted according to

the logical AND of STB and CYC.

Figure 7 - Single Transfer Handshaking Protocol for Wishbone

A more detailed waveform is shown in Figure 8, where a sample single read transfer is

shown. CYC and STB are asserted to indicate a read request, where the address, selection

and associated tags are also applied. The slave responds with an acknowledge signal at

clock edge (1), as well as the data and associated tags.

Figure 8 - Single Read Transfer for Wishbone

31

A single write request is very similar, shown in Figure 9, where WE_O is asserted, data is

provided by the master on DAT_O and the slave terminates the transfer with an

acknowledge at edge (1).

Figure 9 - Single Write Request for Wishbone

These two requests can be performed in a Read-Modify-Write (RMW) request, shown in

Figure 10. The CYC signal is held high for the duration of the transfer, while the separate

strobe signals perform the actual individual transfers.

32

Figure 10 - Wishbone RMW

The block transfers operate slightly differently, where the acknowledge signal may be

held high for a number of cycles for multiple transfers for increased bandwidth and

reduced delay. A block read request is shown in

Figure 11. Note that CYC is asserted for the entire duration of the transfer.

33

Figure 11 - Block Read Request for Wishbone

Burst transfers address the issue of the additional delays involved when cycle termination

signals, in order to reduce wire routing delay, become synchronous. Additional tag

signals are used in order to let the slave know of predictable transfers in advance. The

Address Tag contains two additional identifiers, used to specify burst characteristics:

Cycle Tag Identifier (CTI) and Burst Type Extension (BTE). CTI is 3 bits, and BTE is 2

bits. They are shown in Table 1 and Table 2.

CTI(2:0) Description

000 Classic cycle

001 Constant address burst cycle

010 Incrementing address burst cycle

011-110 Unused

111 End-of-Burst

Table 1 - Cycle Type Identifier

BTE(1:0) Description

00 Linear burst

34

01 4-beat wrap burst

10 8-beat wrap burst

11 16-beat wrap burst

Table 2 - Burst Type Extension

The Classic Cycle is not a burst transfer, where no information about future master cycles

is given. End-of-Burst is used to indicate that the current cycle is the last cycle in the

burst. Constant address cycle causes a continual access to the same address, until End-of-

Burst is given. Lastly, Incrementing address burst uses the Burst Type Extension tag to

further define the address behavior. Consecutive addresses, based on BTE are applied.

Linear burst simply adds one to the address per cycle, while the beat wrap bursts are

modulo the wrap size. Figure 12 is an example of a incrementing address burst transfer.

Figure 12 - Incrementing Bursts for Wishbone

2.2.2 Avalon Interface

Altera‟s Avalon interface is a flexible interconnection architecture aimed at SoCs on

FPGAs. While Avalon has six different types of interface – Memory Mapped,

35

Streaming, Tristate, Clock, Interrupt and Conduit – the Memory Mapped interface will be

the main focus due to the nature of the research. The other types will be briefly

explained.

2.2.2.1 Avalon-MM

The slave interface uses the following signals. Note that not all of them are required.

Read – Read is asserted to indicate a read transfer, where readdata is required.

Write – Write is asserted to indicate a write transfer, where writedata is required.

Address – Contains the address used for read and write requests, and can be up to 32 bits.

Readdata – Contains the data for a read response.

Writedata – Contains the data for a write request.

Byteenable – Used for fine control over data granularity. Selects a specific byte lane for

transfer, and has the available bit widths of 1, 2, 4, 8, 16, 32, 64 and 128.

Begintransfer – Asserted for the first cycle of each transfer, regardless of waitrequest.

Waitrequest – Asserted by the slave to indicate that it is unable to respond to a request.

Readdatavalid – Asserted when data is supplied in response to a read request.

Burstcount – Indicates the number of transfers that a burst contains, with a maximum size

of 32 bits.

Beginbursttransfer – Asserted on the first burst cycle to indicate the start of a burst

transfer.

Figure 13 demonstrates examples of slave read and write transfers using Avalon-MM.

36

Figure 13 - Example Avalon-MM Transfer

2.2.2.2 Avalon-ST

Avalon Streaming (Avalon-ST) interfaces are used for driving unidirectional and high

bandwidth data, where applications include DSP, packets and multiplexed streams.

Connected components act as either a source or a sink, with data flowing from the source

into the sink.

2.2.2.3 Avalon-MM Tristate

Avalon Memory-Mapped tristate interfaces allow off-chip components to be used. It is

relatively similar to Avalon-MM, but with the inclusion of Chip Select (CS) and Output

Enable (OE) signals, as well as a bidirectional data line. When chip select is present, all

signals are ignored unless CS is asserted. When OE is deasserted, the slave will not drive

its data lines.

2.2.2.4 Clock

Clock provides synchronization for the Avalon interface and includes a synchronous reset

signal. All internal logic returns to initial states when reset is asserted.

37

2.2.2.5 Interrupt

Each applicable slave device has an interrupt output signal (IRQ), which is asserted when

service is needed. The master device receives up to 32 interrupt signals and, depending

on the IRQ scheme, services each interrupt according to a priority table.

2.2.2.6 Conduit

The Conduit interface is used with Altera‟s SOPC Builder software and is used for

exporting signals for connection with external FPGA pins.

2.3 FPGA Technology

Field Programmable Gate Arrays (FPGA) are special integrated circuits, which provide

pre-fabricated components and switches. They can be used to instantiate user-defined

logic with Hardware Description Lanuages (HDL), such as VHDL or Verilog. Since

FPGAs have grown alongside traditional Application Specific Integrated Circuit (ASIC)

manufacturing processes, they contain millions of gate elements and provide an excellent

prototype medium for integrated circuit designs. A typical FPGA contains Logic

Elements (LE), in the form of look-up tables, which are used to implement custom logic.

Newer FPGAs contain more advanced components, such as DSPs, block memories,

multipliers, registers and even CPUs. In this thesis, an Altera Stratix II EP2S60F672C3

FPGA is targeted for synthesis analysis in order to provide component area usage as well

as power and clock frequency.

2.4 CAD Tools for NoC Implementation on FPGAs

2.4.1 Altera Quartus II

Altera Corporation‟s Quartus II software is a design environment targeting Altera

FPGAs. It provides solutions for all phases of FPGA design flow, shown in Figure 14.

The Design Entry consists of writing the HDL files and setting their compilation

hierarchy. Synthesis involves compiling and analyzing the design files in order to find

the required FPGA resources and their connectivity to realize the design, and Place and

Route fits the design onto the FPGA hardware using the available resources. Timing

Analysis analyzes the performance of the logic and attempts to meet timing requirements.

38

Simulation is a verification tool, and the FPGA hardware implementation is the final

Programming and Configuration stage. Version 9.0 running in CentOS 4.7 was used in

this research, where Synthesis was only used for the NoC, and up to Timing Analysis is

used for individual components.

Figure 14 - Quartus II Design Flow

2.4.2 Altera SOPC Builder

System-On-a-Programmable-Chip (SOPC) Builder is included with the Quartus II

software and allows for design of embedded systems using the softcore Nios II CPU.

Devices use the Avalon interconnection fabric and the NoC component is imported and

customized with VHDL generics.

2.4.3 Nios II Embedded Design Suite (EDS)

The Nios II EDS provides a design environment for configuring, programming,

debugging and simulating the Nios II CPUs. The Eclipse IDE in the Nios II EDS

provides a C/C++ compiler, linker and assembler for Nios II programs. Other such

features include in-circuit debugging and Flash programming.

39

2.4.4 Mentor Graphics ModelSim

Mentor Graphic‟s ModelSim [17] is a simulation engine for VHDL and Verilog designs.

It includes code coverage, assertion tests, breakpoints and in-depth signal and variable

simulation that are otherwise not provided by Quartus II‟s [14] simulation engine. This

tool was used to simulate and evaluate the NoC architectures.

2.5 Related Work

In this work, many different areas are touched on. We start with the Avalon-Wishbone

glue logic and look at related work in that area. Next, we look at related work in the area

of NoC adapters, followed by related work that builds an NoC with the Nios II CPU and

supporting software. Other areas of related work include similar routers synthesized for

FPGAs and their evaluation methodologies. Nevertheless, this paper demonstrates the

similarity between the two standard sockets.

 Regarding the glue logic between the Wishbone and Avalon interface sockets, a

Wishbone compatible I2C controller was ported to the Avalon bus [34]. The glue logic

was verified with simulation results. While the logic is correct for single transfers, there

is much missing in the way of variable latency support and high speed Avalon block

transfers. The readdatavalid signal is not supported in this paper and block transfers will

not be queued and hence, forced into a wait state. Lastly, there is no mention of burst

transfer glue logic.

 A packet-switched wormhole router was implemented [27], utilizing Virtex-4

SRL16 components for FIFO implementation, which increases efficiency but decreases

portability and design reuse. A Wishbone adapter was included, which supports burst

transfers. Since the routers are input queued, deadlock becomes an issue and was solved

by adding a separate read request buffer into the Wishbone adapters, which halts any

incoming request when the buffer fills. They tested the design with 16 switches,

memories and transaction generators. The individual router was synthesized for Xilinx

FPGAs with four and five ports and was compared to related work.

 In [35], a 4x4 packet-switched mesh NoC was implemented with SOPC Builder

using Nios II CPUs. Multiple Stratix II FPGA boards running at 50MHz were used in

order to fit the entire design, which results in an on-board throughput of 650Mbps. Inter-

40

board communication operates at 50Mbps. A software driver is used to access NoC

functions within the Nios II CPUs. The system was verified by probing certain NoC

components as a message traverses the network and returns to the sender, and thus was

found that the maximum communication rate was 43.4 kPackets/s. This large difference

between the theoretical bandwidth of 640Mbps is due to the large amount of time

required for the packet to traverse the software routines.

 In [36], a packet-switched wormhole router with input queuing was designed and

analyzed. The router has four regional ports and one local port, and uses X-Y routing. A

3x3 mesh NoC architecture was implemented with traffic generators attached. The buffer

size and traffic patterns were analyzed and explored, resulting in overall increased

performance as buffer size increased. A 2x2 NoC was synthesized targeting a Xilinx

XC2V1000 FPGA.

 In [37], evaluation schemes for NoCs are developed in order to compare

performance and characteristics of NoCs. Throughput is defined as the total number flits

traversed per time per number of IP cores. Transport latency is defined as the average

number of cycles required for a packet to traverse the network. These evaluation

methodologies were analyzed using a wormhole router simulator contrasted with various

network topologies. The topologies used were SPIN, OCTO, CLICHÉ, Folded torus and

BFT. They also compared traffic generator injection loads with throughput and average

transport latency. They conclude by stating that this is an important basis for NoC

evaluation methodology.

 Æthereal [7] is a wormhole-routing NoC developed at Philips Research

Laboratories which provides two types of services – guaranteed and best effort, as a

result of combing a GS and a BE router. A six port router was implemented for ASIC

technology using 0.175 mm² and a four port network interface was implemented for the

same technology, using 0.172 mm². They were both implemented on 0.13 µm

technology running at 500 MHz.

 In [38], a store-and-forward packet-switched router is designed targeting FPGAs.

X-Y routing is used and the router is designed in order to reduce FPGA resource usage.

A single five port router was found to use 352 Xilinx Virtex-II Pro FPGA slices (2.57%

of a XC2VP30). A 3x3 mesh network is implemented, using 28% of the XC2VP30

41

FPGA. To conclude, timing results required to transmit a packet were shown for various

flit sizes and mesh sizes.

2.6 Summary

This chapter has educated the reader on NoCs, socket standards, FPGAs and supporting

software. It began with an overview of NoCs, which was further broken down into four

sections based on the OSI model. Each section covered the details and design techniques

involved in NoCs. The Wishbone and Avalon socket standards were discussed next,

educating the reader on the operation of such standards. A brief description of FPGAs is

covered, and is concluded with discussions on the software tools used in this work.

Related work is discussed. Chapter 3 begins to detail the design and structure of the

discrete NoC components developed in this thesis.

42

Chapter 3

NoC Adapter and Router Design

This chapter discusses the design and structure of the discrete NoC components

developed in this thesis. It begins with the NoC adapter, where the NoC protocol is

established as well as the supporting modules including awb and adr2dest. The chapter

concludes with a discussion on the wormhole router‟s design and details.

3.1 Adapter Overview

he PWR adapter is responsible for sending and receiving packets from the NoC

and converting them into Wishbone [11] or Avalon [12] signals. It essentially

makes the IP cores compatible with the NoC.

 The PWR project began being Wishbone-compliant but switched to Avalon to

make use of Altera‟s CAD tools. Thus, the Wishbone aspects of the adapter remain

largely untested and are an open area for research.

 The adapter is divided into two types of adapters – Master and Slave. As

illustrated in Figure 15, the Master adapter is responsible for receiving requests from a

master component (such as a CPU) and applying the response signals. The Slave adapter

is responsible for applying the master requests and receiving the slave responses.

T

43

 The adapter contains a variety of VHDL generics, offering a degree of design

flexibility. The adapter is designed to be compatible with a wide range of signal widths

and to conform to Avalon and Wishbone standards. Avalon interface compatibility is

obtained through the use of a glue logic module. The logic utilization of the glue logic is

very small, and hence negligible. These parameters are divided up into three sections:

Interface, NoC and internal. Interface parameters provide flexibility with the

Wishbone/Avalon interfacing. NoC parameters allow the adapter to operate in a variety

of different NoC architectures. Internal parameters concern the internal operation of the

adapter.

 Common for both adapters, data width (WB_width), address width (adr_width),

address tag width (tga_width), cycle tag width (tgc_width), data tag width (tgd_width)

and selection width (sel_width) are VHDL generics used to specify Wishbone interface

parameters. Specific to the slave adapter, cti_lsb and bte_lsb both indicate cycle type

identifier and burst type extension least significant bit locations, respectively.

 NoC parameters are flit_size, fifo_depth, src_width and dest_width. Flit_size is

the size of a flit, in bits. Fifo_depth is the number of registers in the adapter‟s FIFOs,

which allows the adapter to queue up flits if the NoC is congested. Sr_c and dest_width

are the bit widths of the source and destination NoC addresses, respectively. They should

both be equal, where the separate parameters are present for future optimization allowing

lower bits for source addresses.

Master

Core

Master

Adapter

NoC

Slave

Core

Slave

Adapt

er

Figure 15 - Adapter Overview

44

 The internal parameters are fast_burst, burst_depth, burst_tag_en, no_ack,

sdram_delay and Avalon_bursts. Fast_burst indicates that burst and block transfers are

to be queued up using a burst buffer, thus opening request types 4 and 5. Burst_depth is

the size of the burst buffer – this parameter is useful if there is a small flit size but large

packet size (due to large data width, for example) since more requests can be queued and

hence the CPU does not get stalled. Burst_tag_en is used to enable burst tags for

Wishbone transfers – 1 to enable, 0 to disable. No_ack is used when there is no

acknowledge signal for reads and writes – For this thesis, it is set to 1. Sdram_delay is

used with single transfers and delays forming a packet by one cycle – this was needed for

interfacing with SDRAM in single transfer mode. Avalon_bursts is used if Avalon block

transfers are used – this distinction is required since Wishbone block transfers are

different from Avalon‟s as explained in chapter 2.

 Packets are made up of flits and the minimum packet size is three bits. The first

three bits in a packet is always the request type, while the rest of the packet depends on

the request type. The adapter analyses the request (or response) of the IP core and

chooses the appropriate request type. Table 3 indicates all the request types and their

size. In the case of this research, only request types 3, 4 and 7 are used due to the

exclusive use of Avalon block transfers.

 The complete adapter is formed of five modules – adr2dest, awb, fifo,

master/slave sampler and master/slave top. Adr2dest is responsible for converting the

address signals into NoC destinations. Awb is the Avalon-Wishbone glue logic. FIFO is

the first-in, first-out register bank used to queue incoming and outgoing flits for the

adapter. The sampler is the main logic of the adapter, responsible for packetizing and de-

tgd Address tgc tga C L S W Source Dest 001/011

Data A E R Dest 101/11

1
Address L S W Dest 010/100 Data tgd tgc tga sel C Source

A E R Dest 110/000 Source

Single/burst read request from master

Single/burst read response from slave

Single/burst write request from master

Single/burst write response from slave

Table 3 - Request Type Design

45

packetizing the interface requests and responses. Finally, the „top‟ module is responsible

for the hand-shaking protocol between the sampler and FIFOs, and the sampler and NoC.

Each component is described below.

 Adr2dest (address to destination) is a simple look-up table for destinations. For a

specific range of addresses, a destination is output. There are two unique VHDL generics

in this module: routing_table and address_ranges. Routing table is an array of integers

and contains the destinations that are to be outputted. There are 33 elements in this array

and can be expanded by editing the quick_convert package. The quick_convert package

contains functions and VHDL types used in the source code. Address_ranges contains

the lower and upper addresses in order to output the destination. For address_ranges 0

and 1, routing_table 0 is outputted. For 2 and 3, routing_table 1 is outputted and so on.

Figure 17 demonstrates this functionality.

Master/Slavetop

Master/Slave

sampler

Input

FIFO

Output

FIFO

Adr2dest
Awb

IP Core

NoC

Figure 16 - Adapter Design Overview

46

 Awb is the Avalon-Wishbone glue logic. It contains both the slave and master

adapter interfaces, indicated with a prefix wbs/wbm or avs/avm for Wishbone and

Avalon, respectively. Most of the logic is simple name changes for the signals to make

building in SOPC Builder [14] easier and the component interface conversion is

bidirectional. There is additional clocked logic used to delay the de-assertion of Avalon

read/write signals by one cycle since de-asserting these signals is not allowed

immediately when the wait_request signal is de-asserted as well. The connections are

illustrated in Figure 18.

 FIFO is an array of registers, responsible for queuing flits in to and out of the

adapter. An extra „overflow‟ register is provided to help stop issues with control signal

latency. The FIFO‟s depth is specified with VHDL generics. „Empty‟ and „Full‟ are

used to indicate when the FIFO can be read from or written to.

 The samplers have two unique versions – master and slave. The operation of the

samplers is based around the idea of „sampling‟ and saving bus signals, yet the operation

Wishbone

Master

^ we

stb

tgd
adr(27..2)
sel
dat_o
ack
dat_i

Avalon

Master

 waitreq
write
read
burstcount
address
byteenable
writedata
readdatavali

d
readdata

last

v

^ v

Figure 18 - Avalon-Wishbone Glue Logic for Master

Address_ranges

Routing_table

0

1

2

…

0x1000 0x1fff 0x2000 0x3fff

Figure 17 - Address to Destination

Parameter Design

47

of the adapters is more complicated than this. Simply sampling the bus at specific

intervals, placing in a packet and sending over the network would cause a lot of wasted

packets being sent since some transaction signals are predictable. The Wishbone

operation handles three types of transactions: Single, block and burst. Single transactions

in the adapter perform one complete transaction at a time. Block transactions is

essentially the same as single transactions for Wishbone, but with a key difference in that

the acknowledge signal is predicted to be asserted for write requests and is done so

artificially, thus increasing the speed of the adapter. Read transactions for Wishbone

block transfers operate the same as single transfers, since a response is required and

cannot be predicted. Burst transfers include the cycle and address tags (CTI and BTE,

respectively) so read requests can be sped up, similar to how block writes work. The

Avalon block transfers operate differently in that requests can be „queued‟ without an

acknowledgement for the previous request. Thus, a specific VHDL generic

(Avalon_bursts) is used to switch the adapter into Avalon‟s block request queuing mode.

The operation of the master adapter in this mode is illustrated in Figure 19, and the slave

adapter is shown in Figure 20.

48

Creating packets Receiving packets Sending packets

Set request type

Burst buffer

not full

Cycle &

Strobe

Not

paused

Form packet

Store in burst

buffer

Buffer full

Pause

Burst buffer

not empty

Store buffer into temp

register

Break into flits and

send to FIFO

Input FIFO

Valid

Store flit in temp

register

Temp full

Apply signals

Figure 19 - Master Sampler 3-Concurrent Process Flowchart in

Burst Mode

49

 The Top modules (mastertop and slavetop) connect the samplers with input and

output FIFOs. The top modules are also responsible for providing the handshaking

protocol between the FIFOs and the NoC. This is done with two flip-flops –

wait_for_noc_ack and noc_sent. Wait_for_noc_ack is set when an output FIFO sends a

flit and is cleared when the NoC acknowledges (via deasserting the receive_ready

signal). Noc_sent is similar, where it only writes the first flit to the input FIFO until

noc_send is deasserted.

3.2 Router Overview

The PWR router is a packet-switched wormhole router with two deterministic routing

schemes – X-Y routing and source routing, and a general top view of the module is

shown in Figure 21. Note that the number of ports is defined by the VHDL generics.

Creating packets Receiving packets Sending packets

Set request type

Burst buffer

not full

Ack/ Err/

Rty

Form packet

Burst buffer

not empty

Store buffer into temp

register

Break into flits and

send to FIFO

Input FIFO

Valid

Store flit in temp

register

Temp full

Apply signals

Figure 20 - Slave Sampler 3-Concurrent Process Flowchart in Burst Mode

50

For source routing, the protocol is routed in that a unique routing lookup table is present

in each router. The arbitration is round-robin and flow control uses a send/acknowledge

protocol. The switching mechanism uses VHDL FOR loops to implement a full crossbar

switch. A simplified data view of the router is shown in Figure 22.

Parameterizable

Wormhole

Router

noc_next_receive_ready

noc_next_send_ready

noc_receive_ready

noc_send_ready

ports_i

ports_o

noc_valid_l

noc_adapter_receive_l

noc_receive_ready_l

noc_send_ready_l

local_ports_i

local_ports_o

Regional port

Repeated

port_num

times

Local port

Repeated

local_port_num

times

clock

reset
Figure 21 - Router Overview Diagram

51

 Each output port has a storage register, large enough to hold a single flit.

Incoming flits are stored after internal routing and arbitration by means of obtaining the

destination address. In the case of the destination address not being obtainable in the first

incoming flit, a special “input buffer” register is used to store incoming flits. Once the

flit is stored, the input and output ports are locked and a counter is started. Once the

counter reaches zero, the worm is complete, meaning the entire packet has been

successfully sent through the node. The input and output ports are unlocked and the

priority table of the output port is adjusted so that the input port has the lowest priority.

 There are a number of VHDL generics which allows flexibility in the router

design, and these are broken up into three sections: Interface, NoC and Internal. The

Interface parameters include the bus interconnect bit-widths: WB_width, adr_width,

tga_width, tgc_width, tgd_width, and sel_width. These parameters are used to create the

constants required to create the flit worm. The parameters fast_burst, burst_depth,

cti_lsb, bte_lsb and burst_tag_en are unused. The NoC parameters are flit_size,

routing_table, src_width and dest_width. The Internal parameters include num_ports,

num_local_ports, routing_type, xy_col and xy_row. Num_slave and num_master are

Routing

Table

Switch

Logic

Crossbar

Arbiter

P
ri

o
ri

ty
 Lock

Store

Count

I/P Buffer

Lock

i

I/P Buffer

Lock

i

P
ri

o
ri

ty
 Lock

Store

Count

Figure 22 - Internal Router Design

52

unused. Num_ports is used to indicate the amount of ports in the router, where

num_local_ports is for local ports. Routing_type is set to 1 to indicate source routing and

2 for xy routing. Xy_col and xy_row are used to indicate the location of the router for xy

routing.

 The basic port of the router operates with a handshaking protocol involving the

signals noc_receive_ready, noc_next_receive_ready, noc_send_ready and

noc_next_send_ready. These signals are named differently for local ports, but operate

the same. Noc_receive_ready is de-asserted for one cycle to indicate to the previous port

that the send was successful. Noc_next_receive_ready is simply an input signal from the

next router‟s noc_receive_ready signal. Noc_send_ready is asserted when the port

wishes to send its flit and remains high until noc_next_receive_ready is 0.

Noc_next_send_ready is the send signal from the next router.

 The input and output ports are locked via a flip-flop for the count of flits inside

the packet. Once the last flit is received and successfully sent to the next router, the input

and output ports are unlocked and the priority of that input port is set to the lowest

priority.

 More detail on the arbitration handling in the router is as follows. The priority

table consists of a table of priorities per input port, per output port. Each output port

contains an array of priority values for each input port, where a high value indicates a

high priority. When multiple input ports try to route a flit to the same output

(destination) port, the highest priority input port gets precedence. That input port‟s

1 …

2 …

4 …

3 …

Priority table

Each cell is a number from 1 to

total ports

Total number of

ports (Next port)

Total # ports

(Input port)

Figure 23 - Priority Table Design

53

priority gets reduced to 1 and all other port priorities are incremented.

 The PWR router‟s QoS mechanism is Guaranteed Service (GS). The flits that

form a packet cannot get “mixed up” or corrupted. If an issue ever arises, it would be due

to a malformed packet from the adapter and may result in an assertion error when the

router cannot understand the request type (first three bits) in a packet. Deadlocking can

occur if the adapters freeze up due to FIFOs becoming full and not emptying, and

interdependent resources become locked in a permanent wait state. Livelocking occurs

when resources get frozen in perpetually changing states, such as through re-sending or

redirection of packets [4]. Since PWR uses deterministic routing schemes, it becomes up

to the NoC designer to guarantee that livelocking cannot occur, as well as to minimize

deadlocking with careful placement and routing. Through the use of directed graphs, a

deadlock-free system can be realized [22].

3.3 Summary

This chapter discussed the design and structure of the discrete NoC components designed

in this work. It began with a description of the NoC adapter, followed by design

architectures of the supporting modules including awb and adr2dest. The details of the

adapter are discussed, which is followed by the wormhole router‟s design. The chapter

concludes with discussion on the router. The upcoming Chapter 4 discusses the

implementation of the NoC and the framework to evaluate the design.

54

Chapter 4

NoC Implementation and Evaluation

Framework

Chapter 4 begins with a discussion of the test system to be enabled by the NoC, including

the components used and the operation of the system. The NoC is applied to this system,

detailing certain difficulties involved, which follows with in-depth details of the

operation of the benchmark system. Chapter 4 concludes with a discussion of the

evaluation environment.

4.1 Multi-CPU Benchmark System

he goal is to have real traffic from a practical system, as well as to have this

traffic change and flow according to the performance of the system. Work with

NoCs using real systems has been done [22], but in general, there needs to be

more research on the topic. A multi-processor design example was chosen from Altera‟s

website, with the intention to replace the Avalon [12] bus fabric with an NoC. It was

modified to suit a simulation environment and to reduce the amount of components. The

modified multiprocessor example, shown in Figure 4, contains three Nios [21] II/f soft

core CPUs, three 1 ms timers, 16 MB of flash memory (AMD29LV128M123R_BYTE),

a mutex, 64 KB of on-chip RAM, 1 KB of message buffer RAM (on-chip), 256 Mbit (16

bit) SDRAM (Nios Development Board, Stratix II), a JTAG UART interface module, a

sysid module and an LED PIO. The system operates by means of initially booting off the

Flash memory, followed by reading the data and instruction code from the DDR

T

55

SDRAM. Each timer is responsible for sending interrupt requests to the CPUs, who then

take turns attempting to acquire a mutex lock. Once a lock is established, the CPU writes

a message to the message buffer; CPU two and three also send the signal to the LED PIO.

CPU one is responsible for reading this buffer, clearing it and sending the message to the

JTAG UART interface module. Each CPU sends a total of five messages and then idles

indefinitely. The program code is contained within the SDRAM for all three CPUs,

within separate locations. All the CPUs have their reset vector in FLASH memory. CPU

one‟s interrupt vector is contained within the on-chip memory module, while CPU two

and three‟s interrupt vectors are in the SDRAM. The functionality of this design is as

follows – Each CPU attempts to acquire the mutex, which results in them writing a

message to the message buffer. CPU one is responsible for reading the message, sending

it to the UART module and clearing the message. Of course, CPU one must have a

mutex lock. The timers interrupt their respective CPUs, which cause them to attempt to

acquire a mutex lock.

4.2 Implementation of NoC in SOPC Builder

 The NoC is added into SOPC‟s [14] component editor. To clear confusion,

master and slave adapters are connected to master and slave IP cores, respectively. A

master adapter‟s Avalon interface is called “slave” for reasons that the Nios II master

interface needs to be connected to a slave interface. The Avalon parameter maximum

pending reads is set to 8 due to the block transfers of the Nios II being in groups of 8 and

to increase performance. The parameters in SOPC Builder were set according to Figure

24.

56

Figure 24 - NoC Parameters in SOPC Builder

The component is then added to the system and the interfaces are connected. Figure 25

shows the torus NoC implemented in SOPC Builder. Each address is assigned manually,

where the address bus from the Nios II is 32 bits and the address bus from the NoC is 27

bits. This means the upper 5 bits are ignored by the NoC but are used by the Avalon

fabric‟s arbitration. Since masters are connected to their own buses, then master adapters

can have the same addresses.

Figure 25 - Torus NoC Implemented in SOPC Builder

The slave components are assigned addresses manually, but each component must have a

unique address range in the range of 27 bits. Figure 26 illustrates the Torus NoC

connected to the slave components and their respective assigned addresses.

57

Figure 26 - Torus NoC Connected to Slave Components

Once the component is created, a Tcl script is automatically created by SOPC Builder.

This script must be manually modified in order to make the master adapters act as bridges

so the reset and exception vectors can be set in the Nios II CPUs. Figure 27 illustrates

the concept of bridges, where the Nios II “sees” a master adapter as being directly

connected to a memory module. Since each Nios II has their reset and exception vectors

pointing to different memory components, and that an interface can only bridge to one

other component, it follows that there must be two adapters – one for each vector. If the

reset and exception vectors pointed to the same memory module, then only one adapter

would be needed. For each master adapter, the set_interface_property bridgesToMaster

parameters must be modified so they contain the slave adapter‟s name.

The last issue involves the number of adapters for each Nios II CPU. Four were used for

each Nios II adapter so that each Nios II bus (data and instruction) gets its own adapter,

NoC
Nios II M

M

I

D

Onchip

DDR

Figure 27 - Bridging Example

58

which is then divided again due to the bridging issue. Due to the adapters queuing

requests and responding when ready, this caused problems when the bus arbiter was not

granting access to the correct bus when the adapters were responding. Having separate

adapters overcomes this issue.

4.3 Nios II Programming

Before getting into details about the benchmark program, an issue with Nios 2 EDS [16]

must be addressed. Since each program resides in different portions of the same memory

block and that Nios 2 EDS overwrites the data block when compiling the code for each

CPU, a script was set up to copy and concatenate the program files after each compile.

 Each CPU attempts to acquire a mutex lock, which results in them writing an

incrementing counter to the message buffer. The counters stop at five, after which no

more messages are sent from that CPU. The three CPUs are numbered one to three,

where CPU one is responsible for clearing the message buffer and writing to the message

to UART. CPUs two and three do not clear the message buffer or write to UART, but

they write to the PIO. They have the exact same code, but different program locations in

the SDRAM. The timers interrupt their respective CPUs, which cause them to attempt to

acquire a mutex lock. Figure 28 and Figure 28 illustrate the flowcharts of the programs.

CPU1

Get CPU ID

Figure 28 - CPU 1 Benchmark Flowchart

Initialize timer

Timer>Last+1

Set last timer

Request mutex

Acquired

mutex

No message

flag?

Count++

Message=”CPU #: Num: #”

Message flag=waiting

Clear message and flag

Write to JTAG

Release mutex

59

4.4 Modelsim Simulation Environment

Modelsim [17] allows for very fine-grained simulation, and hence is perfect for the

purposes of this research. Using Altera‟s built-in scripts, the program code is loaded into

Modelsim and the automatically generated project files are used. The JTAG UART

module outputs its messages to Modelsim‟s console, which is then used as a basis for

simulation end-time. Once each CPU outputs its 5 messages (CPU #: Num: #), the

runtime is recorded at the final write operation to SDRAM. Figure 30 shows a sample of

the router regional handshaking protocol as seen in Modelsim. At period 1, the router

sets the send bit to high on port number two. Four cycles later, at period 2, there is a

response on the receive signal from port number two, indicating that it has received the

flit. The router deasserts the send signal on port two and, one cycle later, reasserts it to

send another flit. This is just an example of what is seen in Modelsim in order to verify

the operation of the system.

CPU2 & 3

Get CPU ID

Initialize timer

Timer>Last

Set last timer

Request mutex

Acquired

mutex

No message

flag?

Count++

Message=”CPU #: Num: #”

Message flag=waiting

Release mutex

PIO = count

Figure 29 - CPU 2 and 3 Benchmark Flowchart

60

Figure 30 - Router Regional Handshaking

The performance data of the NoC is recorded through Modelsim by viewing the

Messages VHDL variable inside each master adapter. When a packet is formed or

received, the Messages variable is incremented by 1. When the program is complete,

each variable is accumulated in order to measure throughput. The traversal time is

measured by means of VHDL file IO functions, executed when a packet is formed and

absorbed. A continuous timer‟s value, the packet value and whether or not the packet is

absorbed or formed is written to file. A C++ program matches the formed and absorbed

tags and subtracts the timer values, thus calculating the traversal time in cycles.

Modelsim also provides simulation time, which represents the time taken to run the

program. The simulated clock period is 20 ns, or 50 MHz.

4.5 Summary

This chapter covered the test system enabled by the NoC and the details of its

components and operation. Issues involved in implementing the NoC within this system

as well as the details of the system operation were discussed. It concluded with a

discussion of the ModelSim evaluation environment used in this thesis. Chapter 5 will

discuss the details of the NoCs implemented in this thesis.

61

Chapter 5

FPGA Implementation of Torus and Ring NoC

Architectures

This chapter discusses the details of the two NoC architectures designed in this thesis. It

begins with a network topology discussion, followed by details of the IP core placement

in each NoC. The routing of such cores is discussed in detail, which concludes with a

briefing on the NoC Generator program.

5.1 Topology

Two regular topologies were implemented and simulated in Modelsim – Torus and ring.

The torus topology is similar to the mesh topology, in that all nodes have the same

number of neighbours by means of „wrapping‟ node links to opposite sides [39]. Figure

31 illustrates the differences between the two topologies.

62

As mentioned in [31], the ring topology is one of the least studied NoC topologies and

was chosen for that reason. Conversely, mesh and torus topologies are the most studied

cases. The ring topology‟s nodes have two ports, which daisy-chain the connections until

a loop is formed. Figure 32 illustrates an example ring topology.

For the ring topology, one router is included per IP core. The 4x4 torus was designed to

contain n² nodes and since the root of fourteen is irrational, then there will be two pure

routing nodes.

0 1 2 3

9

8 7 6 5

4

Figure 32 - 10-Node Ring Example

0,0 1,0

0,1 1,1

2,0

0,2 1,2

2,1

2,2

0,0 1,0

0,1 1,1

2,0

0,2 1,2

2,1

2,2

3x3 Mesh 3x3 Torus

Figure 31 - Mesh vs. Torus

63

5.2 Placement and Routing

The goal of placement and routing in both topologies was to have the smallest path

between cores, while avoiding congestion. This was done somewhat arbitrarily as seen in

Figure 33. Routers 3 and 10 are pure routing nodes, with no cores attached.

To aid the process of routing, the core placement is summarized in Figure 34, which

better visualizes the wrapped connectivity property of the torus topology that is available

for routing.

R0

CPU1

R1

Timer 1

R2

CPU3

R3

R4

JTAG

R5

Flash

R6

Sysid

R7

Timer 3

R8

Timer 2

R9

CPU2

R10

R11

PIO

R12

On-Chip

RAM

R13

DDR

SDRAM

R14

Mutex

R15

Message

Buffer

Figure 33 - Torus Core Placement

64

In general, each CPU has dependencies for on other cores and is summarized in Table 4.

For example, CPU 1 depends on Timer 1, but CPU 2 does not depend on Timer 2. While

the routing allows for a path between non-dependent cores, in general this should not

happen and is merely included for fullness. Table 4 summarizes these dependencies,

which apply to both topologies.

 CPU 1 CPU 2 CPU 3

Flash Yes Yes Yes

DDR Yes Yes Yes

Timer 1 Yes No No

Timer 2 No Yes No

Timer 3 No No Yes

JTAG

UART

Yes No No

Mutex Yes Yes Yes

Message

Buffer

Yes Yes Yes

PIO No Yes Yes

On-Chip Yes No No

C T C

J F S T

T C P

O D X M

J F S T

T C P

O D X M

J F S

T C

O D X

C T C

J F S

T C

O D X

F S T

C P

D X M

T C

F S T

C P

D X M

T C

F S T

C P

C T C

J F S T

T C P

C T C

J F S

T C

C = CPU

T = Timer

J = JTAG UART

F = Flash

S = Sysid

P = PIO

O = On-Chip RAM

D = DDR SDRAM

X = Mutex

M = Message Buffer

Figure 34 - Placement for Routing

65

RAM

Sysid Yes Yes Yes

Table 4 - Master-Slave Dependencies

An overview of the routing goals is shown in Figure 35, which demonstrates the routing

to each dependent core from the three CPUs. Figure 36 shows all the routing paths for all

14 destinations. The extra adapters used for bridging and separate bus and data bus paths

are the same as destinations 0, 9 and 2 for CPUs 1, 2 and 3, respectively.

The placement of the cores in the ring network was relatively straight forward, where

cores were placed in order to minimize routes and keep high throughput cores close

together. The placement is summarized in Figure 37 and the routing is summarized in

Figure 38.

Dest 0 Dest 1 Dest 2 Dest 4 Dest 5 Dest 6 Dest 7

Dest 8 Dest 9 Dest 11 Dest 12 Dest 13 Dest 14 Dest 15

Figure 36 - Torus Source Routing Paths

CPU1 1 CPU3

1 A A 3

2 S

1 A A A

CPU2

Core Dependencies

1 = CPU1

2 = CPU2

3 = CPU3

A = All CPUs

S = CPU 2 and 3

Figure 35 - Torus CPU Routing

Solid black=originating from CPU1

Dashed blue=originating from CPU2

Dot-dashed red=originating from CPU3

66

5.3 NoC Generator

In order to ease the production of the topologies, a C++ program was written, called

noc_gen. Noc_gen accepts input parameters from the user either by a keyboard

Figure 38 - Ring Routing

R0

CPU1

R11

Timer 1

R3

CPU3

R12

JTAG

R4

Flash

R9

Sysid

R8

Timer 3

R7

Timer 2

R2

CPU2

R10

PIO

R13

On-Chip

RAM

R1

DDR

SDRAM

R5

Mutex

R6

Message

Buffer

Figure 37 - Ring Placement

67

peripheral or a file input. The generator then uses VHDL components, signals and

mapping to repeatedly instantiate and connects the routers and adapters. Any user input

is saved to a file for easy reproduction. The input parameters and ordering of noc_gen is

listed below.

a) File name

b) Number of slaves (adapters)

c) Number of masters (adapters)

d) Flit size

e) Routing type (1=source, 2=xy)

f) Data bus width

g) Address width

h) Cycle tag width

i) Data tag width

j) Select line width

k) Destination width

l) Source width

m) Use bursts? (true or false)

a. If true – Burst count width

n) Number of routers

a. If burst true - Fast burst?

b. Burst depth

c. CTI least-significant bit

d. BTE least significant bit

e. Burst tag enable

o) Number of ports

p) Number of local ports

a. Repeat O and P for each router

q) For each router port – Connect to router #

r) Connect to port #

a. Repeat Q and R for all router ports, until they are all connected

s) For each local port – Connect to adapter

68

a. Repeat S for each local port

t) Routing table – Input for each router

u) FIFO depth

v) Source Number

w) No acknowledge (no_ack)

a. Repeat u-w for all master adapters

x) FIFO depth

y) No_ack

a. Repeat x and y for all slave adapters

z) Routing table

aa) Routing table ranges

a. Repeat Z and AA for all Address To Destination modules (adr2dest)

bb) Number of beats

cc) Line wrap burst (true or false)

a. Repeat BB and CC for all Avalon-Wishbone modules (awb)

Only two NoC architectures (torus and ring) were implemented with noc_gen. The flit

size was varied using SoPC Builder‟s VHDL generic assignment functionality.

5.4 Summary

This chapter covered the details of the NoC architectures implemented in this thesis. The

details of the IP core placement within the NoC designs and routing algorithms between

them were described and discussed. Chapter 5 concludes with a discussion of the NoC

Generator C++ program which was used to fabricate the NoC architectures. Chapter 6

evaluates the two NoC architectures with different metrics and synthesizes the NoCs and

discrete components.

69

Chapter 6

Component Evaluation and Architecture

Comparison

Chapter 6 evaluates the NoC designs and components in this thesis by first synthesizing

the discrete NoC components for a Stratix II FPGA. This follows with a discussion of

the evaluation metrics utilized. The chapter concludes with in-depth details and

discussion of the NoC evaluations.

6.1 Design Space Exploration of Adapter and Router

The area, clock frequency and power usage of the router and adapter is measured from

Quartus II‟s [15] synthesis tools to yield ALUT and register usage. For the router, the

port size is varied from 2 to 6 with a constant flit size of 64 bits, and conversely flit size

is varied from 4 to 64 in binary incremental, with a constant port number of 5. The two

adapters have their flit sizes varied from 4 to 64. Power is measured with a constant

signal change rate of 12%. The FIFO buffer module is also synthesized in order to

observe area effects as flit size increases. Figure 39, Figure 40, Figure 41 and Figure 42

present the FPGA resource usages of the router, master adapter, slave adapter and FIFO

with a varying flit size. Figure 43 presents the router FPGA resource usages as the

number of ports changes.

70

Figure 39 - Individual Router Area vs. Flit size

Figure 40 - Master Adapter Area

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32 64

FP
G

A
 R

e
so

u
rc

e
s

Flit size (bits)

Router Area

Router ALUT

Router Registers

0

200

400

600

800

1000

1200

1400

1600

1800

4 8 16 32 64

FP
G

A
 R

e
so

u
rc

e
s

Flit size (bits)

Master Adapter Area

Master Adapter ALUT

Master Adapter Registers

71

Figure 41 - Slave Adapter Area

Figure 42 - FIFO Area

0

200

400

600

800

1000

1200

1400

1600

1800

4 8 16 32 64

FP
G

A
 R

e
so

u
rc

e
s

Flit size (bits)

Slave Adapter Area

Slave Adapter ALUT

Slave Adapter Registers

0

50

100

150

200

250

300

350

400

450

4 8 16 32 64

FP
G

A
 R

e
so

u
rc

e
s

Flit size (bits)

FIFO Area

FIFO ALUT

FIFO Registers

72

Figure 43 - Router Area vs. Number of Ports

In order to decrease compilation time, the router is set to 3 ports for power

measurements. The PowerPlay Power Analyzer Tool in Quartus is set to use a 12.5% I/O

signal toggle rate. These final results are fitted and timing is analyzed in Figure 44,

Figure 45 and Figure 46.

Figure 44 - Router Area vs Flit Size

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

2 3 4 5 6

FP
G

A
 R

e
so

u
rc

e
s

Number of Ports

Router Area vs. Ports

ALUT

Registers

0

100

200

300

400

500

600

700

800

4 8 16 32 64

FP
G

A
 R

e
so

u
rc

e
s

Flit size (bits)

Router Area

Router ALUT

Router Registers

73

Figure 45 - Power Usage of Discrete NoC Components

Figure 46 - Clock Frequency of Discrete NoC Components

6.2 Experimental Framework and Evaluation Metrics

he performance of the NoCs is measured with two metrics – Packet latency and

throughput. Packet latency is measured as the number of cycles between an

adapter forming a packet and the receiving adapter absorbing a packet [37].

The packet, a counter‟s value and a sender/receiver bit is outputted with VHDL‟s file IO

system. The sender and receiver bits are matched in a C++ program and the counter

values are subtracted, resulting in the number of cycles a packet requires in order to

635

640

645

650

655

660

4 8 16 32 64

P
o

w
e

r
(m

W
)

Flit size(bits)

Power Comparison

Power (mw) (router)

Power (mW) (master)

Power (mW) (slave)

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64

C
lo

ck
 (

M
H

z)

Flit size (bits)

Clock Comparison

Clk (MHz) (Router)

Clk (MHz) (Master)

Power (MHz) (Slave)

T

74

traverse the NoC. The C++ code also outputs the total amount of each packet type.

Throughput is calculated with the following formula:

Number of messages is the total amount of packets sent in the simulation – an

accumulator in each adapter counts the total messages sent at the point of

(de)packetization, which is shown in Modelsim [17]. Message length is the average

number of flits contained in a message. Number of IPs is the total count of functional

cores attached to the network (it is a constant of 14 in this case). Total time taken is the

number of cycles required to run the simulation. Since the program loops indefinitely,

the total time taken is marked at the final write to DDR SDRAM.

6.3 Comparison of Torus and Ring

The interrupt timers were originally set to 0.5ms and there were issues with the 8 bit flize

size system running incorrectly due to the NoC delay being too long and hence Nios II

[16] data becomes corrupted. 1 ms interrupt times were used for all measurements. This

decreases throughput since the benchmark takes longer to run, hence Total time taken

increases. Regardless of interrupt time, packet latency measurements were unaffected.

The average latency of both NoCs is shown in Figure 47, with the torus topology clearly

having the longest latency, regardless of flit size.

75

Figure 47 - Average Latency of Two NoC Topologies

The total time for the software benchmark to complete is shown in Figure 48. While this

data is not too useful on its own, it is useful for future researchers interested in comparing

the raw data. The ring NoC with 64 bit flit sizes takes 1154153 cycles, which is 197919

cycles less than the torus architecture. The goal of this research is not to prove whether

or not bus systems are superior or not and hence those systems are not compared.

Research has already been done on the topic, such as in [40], which demonstrates

increased performance and scalability as the system increases.

Figure 48 - Total Time to Complete Nios II Program

0

10

20

30

40

50

60

70

80

8 16 32 64

C
yc

le
s

Flit Size (Bits)

Average Latency

Torus

Ring

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

8 16 32 64

C
yc

le
s

Flit Size (Bits)

Total Time

Torus

Ring

76

The throughput of the two NoCs, previously discussed as flits per cycle per core, is

shown in Figure 49, demonstrating somewhat competitive performance for both NoCs

and its impact on flit size. The bandwidth is shown in Figure 50, which is shown for

comparative purposes.

Figure 49 – Throughput Comparison of Two NoC Topologies

Figure 50 – Bandwidth Comparison of Two NoC Topologies

The FPGA resource usage of the two NoCs is shown in Figure 51 and Figure 52, showing

ALUT and register usage, respectively. Clearly, the ring topology uses less area

throughout.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

8 16 32 64

Fl
it

s
p

e
r

cy
cl

e
 p

e
r

IP

Flit Size (Bits)

Throughput

Torus

Ring

0

5

10

15

20

25

8 16 32 64

M
b

p
s

Flit Size (Bits)

Bandwidth

Torus

Ring

77

Figure 51 - NoC Area – ALUTs

Figure 52 - NoC Area - Registers

These results are compared with [37], where five topologies are used (BFT, Cliché, Spin,

folded torus and octagon), with traffic generators. The traffic generators were designed

to emulate a multi-processor system. While throughput measurements average about 0.5

to 0.8 in [37], our throughput measurements range 0.005 to 0.02. Packet latency in [37]

averages around 30 cycles, while this research ranges from 45 to 70.

 These higher packet latencies can be attributed to the placement of the high-

priority items such as DDR SDRAM and the mutex. The DDR SDRAM makes up the

0

20000

40000

60000

80000

100000

120000

8 16 32 64

A
LU

T

Flit Size (Bits)

Area

Torus

Ring

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

8 16 32 64

R
e

gi
st

e
rs

Flit Size (Bits)

Area

Torus

Ring

78

majority of the traffic and the placement in the torus topology has room for optimization.

The ring topology has a distinct disadvantage in that there are only two neighbours

allowed due to the number of ports being set to 2 for all routers. This means one of the

CPUs is required to have a 2-hop delay for SDRAM transactions. Regardless of the

ring‟s downside, the average packet latencies were overall lower due to the somewhat

improved placement. This means if the placement of the DDR SDRAM were fully

optimized, then overall packet latency would improve. PWR also includes real routers

and adapter delay into packet latency, while [37] does not.

 One must consider that a real system is used, which is based on a 1 ms timer.

This means there will be moments when the CPUs are simply waiting for an interrupt and

no requests are made (roughly 900us delays), which makes overall Total time taken

increase. In [37], the traffic generator creates “dead traffic” moments but is not accurate

according to real traffic [22]. Concerning bandwidth, results from [37] were in the Gbps

range whereas PWR‟s were in the lower Mbps. Again, this is due to bandwidth relying

on the Total time taken. Concerning the comparison of ring versus torus topologies as

well as results versus flit size - It is interesting to note that for bandwidth, the torus

topology begins to level off after 32 bits, whereas the ring topology still increases – this

is most likely due to the placement of cores resulting in higher average latency. For

average message latency, the plots for both topologies are relatively the same, with the

torus having an overall higher latency. It is difficult to compare these two plots since

message latency is affected by placement and routing in both topologies. Finally,

throughput, which is a measure of efficiency, remains on the torus‟ side except for 64 bit

flit sizes, where ring takes over. Again this is most likely due to placement of the DDR

SDRAM creating a higher average latency in the torus topology.

 Rather expectedly, the torus architecture takes up significantly more FPGA

resources, compared to ring. This is due to each router having twice as many ports, as

well as the additional two pure routing nodes. This shows a classic case of performance

versus resources, where the low performance of the single-digit flit sizes results in the

lowest resource count and vice versa for 64 bit flit sizes.

 In order to recommend an optimal channel width based off the results of the torus

and ring evaluations, one must compare the effect of channel width with respect to the

79

area resource usage difference. Since a flit size of 16 bits uses the least ALUT resources,

it was thus chosen as the basis of comparison between the other flit sizes. The difference

in performance between the flit size of attention and 16 bit flit sizes is divided by the

difference in area between the two. The following two figures illustrate these plots.

Figure 53 - Latency Change vs. Area Change, with Respect To 16 Bit Flit Size

Figure 54 - Throughput Change vs Area Change, With Respect To 16 Bit Flit Size

Ideally, message latency should be reduced per added resource. Clearly, increasing the

flit size does not improve the latency per area. It can be seen that with a flit size of 8 bits,

the latency difference per area difference is significant for ALUT resources and decreases

-0.02

0

0.02

0.04

0.06

0.08

0.1

8 16 32 64

La
te

n
cy

 C
h

an
ge

 p
e

r
A

re
a

C
h

an
ge

Flit Size (bits)

Latency Versus Area
Compared with 16 bit

Latency/ALUT Torus

Latency/Reg Torus

Latency/ALUT Ring

Latency/Reg Ring

-2.00E-06

-1.00E-06

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

8 16 32 64

Th
ro

u
gh

p
u

t
C

h
an

ge
 p

e
r

A
re

a
C

h
an

ge

Flit Size (bits)

Throughput Versus Area Compared
with 16-bit

TP/ALUT Torus

TP/ALUT Ring

TP/Reg Torus

TP/Reg Ring

80

with register resources. This means that if a designer wishes to have the most efficient

use of registers for message latency, an 8 bit flit size is recommended, while a 16 bit flit

size has the best efficiency for general area resources for message latency.

 For the efficiency of area for throughput, a high throughput difference per added

resource is ideal. It can be seen that an 8 bit flit size offers the highest ALUT efficiency

for throughput, and the 32 and 64 bit flit sizes offer lower area efficiency for throughput

compared with 8 and 16 bit flit sizes. From these results, it can be deduced that a 16 bit

flit size is an optimal channel width to use for general designs, due to the efficiency of an

FPGA‟s resources for message latency and throughput. For area-constrained

environments, an 8 bit flit size is recommended due to its higher area resource efficiency

at the expense of larger message latencies.

6.4 Summary

This chapter evaluated the design of the NoC architectures and its discrete components.

The evaluation metrics involved in these evaluations were discussed, and the results of

these evaluations were discussed. Chapter 7 discusses the conclusions that were drawn

from this thesis.

81

Chapter 7

Conclusions and Future Work

s integrated circuit technology expands, allowing for larger and increasingly

complicated systems-on-chip, the traditional bus-based communication

system becomes cumbersome and restricting. As the communication

architecture shifts towards the network-on-chip paradigm, it becomes apparent that there

is a large design space available to designers. Combine an NoC‟s massive parameter

space with various applications and it becomes clear that there is no single solution.

 While traffic generators provide a reasonable means of evaluating NoC designs,

they are not accurate [22]. Since real traffic and real systems are rarely tested in NoC

research, this became an important task to pursue in this thesis. Very little work has been

done implementing NoCs in traditional SoC design software, such as Altera‟s SOPC

Builder. Lastly, certain topologies remain largely popular, such as mesh and torus, while

others require additional research, such as hierarchy and ring, which is the reason why the

torus and ring topologies are compared.

 Key research contributions include developing a realistic system benchmark for

evaluating an NoC. Altera‟s SOPC Builder provided a satisfactory means of instantiating

the NoCs, but there were problems to overcome. Bridging of a single adapter to multiple

memory modules was not possible and hence caused additional resources to be wasted.

The lack of control over the bus arbitrator also caused problems, resulting in adapters not

knowing whether or not the control outputs will be received; again, this resulted in

additional adapters, wasting resources.

 Another unique contribution includes the glue logic between Wishbone and

Avalon communication fabrics. While single-transfer transactions are extremely similar

A

82

between the two interfaces, the block transfers include a large difference. While

Wishbone requires the acknowledge signal and its assertion in order to start another

transaction, the Avalon block transfer rule allows for multiple transfers to be „queued‟

without a preceding acknowledgement signal.

 While worm-hole switching router designs are relatively common, the effect of

channel width on high level evaluation metrics is an open research area [22]. This was

studied by analyzing the flit width versus throughput, average packet latency, area, power

and clock frequency. The flexibility and parameter selection of the router is also a unique

trait, which provides a frame for future research.

 Interfacing a core using a standard socket with the NoC is not to be overlooked.

The adapter, originally designed for Wishbone, was modified for use with the Avalon

interface. By providing a huge amount of flexibility through signal vector widths, FIFO

depths and more, the adapter functions in most SoC designs and offers a large design

space that should not be overlooked.

 Concerning the topology comparison, overall the ring topology utilizes the least

FPGA resources, provides the lowest packet latency and competitive throughput versus

the torus for the system benchmark. From a designer perspective, the ring topology was

also much easier to route, map and place. Conversely, the torus topology provides

greater flexibility by means of the larger node neighbour count and flexible routing paths.

 It can be seen from the results that flit size has a large effect on various evaluation

metrics for NoCs and related components. A low average latency results from high flit

size, due to the smaller worm being transmitted. Throughput has an interesting

relationship with flit size, as a low flit size results in the torus having the largest

throughput. A low flit size results in larger worms and hence the NoC becomes more

active. Interestingly, flit size seems to have little effect on the clock frequency of the

individual NoC components, while having a predictable effect on area and power. From

the area efficiency results, it can be deduced that a 16 bit flit size is an optimal channel

width to use for general designs, due to the efficiency of an FPGA‟s resources for

message latency and throughput. For area-constrained environments, an 8 bit flit size is

recommended due to its higher area resource efficiency at the expense of larger message

latencies. A 64 bit flit size offers the lowest message latency but uses the most FPGA

83

resources.

 Future work includes implementing additional system benchmarks in order to

further evaluate the two topologies. Additional topologies can also be implemented,

including hierarchy, star and customized architectures. While the effect of FIFO depth

was compared with resource usage, it would be interesting to compare it with high level

performance metrics, such as throughput and packet latency. There are more NoC

parameters, such as switching, arbitration, routing and placement that will provide a

suitable area for research.

84

References

1. Vahid, Frank and Givargis, Tony. Embedded System Design - A unified

hardware/software introduction. John Wiley & Sons, Inc., 2002. 81-265-0837-X.

2. Guerrier, Pierre and Greiner, Alain. A generic architecture for on-chip packet-

switched interconnections. Paris, France, 2000. Proceedings Design, Automation and

Test in Europe Conference and Exhibition 2000. pp. 250-256.

3. Sodan, A, et al. Parallelism via multithreaded and multicore CPUs. Computer.

November 30, 2009, Vol. PP, 99.

4. Bjerregaard, Tobias and Mahadevan, Shankar. A survey of research and practices

of Network-on-Chip. Issue 1, 2006, ACM Computing Surveys (CSUR), Vol. 38, pp. 1-51.

5. Hilton, C. and Nelson, B. PNoC: a flexible circuit-switched NoC for FPGA-based

systems. Issue 3, 2006, IEE Proceedings - Computers and Digital Techniques, Vol. 153.

6. Bjerregaard, T. and Sparso, J. A router architecture for connection-oriented service

guarantees in the MANGO clockless network-on-chip. 2005. Design, Automation and

Test in Europe, 2005. Proceedings. Vol. 2, pp. 1226 - 1231.

7. Goossens, K., Dielissen, J. and Radulescu, A. AEthereal network on chip: concepts,

architectures, and implementations. Issue 5, 2005, Design & Test of Computers, IEEE,

Vol. 22, pp. 414 - 421.

8. Dall'Osso, M., et al. Xpipes: a latency insensitive parameterized network-on-chip

architecture for multiprocessor SoCs. 2003. Computer Design, 2003. Proceedings. 21st

International Conference on. pp. 536 - 539.

85

9. Carara, Everton, Moraes, Fernando and Calazans, Ney. Router architecture for

high-performance NoCs. Copacabana, Rio de Janeiro, 2007. SBCCI '07: Proceedings of

the 20th annual conference on Integrated circuits and systems design. pp. 111 - 116.

10. Varatkar, G.V. and Marculescu, R. On-chip traffic modeling and synthesis for

MPEG-2 video applications. Issue 1, 2004, Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, Vol. 12, pp. 108 - 119.

11. Silicore corporation; opencores.org. WISHBONE, Rev.B3 Specs.

Wishbone::OpenCores. [Online] July 9, 2002. [Cited: 05 03, 2010.]

http://opencores.org/downloads/wbspec_b3.pdf.

12. Altera Corporation. Altera Avalon Interface Specifications. Literature: SOPC

Builder. [Online] April 2009. [Cited: May 3, 2010.]

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf.

13. Usselmann, Rudolf. OpenCores SoC bus review. Wishbone:: OpenCores. [Online]

January 9, 2001. [Cited: May 3, 2010.]

http://opencores.org/downloads/soc_bus_comparison.pdf.

14. Altera Corporation. Quartus II Handbook Version 9.1 - Volume 4 SOPC Builder.

Quartus II Development Software Literature. [Online] November 2009. [Cited: May 5,

2010.] http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf.

15. Altera Corporation. Quartus II Handbook Version 9.1. Design Software. [Online]

November 2009. [Cited: May 5, 2010.]

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf.

16. Altera Corporation. Nios II Software Developer's Handbook. Literature: Nios II

Processor. [Online] November 2009. [Cited: May 5, 2010.]

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf.

17. Mentor Graphics Corporation. ModelSim SE User's Manual. ModelSim SE |

Verilog, VHDL, SystemVerilog Design & Simulation | ModelSim - Advanced Simulation

86

and Debugging:. [Online] 2010. [Cited: May 5, 2010.]

http://portal.model.com/modelsim/resources/references/modelsim_se_user.pdf.

18. Bertozzi, D. and Benini, L. Xpipes: a network-on-chip architecture for gigascale

systems-on-chip. Issue 2, 2004, Circuits and Systems Magazine, IEEE, Vol. 4, pp. 18 -

31.

19. Dehyadgari, Masood, et al. A new protocol stack model for Network on Chip. Issue

2-3, Karlsruhe, 2006, IEEE Computer Society Annual Symposium on Emerging VLSI

Technologies and Architecture, Vol. 00, pp. 1-2.

20. Sgroi, M., et al. Addressing the System-on-a-Chip interconnect woes through

communication-based design. 2001. Design Automation Conference, 2001. Proceedings.

pp. 667 - 672.

21. Altera Corporation. Nios II Processor Reference Handbook. Literature: Nios II

Processor. [Online] November 2009. [Cited: April 20, 2010.]

http://www.altera.com/literature/lit-nio2.jsp.

22. Ogras, Umit Y., Hu, Jingcao and Marculescu, Radu. Key research problems in

NoC design: A holistic perspective. Jersey City, NJ, USA, 2005. Third IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthesis.

CODES+ISSS '05. pp. 69-74.

23. Hu, Jingcao and Marculescu, R. Energy- and performance-aware mapping for

regular NoC architectures. 2005, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pp. 551-562.

24. Murali, S. and De Micheli, G. Bandwidth-constrained mapping of cores onto NoC

architectures. 2004. Proceedings Design, Automation and Test in Europe Conference and

Exhibition. Vol. 2, pp. 896 - 901.

25. Geng, Luo-Feng, et al. Prototype design of cluster-based homogeneous

Multiprocessor System-on-Chip. Hong Kong, 2009. Conference on Anti-counterfeiting,

87

Security, and Identification in Communication, 2009. ASID 2009. 3rd International. pp.

311-315.

26. Dall'Osso, M., et al. Xpipes: a latency insensitive parameterized network-on-chip

architecture for multiprocessor SoCs. 2003. Computer Design, 2003. Proceedings. 21st

International Conference on . pp. 536-539.

27. Ehliar, A. and Liu, Dake. An FPGA based open source Network-on-Chip

architecture. Amsterdam, 2007. International Conference on Field Programmable Logic

and Applications, 2007. pp. 800-803.

28. Joven, J., et al. xENoC - An eXperimental Network-On-Chip environment for

parallel distributed computing on NoC-based MPSoC architectures. Toulouse, 2008.

16th Euromicro Conference on Parallel, Distributed and Network-Based Processing. pp.

141-148.

29. Saastamoinen, I., Siguenza-Tortosa, D. and Nurmi, J. Interconnect IP node for

future system-on-chip designs. Christchurch, 2002. The First IEEE International

Workshop on Electronic Design, Test and Applications, 2002. Proceedings. pp. 116 -

120.

30. Srinivasan, K., Chatha, K.S. and Konjevod, G. Application specific Network-on-

Chip design with guaranteed quality approximation algorithms. Yokohama, 2007. Asia

and South Pacific Design Automation Conference. pp. 184-190.

31. Salminen, Erno, Kulmala, Ari and Hamalainen, Timo D. Survey of Network-on-

Chip proposals. OCP-IP: White Papers Page. [Online] April 2008. [Cited: April 22,

2010.] http://ocpip.org/white_papers.php.

32. Kapre, N., et al. Packet switched vs. time multiplexed FPGA overlay networks. Napa,

CA, 2006. Field-Programmable Custom Computing Machines, 2006. FCCM '06. 14th

Annual IEEE Symposium on. pp. 205 - 216.

33. Peh, Li-Shiuan and Dally, W.J. A delay model for router microarchitectures. Issue

1, 2001, IEEE Micro, Vol. 21, pp. 26-34.

88

34. Xing, Xu, et al. Porting from Wishbone bus to Avalon bus in SoC design. Xi'an,

2007. Electronic Measurement and Instruments, 2007. ICEMI '07. 8th International

Conference on. Vol. 1, pp. 862-865.

35. Minhass, Wajid Hassan, Öberg, Johnny and Sander, Ingo. Design and

implementation of a plesiochronous multi-core 4x4 Network-on-Chip FPGA platform

with MPI HAL support. Stockholm, Sweden, 2009. Proceedings of the 6th FPGAworld

Conference. pp. 52-57.

36. Moraes, Fernando, et al. HERMES: an infrastructure for low area overhead packet-

switching networks on chip. Issue 1, Amsterdam, The Netherlands : Elsevier Science

Publishers B. V., 2004, Vol. 38. 0167-9260 .

37. Pande, Partha Pratim, et al. Performance evaluation and design trade-offs for

Network-on-Chip interconnect architectures. Issue 8, 2005, Computers, IEEE

Transactions on, Vol. 54, pp. 1025 - 1040.

38. Sethuraman, Balasubramanian, et al. LiPaR: A light-weight parallel router for

FPGA-based networks-on-chip. Chicago, 2005. Proceedings of the 15th ACM Great

Lakes symposium on VLSI. pp. 452 - 457.

39. Dally, W.J. and Towles, B. Route packets, not wires: on-chip interconnection

networks. 2001. Design Automation Conference, 2001. Proceedings. pp. 684 - 689.

40. Zeferino, C.A., et al. A study on communication issues for systems-on-chip. 2002.

Integrated Circuits and Systems Design, 2002. Proceedings. 15th Symposium on. pp. 121

- 126.

89

VITA AUCTORIS

Matt Murawski was born in Windsor, Ontario in 1985. In 2007, he earned his B.A.Sc at

the University of Windsor in Electrical Engineering in Windsor, Canada. He is currently

a candidate at the University of Windsor for the M.A.Sc program. His interests include

digital hardware design, computers, embedded systems and FPGAs.

	NoC Prototyping on FPGAs: Component Design, Architecture Implementation and Comparison
	Recommended Citation

	Author’s Declaration of Originality
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Thesis Objectives
	1.2 Thesis Organization

	Chapter 2 Background and Previous Work
	2.1 Network-on-Chip Overview
	2.1.1 Application Layer - System
	2.1.2 Transaction Layer – Adapter
	2.1.3 Data Link Layer – Network
	2.1.3.1 Topology
	2.1.3.2 Protocol
	2.1.3.3 Flow Control
	2.1.3.4 Quality of Service

	2.1.4 Physical Layer – Link

	2.2 Standard Sockets
	2.2.1 Wishbone
	2.2.1.1 Signals

	/
	2.2.2 Avalon Interface
	2.2.2.1 Avalon-MM
	2.2.2.2 Avalon-ST
	2.2.2.3 Avalon-MM Tristate
	2.2.2.4 Clock
	2.2.2.5 Interrupt
	2.2.2.6 Conduit

	2.3 FPGA Technology
	2.4 CAD Tools for NoC Implementation on FPGAs
	2.4.1 Altera Quartus II
	2.4.2 Altera SOPC Builder
	2.4.3 Nios II Embedded Design Suite (EDS)
	2.4.4 Mentor Graphics ModelSim

	2.6 Summary

	Chapter 3 NoC Adapter and Router Design
	3.1 Adapter Overview
	3.2 Router Overview
	3.3 Summary

	Chapter 4 NoC Implementation and Evaluation Framework
	4.1 Multi-CPU Benchmark System
	4.2 Implementation of NoC in SOPC Builder
	4.3 Nios II Programming
	4.4 Modelsim Simulation Environment
	4.5 Summary

	Chapter 5 FPGA Implementation of Torus and Ring NoC Architectures
	5.1 Topology
	5.2 Placement and Routing
	5.3 NoC Generator
	5.4 Summary

	Chapter 6 Component Evaluation and Architecture Comparison
	6.1 Design Space Exploration of Adapter and Router
	6.2 Experimental Framework and Evaluation Metrics
	6.3 Comparison of Torus and Ring
	6.4 Summary

	Chapter 7 Conclusions and Future Work
	References
	VITA AUCTORIS

