
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2012

Improved MDLNS Number System Addition and Subtraction by Improved MDLNS Number System Addition and Subtraction by

Use of the Novel Co-Transformation Use of the Novel Co-Transformation

LEILA SEPAHI
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
SEPAHI, LEILA, "Improved MDLNS Number System Addition and Subtraction by Use of the Novel Co-
Transformation" (2012). Electronic Theses and Dissertations. 140.
https://scholar.uwindsor.ca/etd/140

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/140?utm_source=scholar.uwindsor.ca%2Fetd%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Improved MDLNS Number System Addition and Subtraction by Use of

the Novel Co-Transformation

by

Leila Sepahi

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2012

© 2012 Leila Sepahi

Improved MDLNS Number System Addition and Subtraction by Use of the

Novel Co-Transformation

by

Leila Sepahi

APPROVED BY:

__

Dr. Edwin Tam

Department of Civil and Environmental Engineering

__

Dr. Huapeng Wu

Department of Electrical and Computer Engineering

__

Dr. Roberto Muscedere, Advisor

Department of Electrical and Computer Engineering

__

Dr. Mitra Mirhassani, Chair of Defense

{Select department/faculty}

May 10, 2012

 iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

 iv

ABSTRACT

Multi-Dimensional Logarithmic Number System (MDLNS) is a generalized

version of the Logarithmic Number System (LNS) which has multiple dimensions or

bases. These generalizations can increase accuracy and hardware efficiency. However,

addition and subtraction operations are the major obstruction of all logarithmic number

systems circuits and so far a fair amount of research has been done to find practical

techniques in LNS to implement these operations efficiently without the need for large

tables. In order to achieve this goal, several methods such as interpolation, multipartite

tables, and co-transformation have been introduced to decrease the cost and complexity.

One of the most recent works is Novel Co-transformation.

This thesis investigates the application of the Novel Co-Transformation on

MDLNS. The goal is to reduce the table sizes over previously published method which

utilizes a different address decoder on its tables which requires greater overhead. The

results show that the table sizes are reduced significantly when a minimal error is

allowed. Other common LNS techniques for table reductions may be applied to obtain

better results.

v

DEDICATION

To My devoted Parents

and

To My Best Sister for her support.

vi

ACKNOWLEDGEMENTS

Through this acknowledgment, I would like to express my sincere gratitude to my

supervisor Dr.Muscedere for his constant support and invaluable guidance. He gave me

this opportunity to learn the subject throughout the course of this thesis work.

I express my thanks to the committee members Dr.Tam and Dr.Wu who have shared their

opinions and valuable suggestions regarding the project to make it a worthwhile

experience.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS .. xi

CHAPTER

I. INTRODUCTION

Introduction ...1

Number Systems ..2

Thesis Organization ...4

II. REVIEW OF THE RELATED NUMBER SYSTEMS AND MDLNS

IMPLEMENTATION

Introduction ...5

Floating Point Number System (FPNS) ..5

LNS ..6

Multi-Dimensional Logarithmic Number System (MDLNS)7

Classic Method of Addition/Subtraction in LNS ..8

LNS Implementation ...9

Pure LUTs ...10

Multiplier Based Interpolation ..10

Addition Based Interpolation ..10

Real Time Function Calculation ..11

MDLNS Implementation ..12

MDLNS Single Base Domain ..12

The Co-Transformation Method ..13

Novel Co-Transformation ...14

Summary ..16

viii

III. DESIGN AND METHODOLOGY

Introduction ...17

Proposed Algorithm ..17

Brief Explanation ...19

Optimizations ...21

Summary ..22

IV. ANALYSIS OF RESULTS

Introduction ...23

Single Base Results ..23

Two Base Results ...26

Summary ..28

V. CONCLUSIONS AND RECOMMENDATIONS

Conclusions ..29

Future Work ..30

APPENDICES

APPENDIX A: MATLAB Code ..31

REFERENCES ...41

VITA AUCTORIS ...45

ix

LIST OF TABLES

Table 4.1: Single Base Results ..24

Table 4.2: Two Bases Results ...27

x

LIST OF FIGURES

Figure 2.1: LNS Addition Relashionship for D=2 ..9

Figure 2.2: LNS Subtraction Relashionship for D=2 ..9

Figure 2.3: Logarithmic Addition and Subtraction Curves ...14

Figure 2.4: Bit Partitioning of z in Novel Co-Transformation ..14

xi

LIST OF ABBREVIATIONS

DSP Digital Signal Processor

LNS Logarithmic Number System

LUT Look Up Table

MDLNS Multi-Dimensional Logarithmic Number System

RALUT Range Addressable Look Up Table

SBD Single Base Domain

1

CHAPTER I

INTRODUCTION

Introduction

All microelectronic devices consist of integrated circuits which contain a huge

number of interconnected transistors. Microprocessors, for example, are an integrated

circuit that can perform all the logic and mathematical functions and works as the central

processing unit of a generalized computer. Although modern microprocessors can

process significant amounts of information in a short amount of time, they are not the

best choice for “embedded” systems such as mobile or ubiquitous devices. .Digital Signal

Processors are a most practical choice as they are specifically designed to perform the

necessary tasks of managing digital signal processing (DSP) using very streamlined

mathematical calculations while meeting specifications and remaining in a very small

foot print which is ideal for mobile devices [2]. DSP is the basis for all modern digital

communication.

DSP itself has been a driver for many applications of alternative number

representations through which a considerable amount of research has been performed to

optimize performance during the last couple of decades [2]. In most DSP applications,

multipliers are one of the most resource (space, speed and latency) consuming

fundamental units. Hence a more optimal multiplier results in a more efficient device. In

any hardware design there are always technical trade-offs among area, latency and

accuracy [2] [3].

2

Number Systems

Numbers in these computation processors can be stored and processed in a variety

of formats, the most common being fixed-point and floating-point number systems [2].

Fixed point is the application of a basic binary representation with the assumption that a

“decimal point” appears at a fixed place in all the numbers. For example, the integer

488362 can be interpreted as a fixed point number if it is assumed the decimal is 10 bits,

so that 488362/2
10

 = 476.916015625. Although the fractional part of this number appears

accurate, the next higher possible fixed point value for representation is 488363/2
10

 =

476.9169921875, a difference of 1/2
10

 = 0.0009765625. This increment may not be small

enough for a given application or does not provide enough resolution. In order to increase

it, one only needs to increase the number of bits for the decimal or fractional portion, but

this may come at a cost of more hardware (in custom systems) or require a new

architecture in ready-to-use solutions (moving from 16-bit to 32-bit or to 64-bit processor

class). This lack of a high dynamic range makes fixed-point number systems adequate for

a subset of applications as the hardware is less costly and the accuracy requirement may

be acceptably low [2].

The floating-point number system (FPNS), an extension of the fixed point number

system, uses two integers respectively, the mantissa and exponent to form the individual

word. The exponent allows for an increase in the dynamic range while still retaining the

numerical accuracy provided by the mantissa portion. This offers better precision than the

fixed-point number system but at an additional hardware cost in terms of both area and

delay. Seemingly simple operations such as addition and subtraction require de-

normalization and normalization steps (shifting) to ensure the representation stays

correct. [5][4][2].

3

When dealing with any integer binary representation, multiplication operations

are slower (longer latencies) and larger and therefore treated as penalties compared to

addition and subtraction. This penalty is the basis for exploring alternative number

system which can reduce the impact of multiplication on a circuit.

The Logarithmic Number System (LNS) is an alternative variation of floating

point for representing real numbers in digital hardware especially for DSP applications. A

number is represented in the form of 2
x
, where x is in a fixed-point reorientation. The

main benefit of LNS is that it simplifies the hardware required for the operations of

multiplication, division, powers and roots to same scale of addition, subtraction,

multiplication and division, respectively for binary systems [6][1]. Unfortunately, simple

operations in LNS such as addition and subtraction are much more difficult to implement

as they require the use of large non-linear tables.

Numerous studies have compared floating-point number system against LNS in

particular applications. LNS can outperform floating-point in terms of smaller word sizes

versus error performance.

A more generalized version of LNS is Multi-Dimensional Logarithmic Number

System (MDLNS) which offers the ability to use multiple digits and orthogonal bases to

improve representation space while reducing table complexity. It still however has some

of LNS’s problems such as addition and subtraction.

Since LNS has shown significant promise in a field of applications, during the

past few decades it has been tried to alleviate these problems. Particularly for additional

and subtraction, a variety of table methods have been introduced such as interpolation,

multipartite tables, and co-transformation which have incrementally reduced the

4

traditionally large footprint to more manageable sizes. This work aims specifically to

apply one of these latest techniques (Novel Co-Transformation) to MDLNS to further

reduce addition and subtraction circuit implementations.

Thesis Organization

The organization of our work in this thesis is as follows: Chapter 2 will briefly

review different existing number systems. Background knowledge on certain related

number systems is provided and both the benefits and shortcomings of each system are

discussed. After this brief review, Chapter 3 will focus on the newest number systems,

LNS and MDLNS and the problem of Addition and Subtraction in LNS. Then our

proposed method of improvement for MDLNS will be discussed. Chapter 4 is the results

of the work which will be consisted of comparative results from the designed MATLAB

code and the results of previous methods. And finally Chapter 5 will go through the

conclusion of the work and some suggestions for future work. Also all of the designed

MATLAB codes can be found in Appendix A.

5

CHAPTER II

REVIEW OF THE RELATED NUMBER SYSTEMS AND MDLNS

IMPLEMENTATIONS

Introduction

This chapter will review, in brief, the most common number systems used in

computing that are relevant to this thesis as well as the most significantly relevant

methods of addition and subtraction in the LNS and MDLNS domains. References are

included to provide more information if the reader requires.

Floating Point Number System (FPNS)

Unlike fixed-point number representation, FPNS has larger dynamic range

(exponent b), and better precision (mantissa a). The first digit is always assumed to be a

one, unless when x = 0 which is a special case.

 � = 1. � × 2�

Both of these qualities are defined by an integer with a certain number of bits

available to represent each. If a higher range is required, more bits can be used to

represent the exponent portion where as if higher precision is requires, more bits can be

used to represent the mantissa. In either case, adding more bits results in a larger and

slower circuit. In general, FPNS is defined by a standard number of bits to allow for

interoperability between different processor and platform types. For example, Intel and

PowerPC processors are quite different, but the encoding of FPNS data is identical. For

some applications, a FPNS may offer too much precision and dynamic range and

therefore the resulting hardware would be excessive for the needs of the system. One may

consider a fixed-point system instead. Although floating point offers good precision, its

implementation requires more steps, such as de-normalization, normalization and

6

rounding, as the decimal point needs to be compensated for all operations. In some cases,

a 32-bit fixed-point system may be chosen over a 32-bit FPNS as it is simpler to use and

implement.

Logarithmic Number System

A typical DSP system is based on the multiplication and accumulation (addition)

of many coefficients with some real world input data. These systems generally do not

favor or disfavor particular operations. When an implementation is chosen, a designer

may take an optimization approach that will favor a particular operation in order to

reduce a particular resource. Depending on the ratio of multiplication over addition and

subtraction operations in a system, one can use an LNS representation. LNS, in some

applications, is more efficient in terms of area which requiring a fewer number of bits and

consequently results in a decreased latency of the circuit compared to a binary system,

while achieving the same error performance [3][7].

In LNS, the representation is controlled completely by the exponents. As with

FPNS, x = 0 is a special case.

 � = (−1)� × � (2.1)

In Eq. 2.1, s is the sign of X (s = 0 if X > 0 and s = 1 if X < 0) and a is a generally a binary

two’s complement fixed-point representation with k integer bits and f fractional bits. The

simplicity of the representation demonstrates the advantages especially with

multiplication, division, and exponents as they are reduced to addition, subtraction and

multiplication on the exponents (smaller word size) respectively. Unfortunately, the

simple operations in binary arithmetic are the most difficult in LNS such as addition and

subtraction; which may require the use of larger non-linear calculations depending on the

7

sizes of k and f. To this, a considerable amount of research has been conducted over the

years to mitigate the LNS addition and subtraction problem and overall improve the

number system.

Multi-Dimensional Logarithmic Number System (MDLNS)

The Multi-Dimensional Logarithmic Number System (MDLNS) is a generalized

version of the LNS. It utilizes multiple orthogonal bases as well as the ability to use

multiple digits which can introduce redundancy into the system and reduce the hardware

complexity compared to LNS. Unfortunately, there is no monotonic relationship between

standard linear representations and MDLNS representations as there is in LNS. This

makes the process of conversion from binary as well as addition and subtraction slightly

more difficult [1].

 � = ∑ ������ . ∏ ����,����� (2.2)

In Eq.2.2 k is the number of bases used (at least two), si is sign of each digit {–1,

0, +1}, Dj is base and can be a real number. The first base, D1, will always be assumed to

be 2, bi,j are integer powers for base j of digit i.

The use of multiple bases allows for smaller ranges on the non-binary exponents

(��→�) which can yield to the same precision as LNS but with fewer bits. It is also

possible to select the bases such that a particular set of numbers can be represented with

minimal quantization error [8]. This approach allows the system to be smaller while still

retaining a higher level of accuracy compared to similar sized LNS. All of these

advantages make MDLNS a possible alternative number system for some applications

[1].

8

Classic Method of Addition/Subtraction in LNS

To perform the addition and subtraction in LNS, the classic method is to use

multiplication of one of the addends with a factor. Depending on the sign of z, we will

multiply either the largest or smallest of the addends (X) by a factor Sb (or Db for

subtraction). These factors are derived below and are shown graphically in figures 2.1

and 2.2.

 X + Y = X "1 + #$% = &(1 + ') ()*+,- � + .�(/)

 .�(/) = log�(1 + 3)

The constant is the base of the logarithms, mostly assumed to be 2 to simplify circuit

implementation.

 X − Y = X "1 − #$% = &(1 − ') ()*+,- � + ��(/)

 ��(/) = log�(1 − 3)

For Addition/Subtraction with z > 0:

 log�(|&| + |5|) = min(�, 9) + .�(|� − 9|)

 log�(||&| − |5||) = min(�, 9) + ��(|� − 9|) (2.3)

For Addition/Subtraction with z < 0:

 log�(|&| + |5|) = max(�, 9) + .�(−|� − 9|) (2.4)

 log�(||&| − |5||) = max(�, 9) + ��(−|� − 9|)

9

Figure 2.1: LNS Addition Relationship for D =2

Figure 2.2: LNS Subtraction Relationship for D=2

LNS Implementation

Up to now in literature, several different number representations have been

introduced to implement LNS addition and subtraction in hardware [9] [10] [11] [12] [13]

(integer, fixed-point, floating-point and integer rational numbers). Depending on the

method of implementation, .� and �� might be calculated thereby a variety of different

10

ways by referencing from / < 0. As .� will not need any integer bits to be stored in

memory and �� < 0, immediate savings can be realized. The most common methods are

briefly explained here.

Pure LUTs

LUTs can offer very good precision assuming the values of the factors are

accurate enough for the operation. Compromises can be made in precision to reduce area.

Because of exponential characteristic of these equations, the size of the LUTs are based

on the fractional bits of the LNS and are not encoded very efficiently. This method was

originally used in LNS’ infancy, but it is typically only used on very small systems.

Multiplier based Interpolation

Interpolation is one of the more traditional techniques for implementing the .� and ��

functions. Since the slope of .� does not change dramatically, linear interpolation for

addition gives satisfactory accuracy. Linear interpolation uses two tables, one for storing

the values of the multiplier which are the slopes and the base values of the function [8].

For subtraction this method is not practical because a singularity exists at / = 0, which

means slope changes significantly. Implementation of �� becomes expensive, in terms of

circuit area and power consumption, close to zero because the encoding of the slopes

requires more bits.

Addition based Interpolation

Multipartite tables technique is a recent development in linear interpolation where

there is no multiplication component. It is an efficient technique for a function in which

the slope changes slowly. When the slope changes rapidly then more tables are needed to

compensate. In this method a series of results from smaller tables, indexed by various bit

11

portions on the input word, contribute to the computation of the final value. For the .�

function, the multipartite method generates a single table, whereas for ��, many more

separate tables are needed as the curve changes rapidly near the singularity.

The precision with a multipartite table can be higher than the previous

interpolation method, but care must be taken to ensure the configuration is guarded

correctly so that the error is acceptable given a limit on the hardware needed. Some times

in order to achieve reasonable area it is necessary to relax accuracy in the region close to

zero which causes LNS to be less accurate than FPNS. Since the accuracy varies in

different applications, different degree of relaxation can be applied to the method.

The main advantage of using this method is that to the latency is reduced as there

are no multipliers in the circuit [3]. Depending on the size of the table, more memory

may be required compared to interpolation as the multiplier has been replaced by extra

adders [3].

Real time function Calculation

Although the calculation of the .� and �� functions is possible in real-time, it

would require some type of FPNS to generate accurate solutions. Given that the intent of

the system is to avoid the overhead of FPNS, this isn’t a practical solution. It is practical

however to generate .� and �� from smaller LUTs. If the latency of such a system is

comparable to the interpolation methods while still maintaining a lower area, such a

system would be superior. The co-transformation method is such and will be expanded on

shortly.

12

MDLNS Implementation

By adding multiple bases to the previous equations the classic method of LNS

addition and subtraction can be extended to operate in single-digit MDLNS [1]:

 ∏ �� >����� . ∏ �� 3� =���� ∏ �� >� +���� ∏ �� ?�����

 ∏ �� 3� = 1 +���� ∏ �� ?�@>�����

 ∏ �� >����� . ∏ ��A� =���� ∏ �� >� −���� ∏ �� ?�����

 ∏ ��A� = 1 −���� ∏ �� ?�@>�����

As the inputs to such a table are not monotonic, it would greatly increase the complexity

of calculating the table as well as encoding it efficiently. Therefore a direct MDLNS

implementation is not feasible.

MDLNS Single Base Domain

To mitigate the above problem, a solution was proposed in [14] which mapped the

MDLNS system into a single base domain (SBD) which is essentially a redundant LNS.

This process consisted of a LUT which mapped the MDLNS exponents into a single

exponent, the SBD.

 ��B = ∏ ��������

 C = ∑ �� . logDE(��)����

Here C is a real number and for hardware implementation it is needed to be

converted to integer form. This process will be done by a fixed-point representation and

limited number of bits to represent the fractional part of a real number.

 C = C� + BFG , H = 2I

With a single exponent, a monotonic relationship is created and a table lookup

using the above method is now possible. When / < 0, the table values are better

13

represented in MDLNS as the factors are always near 1. Since MDLNS is a redundant

system the results of the table were also redundant so it was found they could be

efficiently implemented using a Range Addressable Look-Up Table (RALUT). The result

was intended to be mapped back into MDLNS using another RALUT as the SBD values

were not capable of being fed-back into the input unless it was reconditioned. Although

the solution offers 100% accuracy, the table sizes (in terms of bits) were not competitive

with the multi-partite methods of encoding based on compatible LNS. It is important to

note however that the LNS solution was not 100% correct and in some cases could be off

considerably. In [14], attempts were made to try to implement the RALUTs using the

multipartite approach; however this was not possible as the multipartite encoding requires

a slowly changing slope and the results from the SBD tables did not meet this

requirement. A recent advancement in the LNS research has yielded a new method

known as the Co-Transformation which generates the subtraction results by use of the

addition table as well as other smaller tables. The intent of this thesis is to use the latest

incarnation of the co-transformation to further reduce table size.

The Co-Transformation Method

Co-Transformation is the most recent technique for performing LNS subtraction

by eliminating the interpolation of �� near the singularity. Another advantage of avoiding

the singularity is to mitigate the accuracy problem of the previous approximation

methods [15]. To date, four forms of the co-transformation method have been introduced:

Arnold, Coleman, Improved [3], and Novel Co-Transformation [4]. Since the most recent

and favorable is the Novel Co-Transformation, it will be the center of focused in this

14

thesis. Discussion about all the mentioned methods is out of the scope and the reader can

refer to references [3][4] for more details.

Novel Co-Transformation

The Novel co-transformation is based on the improved co-transformation;

however it avoids some intervals, where the values become positive requiring larger

LUTs as well as the compensation for special cases [4]. The novel technique uses a

different function for the subtraction operation (see figure 2.3) which uses both sides of

graph and combines the addition and subtraction equations, Eq. 2.3 and Eq. 2.4.

Figure 2.3: Logarithmic Addition and Subtraction Curves

Figure 2.4: Bit partitioning of z in Novel Co-Transformation

The transformation is as follows:

15

 / = /� + /�

 '� = 3E

 '� = 3J

 ' = '� × '�

 ' − 1 = '� × '� − 1 = ('� − 1) × "1 + KE×(KJ@�)KE@� %

 .LMNO |KJ@�||KE@�| = P(KJ@�)(KE@�)P

 ' − 1 = |'� − 1| × P1 + KE×|KJ@�||KE@�| P

Taking the logarithm of both sides yield:

 ��(/) = ��(/�) + .�Q/� + ��(/�) − ��(/�)R

Noting that:

 .�(/) = / + .�(−/)

 ��(/) = /� + ��(/�) + .�(��(/�) − /� − ��(/�)) (2.5)

Compensating for the special cases through extra circuits is avoided by setting

��(0) = −2S in the LUTs. Calculation for ��(/) is based only on .�(/) and some

smaller tables.

 SU(/) = V 0S�(/W) + .�X (/W + ε)/(Z[\�(2)/
/ ≤ O^_O^_ < / < 0/ = 0/ > 0 (2.6)

Novel co-transformation reduces complexity of circuit through decreasing area

and delays of the hardware implementation [4][7][16], eliminates the special cases in

improved co-transformation [4] and increases precision, but there is no benefit in terms of

addition which is still implemented using the multipartite tables.

16

The co-transformation’s inventors claim that their work unifies the most effective

techniques for designing LNS units and gives a more complete practical study of the

design space than any previous works [3]. The intent of this work is to combine the idea

of co-transformation with MDLNS to try to reduce the table sizes from the only known

method available.

Summary

So far in this thesis, it has been explained that depending on the ratio of multiplication

over addition and subtraction operations in a system, sometimes LNS representation is a

better choice. It has some problems in terms of implementation especially for subtraction

near the singularity but studies have shown improvements in implementation depending

on Sb and Db. Based on LNS, another concept has been introduced by adding multiple

bases associated with range of exponents called MDLNS. Different techniques have been

developed to overcome LNS implementation issues. Co-Transformation and specifically

Novel Co-transformation recently tried to eliminate LNS subtraction problem near the

singularity and increase the accuracy of these operations. In the following chapters this

new method will be applied to MDLNS and results will be compared with previous

works.

17

CHAPTER III

DESIGN AND METHODOLOGY

Introduction

This chapter will discuss an overview of the proposed algorithm as the low-level

coding itself is very specific to the host system.

Proposed Algorithm

This proposed algorithm is based on using the Novel Co-Transformation with the

SBD model to implement both addition and subtraction for the MDLNS. MATLAB is the

host language for which the software was written. The algorithm performs a brute force

method of searching for the best parameter which result the minimum implementation

area (size of LUTs). The algorithm is shown before in a brief pseudo code format. The

full MATLAB code is available in Appendix A. In includes vector optimizations to

further increase the performance.

Generate core MDLNS sequence with real SBD values, �OaMbH rows

Calculate integer bits, c

For d = 2 to …

Generate integer SBD values in tables based on H = 2I

Set S = d

For e = S − fe to S

Set precision of all tables and arithmetic to e fractional bits

For a = 0 to S

Generate .� with a being the number of bits used for multiplication with the slope

18

18

For �2 = 0 to 2� × �OaMbH

For �1 = �2 to 2� × �OaMbH

Find real solution for [dfLM�Z(�1) + [dfLM�Z(�2)

Find difference in SBD values of [dfLM�Z(�2) – [dfLM�Z(�1)

Lookup value in .� (input is negative)

Add to largest value

Find difference between approximation and true MDLNS value

Add to error count if necessary

End �1

End �2

For h = 1 to S − 1

Generate �� smaller tables

For �2 = 2� × �OaMbH to 2

For �1 = �2 − 1 to 1

Find real solution for [dfLM�Z(�2) − [dfLM�Z(�1)

Find difference in SBD values of [dfLM�Z(�2) – [dfLM�Z(�1)

Break up work into /1 and /2

Lookup values in smaller �� LUTs and calculate offset (use .� as well)

Add to smallest value

Find difference between approximation and true MDLNS value

Add to error count if necessary

End �1

End �2

19

19

Save error values to table

Record new lowest error

End h

End a

End e

If error reached minimum, end d loop

End d

Sort results my least error

Return

Brief Explanation

The algorithm begins by generating the core MDLNS sequence [18] along with

the SBD mapping in a real form. The number of elements is �OaMbH and it depends on

the number of bases and the range on each base; this value can become larger quickly if

there are more than 2 bases.

The number of integer bits is then calculated using the method in [14]; this value

will affect the LUTs greatly as each additional bit doubles their size.

The main loop then begins cycling through d starting from 2 in order to complete

the SBD integer form (C) such that there is no overlap in the sequence, that is no

duplicate entries.

In order to find the smallest tables, the algorithm next cycles through all the

generation parameters. S is set to d as there is no reason to allocate fewer of more bits to

it. For each S, e cycles from S − fOZi�e to S to explore the effects of various bit

precisions on the LUT sizes. For each e, a is also cycled to explore the effects of

20

20

interpolation of .� on the results (see Eq. 2.6). This completes the three nested loops for

calculating almost all the possible parameters for the addition and subtraction LUTs. In

this nested loop, the error associate with the addition and subtraction tables is calculated

and the best configuration is selected.

For addition, the .� LUTs are generated using the formula in Eq. 2.6. These tables

are verified by adding all possible MDLNS values with each other using the method

found in [14]. Since the operation is based on the relative difference between two

numbers, any power of 2 scaling applied to the two numbers will result in the same

answer scaled by the same value. For example, computing 1+2=3 is the same as 2+4=6,

etc. This considerably reduces the number of possible combinations so that the whole

table can be verified in a finite amount of time. After the completion of �1 loop, the

running error is evaluated to see if it is far beyond the best or beyond the minimum

allowed, and if so, the �2 loop is also terminated and the subtraction tables are skipped.

This helps improve the performance of the optimization.

A similar operation is used for verifying the �� LUTs. Here, h is cycled from 1 up

to S − 1 as h only affects the subtraction tables. The tables are first generated using Eq.

2.5 and Eq. 2.6 and a dual nested loop with �2 and �1 are configured such that one value

is always larger than the other to avoid sign issues. The same scaling optimizations apply

such that, for example, 2-1=1 is evaluated and 4-2=2 is not. The �1 loop is also

monitored to stop if excessive error is reach to further improve running speed.

After each table verification is complete, the parameters, the table sizes and errors

are recorded into a running list. Each entries error is compared with a running error to

monitor if the minimum error has been reached.

21

21

After the completion of the h, a and p loops, the running list is sorted and any

entries that exceed the best error by a certain factor are removed to conserve memory.

If the target minimum error has not been achieved, r is increased and the loop

continues. If the minimum has been met, the running list is sorted by 3 keys: minimum

error, minimum overall bit size and minimum implementation bits sizes. The data is then

returned to the calling function.

Optimizations

There are a number of optimizations included in the software code which are not

discussed in the above algorithm as they are out of the scope of this thesis. However, a

few techniques will be mention here as to prepare the reader for interpreting the code in

Appendix A.

1. All static computational values are cached into tables so that expensive log,

exp, and other function are minimized to only a small portion of overall run-time. This

can require more memory, but the speed gains are worth the sacrifice.

2. Any arrays or matrices are pre-allocated before use as this can have a

significant impact on performance. During earlier runs of the software, virtual most of the

computing time was simply memory management instead of data processing.

3. The function is programmed as such as MATLAB performs further

optimizations in run-time as compared to a script

4. Vector and matrix processing is heavily used to increase performance greatly.

MATLAB, as a programming language, is not very fast. Using loops and single value

functions is easily out performed by other languages such as C. Where MATLAB really

performs well is in vector and matrix manipulation. Every opportunity is made to make

22

22

use of this as MATLAB parallelizes the code run-time to work on multiple threads and

processors. On the Canadian computational cloud “Sharcnet” or “Compute-Canada”, this

code was observed to operate across over 30 CPUs during large vector and matrix

operations; a significant performance improvement.

Summary

This chapter briefly explained the proposed algorithm of implementing both

addition and subtraction for the MDLNS with using Novel Co-Transformation along with

SBD model. Step by Step Explanation of the MATLAB Code is discussed in this chapter

and the code can be found in Appendix A.

The goal of this algorithm is to find the best combinations of all possible

parameters which result the minimum implementation size of the LUTs and also

minimum error associated with the addition and subtraction tables. Furthermore, some

optimization techniques have been used to maximize the performance of the software to

arrive at results faster.

23

CHAPTER IV

ANALYSIS OF RESULTS

Introduction

This chapter presents the results of running numerous simulations for weeks at a

time. Even though a significant amount of code optimization was applied to improve

performance in the MATLAB environment, the computation running times were long and

only a small portion of data could be generated to meet the thesis deadlines.

Single Base Results

The following results are generated from using a single non-binary base of 3. The

range on the exponents has a full swing from positive to negative. Table 4.1 summaries

the three sets of results (no error, 1 unit error in addition or subtraction, and 1 unit error in

addition and subtraction) compared to the previously known RALUT system. A full

implementation analysis of each scenario would have required much more time, more

coding, and the results would have only been applicable to a particular technology. To

simplify matters, a general area scaling was performed using data from custom layouts

[19] where each RALUT and LUT address decoder is 14 and 4 times larger than an

output bit respectively. This area scaling value, although not 100% accurate, can give

some indication as to the size of the system. The table rows for the proposed method

include only the rows using from the .� and �� tables and not the full range, although

that information can be extracted from the parameters.

24

24

Table 4.1: Single Base Results

 B
as

es
R

an
ge

r

A
d

d
 T

ab
le

(R
o

w
s,

In
p

u
t

B
it

s,

O
u

tp
u

t
B

it
s)

S
u

b
 T

ab
le

(R
o

w
s,

In
p

u
t

B
it

s,

O
u

tp
u

t
B

it
s)

S
ca

le
d

A
re

a

w
it

h
 N

o

E
rr

o
r

r,
k
,j

,q
,p

S
b

 (
R

o
w

s,

In
p

u
t

B
it

s,

O
u

tp
u

t
B

it
s)

D
b

1
 (

R
o
w

s,

In
p

u
t

B
it

s,

O
u

tp
u

t
B

it
s)

D
b

2
 (

R
o

w
s,

In
p

u
t

B
it

s,

O
u

tp
u

t
B

it
s)

3
1

4
7

x8
x6

1
0

x8
x8

2
0

2
6

6
,3

,5
,6

,5
8
x3

x5
5

x5
x5

1
6

x1
x5

5
9

7
(2

9
%

)
5

4
8

(2
7

%
)

4
7

0
(2

3
%

)

3
2

5
1

3
x9

x7
1

7
x9

x9
4

0
2

4
8

,3
,1

,7
,8

1
6

x4
x8

1
x1

x8
6

9
x7

x8
3

7
0

8
(9

2
%

)
2

0
3

3
(5

0
%

)
1

8
8

0
(4

6
%

)

3
3

5
1

8
x9

x7
2

6
x9

x9
5

9
0

4
9

,3
,8

,6
,7

6
4

x6
x7

1
9

x8
x7

1
6

x1
x7

3
0

9
3

(5
2

%
)

4
3

3
4

(7
3

%
)

6
8

8
(1

1
%

)

3
4

7
2

4
x1

1
x9

3
5

x1
1

x1
1

9
6

8
7

1
0

,3
,1

,3
,9

1
3

5
x1

0
x9

2
x1

x9
1

3
2

x9
x9

1
4

1
6

5
(1

4
6

%
)

1
3

1
4

5
(1

3
5

%
)

8
3

2
(8

%
)

3
5

8
3

1
x1

2
x1

0
4

1
x1

2
x1

2
1
2

8
9

8
1

0
,3

,1
,3

,9
1

6
7

x1
0

x9
2

x1
x9

1
6

4
x9

x9
1

7
5

5
7

(1
3

6
%

)
1

5
8

2
5

(1
2

2
%

)
8

3
2

(6
%

)

3
6

8
3

7
x1

2
x1

0
5

1
x1

2
x1

2
1
5

7
6

6
1

2
,3

,3
,9

,1
2

6
4

x6
x1

2
2

x3
x1

2
1

9
5

x9
x1

2
1

4
0

5
2

(8
9

%
)

1
0

8
8

1
(6

9
%

)
3

4
0

7
(2

1
%

)

3
7

7
4

2
x1

1
x9

7
1

x1
1

x1
1

1
8

5
6

1
1

2
,3

,2
,9

,1
2

6
4

x6
x1

2
1

x2
x1

2
2

2
8

x1
0

x1
2

1
6

9
1

6
(9

1
%

)
1

1
0

7
6

(5
9

%
)

3
2

5
2

(1
7

%
)

3
8

7
4

0
x1

1
x9

6
4

x1
1

x1
1

1
7

0
8

0
1

2
,3

,2
,8

,1
2

1
2

7
x7

x1
2

1
x2

x1
2

2
6

0
x1

0
x1

2
2

1
7

4
0

(1
2

7
%

)
1

1
6

5
2

(6
8

%
)

3
3

9
6

(1
9

%
)

3
9

7
5

3
x1

1
x9

8
9

x1
1

x1
1

2
3

3
2

4
1

2
,3

,2
,4

,1
2

2
9

2
x1

1
x1

2
1

x2
x1

2
2

9
1

x1
0

x1
2

3
4

9
9

6
(1

5
0

%
)

3
0

0
6

0
(1

2
8

%
)

3
5

4
0

(1
5

%
)

3
1

0
8

5
4

x1
2

x1
0

8
6

x1
2

x1
2

2
5

0
9

2
1

3
,3

,3
,8

,1
3

2
3

7
x8

x1
3

1
x3

x1
3

3
2

3
x1

0
x1

3
3

1
6

8
5

(1
2

6
%

)
2

0
8

8
4

(8
3

%
)

3
6

8
4

(1
4

%
)

3
1

1
8

5
7

x1
2

x1
0

9
6

x1
2

x1
2

2
7

4
2

6
1
5

,3
,1

,1
1

,1
5

1
2

7
x7

x1
5

2
x1

x1
5

4
9

7
x1

4
x1

5
4

6
7

5
0

(1
7

0
%

)
1

7
5

2
6

(6
3

%
)

3
8

2
8

(1
3

%
)

3
1

2
9

6
6

x1
3

x1
1

1
1

0
x1

3
x1

3
3
4

1
8

8
1
5

,3
,1

,1
1

,1
5

1
2

8
x7

x1
5

2
x1

x1
5

5
4

2
x1

4
x1

5
5

0
5

2
8

(1
4

7
%

)
1

8
2

9
1

(5
3

%
)

4
1

9
6

(1
2

%
)

3
1

3
1

0
7

0
x1

4
x1

2
1

1
5

x1
4
x1

4
3
8

7
1

0
1
5

,3
,1

,1
1

,1
5

1
2

8
x7

x1
5

2
x1

x1
5

5
8

2
x1

4
x1

5
5

3
8

4
8

(1
3

9
%

)
1

8
3

3
6

(4
7

%
)

4
3

4
0

(1
1

%
)

3
1

4
1

0
6

0
x1

4
x1

2
1

0
4

x1
4
x1

4
3
4

3
2

0
1
5

,3
,1

,1
1

,1
5

1
2

8
x7

x1
5

2
x1

x1
5

6
2

0
x1

4
x1

5
5

7
0

0
2

(1
6

6
%

)
3

0
7

4
9

(8
9

%
)

4
4

8
4

(1
3

%
)

3
1

5
1

0
8

1
x1

4
x1

2
1

2
4

x1
4
x1

4
4
2

8
8

8
1
5

,3
,1

,1
1

,1
5

1
2

8
x7

x1
5

2
x1

x1
5

6
6

2
x1

4
x1

5
6

0
4

8
8

(1
4

1
%

)
3

1
7

1
8

(7
3

%
)

4
6

2
8

(1
0

%
)

3
1

6
1

0
8

8
x1

4
x1

2
1

3
0

x1
4
x1

4
4
5

6
0

4
1
6

,3
,2

,1
2

,1
5

1
2

8
x7

x1
5

4
x2

x1
5

5
9

0
x1

4
x1

5
5

4
5

6
6

(1
1

9
%

)
3

2
7

3
8

(7
1

%
)

4
7

7
2

(1
0

%
)

3
1

7
1

0
9

5
x1

4
x1

2
1

3
6

x1
4
x1

4
4
8

3
2

0
1
7

,3
,3

,1
3

,1
5

1
2

8
x7

x1
5

8
x3

x1
5

5
7

7
x1

4
x1

5
5

3
6

1
1

(1
1

0
%

)
3

3
0

9
5

(6
8

%
)

4
9

1
6

(1
0

%
)

3
1

8
1

0
1

0
0

x1
4

x1
2

1
4

3
x1

4
x1

4
5
0

8
3

0
2
0

,3
,1

,1
6

,1
8

1
2

8
x7

x1
8

2
x1

x1
8

8
1

3
x1

9
x1

8
9

2
1

1
0

(1
8

1
%

)
3

8
1

2
7

(7
5

%
)

5
0

6
0

(9
%

)

3
1

9
1

0
1

1
0

x1
4

x1
2

1
4

9
x1

4
x1

4
5
4

1
7

0
2
0

,3
,1

,1
6

,1
8

1
2

8
x7

x1
8

2
x1

x1
8

8
6

2
x1

9
x1

8
9

7
3

0
4

(1
7

9
%

)
3

8
5

1
9

(7
1

%
)

5
2

0
4

(9
%

)

3
2

0
9

1
0

4
x1

3
x1

1
1

5
0

x1
3
x1

3
4
9

3
2

2
2
0

,3
,1

,1
6

,1
8

1
2

8
x7

x1
8

2
x1

x1
8

9
0

1
x1

9
x1

8
1

0
1

4
3

8
(2

0
5

%
)

3
9

2
5

4
(7

9
%

)
5

3
4

8
(1

0
%

)

3
2

1
1

0
1

2
4

x1
4

x1
2

1
6

1
x1

4
x1

4
5
9

6
0

2
2

0
,4

,1
2

,1
6
,1

8
2

5
6

x8
x1

8
1

6
1

x1
2

x1
8

1
3

5
4

x8
x1

8
1

1
2

7
9

0
(1

8
9

%
)

7
0

2
4

5
(1

1
7

%
)

8
5

6
4

(1
4

%
)

3
2

2
1

0
1

2
9

x1
4

x1
2

1
6

3
x1

4
x1

4
6
1

0
6

2
2

0
,4

,1
2

,1
6
,1

8
2

5
6

x8
x1

8
1

6
7

x1
2

x1
8

1
4

1
8

x8
x1

8
1

1
7

4
1

0
(1

9
2

%
)

7
1

7
6

6
(1

1
7

%
)

8
7

0
8

(1
4

%
)

3
2

3
1

0
1

3
4

x1
4

x1
2

1
7

3
x1

4
x1

4
6
4

2
0

2
2

0
,4

,1
2

,1
6
,1

8
2

5
6

x8
x1

8
1

7
5

x1
2

x1
8

1
4

8
1

x8
x1

8
1

2
2

0
9

6
(1

9
0

%
)

7
3

8
9

9
(1

1
5

%
)

8
8

5
2

(1
3

%
)

3
2

4
1

0
1

3
6

x1
4

x1
2

1
8

0
x1

4
x1

4
6
6

0
8

8
2

0
,4

,1
2

,1
6
,1

8
2

5
6

x8
x1

8
1

8
3

x1
2

x1
8

1
5

4
6

x8
x1

8
1

2
6

9
1

4
(1

9
2

%
)

7
4

3
2

2
(1

1
2

%
)

8
9

9
6

(1
3

%
)

R
A

L
U

T
P

ro
p

o
se

d
P

ro
p

o
se

d
 w

it
h

 E
rr

o
r

S
ca

le
d

 A
re

a
w

it
h

N
o

 E
rr

o
r

(R
el

at
iv

e
to

R
A

L
U

T
)

S
ca

le
d

 A
re

a
w

it
h

1
 U

n
it

 E
rr

o
r

in

A
d

d
 o

r
S

u
b

(R
el

at
iv

e
to

R
A

L
U

T
)

S
ca

le
d

 A
re

a
w

it
h

1
 U

n
it
 E

rr
o
r

in

A
d
d

 a
n

d
 S

u
b

(R
el

at
iv

e
to

R
A

L
U

T
)

25

25

Upon examining the results, the proposed method is no more than twice the size

of the results from the RALUT. This can be expected due to the fact that the RALUTs

can compress a large amount of data scattered across many rows into a single one. [14]

shows that the MDLNS addition and subtraction LUTs are very large prior to being

implemented in RALUTs. Once a single unit error is allowed in either addition or

subtraction, the tables are smaller in most cases. An error in both addition and subtraction

result in much smaller tables, as much as 6% the size of the RALUT. These conditions

are more significant as the .� table in a LNS system is expected to have error in it; no

implementation has zero error. In fact, the .� table in LNS can have a number of

solutions which provide up to a single unit error. Once the tables in LNS are implemented

into a multipartite circuit, further errors are incurred [14], however they are deemed

acceptable as they are a compromise for large savings in circuit area. The same savings is

expected to happen here further, however only a small portion of the .� tables are

actually used and the multipartite system is constructed to generate a complete table. By

including the non-used values in the generation phase, the LUT size will be much larger

and consume more area. If it were designed to output only these used values, the

parameters for generation would be far more relaxed and the LUTs would be much

smaller and use far less area. This feature does not currently exist so modifications need

to be made to the multipartite system to allow the implementation of sparse tables, which

is not trivial as the smaller LUTs are based on the complete input map.

The choice of r for the proposed method is clearly larger than that of the RALUT.

This implies that there may be some potential for selecting the same r as in the RALUT

26

26

method while still achieving zero error. This will probably require some time of

modification of the tables and re-verification to ensure a 100% no error system.

Additionally, the selection of the non-binary base of 3 could have inflated these

results just as other arbitrary bases could have easily reduced them. [8] Shows how

selecting optimal bases can significantly impact the implementation size of a digital filter.

Two base Results

The following results are generated from using two non-binary bases of 3 and 5.

The range on the exponents has a full swing from positive to negative for both bases, so

the effective complexity of the system increases exponentially as compared to the single

base systems. For example, in the single base system, a range of -10 to 10 would result in

21 (-low + high +1) components in the core MDLNS sequence. For a two base system

with a range of -10 to 10 on each base, the resulting system would have 21x21 or 441

core components. Table 4.2 summaries the three sets of results (no error, 1 unit error in

addition or subtraction, and 1 unit error in addition and subtraction) compared to the

previously known RALUT system. The same general area scaling rule was applied to

obtain reasonable results.

A similar trend is noticed here compared to single base results; the error free

systems are larger than the original RALUT system, but not usually by more than 3

times. Once error is allowed, a significant savings can be seen. This reiterates the need to

further examine the potential for further table reduction. At this point, the resulting tables

have not been inspected to determine if further trial methods can be utilized

(interpolation, etc.).

27

27

Table 4.2: Two Base Results

 B
a
se s

R
a
n
g

e
r

A
d
d
 T

a
b
le

(R
o
w

s,

In
p
u
t

B
it
s,

O
u
tp

u
t

B
it
s)

S
u
b
 T

a
b
le

(R
o
w

s,

In
p
u
t

B
it
s,

O
u
tp

u
t

B
it
s)

S
c
a
le

d

A
re

a

w
it
h
 N

o

E
rr

o
r

r,
k

,j
,q

,p

S
b
 (

R
o
w

s,

In
p
u
t

B
it
s,

O
u
tp

u
t

B
it
s)

D
b
1
 (

R
o
w

s,

In
p
u
t

B
it
s,

O
u
tp

u
t

B
it
s)

D
b
2
 (

R
o
w

s,

In
p
u
t

B
it
s,

O
u
tp

u
t

B
it
s)

3
,5

1
7

2
3
x
1
1
x
9

4
1
x
1
1
x
1
1

1
0
5
1
4

2
1
,3

,1
,1

9
,1

9
3
2
x
5
x
1
9

2
x
1
x
1
9

1
9
2
x
2
0
x
1
9

2
2
6
0
6

(2
1
5
%

)
1
1
6
8
9

(1
1
1
%

)
7
6
6

(7
%

)

3
,5

2
1
0

1
1
2
x
1
4
x
1
2

1
5
6
x
1
4
x
1
4

5
6
0
5
6

2
1
,4

,1
5
,1

8
,1

9
1
2
8
x
7
x
1
9

1
3
1
x
1
5
x
1
9

9
3
9
x
6
x
1
9

7
1
7
6
6

(1
2
8
%

)
3
0
3
8
8

(5
4
%

)
1
6
2
0
6

(2
8
%

)

3
,5

3
1
2

2
2
8
x
1
7
x
1
4

3
1
1
x
1
7
x
1
7

1
3
6
7
6
1

2
6
,4

,2
0
,2

0
,2

4
1
0
2
4
x
1
0
x
2
4

2
8
3
x
2
0
x
2
4

1
0
2
1
x
6
x
2
4

1
6
0
3
1
2

(1
1
7
%

)
1
2
9
6
9
6

(9
4
%

)
1
9
1
4
6

(1
3
%

)

3
,5

4
1
3

3
8
2
x
1
8
x
1
5

5
4
6
x
1
8
x
1
8

2
4
9
4
1
4

2
6
,4

,2
2
,1

9
,2

5
2
0
4
8
x
1
1
x
2
5

4
9
3
x
2
2
x
2
5

2
5
6
x
4
x
2
5

2
1
1
6
1
3

(8
4
%

)
5
7
4
7
1
4

(2
3
0
%

)
4
2
7
7
3

(1
7
%

)

3
,5

5
1
3

6
1
3
x
1
8
x
1
5

8
6
5
x
1
8
x
1
8

3
9
7
2
2
1

2
6
,4

,8
,1

9
,2

4
2
0
4
7
x
1
1
x
2
4

2
5
6
x
8
x
2
4

7
0
4
2
x
1
8
x
2
4

9
4
2
2
3
6

(2
3
7
%

)
4
2
4
8
2
9

(1
0
6
%

)
1
0
5
4
3
0

(2
6
%

)

3
,5

6
1
3

8
4
2
x
1
8
x
1
5

1
2
0
4
x
1
8
x
1
8

5
4
9
8
9
4

2
6
,4

,8
,1

9
,2

4
2
0
4
8
x
1
1
x
2
4

2
5
6
x
8
x
2
4

9
9
7
3
x
1
8
x
2
4

1
2
7
0
5
7
6

(2
3
1
%

)
8
5
7
2
7
8

(1
5
5
%

)
1
2
0
3
5
3

(2
1
%

)

3
,5

7
1
3

1
1
0
7
x
1
8
x
1
5

1
6
2
3
x
1
8
x
1
8

7
3
3
7
7
9

2
6
,4

,2
3
,1

9
,2

4
2
0
4
8
x
1
1
x
2
4

1
5
6
7
x
2
3
x
2
4

1
2
8
x
3
x
2
4

3
2
7
6
9
2

(4
4
%

)
5
1
9
9
1
6

(7
0
%

)
1
3
2
7
4
3

(1
8
%

)

3
,5

8
1
9

1
6
5
7
x
2
4
x
2
1

2
2
9
0
x
2
4
x
2
4

1
4
1
5
9
4
9

2
6
,4

,4
,1

8
,2

5
4
0
9
6
x
1
2
x
2
5

1
6
x
4
x
2
5

1
8
3
9
5
x
2
2
x
2
5

2
6
7
2
6
1
9

(1
8
8
%

)
9
7
6
6
4
0

(6
8
%

)
2
5
5
6
8
3

(1
8
%

)

3
,5

9
2
1

2
0
7
8
x
2
6
x
2
3

2
9
1
0
x
2
6
x
2
6

1
9
3
9
0
8
6

2
6
,4

,1
,1

8
,2

5
4
0
9
6
x
1
2
x
2
5

2
x
1
x
2
5

3
1
8
0
8
x
2
5
x
2
5

4
7
8
3
9
9
4

(2
4
6
%

)
1
3
5
0
2
0
4

(6
9
%

)
2
8
4
5
4
3

(1
4
%

)

3
,5

1
0

2
1

2
3
5
3
x
2
6
x
2
3

3
3
8
3
x
2
6
x
2
6

2
2
2
9
9
8
1

2
6
,4

,1
,1

8
,2

5
4
0
9
6
x
1
2
x
2
5

2
x
1
x
2
5

3
9
4
1
4
x
2
5
x
2
5

5
8
5
6
4
4
0

(2
6
2
%

)
1
3
7
1
2
2
0

(6
1
%

)
4
5
4
8
8
6

(2
0
%

)

3
,5

1
1

2
1

2
9
7
9
x
2
6
x
2
3

4
3
3
8
x
2
6
x
2
6

2
8
4
4
6
9
3

2
6
,4

,1
,1

8
,2

5
4
0
9
6
x
1
2
x
2
5

2
x
1
x
2
5

4
7
3
6
2
x
2
5
x
2
5

6
9
7
7
1
0
8

(2
4
5
%

)
1
0
8
8
5
4
4

(3
8
%

)
4
7
9
0
4
2

(1
6
%

)

3
,5

1
2

2
2

3
5
2
3
x
2
7
x
2
4

5
1
5
6
x
2
7
x
2
7

3
5
0
4
4
2
6

2
6
,4

,1
,1

8
,2

5
4
0
9
6
x
1
2
x
2
5

2
x
1
x
2
5

5
6
2
6
2
x
2
5
x
2
5

8
2
3
2
0
0
8

(2
3
4
%

)
3
4
1
6
6
7
4

(9
7
%

)
5
7
7
9
3
8

(1
6
%

)

R
A

L
U

T
P

ro
p
o
se

d
P

ro
p
o
se

d
 w

it
h
 E

rr
o
r

S
c
a
le

d
 A

re
a
 w

it
h

N
o
 E

rr
o
r

(R
e
la

ti
v
e
 t

o

R
A

L
U

T
)

S
c
a
le

d
 A

re
a
 w

it
h

1
 U

n
it
 E

rr
o
r

in

A
d
d
 o

r
S

u
b

(R
e
la

ti
v
e
 t

o

R
A

L
U

T
)

S
c
a
le

d
 A

re
a

w
it
h
 1

 U
n
it

E
rr

o
r

in
 A

d
d

a
n

d
 S

u
b

(R
e
la

ti
v
e
 t

o

28

28

Summary

Results for a single (3) and two (3, 5) non-binary base systems were shown to

have a slightly larger scaled area than the original RALUT implementation. However,

once a single unit error was allowed, the scaled area dropped significantly especially in

the cases where it was allowed on both addition and subtraction. These scaled values

have yet to be fully optimized as the multipartite tables cannot be applied since the tables

are sparse and incomplete. This will be a task for another researcher in the future.

29

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This goal of this thesis was to improve the implementation of addition and

subtraction circuits in MDLNS based on earlier works which were applied to LNS only.

The Novel Co-transformation method for subtraction in LNS was analysed and

successfully applied to the MDLNS, which is a super-set of the LNS. This resulted in the

development of a programmable framework for testing various bases and exponent

ranges to investigate the method’s performance. The resulting tables show very good

promise when a certain level of error is allowed, but for zero error systems, more

optimizations still need to be performed to obtain solid results. The choice of H, or 2I,

appears to be increasing at a larger rate than in the previous RALUT method. It may be

possible to adjust the tables during verification to select smaller parameters and therefore

smaller tables.

Although the software code is written in MATLAB to ease development

time(with many optimizations to improve run-time performance), the execution times are

still quite high and limit the analysis on systems with more than one non-binary base and

larger exponent ranges.

Lastly, the selection of bases 2, 3, 5, 7, etc. is historical as it provides true

orthogonal bases, but it is possible that better results can be obtained from a more optimal

set of bases [8].

30

30

Future Work

Unfortunately, the resulting low table utilization introduces a great degree of

sparseness in the tables. The existing multipartite method for efficient table

implementation cannot be applied as the resulting hardware will target all outputs as

opposed to just that small amount which is actually used. This would result in larger

tables than necessary. This change is recommended to be investigated by another

researcher in the future.

Ultimately, a full implementation will indicate which method is the best. This will

require the above multipartite implementation, the circuit to perform the addition and

subtraction operation, as well as the associated interconnecting circuits. All of this would

be synthesised and compared with current technologies to see which method is best.

The software could be recoded in a higher performance language (C, for example)

to better manage memory and resources while decreasing execution time.

Execution times could be further improved by examining the results from many

scenarios to see what the trends of the parameters are. This software performs a brute

force approach (trying all possible combinations), but it may not be necessary if statistical

data suggests certain combinations are either favourable or unlikely to give good results.

31

APPENDICES

APPENDIX A

Software

function[ResultMinErr]=mdlnscotrans(base,expl,exph,startm,stopm,minerro

r,maxrounds)

format short g

l2=log(2);

b=2;

lb=log(b);

vi=0;

NRows = 1;

k = size(base,2);

MaxF = 100;

TBArea = -1;

TBErr = -1;

TBErrArea = 1e99;

TBErrZero=0;

%tic;

ind_r=1;

ind_k=ind_r+1;

ind_j=ind_k+1;

ind_q=ind_j+1;

ind_p=ind_q+1;

ind_ar=ind_p+1;

ind_ae=ind_ar+1;

ind_sr1=ind_ae+1;

ind_sr2=ind_sr1+1;

ind_se=ind_sr2+1;

ind_tr=ind_se+1;

ind_tf=ind_tr+1;

ind_te=ind_tf+1;

ind_end=ind_te;

deltap=2;

deltaq=2;

ErrorFactor=2;

NRows = 1;

for tk=1 : k

 NRows = NRows * (exph(tk)-expl(tk)+1);

end

A=zeros(NRows+1,k+4);

tempc=1;

for tk=1:k

 n=expl(tk);

 if tk == 1

 tempc=1;

32

 else

 tempc = tempc * (exph(tk-1)-expl(tk-1)+1);

 end

 for h=1:NRows

 A(h,tk+1) = n;

 R = rem(h,tempc);

 if R == 0

 if n<exph(tk)

 n=n+1;

 elseif n==exph(tk)

 n=expl(tk);

 end

 end

 end

end

lbase=log(base)';

for h=1:(NRows)

 res = exp((A(h,2:k+1) * lbase));

 [x1,x2]=log2(res);

 x1=x1*2;

 x2=x2-1;

 A(h,1)=x2;

 A(h,k+2) = x1;

 A(h,k+3) = log(x1)/lb;

end

clear lbase

A(NRows+1,k+2)=2^(vi+1);

A=sortrows(A,k+2);

A(NRows+1,:)=A(1,:);

A(NRows+1,1)=A(1,1)+1;

A(NRows+1,k+2)=2^(vi+1);

A(NRows+1,k+3)=A(1,k+3)+1;

A(NRows+2,:)=A(2,:);

A(NRows+2,1)=A(2,1)+1;

A(NRows+2,k+2)=A(2,k+2)*2;

A(NRows+2,k+3)=A(2,k+3)+1;

u1 = 100;

for l=1:(NRows-1)

 divr = A(l+1,k+2)/A(l,k+2);

 if divr<u1

 u1=divr;

 end

end

A

numberofintegerbits1 = ceil(log((log(2/(u1-1))/l2)*110/100)/l2);

numberofintegerbits2 = ceil(log((log(2/(1-(1/u1)))/l2)*110/100)/l2);

ik = numberofintegerbits1;

Mvi=2^ik;

disp(sprintf('Number of Integer Bits=%d',ik));

Rownum=1;

TempAcc = ones(100,ind_end)*1e15;

for r=startm:stopm;

33

 m=2^r;

 disp(sprintf('m=%d',m));

 f=r;

 u1=0;

 for h=1:(NRows)

 A(h,k+4) = round(A(h,k+3)*m);

 if (h>1 && A(h,k+4)<=A(h-1,k+4))

 disp('Overlap in mapping, usng next "m".');

 u1=-100;

 break;

 end

 end

 if (u1<-1)

 continue;

 end

 A(NRows+1,k+4)=A(1,k+4)+m;

 A(NRows+2,k+4)=A(2,k+4)+m;

 A

 % Cache recurring computations

 y_a=zeros(1,NRows*Mvi);

 z_a=zeros(1,NRows*Mvi);

 for x1=1:(NRows*Mvi)

 NCRow1=mod(x1-1,NRows)+1;

 y_a(x1)=A(NCRow1,k+2)*(2^(floor((x1-1)/NRows)));

 z_a(x1)=floor((x1-1)/NRows)+(A(NCRow1,k+4)/m);

 end

 ADDPQJ=ones(deltap+1,f+ik,f-1)*-1;

 SUBPQJ=ones(deltap+1,f+ik,f-1)*-1;

 SUBPQJerrtot=zeros(deltap+1,f+ik,f-1);

 SUBPQJerrnum=zeros(deltap+1,f+ik,f-1);

 ADDPQJerrtot=zeros(deltap+1,f+ik,f-1);

 ADDPQJerrnum=zeros(deltap+1,f+ik,f-1);

 PrevLocalTBErr = 1e99;

 mbreak = 0;

 % Create fast searching cache

 x2=1;

 x3=1.0;

 fastmap=zeros(1,m,'double');

 for x1=1:1:m

 while (x3<A(x2,k+2) || x3>=A(x2+1,k+2))

 x2=x2+1;

 end

 fastmap(x1)=x2;

 x3=x3+1/m;

 end

34

 % Create fast nearest cache

 x2=1;

 fastnear=zeros(1,m,'double');

 for x1=1:1:NRows

 x3=round(log((A(x1,k+2)+A(x1+1,k+2))/2)/lb*m);

 while x2<=x3

 fastnear(x2)=x1;

 x2=x2+1;

 end

 end

 x1=x1+1;

 while x2<=m

 fastnear(x2)=x1;

 x2=x2+1;

 end

 for f=r:1:r;

 LocalTBErr=-1;

 fp2=2^f;

 for p=f-deltap:1:f

 pp2=2^p;

 ip = p-f+deltap+1;

 for q=0:1:f;

 iq = q+1;

 qskip=0;

 qbreak=0;

 j=0;

 disp(sprintf('r=%d, j=%d, q=%d, p=%d, TBErr=%f,

TBErrArea=%f',r,j,q,p,TBErr,TBErrArea));

 worst=0;

 clear z_l_a

 clear td_b1_a

 clear td_b1_a_hit

 clear td_b2_a

 clear td_b2_a_hit

 sbf=f;

 sbk=ik;

 sbj=q;

 sbp=p;

 sbfp2=2^sbf;

 sbjp2=2^sbj;

 sbpp2=2^sbp;

 sbi=2^(sbf-sbj);

 sbz_h=-[0:1:2^(sbf-sbj+sbk)+1]/sbi;

35

 sbts_b = round((log(1+(ones(1,2^(sbf-

sbj+sbk)+2)*b).^sbz_h)/lb)*sbpp2)/sbpp2;

 clear sbz_h

 sbts_b_hit=zeros(1,2^(sbf-sbj+sbk)+2,'double');

 for x2=1:(NRows*Mvi)

 y2=y_a(x2);

 z2=z_a(x2);

 for x1=x2:(NRows*Mvi)

 y1=y_a(x1);

 z1=z_a(x1);

 in=z2-z1;

if in<-2^sbk

 s_b = 0 ;

elseif in>0

 s_b = in;

else

 i=floor(-in*sbi)+1;

 sbtsb=sbts_b(i);

 sbts_b_hit(i)=1;

 s_b=sbtsb+(sbts_b(i+1)-sbtsb)*sbi*mod(floor(-

in*sbfp2+0.5),sbjp2)/sbfp2;

end

 approx=floor((z1+s_b)*m+0.5)/m;

 fn_i=fastnear(mod(approx*m,m)+1);

 fn_e=floor(approx);

 cor=y1+y2;

 [cor_m,cor_e]=log2(cor);

 cor_m=cor_m*2;

 cor_e=cor_e-1;

 fm1=double(fastmap(floor((cor_m-1)*m+1)));

 while (cor_m>=A(fm1+1,k+2))

 fm1=fm1+1;

 end

 cor_il=fm1;

 cor_ih=fm1+1;

 cor_eh=(A(cor_ih,k+2)-cor_m);

 cor_el=(cor_m-A(cor_il,k+2));

 cor_slack=0;

 cor_i=cor_il;

 % Check if error is split between both entries

 if abs(abs(cor_eh-cor_el)/cor_eh)<0.001

 cor_slack=1;

 elseif cor_eh<cor_el

 cor_i=cor_ih;

 end

 cor_o=cor_e*NRows+cor_i;

 fn_o=fn_e*NRows+fn_i;

 err=0;

 if fn_o<cor_o

 err=cor_o-fn_o;

 end

 if fn_o>cor_o+cor_slack

 err=fn_o-cor_o-cor_slack;

 end

36

 if (err>0)

ADDPQJerrtot(ip,iq,:)=ADDPQJerrtot(ip,iq,1)+err;

 ADDPQJerrnum(ip,iq,:)=ADDPQJerrnum(ip,iq,1)+1;

 end

 worst=max(err,worst);

 end

err=ADDPQJerrtot(ip,iq,1)/(ADDPQJerrnum(ip,iq,1)+(ADDPQJerrnum(ip,iq,1)

==0));

 if (err >PrevLocalTBErr*ErrorFactor) || (err>minerror)

 disp('Stopping internal calculation due to

excessive error');

 ADDPQJerrtot(ip,iq,1)=1e90;

 ADDPQJerrnum(ip,iq,1)=1;

 qskip=1;

 break

 end

 end

 ADDPQJ(ip,iq,:)=worst;

 if (qskip>0)

 continue;

 end

 for j=1:f-1;

 disp(sprintf('r=%d, j=%d, q=%d, p=%d, TBErr=%f,

TBErrArea=%f',r,j,q,p,TBErr,TBErrArea));

 jp2=2^j;

 jskip=0;

 TempAcc(Rownum, ind_r) = r;

 TempAcc(Rownum, ind_k) = ik;

 TempAcc(Rownum, ind_j) = j;

 TempAcc(Rownum, ind_q) = q;

 TempAcc(Rownum, ind_p) = p;

 TempAcc(Rownum, ind_ae) =

ADDPQJerrtot(ip,iq,j)/(ADDPQJerrnum(ip,iq,j)+(ADDPQJerrnum(ip,iq,j)==0)

);

 TempAcc(Rownum, ind_se) = 0;

 TempAcc(Rownum, ind_tf) = 2^(sbf-sbj+sbk) + 2^(f+ik-j)+2^j;

 TempAcc(Rownum, ind_te) = TempAcc(Rownum, ind_ae);

 worst=0;

 omega = -2*f;

 td_b1_a_hit=zeros(1,jp2,'double');

 z_l_a=[log(1-b^(omega))/lb [1:1:jp2-1]/fp2];

 td_b1_a = round((log(abs(ones(1,jp2)-

b.^z_l_a))/lb)*pp2)/pp2;

 td_b2_a_hit=zeros(1,2^(f+ik-j),'double');

 fjp2=2^(f-j);

37

 z_h_a=[log(1-b^(omega))/lb [1:1:2^(f+ik-j)-1]/fjp2];

 td_b2_a = round((log(abs(ones(1,2^(f+ik-j))-

b.^z_h_a))/lb)*pp2)/pp2;

 clear z_h_a

 for x2=(NRows*Mvi):-1:2

 y2=y_a(x2);

 z2=z_a(x2);

 for x1=x2-1:-1:1

 y1=y_a(x1);

 z1=z_a(x1);

 cor=y2-y1;

 NZ=z2-z1;

 z_i = mod(NZ*fp2,jp2)+1;

 z_l = z_l_a(z_i);

 td_b1 = td_b1_a(z_i);

 td_b1_a_hit(z_i)=1;

 td_b2 = td_b2_a(floor(NZ*fjp2)+1);

 td_b2_a_hit(floor(NZ*fjp2)+1)=1;

 in=td_b1-z_l-td_b2;

if in<-2^sbk

 s_b = 0 ;

elseif in>0

 s_b = in;

else

 i=floor(-in*sbi)+1;

 sbtsb=sbts_b(i);

 sbts_b_hit(i)=1;

 s_b=sbtsb+(sbts_b(i+1)-sbtsb)*sbi*mod(floor(-

in*sbfp2+0.5),sbjp2)/sbfp2;

end

 approx=floor((z1+z_l+td_b2+s_b)*m+0.5)/m;

 err=0;

 fn_i=fastnear(mod(approx*m,m)+1);

 fn_e=floor(approx);

 [cor_m,cor_e]=log2(cor);

 cor_m=cor_m*2;

 cor_e=cor_e-1;

 if cor_m<1

 cor_m=cor_m*2;

 cor_e=cor_e-1;

 end

 fm1=double(fastmap(floor((cor_m-1)*m+1)));

 while (cor_m>=A(fm1+1,k+2))

 fm1=fm1+1;

 end

 cor_il=fm1;

 cor_ih=fm1+1;

 cor_eh=(A(cor_ih,k+2)-cor_m);

38

 cor_el=(cor_m-A(cor_il,k+2));

 cor_slack=0;

 cor_i=cor_il;

 if cor_eh<cor_el

 cor_i=cor_ih;

 else

 % Check if error is split between both entries

 if abs(abs(cor_eh-cor_el)/cor_eh)<0.001

 cor_slack=1;

 end

 end

 cor_o=cor_e*NRows+cor_i;

 fn_o=fn_e*NRows+fn_i;

 err=0;

 if fn_o<cor_o

 err=cor_o-fn_o;

 end

 if fn_o>cor_o+cor_slack

 err=fn_o-cor_o-cor_slack;

 end

 if (err>0)

SUBPQJerrtot(ip,iq,j)=SUBPQJerrtot(ip,iq,j)+err;

SUBPQJerrnum(ip,iq,j)=SUBPQJerrnum(ip,iq,j)+1;

 end

 worst=max(err,worst);

 end

 TempAcc(Rownum, ind_se) =

SUBPQJerrtot(ip,iq,j)/(SUBPQJerrnum(ip,iq,j)+(SUBPQJerrnum(ip,iq,j)==0)

);

 TempAcc(Rownum, ind_te) = sqrt(TempAcc(Rownum,

ind_ae)^2 + TempAcc(Rownum, ind_se)^2);

 if TempAcc(Rownum, ind_te)>PrevLocalTBErr*ErrorFactor

 disp('Stopping internal calculation due to

excessive error');

 TempAcc(Rownum, ind_se)=1e90;

 jskip=1;

 break

 end

 end

 SUBPQJ(ip,iq,j) = worst;

 if (jskip>0)

 break;

 end

 TempAcc(Rownum, ind_te) = sqrt(TempAcc(Rownum, ind_ae)^2 +

TempAcc(Rownum, ind_se)^2);

 sbts_b_hit(2^(sbf-sbj+sbk)+1)=0;

 TempAcc(Rownum, ind_ar) = sum(sbts_b_hit);

 TempAcc(Rownum, ind_sr1) = sum(td_b1_a_hit);

 TempAcc(Rownum, ind_sr2) = sum(td_b2_a_hit);

 TempAcc(Rownum, ind_tr) = TempAcc(Rownum, ind_ar) +

TempAcc(Rownum, ind_sr1) + TempAcc(Rownum, ind_sr2);

39

 Rownum = Rownum +1;

 if (TBErr < 0)

 TBErr = TempAcc(Rownum-1, ind_te);

 if (TBErr <= minerror)

 TBErrArea = TempAcc(Rownum-1, ind_tr);

 end

 end

 if (TBErr > TempAcc(Rownum-1, ind_te))

 TBErr = TempAcc(Rownum-1, ind_te);

 if (TBErr <= minerror)

 TBErrArea = TempAcc(Rownum-1, ind_tr);

 end

 elseif TBErr == TempAcc(Rownum-1, ind_te) && TBErr <=

minerror

 TBErrArea = min(TBErrArea,TempAcc(Rownum-1, ind_tr));

 end

 if (q==0 && TBErr > minerror)

 disp('No point, skipping to next p');

 qbreak=1;

 break;

 end

 if (LocalTBErr < 0)

 LocalTBErr = TempAcc(Rownum-1, ind_te);

 end

 if (LocalTBErr >= TempAcc(Rownum-1, ind_te))

 LocalTBErr = TempAcc(Rownum-1, ind_te);

 end

 end %j

 if (qbreak>0)

 break;

 end

 end %q

 end %p

 if (LocalTBErr < PrevLocalTBErr)

 PrevLocalTBErr = LocalTBErr;

 else

 disp(sprintf('Stopping f=%d.',f));

 break;

 end

 end %f

 TempAcc=sortrows(TempAcc,ind_tr);

 TempAcc=sortrows(TempAcc,ind_tf);

 TempAcc=sortrows(TempAcc,ind_te);

 j=find(TempAcc(:,ind_te)>0,1,'first');

 f=find(TempAcc([j:1:Rownum-

1],ind_te)>TempAcc(j,ind_te)*ErrorFactor,1,'first');

 if (size(f,1)>0)

 TempAcc=TempAcc(1:1:j+f-2,:);

40

 Rownum=size(TempAcc,1)+1;

 else

 TempAcc=TempAcc(1:1:Rownum-1,:);

 end

 ResultMinErr = TempAcc;

 if (TBErr>=0 && TBErr <= minerror)

 TBErrZero=TBErrZero+1;

 if (TBErrZero >= maxrounds)

 disp(sprintf('Stopping mp=%d. error zero for past %d

rounds.',r,maxrounds));

 break;

 end

 end

 if (mbreak>0)

 break;

 end

end

% Remove any results below the minimum error

j=find(TempAcc(:,ind_te)>=minerror,1,'first');

if (size(j,1)>0)

 TempAcc=TempAcc(j:1:Rownum-j-1,:);

end

ResultMinErr = TempAcc;

disp('Result for Minimum Error');

disp('r k j q p ADDRows ADDArea ADDErr SUBRows SUBArea SUBErr TOTRows

TOTArea TOTErr');

disp(ResultMinErr);

41

REFERENCES

[1] Roberto Muscedere, “Difficult Operations in the Multi-Dimensional Logarithmic

Number System”, PhD Thesis, University of Windsor, 2003.

[2] Steven W. Smith, “The Scientist and Engineer's Guide to Digital Signal

Processing”.

[3] Panagiotis D. Vouzis , Sylvain Collange, Mark G. Arnold, “Co-transformation

Provides Area and Accuracy Improvement in an HDL Library for LNS

Subtraction”, 10thEuromicro Conference on Digital System Design Architectures,

Methods and Tools, DSD 2007.

[4] Panagiotis D. Vouzis , Sylvain Collange, Mark G. Arnold, “ LNS Subtraction

Using Novel Cotransformation and/or Interpolation”, IEEE International

Conference on Application-Specific Systems, Architectures and Processors,

ASAP 2007.

[5] Mahzad Azarmehr, “Arithmetic with the Two-Dimensional Logarithmic Number

System (2DLNS)”, PhD Thesis, University of Windsor, 2011.

[6] http://en.wikipedia.org/wiki/Logarithmic_number_system

[7] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and K. S.

Hemmert, “A Comparison of Floating Point and Logarithmic Number Systems

for FPGAs”, In Proceedings of the 13th Annual IEEE Symposium on Field

Programmable Custom Computing Machines, pages 181–190, Washington, DC,

17–20 April 2005.

42

[8] Roberto Muscedere, “Improving 2D-log-Number-System Representations by use

of an Optimal Base”, Eurasip Journal on Advance in Signal Processing, 2008, 1-

13, 2008.

[9] J. N. Coleman, E. I. Chester, C. I. Softley and J. Kaldec, “Arithmetic on the

European Logarithmic Microprocessor”, IEEE Transactions on Computers, vol.

49, no. 7, pp. 702-715, 2000.

[10] N. G. Kingsbury and P. J. Rayner, “Digital Filtering Using Logarithmic

Arithmetic”, Electronics Letters, vol. 7, pp. 56-58, 1971.

[11] D. M. Lewis, “Interleaved Memory Function Interpolators with Application to an

Accurate LNS Arithmetic Unit”, IEEE Transactions on Computers, vol. 43, no. 8,

pp. 974-982, 1994.

[12] D. M. Lewis, “An Architecture for Addition and Subtraction of Long Word

Length Numbers in the Logarithmic Number System”, IEEE Transaction on

Computers, vol. 39, no. 11, November 1990.

[13] F. J. Taylor, R. Gill, J. Joseph and J. Radke, “A 20 Bit Logarithmic Number

System Processor”, IEEE Transactions on Computers, vol. 37,pp. 190-200, 1988.

[14] Vassil Dimitrov, Graham Jullien, Roberto Muscedere, “Multiple-Base Number

System Theory and Applications”, CRC Press 2011.

[15] J. N. Coleman, “Simplification of Table Structure in Logarithmic Arithmetic”,

IEE Electronic Letters, 31(22):1905–1906, 26 Oct. 1995.

[16] D. M. Lewis, “Interleaved Memory Function Interpolators with Application to

and Accurate LNS Arithmetic Unit”, IEEE Transactions on Computers, vol. 43,

no. 8, pp. 974-982, 1994.

43

[17] M. G. Arnold, “An Improved Co-transformation for Logarithmic Subtraction”, In

Proceedings of the International Symposium on Circuits and Systems, 26–29 May

2002.

[18] R. Muscedere, V. Dimitrov, G.A. Jullien, W.C. Miller, “Efficient Techniques for

Binary-to-Multidigit Multidimensional Logarithmic Number System Conversion

Using range-Addressable look-Up Tables”, IEEE Transactions on Computers, 54,

pp. 257-271, 2005.

[19] R. Muscedere, K. Leboeuf, “A Dynamic Address Decode Circuit for Implementing

Range Addressable Look-Up Tables”, IEEE International Symposium on Circuits

and Systems, ISCAS 2008.

[20] Mahzad Azarmehr, “A Multi-Dimensional Logarithmic Number System Based

Central Processing Unit”, M. A. Sc. Thesis, University of Windsor, 2007.

[21] M. J. Schulte and J. E. Stine, “Symmetric Bipartite Tables for Accurate Function

Approximation”, in Proceedings of the 13th IEEE Symposium on Computer

Arithmetic, pp. 175–183, Asilomar, CA, July 6–9 1997.

[22] M. G. Arnold, T. A. Bailey, J. R. Cowles, and M. D.Winkel, “Arithmetic Co-

transformations in the Real and Complex Logarithmic Number Systems”, IEEE

Transactions on Computers, 47(7):777–786, July 1998.

[23] M. G. Arnold., “An Improved Co-transformation for Logarithmic Subtraction”, In

Proceedings of the International Symposium on Circuits and Systems

(ISCAS’02), pp. 752–755,Scottsdale, Arizona, 26–29 May 2002.

[24] http://flopoco.gforge.inria.fr/

44

[25] F. de Dinechin and A. Tisserand, “Some Improvements on Multipartite Table

Methods. In Proceedings of the 15thSymposium on Computer Arithmetic”, pp.

128–135, Vail, Colorado, 11–13 June 2001.

[26] F. de Dinechin and A. Tisserand, “Multipartite Table Methods”, IEEE

Transactions on Computers, 54(3):319–330, March 2005.

45

VITA AUCTORIS

Leila Sepahi was born in Shiraz, Iran in 1982. She received her Bachelor Degree in

Electrical Engineering from Islamic Azad University, Fasa, Iran in 2004. She worked for

different engineering companies in Iran for 6 years. In January 2010 she started her

Master of Engineering program in University of Windsor. In January 2011 after

successfully passing courses needed for M.Eng. she transferred to Master of Applied

Science in University of Windsor and started her research under supervision of Dr. R.

Muscedere. Her research interests are Computer Arithmetic, VLSI circuit design and

Digital Signal Processing.

	Improved MDLNS Number System Addition and Subtraction by Use of the Novel Co-Transformation
	Recommended Citation

	Microsoft Word - Master Thesis-Leila Sepahi-2

