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Abstract 

 

 

Finite fields is considered as backbone of many branches in number theory, coding 

theory, cryptography, combinatorial designs, sequences, error-control codes, and 

algebraic geometry. Recently, there has been considerable attention over finite field 

arithmetic operations, specifically on more efficient algorithms in multiplications. 

Multiplication is extensively utilized in almost all branches of finite fields mentioned 

above.  

 

Utilizing finite field provides an advantage in designing hardware implementation since 

the ground field operations could be readily converted to VLSI design architecture. 

Moreover, due to importance and extensive usage of finite field arithmetic in 

cryptography, there is an obvious need for better and more efficient approach in 

implementation of software and/or hardware using different architectures in finite fields. 

This project is intended to utilize a newly found class of finite fields in conjunction with 

the Mastrovito algorithm to compute the polynomial multiplication more efficiently.  
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1  Introduction 

 
1.1 Motivation 
 

Until modern times cryptography referred almost exclusively to encryption, which is the 

process of converting ordinary information (plaintext) into unintelligible gibberish 

(i.e., ciphertext).[2] Decryption is the reverse, in other words, moving from the 

unintelligible ciphertext back to plaintext. A cipher  (or cypher) contains a pair of 

algorithms which create the encryption and the reversing decryption. The detailed 

operation of a cipher is controlled both by the algorithm and in each instance by a key. 

This is a secret parameter (ideally known only to the communicants) for a specific 

message exchange context. Keys are important, as ciphers without variable keys are 

trivially breakable and therefore less than useful for most purposes. Historically, ciphers 

were often used directly for encryption or decryption without additional procedures such 

as authentication or integrity checks.[19] 

 

Modern cryptosystems could be classified into two categories, symmetric key encryption 

(where both parties use the same secret key) and public key encryption (where each party 

has a pair of keys: public key and private key). The first public key was invented in 1978 

by Diffie and Hellman [3]. Although public key systems are computational intensive, 

slow and costly, they have advantages over symmetric key systems in that the former can 

provide security services such as  key distribution/management and digital signature. 

Therefore, public key systems have attracted more attentions and been adopted into many 

security related standards. 

 

 

 

http://en.wikipedia.org/wiki/Plaintext�
http://en.wikipedia.org/wiki/Cryptography#cite_note-kahnbook-1�
http://en.wikipedia.org/wiki/Plaintext�
http://en.wikipedia.org/wiki/Cipher�
http://en.wikipedia.org/wiki/Key_(cryptography)�
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 Below is the list of security services using schemes introduced by cryptography.(X.800) 

[6] 

• Authentication 

o Peer entity authentication 

o Data Origin Authentication 

• Access Control 

• Data Confidentiality 

• Data integrity 

• Non repudiation 

 

Elliptic Curve and ElGamal are two of the most common public key cryptosystems, and 

both the systems can provide encryption, digital signature and key establishment. It is 

noted that both Elliptic curve and ElGamal systems are based on finite field 

computations. [6] 

 

Since the security services provided by the cryptosystems require intensive finite field 

computation, this necessity sparked a need for scientists and engineers to come up with 

algorithms and architectures to perform finite field arithmetic more efficiently. 

 

Each arithmetic operation used in finite fields has been the subject to improvements. 

Most importantly is effective and efficient computation of multiplication, since 

multiplication is the most used arithmetic operation in all cryptographic systems that 

finite fields are involved.   

 

There are two major complexity measures we have adopted for discussion and 

comparison of various architectures for finite field arithmetic: Space complexity and 

critical time delay. Space complexity can be the number of logic gates required for a 

designed circuit, while critical time delay is usually measured by in the unit of delay 

caused by one gate. 
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Current research in this area has been focusing on finding new parallel finite field 

multiplication algorithms and architectures in order to further speed up the computation 

demanded by the various security services. It is important to mention that the fields of 

characteristic two are often chosen for hardware implementation because the ground field 

operations addition and multiplication can be readily implemented with VLSI XOR and 

AND gate, respectively. 
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1.2 Thesis Outline 

 

The organization of the rest of this thesis is as follows: 

 

Chapter 2 emphases are on a brief introduction of finite filed theory. In this section the 

basic definitions, elementary properties of finite fields and arithmetic algorithms will be 

discussed. In addition irreducible polynomials will be introduced, and a list of most used 

irreducible polynomial will be reviewed. Different multiplication algorithms one step and 

two step multiplication and their advantages and disadvantages will be demonstrated. In 

Chapter 3 two major architectures of multiplication will be reviewed in detail and 

compared. Chapter 4 will have an introduction to One Zero polynomials (OZP), in 

addition to in-depth usage of Mastrovito multiplication algorithm using OZP. 

In Chapter 5 a brief comparison between most used irreducible polynomials in 

Mastrovito, is conducted. In this chapter the comparisons are conducted side by side and 

the improvements gained using one Zero Polynomials are indicated. In Chapter 6 

conclusions and comparisons are made between the proposed multiplier and those based 

on pentanomials already in the literature. A few concluding remarks are also given. 
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2   Mathematical Background 

 

2.1 Fundamental concepts 
 

This section is intended to review the mathematical background on basic theorems and 

arithmetical functions in finite fields. In this section a brief review of ring, group and 

field will be conducted. In addition in this section it is intended to show most used basis 

and polynomial representation and their usages. 

 

2.2   Finite Fields 

Finite field or Galois field (named in honor of Évariste Galois) is a class of fields that 

contain only finitely many elements. The finite fields are classified by their size [4]. 

From a mathematical point of view, a finite field is a set of finite elements where one can 

add, subtract, multiply, and divide such that properties of associativity, distributivity, and 

commutativity are satisfied [1]. 

Most common representations of finite fields are: 

• GF(2m) , Binary extension field presentation 

• GF(p) , Prime field presentation 

Binary extension field representation is most desirable due to its proximity and ease of 

conversion to digital hardware implementation. 

There exist different architectures in hardware and/or software for implementation of 

finite field multipliers.  

Multipliers have gain special focus, due to their vital role and extensive use, in 

Cryptography and most algorithms in number theory. Ecommerce and credit based 

banking solely rely on safety and security established encryption provided by finite 

fields.   

 

http://en.wikipedia.org/wiki/Field_(mathematics)�
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2.3  Groups, Rings and Fields 
 

Definition 2.1.1. [5] A group (G,*) is a set G together with a binary operation * on G 

such that the following three properties hold: 

 

1. The binary operator * is associative; that is, for any a, b, c   ϵ G, 

𝑎𝑎 * (𝑏𝑏* 𝑐𝑐) = (𝑎𝑎 * 𝑏𝑏) * 𝑐𝑐 

 

2. There is an identity (or unity) element e in G such that for all  

a ϵ G, 

𝑎𝑎 * 𝑒𝑒 = 𝑒𝑒 * 𝑎𝑎 = 𝑎𝑎 

 

3. For each a ϵ G, there exists an inverse element  𝑎𝑎−1 in G such that 

𝑎𝑎 * 𝑎𝑎−1 = 𝑎𝑎−1 * 𝑎𝑎 = 𝑒𝑒 

 

If for all a, b ϵ G, a * b = b * a , then G is referred to as an Abelian or commutative 

group. A group with a finite number of elements is referred to as a finite group. 

 

Definition 2.1.2. [5]  A ring (r, +, *) is a set R together with two binary operations, 

denoted by + and * , such that the following three properties hold: 

1. R is an abelian group with respect to +. 

 

2. The binary operator * is associative, which means for all  

a, b, c ϵ R 

𝑎𝑎 * (𝑏𝑏* 𝑐𝑐) = (𝑎𝑎 * 𝑏𝑏) * 𝑐𝑐 
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3. The distribution law holds, which means for all 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ϵ 𝑅𝑅 

𝑎𝑎 * (𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎 *𝑏𝑏 + 𝑎𝑎 * 𝑐𝑐  

and 

 (𝑏𝑏 + c) * a = b * a + c * a  

 

The identity element of the abelian group R with respect to + is called the zero element, 

while the identity element with respect to * (if it exists) is called the identity element. A 

ring is called commutative if the binary operator * is commutative. 

 

 

Definition 2.1.3. [24] A field (f, +, *) is a set F together with two  

binary operations, denoted by + and *, such that the following two properties hold: 

 

1. F is a commutative ring under + and *. 

2. Nonzero elements of F from a group with the binary operation *. 

 

A field with a finite number of elements is referred to as a finite field. The order of a 

finite field is the number of elements in the field. There exists a finite field F of order q if 

and only if q is a prime power, that is 

𝑞𝑞  = 𝑝𝑝𝑚𝑚  where 𝑝𝑝 is a prime number referred to as the characteristic of F and m is a 

positive integer [6]. 

For any prime power q, there is essentially only one finite field of order q.  

This means that any two finite fields of order q are structurally the same, except that the 

labelling used to represent the field elements may be different. We say that any two finite 

fields of order q are isomorphic, and denote such a field by Fqm or GF(qm) (GF stands for 

Galois Field, in honor of Evariste Galois, a French mathematician who is known for his 

work on the theory of equations and abelian integrals).[7] 
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2.4 Binary Fields and Bases 
 

As mentioned in the introduction, there are several diverse representations of finite field 

basis, depending on the arithmetic necessities of the scheme utilized; one can choose the 

basis best fit.  

In the next section; three most used bases will be demonstrated and their 

advantages/disadvantages will be explained in more detail. 

It is possible to convert one form of basis to another with a cost.  

 

 

2.5 Comparison of Bases  
 

This section is intended to provide more information about the different Field 

representation, the structure and their most likely usage. Also a brief introduction on why 

and where each representation is used. The focus of this thesis is primarily dealing with 

polynomial basis. 

In the next section of this thesis, more in-depth information is provided about the 

polynomial basis.  

 

2.5.1 Polynomial Basis 
 

Polynomial base is the most popular form of basis used, Due to their inherent proximity 

to digital logic make it possible for easy conversion to hardware and software 

implementations. 

“In mathematics, the polynomial basis is a basis for finite extensions of finite fields. 

Let α ∈ GF(p m) be the root of a primitive polynomial of degree m over GF(p). The 

polynomial basis of GF(pm) is then 

http://en.wikipedia.org/wiki/Mathematics�
http://en.wikipedia.org/wiki/Basis_(linear_algebra)�
http://en.wikipedia.org/wiki/Finite_extension�
http://en.wikipedia.org/wiki/Finite_field�
http://en.wikipedia.org/wiki/Primitive_polynomial�
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 {0,1,𝛼𝛼, … . . ,𝛼𝛼𝑚𝑚−1} , The set of elements of GF(pm) can then be represented as 

[3]:   �0,1,𝛼𝛼,𝛼𝛼2 … . . ,𝛼𝛼𝑝𝑝𝑚𝑚−1�   

A polynomial p(x) with the degree of m over GF(2), could be represented in polynomial 

form as: 

A(x) = 𝛼𝛼 mxm+𝛼𝛼 m-1xm-1+⋯ + 𝛼𝛼 2x2 + 𝛼𝛼 1x + 𝛼𝛼 0 

In this polynomial the coefficients are all members of Galios Fields or GF(2)={0,1} 

 

2.5.2 Normal Basis 
 

Squaring operation is conducted effortlessly in some applications.  Normal Basis is 

advantageous regarding this since squaring operation is trivial. Therefore in situations 

and architectures which require extensive squaring, Normal Basis are favored. 

As indicated before this property allows for hardware efficient multipliers designed. The 

normal basis representation of  GF(24) is given in Appendix A. 

“ The normal basis theorem states that any Galois extension of fields has a normal basis. 

In the case of finite fields, this means that each of the basis elements is related to any one 

of them by applying the pth power mapping repeatedly, where p is the characteristic of the 

field. Let GF(pm) be a field with pm elements, and β an element of it such that 

the m elements  {𝛽𝛽,𝛽𝛽𝑝𝑝 ,𝛽𝛽𝑝𝑝2 , … . ,𝛽𝛽𝑝𝑝𝑚𝑚−1 } are linearly independent. Then this set forms a 

normal basis for GF(pm). 

This basis is frequently used in cryptographic applications that are based on the discrete 

logarithm problem such as elliptic curve cryptography. Hardware implementations of 

normal basis arithmetic typically have far less power consumption than other bases. ”[5] 

 

 

http://en.wikipedia.org/wiki/Characteristic_(algebra)�
http://en.wikipedia.org/wiki/Cryptography�
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2.5.3 Dual Basis 
 

Some architectures have been designed based on the Dual Basis, but most require 

extensive conversion in basis prior to any implementation. The Dual basis representation 

of  GF(24) is given in Appendix A. 

“In linear algebra, a dual basis is a set of vectors that forms a basis for the dual space of a 

vector space. “[2] 

 

2.5.4 Triangular Basis 
 

There have been few algorithms which utilize the dual basis; however, using the Dual 

Basis in most cases requires additional base conversion. The algorithms that use Dual 

Basis employ the efficiency of this presentation for Bit-Serial in finite field multipliers. 

 

 

2.5.5 Redundant basis 
 

Redundant Basis algorithms utilize the squaring operations inherent to their Basis at no 

cost. In addition forgoing the modular reduction at a cost of expanding in a larger ring 

than the underlying field. Size of Cyclotomic ring underlying the field dictate the 

efficiency for redundant basis. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Vector_space�
http://en.wikipedia.org/wiki/Basis_(linear_algebra)�
http://en.wikipedia.org/wiki/Dual_space�
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2.6  Irreducible Polynomials 
 

Definition  A polynomial p(x) over GF(2) of degree m is irreducible if p(x) is not 

divisible by any polynomial over GF(2) of degree less than m and greater than zero.[17] 

On another note: A polynomial which cannot be factored or is not result of multiplication 

of two polynomials over the same field is considered to be an irreducible polynomial over 

that field.[8] 

For example in finite field of Q[x]={A(x),B(x),.......C(x)}, f(x) is considered to be an 

irreducible polynomial if first f(x) could not be factored in and also there should not exist 

two polynomials in Q[x] where: 

 

f(x)=A(x)B(x) 

Similarly, in the finite field GF(2), x2+x+1 is irreducible. 

But x2+1 is not, since 

(x+1)(x+1)= x2+1 (mod 2).[8] 

Calculation of irreducibility could become extensive which with aid of specific software 

programs this task could be accomplished with ease. 

 For the purpose of this thesis, the availability of irreducible polynomial over a new 

family of polynomials were compiled, this code is appended to Appendix B . 

 In addition to the code, the result is tabularized and attached to this project as Appendix 

C .  

Feasibility of any multiplication algorithm relies heavily on the extent of domain it can be 

applied to. As indicated multiplications using Trinomials is the most efficient approach 

but it has limited domain.  

http://mathworld.wolfram.com/FiniteField.html�
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2.7  Polynomial Basis  
 

The emphasis of this project is on polynomial basis. in polynomial basis there are few 

classes of fields that efficient multiplier can be implemented, most common presentation 

could be listed as follows: 

 

• All-One-Polynomials (AOP) 

An AOP of degree m has all terms from xm to x0 with coefficients of 1, and can be 

written as 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 (𝑥𝑥) = �𝑥𝑥𝑖𝑖
𝑚𝑚

𝑖𝑖=0

 

 

Or 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 (𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑚𝑚−1 + ⋯+ 𝑥𝑥 + 1 

 

• Equally Spaced Polynomials (ESP) 

An ESP could be represented as: 

 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = ∑ 𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚
𝑖𝑖=0       

For  

𝑖𝑖 = 0,1, … . ,𝑚𝑚     or 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝑥𝑥𝑠𝑠𝑠𝑠 + 𝑥𝑥𝑠𝑠(𝑚𝑚−1) + ⋯… + 𝑥𝑥𝑠𝑠 + 1 
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• Trinomials 

 Trinomial is a polynomial consisting of three terms 

 f(x) =xm+ xn + 1, 

m>n 

 

• Pentanomials 

Pentanomials is a polynomial consisting of five terms 

F(x) = xk1+ xk2 + xk3+ xk4 +1  ,  

m > K1 > k2 > k3 > k4 
 

As mentioned earlier extensive research has been conducted to come up with efficient 

multiplication scheme in polynomial families listed above.  

Generally, there are two aspects in introduction of a new method for polynomial 

multiplication, 

 

• Complexity ( Number of AND and OR gates used to achieve the multiplication) 

•  Time complexity, (The time required to accomplish this task) 

 

It is intended to compare the efficiency both in time and space complexity enhancement 

realized in this new approach. 

 

In conclusion, this thesis will demonstrate that, employment of this approach will provide 

modest improvement over current most efficient multiplication schemes in addition to a 

wide availability. 

Most efficient multipliers were constructed using Trinomials, AOP and ESP. 

For the classes of fields that the Trinomials do not exist, Pentanomials are considered 

next best in class. 

 

 

http://en.wikipedia.org/wiki/Polynomial�
http://en.wikipedia.org/wiki/Polynomial�


 

 

14 

 

3       Previous Work in Finite Field Multiplier  

 

3.1 Multiplier classes 
 

In general, the multiplier implementation could be categorized in three different classes.  

 

• Bit-parallel architectures 

o A Bit-parallel architecture is the fastest architecture possible, which 

multiplies two inputs in one clock cycle. Its main draw backs are large 

area utilization and high power consumption. 

 

• Bit-serial architectures 

o A Bit-Serial architecture multiplier in a field of size m, takes m clock 

cycles to finish one multiplication operation. The main advantage of this 

class of multipliers is their low power consumption and area requirements. 

The main disadvantage is the time complexity. 

 

• Word-level architectures  

 

Out of the three mentioned architectures Word-Level multipliers offer the most 

architectural flexibility and the best advantage in regards to performance and possibility 

of materializing VLSI implementation, therefore most practical.  

There are many approaches in  multiplication of two polynomials in  

GF (2m) effectively and efficiently. 
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3.2  Conventional approach 
 

In this section a conventional approach will be demonstrated using two simple 

polynomials. Also a high level hardware manipulation will be demonstrated. 

 

It is important to mention conventional approach is considered a two step multiplication. 

Next section will only deal with the first step of multiplication which is only the term by 

term multiplication, to complete this task modular reduction needs to be implemented.  

 

In the conventional, approach each member of the polynomial would be multiplied to the 

next polynomial, and then after the modularization would take place on the result of 

multiplication.  

This approach also known as pen and pencil approach should be used only as academic 

basis not real problem solving approach. 

 

Example:  

 

Two-step Multiplication in  (2 )mGF  

Let m=3, f(x)=x3+x+1, and A, B be two elements in 3(2 )GF  

2
2 1 0

2
2 1 0

2
2 1 0

( ) ( ),  

( ) ( ),

mod ( ) ( )

A x a x a x a

B x b x b x b
and
C A B f x c x c x c

= + +

= + +

= × = + +

 

 

4 3 2
2 2 1 2 2 1 0 2 1 1 2 0 0 1 1 0 0 0

,

( ) ( ) ( ) ( )

Since

A B a b x a b a b x a b a b a b x a b a b x a b× = + + + + + + + +
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So the product C is solved as:   

 

 

2 2 2

1 2 2 1 2 2 1 0 2 1 1 2 0

0 1 2 2 1 0 0

;
;

c a b
c a b a b a b a b a b a b
c a b a b a b

=
= + + + + +
= + +

 

 

 

 

3 4 2( ) 0 1,

2
2 2 1 2 2 1 0 2 1 1 2 0 0 0

2
2 2 2 2 1 2 2 1 0 2 1 1 2 0 1 2 2 1 0 0

mod  ( )
| |

( )( ) ( )( 1) ( )

( ) ( ) ( )

f x x x x x x

C A B f x
C A B A B

a b x x a b a b x a b a b a b x a b

a b x a b a b a b a b a b a b x a b a b a b

= = + = +

= ×
= × = ×

= + + + + + + + +

= + + + + + + + + +
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Visual Calculation of complexity 

 

 

 

 
Figure 1: Graphical depiction of polynomial multiplication 
 

 

 

 

 

 

 

 

2
2 2 2 2 1 2 2 1 0 2 1 1 2 0 1 2 2 1 0 0( ) ( ) ( )a b x a b a b a b a b a b a b x a b a b a b= + + + + + + + + +

A       B 
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3.3   Complexities for two-step multiplication 
 

As shown in the previous section, we can conclude the complexity of multiplication 

algorithm for two step multiplication is subdivided to two sections: 

– Space complexity (# of logic gates):  

• Step 1 requires m2 AND gates and (m-1)2 XOR gates 

• Complexities of Step 2 depends on f(x) or matrix T 

– Time delay 

 

 

– Step 1:  

1 2log ,  

,        
,        

,
.

step AND XOR

AND

XOR

T T m T
T denote the delay of an AND gate
T denote the delay of an XOR gate

The total time delay for the first step of multiplication
is the additionof both delays in the first step

≤ +   

 

 

 

– Step 2:   time delay again depends on f(x) the irreducible function. 
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3.4 Karatsuba-Ofman algorithm (KOA) 
 

Employment of conventional multiplication approach, it would require n2 or Θ(n2) 

arithmetic operations in order to accomplish the multiplication of two multi digit 

numbers.( n2 or Θ(n2) also known as big O. 

Discovered in 1960 by Dr. Karatsuba and published in a joint paper with Ofman in 1962.  

KOA is a divide and conquer form algorithm, that divides the operands in two parts with 

less number of digits (half number of digits) and forms the final result with the help of 

the product of these parts.[9] 

Using this approach the arithmetic operations for multiplication was reduced to: 

Θ(nlog
2

3) 

 
 Consider two degree 1 polynomials A(x) and B(x).  

A(x) = a1x + a0  

B(x) = b1x + b0  

Let  D0, D1, D0 ,1  be auxiliary variables with 

D0 = a0b0  

 D1 = a1b1  

 D0 ’1  = (a0 + a1) (b0 + b1) 

Then the polynomial C(x) = A(x) B(x)  can be calculated in the 

following way: 

C(x) = D1x2 + (D0 ,1  -  D0 -  D1)x + D0  

 

KOA could be used in recursive mode and applied for any degree m, utilizing the scheme 

will yield more gate savings with longer delay. KOA is most efficient if the degree of 

polynomials is a power of 2. KOA produces overlapping polynomial terms. These 

overlapping terms come from the product of the three terms in the KOA formula. 
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3.5 Applying Karatsuba-Ofman algorithm  
 

KOA is defined as two step multiplication scheme, which is comprised of first 

polynomial multiplication and second reduction modulo of irreducible polynomial. KOA 

only enhances the first step of polynomial multiplication. A main advantage of KOA 

approach could be contributed to its recursive possibility. Only condition for using the 

KOA recursively is to have the polynomials with degree of n-1 and power of 2. It will be 

shown that for polynomials of different degrees, one can pad zeros to use the recursive 

function of KOA. 

A brief example of KOA multiplication for A(x), B(x) in a field of GF(2n) is shown 

below: 

0
1

1
1

1

0
1

1
1

1

...)(

...)(:

bxbxbxB
axaxaxALet

n
n

n
n

+++=

+++=
−

−

−
−  

A(x),B(x)  could be writ ten as:  

LH

nn

nn

n

n

n

LH

nn

nn

n

n

n

BBxbxbxbbxbxxB

AAxaxaxaaxaxxA

+=++++++=

+=++++++=

−

−

−

−

−

−

−

−

2
0

1
1

1
2

1
22

1
2

1
2

2
0

1
1

1
2

1
22

1
2

1
2

)...()...()(

)...()...()(

 
Now let’s try the multiplication using the new notation. 

2

2

( ) ( )

{( )( ) ( )}

{( ) ( )}

n
n

H H H L H L H H L L L L
Therefore

n
n

H H H H L L L H H L H H L L L L

A x B x

x A B A A B B A B A B x A B

x A B A B A B A B A B A B A B x A B

=

+ + + − + +

→

= + + + + − + +
 

Since in finite field of degree of 2 the additions and subtractions yield the same result, it 

is possible to write: 
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2

( ) ( )

{( ) ( )}
n

n
H H H H L L L H H L H H L L L L

A x B x

x A B A B A B A B A B A B A B x A B

=

+ + + + − + +  

 

The addition and subtraction are the same when using the Galios fields, GF(2). 

Using the conventional approach the number of gates used to accomplish this task is: 

 

# of AND gates = 
2n    (1) 

# of XOR gates = 
2)1( −n    (2) 

 

Where the two input XOR gates accomplish the coefficient’s  addition, and coefficient 

multiplication is accomplished with two input AND gates. 

 

Employing the KOA approach reduces the complexity in multiplication, where the 

number of gates for the same operation is listed below: 

 

# of AND gates = 2

4
3 n    (3) 

# of XOR gates = 1
4
3 2 −+ nn   (4) 

 

At the first glance it could be deduced that using KOA in polynomial multiplication 

reduces the number of AND gates and the expense of  XOR gate, this deduction could be 

better quantified in higher orders and also  if this scheme used in recursive mode. 

In order to generalize this conclusion and also calculate the general form of KOA 

polynomial multiplication savings we can present the multiplication as :   HH BA  , LLBA

and ))(( LHLH BBAA ++ . 
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Also it has been shown [13] that the KOA could be recursively applied in a polynomial 

multiplication.  

In addition it is demonstrated  that for a parallel implementation of this design in VLSI 

the total complexity of AND gates and XOR gates could be calculated as: 

 

# of AND gates = 3log2n    (5) 

# of XOR gates = 286 3log2 +− mm   (6) 

 

Observing the results mentioned above, in order to benefit from the KOA recursive 

algorithm, we need to have at least n ≥ 2 to improve the number of AND gate complexity 

and  n ≥  64 in order to reduce the XOR complexity. [13] 

In addition to improvements in space complexity, reduction in time delay will be 

rewarded using recursive KOA algorithm. 

             
 

Figure 2: KOA Implementation of Multiplication of degree 4[13] 
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     The figure 2 is depiction of implementation of This is the implementation of KOA 

multiplier for n=22. The time delay for this implementation is be calculated 6TA which 

equals to XTn)log3( 2 .[13] 
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3.6  Second step (Reduction Modulo) 
    As indicated KOA Polynomial Multiplication is accomplished in two steps,  KOA for 

multiplication, modulo reduction.   

 

There are multiple algorithms introduced for modulo reduction, using matrix for modulo 

reduction is most used, this matrix is constructed with the irreducible function for the 

reduction modulo. 

The efficiency of the second step (modulo reduction) directly depends on the irreducible 

function depicted for reduction .  

Below is the simplified version of The Reduction modulo for the irreducible polynomial 

multiplication in GF(2m), where T is the Multiplication matrices.  

 

 

                  

m m-1

1 2

2 3

( 1)

2 2
1(m-1) 1

x x

. .

. .
1

m m

m m

m m

m
m

x x
x x

x

T

+ −

+ −

− ×

−
××

   
   
   
   
   =
   
   
   
     

×
 

                               

 
For 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥 + 1 is a trinomial, Then T is formulated:  
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(m-1)

( 1)

1 1 0 0 0 . . .0 0
0 1 1 0 0 . . .0 0
0 0 1 1 0 . . .0 0
0 0 0 1 1 . . .0 0
... ... ... ... ... ... ... ...
0 0 0 0 0 . . .1 0
0 0 0 0 0 . . .1 1

m

m m

T ×

− ×

 
 
 
 
 =  
 
 
 
  

 

The complexity weigh of T the transformation matrix is calculated according to the 

number of 1’s in the transfer function. It is vital to mention that trinomials convey the 

highest efficiency within the transfer functions. 

 

The complexity of modularization with trinomials could be calculated as 2(m-1) XOR 

gates, which is significantly fewer as compared to the general form of f(x) which required 

O(m2) XOR gates. 

 

As previously indicated, the most efficient polynomials f(x) are listed below: 

• Trinomial 

• All-one-polynomials (AOP), 

• Equally spaced polynomials (ESP),  

 

Note that the polynomials of above forms do not exist for all degrees of m. 
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3.7  Issues with KOA  
 

KOA’s limitation is that it needs to be applied when the polynomial is of the degree of 

2.In instances which the polynomials do not consist of even number of terms then it 

becomes necessary to pad 0’s, if KOA is to be employed. 

A second issue is the overlapping of the polynomial terms, this will cause in large gate 

delays. It will be shown that the number of overlapping terms using KOA could be up to 

2i-2. This overlap occurs due to multiplication of three terms in KOA. 

 

3 2 1 2
3 2 1 0 3 2 1 0

3 2 1 2
3 2 1 0 3 2 1 0

2
3 2 3 2

3 2 1 0 3 2 1 0

3 2 3 2 1 0 1 0

1 0 1 0

( ) ( )

( ) ( )

( )( )
{(( ) ( ))(( ) ( ))

(( )( ) ( )( ))}
( )( )

[13

A a x a x a x a x a x a a x a

B b x b x b x b x b x b b x b

C A B x a x a b x b
a x a a x a b x b b x b

a x a b x b a x a b x b x
a x a b x b

= + + + = + + +

= + + + = + + +

= × = + + +
+ + + + + +
− + + + + +

+ + +
]
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3.8 Mastrovito algorithm 
 

Multiplication in finite field is consisted of two parts. Primarily the actual multiplication 

and then the modular reduction. There are few schemes that combine the two steps into 

one operation.  

Mastrovito is one possible approach which combines the two steps into one. 

Mastrovito could be briefly described as: 

• One step multiplication which performs Multiplication and modular reduction in 

one step 

• To accomplish the multiplication and reduction the goal is to write C(x) as a 

function of B(x), where matrix Z is what we need to solve. 

0 0
0,0 0, 1

1 1

1,0 2, 1
1 1

. .
. . . .

. .
. . . .

. .
. .

n

n n n
n n

c b
z z

c b
C ZB

z z
c b

−

− − −
− −

   
    
    
    = = =     
    
        

 

 

 

1 1

,

1,

0

:

; 0 ; 0,..., 1

( ) , ; 1,..., 1 ; 0,..., 1
j t m t

i j

i
ji j

i j
t

Each element z can be defined as follows

a j i m
z

u i j a q a j m i m
− − − −

−

−
=

= = −
= 

− + = − = −∑
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• Where qi,j is defined as  

0,0 0,1 0, 1

1,0 1,1 1, 1

2,0 2,1 2, 1

1

2 2 1

. 1

.

. . . . . . mo d( )

. . . . . .
.

m

m

m m m m

m

m

m m

q q qx
q q qx x

f x

q q qx x

−

−

− − − −

+

− −

                =                     

 

 

3.9 Efficient classes of fields for Mastrovito 
 

Mastrovito algorithm efficiency and complexity is depended on the irreducible 

polynomial available for the field, and what irreducible polynomial is chosen.  Below 

are the most efficient irreducible polynomials which Mastrovito could enhance. 

a. Trinomials :  

 

i. f(x)  = xm +  xn  +  1  

 

b. Equally spaced polynomials (EPS) 

 

i.  𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑘𝑘∆ + 𝑥𝑥(𝑘𝑘−1)∆ + ⋯+ 𝑥𝑥∆ + 1                    

 

c. All one polynomials (AOP) 

 

i. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑚𝑚−1 + 𝑥𝑥𝑚𝑚−2 … + 𝑥𝑥1 + 1 +1 
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d. Pentanomials 

 

i. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑘𝑘1 + 𝑥𝑥𝑘𝑘2 + 𝑥𝑥𝑘𝑘3 + 1 

where   m > k1 > k2 > k3 

 

3.10 Availability of irreducible polynomial 
 

• For this purpose, a code was written to test the availability of one zero polynomial 

from GF(25) to GF(2800). 

• The availability of one zero polynomial was found to be close to %100. 

• OZP did not exist for some OZP’s position of zero.  

 

 

 

3.11 Summary of the previous related work 
 

In this thesis, a new architecture and implementation will be proposed in a new class of 

binary fields for bit-parallel multiplier described on GF(2m). 

 

  The trinomials are the best in class fields used for finite fields multiplication, but the 

trinomials do not cover all the degrees. Pentanomials are considered the next best in class 

for polynomial multiplication where the trinomials do not exist.  

There also exist other classes of fields where multiplication is efficient (not as efficient as 

Trinomial) but also do not cover all ranges of m. 
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• Trinomials :  

•  𝑓𝑓(𝑥𝑥)  = 𝑥𝑥𝑚𝑚 +  𝑥𝑥𝑛𝑛  +  1 

• Pentanomials 

•  𝑓𝑓(𝑥𝑥)  = 𝑥𝑥𝑚𝑚 +  𝑥𝑥𝑛𝑛  +  𝑥𝑥𝑝𝑝 + 𝑥𝑥𝑞𝑞 +  1  where m>n>p>q 

• Equally spaced polynomials (EPS) 

•  𝑓𝑓(𝑥𝑥)  =  𝑥𝑥𝑘𝑘∆  + 𝑥𝑥(𝑘𝑘−1)∆   +  … +  𝑥𝑥∆  + 1 

• All one polynomials (AOP) 

• 𝑓𝑓(𝑥𝑥)  =  𝑥𝑥𝑚𝑚  + 𝑥𝑥𝑚𝑚−1   +  … +  𝑥𝑥1  + 1 

 

As indicated a new family of finite fields will be introduced in this thesis. This new class 

of binary finite fields is generated with irreducible One Zero Polynomial (OZP).  

Essentially this new class of finite field is the same as All One Polynomial with one 

coefficient set to zero. 

It will be demonstrated that using Mastrovito algorithm with this class of family “OZP”, 

will provide more efficient multiplication algorithm with lower complexity as compared 

to multipliers based on irreducible Pentanomials. 

Next we present a comparison regarding area complexity for previous proposals.  
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The Table1 briefly describes the number of XOR gates needed for implementing the 

multiplication using Mastrovito algorithm with different families of irreducible 

polynomial: 

Table 1: Complexity Comparison of Mastrovito Multipliers 

Polynomial Complexity ( XOR) Reference 

Trinomial 𝑚𝑚2 − 1 [10][11][13][14][15] 

EST 𝑚𝑚2 −
𝑚𝑚
2

 [15] 

AOP 𝑚𝑚2 − 1 [12] 

ESP m2 − Δ [11] 

Pentanomials m2+2m-3 [11] 

General 
(𝑚𝑚− 1)(𝑚𝑚 + 𝑘𝑘 − 1)

+ � (2𝑚𝑚 − 1 − 𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗

 
[11] 

 

The table above indicates that the best in class were Trinomials, EST, AOP and ESP is 

ranked after.  
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4   Main Results 

 

 

4.1  Motivation 
 

The motivation for this project is to come up with a new scheme using a new class of 

finite fields. This class should cover close to 100% GF(2m) and also be more efficient 

than the pentanomials. 

As indicated through this thesis, the new class of finite fields introduced is Called One 

Zero Polynomial (OZP). 

Multiplication using this class of fields (OZP) is not as efficient as where trinomials exist, 

(Trinomials cover about 70% and Pentanomials cover the other 30%), however for the 

classes of fields that trinomials don’t exist, OZP performance will be shown to be more 

efficient than Pentanomials. 

 

4.2  One Zero Polynomial presentation 
OZP, (One Zero Polynomials) is a newly found class of polynomials that have potential 

to replace Pentanomials for more efficient computations. The irreducible polynomial 

used to create OZP is defined as follows: 

1

1
( ) 1mm i

ji
f x x f x−

=
= + +∑  

 

0 , 1
1i

For some j j m
Where f

Otherwise
≤ <

= 

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As it can be observed OZP irreducible polynomial is similar to the one in the All One 

Polynomial. The exception is that in OZP only one coefficient is equal to zero.   

 

 

4.3  Availability of OZP irreducible polynomial 
The main reason that any other family of polynomial is used instead of trinomials is the 

availability of trinomials is limited. Therefore pentanomials were being used which cover 

all the degrees that trinomials did not exist. Therefore, any other family of polynomials 

being used must possess these criteria. To show the availability of this option a code was 

written and simulated. The result for availability of one zero polynomials for m<800 was 

found to be almost 100%. 

The code and the simulation results are presented in tabular format in appendix C. 

 

 

 

4.4  Multiplication using OZP 
 

Let the finite field F2
m  be generated with an irreducible m-term polynomial f(x). 

Assuming the elements A(x) and B(x) are to be multiplied. The first step is to calculate 

the raw multiplication result which  is called C(x). The next step is to use the irreducible 

polynomial to accomplish modularization.  

 

Mastrovito algorithm as it was explained earlier in Chapter 2, as indicated this scheme  

consolidates the two steps into one. Mathematically multiplication of two elements  using 

OZP can be defined as follows: 
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1 2 1
0 1 2 1

1

0
1 2 1

0 1 2 1
1

0

( ) .......

( ) ( )

( ) .......

( ) ( )

m
m

m
i

i
i

m
m

m
i

i
i

Let A x a a x a x a x or

A x a x

B x b b x b x b x or

B x b x

−
−

−

=

−
−

−

=

= + + +

=

= + + +

=

∑

∑

 

1 2 1
0 1 2 1

1

0
1

1

( ) ( ) ( )
( ) .......

( ) ( )

( ) 1

0

m
m

m
i

i
i

m
m i

i
i

i

Where S x A x B x
S x s s x s x s x or

S x s x

F x x f x

Irreducible OZP polynomials were only one f
Reduction modulo the irreducible polynomial :

C(x) = S(x) mod f(x)

−
−

−

=

−

=

= ×

= + + +

=

= + +

=

∑

∑

 

 

4.5  OZP and Mastrovito 
Instead of multiplying and then applying the reduction modulo to the system, in 

Mastrovito a Z matrix is introduced. This matrix is product of both B(x) and F(x), ( one 

of the input operands and the irreducible polynomial). 

To calculate the Z matrix there are many approaches, in next sections these algorithms 

will be reviewed. 
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4.6 Calculation of Mastrovito with OZP 
 

1 1 2 2

0 0 0

0

1

1

0

1

1

( ) ( ) ( )

can beexpanded :

0 1

2 2

0 1

2 2

m m m
i j i

i j i
i j i

i

i

j i j
j

i m

j i j
j i m

i

i j j
j

m

i j j
j i m

S x a x b x a x b x s x

Coefficient S as

a b i m
S

a b m i m

a b i m

a b m i m

− − −

= = =

−
=

−

−
= − +

−
=

−

−
= − +

  
= = =  

  


≤ ≤ −

= 
 ≤ ≤ −



≤ ≤ −
= 
 ≤ ≤ −


∑ ∑ ∑

∑

∑

∑

∑
 



i

1 2 2

0

1 2 2 1

0 0 1mod .

1

0 0 using

( ) ( ) mo d ( ) mo d ( )

Further expansion of S we have,

( ) ( ) mod ( )

( ) ( )

m m
i i

i i
i i m

m i m m
i i

i j j i j j
i j i m j i mNo req

m i
i m i

i j j i m j j
i j

C x S x f x S x S x f x

a b x a b x f x

a b x a b x

− −

= =

− − −

− −
= = = = − +

−
+

− + −
= =

 
= = + 

 

 
= +  

 

= +

∑ ∑

∑ ∑ ∑ ∑

∑ ∑


2 1

0 1 this for substitution

mod ( )
m m

i j i

i i m

f x
− −

= = +

= −

 
 
 
∑ ∑

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1
0,0 0, 1

1 2
1,0 1, 1

2 2
2,0 2, 1 1( 1)( 1) 1

, ,

.

1

m i

m m
m

m m
m

m i

m
m m m mm mm

tocalculate x one should notethat

t tx x
t tx x

T
x

t tx

+

−
−

+ −
−

+

−
− − − ×− ×− ×

     
     
     
     
   = Ψ =  
     
     
     
        






  



  


  
 



0

1

2 1

,0 ,1 ,2 , 1

1
1

,
0

1

, 1
0

. .

( , , , , )

. . 0 2

.

, :

i

m m

i i i i i m

m
m i m j

i i j
j

m
m i j

i m j
j

m i

T
T

T
T

T

where T t t t t

X T t x i m

X t x

Nowreplacing X we have

− ×

−

−
+ − −

=

−
+

− −
=

+

 
 
 
 

Ψ = Ψ 
 
 
 
  
=

= Ψ = ≤ ≤ −

=

∑

∑






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

1 2 1

0 0 0 1 using this for substitution

1 2 1 1

, 1
0 0 0 1 0

( ) ( ) ( ) mo d ( )

( ) ( ) .

m i m m
i m i

i j j i m j j
i j i j i

i i m
m i m m m

i k
i j j i m j j i m k

i j i j i k

C x a b x a b x f x

a b x a b t x

Exchangeof i a

− − −
+

− + −
= = = = +

= −

− − − −

− + − − −
= = = = + =

 
= +  

 

= +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑



1 1 2 1

, 1
0 0 0 0 1

( )
m i m m m

i i i
i j j m k j j k m ik

i j i k j k

nd k

a b x a b t x
− − − −

− + − − −
= = = = = +

  
= +   

   
∑ ∑ ∑ ∑ ∑



 

1 2 1 1

, 1
0 0 0 1 0

( ) ( )
m i m m m

i i
i j j m k j j k m i i

i j k j k i
C X a b a b t x c x

− − − −

− + − − −
= = = = + =

 
= + = 

 
∑ ∑ ∑ ∑ ∑

 

 

2 1

, 1
0 0 1

( )
i m m

i i j j m k j j k m i
j k j k

This part is the U matrix

C a b a b t
− −

− + − − −
= = = +

= +∑ ∑ ∑

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1

0, 1
0 1

1

1 1, 1
2

1

2 2, 1
3

1

2 2 2, 1
1

:

. .

. .

. .

. .

i
i m

i i j j m j m i j
j j

This part is the U matrix

m

m j m i j
j

m

m j m i j
j

m

m j m m i j
j m

ThentheC coefficients areequal to

C a b a t b

a t b

a t b

a t b

−

− − − −
= =

−

+ − − −
=

−

+ − − −
=

−

− − − − −
= −

= +

+

+

+

∑ ∑

∑

∑

∑





 

( )

0 0 0

1 1 1

,0 ,1 , 1

2 2 2

1 1 1

0

1

2

1

As indicated the Mastrovito algorithm in matrix format is:

.

, , ,

.

i i i i m

m m m

m m m

i i

m

m

C Z B
c z b
c z b

Where Z z z z
c z b
c z b

b
b

C Z
b
b

−

− − −

− − −

−

−

=

     
     
     
     = =
     
     
          

 
 
 
=


 

   



1

,
0

m

i j j
j

z b
−

=

 =




∑

 

0 1 2decomposing in mNow Z to Z U V V V −= + + + +
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0 2

1 1 1
(0) ( 2)

, , ,
0 0 0

. . .

:

x

m

m m m
m

i i j j i j j i j j
j j jV

U V V

C u b v b v b

Or in matrix format we have

−

− − −
−

= = =

= + + +∑ ∑ ∑



  

 

0 0

1 0 1

11 2 1 0 1

0 0
0 0 0

0 0

mm m mm m

a b
a a b

UB

ba a a a −− − ××

   
   
   =
   
   

  

  



   

 

 

 

1

1

1 2 2 0

1 2 2 1

1 2 2
1

1 1

1

1 1 2 2 3 2 1
2

0 0
0 0
0 0
0 0 0 0 0

0 0 0 0 0

0,1,2

. . . .

3 1 0

m m

m m

m m

m mm m

m
v

m j j m m m
j

all zeros v

a a a b
a a a b
a a a

V B

b

i

c a b a b a b a b

for i to m C

− −

− −

− −

− ××

−

+ − − − −
=

   
   
   
   

=    
   
   
   

     

=

= = + + +

= − → =

∑











     




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2

2

0

1 2 1

1 2
2

1 2

1 1

1

2 1 3 2 4 3 1
3

0 0 0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0 0
1,2,3

. . . .

0 4 1 0

m

m

m

m mm m

m
v

m j j m m m
j

all zeros v

b
a a b
a a

V B
a a

b

i

c a b a b a b a b

for i and to m C

−

−

−

− ××

−

+ − − − −
=

   
   
   
   

=    
   
   
   

     
=

= = + + +

= − → =

∑











     





 

 

2

2

0

1

2
1

1

11 1

1

2 2 1 1
1

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0

3, 2, 1

. .

0 4 0

m

m

m
m

m

mm mm m

m
v

m j j m m
j m

vall zeros

b
b

V B
a
a

ba

i m m m

c a b a b

for i to m C

−

−

−
−

−

−− ××

−

− − − −
= −

   
   
   
   

=    
   
   
   

     

= − − −

= =

= − → =

∑





     


 


  

 
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0

0

1 2 3 2 0

1

1 2 3 2
0

1 2 3 2

11 2 3 2 1

0, 1

1

0, 1
1

0
0 0 0 0 0
0
0

0

0 1
1

. .

0 1

m m m

m m m

m m m

mm m m mm m

m i

m
v

m j m i j
j

v

m

a a a a b
b

a a a a
V B

a a a a

ba a a a

i
t

Otherwise

c a t b

i
C

a

− − −

− − −

− − −

−− − − ××

− −

−

− − −
=

   
   
   
   

=    
   
   
   

     

=
= 


=

=
=

∑








 

     



0

1

1

1
1

1 1 2 2 1 1
1

.

. . . .

m

j j
j

m
vi

m j j m m m
j

b Otherwise

c a b a b a b a b

−

−
=

−
≠

− − − −
=







→ = = + + +

∑

∑ 
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4.7  Complexity in OZP multiplication  
 

2
1

, 11
0 0

,

1

2
( )

2 2

( ) ( ) ( ).
, , :

:

i i i

i m
m

i i j j m k j j k m ik
j k

i j

m

m

m

m

Assume that C x A x B x Then the relationship between
a b and c is as follows

c a b a b t

where t is defind as

x x
x
x

x

−
−

− + − − −+
= =

+

+
− ×

−

= ×

   = +      

 
 
 
  = ×
 
 
  

∑ ∑ ∑

m 1 mT


1

2

3

1

, 1
0

        

1

 

      

 mod ( )

m

m

m

m
m i k

i m k
k

Exchanging k with i

x
x

or

x f x t x

−

−

−

−
+

− −
=

 
 
 
 
 
 
  

= ∑




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0

1

,
0

1

(0) (1) ( 2)

1
1 1 (0) ( 2)

, , ,0 0
0

,
( ( ), ( )):

.

.

Decomposing Z into:

......

...

m

i i i j j
j

m

m

m
m m m

i i j j i j j i j jj j
j

From Mastrovito we had
C ZB where Z f A x f x

b

c Z z b

b

Z U V V V

c U b V b V b

−

=

−

−

−
− − −
= =

=

= =

 
 
 = × =
 
 
 

= + + +

⇒ = + + +

∑

∑ ∑ ∑
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4.8  Format of U and V matrices where a1=0 
 

0

1 0

1 2 1 0

1 2 3 2

1 2 3 2
0

1 2 3 2

1 2 3 2

1 2

1 2
2

1 2

0 . . . 0
0 . 0 0

. . . . 0 0
. .

0 .
0 0 0 0 . 0
0 .
0 .
. . . . . .
0 .

0 0 0 . 0 0
0 0 0 .
0 0 0 .
0 0 0 .
0 0 0 . 0 0
. . . . . .

m m

m m m

m m m

m m m

m m m

m

m

m

a
a a

U

a a a a

a a a a

a a a a
V

a a a a

a a a a

a a
a a

V
a a

− −

− − −

− − −

− − −

− − −

−

−

−

 
 
 =
 
 
 

 
 
 
 

=  
 
 
 
  



=

2
1

1

1

0 0 0 . 0 0
0 0 0 . 0 0
. . . . . .
0 0 0 . .
0 0 0 . .
0 0 0 . .

m
m

m

m

V
a
a
a

−
−

−

−


 
 
 
 
 
 
 
  

 
 
 
 

=  
 
 
 
  
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4.9 Area Complexity of the Proposed Multiplier 
 

The area complexity of each decomposed matrix (UB and VxBx) is calculated and then 

added to find the total area complexity of this proposed multiplier. 

 

0 1 2

0 1 2.

m

m

Z U V V V

C Z B UB V B VB V B

−

−

= + + + +

= = + + + +





 

0 0

1 0 1

11 2 1 0 1

2

2

:

0 0
0 0 0

0 0

: 1 2 3
2 2

: 0 1 2 3 ( 1)
2 2

mm m mm m

Complexity

a b
a a b

UB

ba a a a

m mNumber of AND Gates m

m mNumber of XOR Gates m

−− − ××

   
   
   =
   
   

  


+ + + + = +


 + + + + + − = −

  



   

 




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1 2 3 2 0

1

1 2 3 2
0

1 2 3 2

11 2 3 2 1

:

0
0 0 0 0 0
0
0

0

: 1
: ( 2) ( 1)

m m m

m m m

m m m

mm m m mm m

Complexity

a a a a b
b

a a a a
V B

a a a a

ba a a a

Number of AND Gates m
Number of XOR Gates m m

− − −

− − −

− − −

−− − − ××

   
   
   
   

=    
   
   
   

     

−
 − + −








 

     



 

1 2 2 0

1 2 2 1

1 2 2
1

1 1

:

0 0
0 0
0 0
0 0 0 0 0

0 0 0 0 0

: 2
: ( 3) 3

m m

m m

m m

m mm m

Complexity

a a a b
a a a b
a a a

V B

b

Number of AND Gates m
Number of XOR Gates m

− −

− −

− −

− ××

   
   
   
   

=    
   
   
   

     

−
 − +











     


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0

1

2
1

1

11 1

:

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0

: 1
: 0 3

m
m

m

mm mm m

Complexity

b
b

V
a
a

ba

Number of AND Gates
Number of XOR Gates

−
−

−

−− ××

   
   
   
   

=    
   
   
   

     


 +





     


 


  

 

 

( ) ( )

(# ) 0 (# ) 2 (# )

2
#

2 2
2

:

:

1 2 1
2 2

( )
2 2 2 2

of ANDGATES of ANDGATES m of ANDGATES

Total ANDGATES

Total Complexity

Total Number of AND gates
UB V B V B

m m m m

m m m m m

−= + + +

→ + + − + − + +

= + + − =




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( ) ( ) ( )

( )

(# ) 0 (# ) 2 (# )

2
#

2

2

:

:

( ) [ 2 1 ] [ 3 3]
2 2

[ 4 3] [0 3]

( ) [1 2 ( 2)] ( 1) 3 ( 2)
2 2

2 2

of XORGATES of XORGATES m of XORGATES

Total ANDGATES

Total Complexity

Total Number of XOR gates
UB V B V B

m m m m m

m

m m m m m

m m

−= + + +

→ − + − + − + − +

+ − + + + +

= − + + + + − + − + × −

= − +







2

2

2

3 6
2 2

3 6
2 6

m m m

m m m
m m

 
− + − 

 
= − + −

= + −

 

0 1 2

0 1 2.

m

m

Z U V V V

C Z B UB V B VB V B

−

−

= + + + +

= = + + + +




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4.10 Time Delay of the Proposed Multiplier 
 

To calculate the time delay and generalize it, the vector matrices are calculate 

 

{ }
{ }
{ }
{ }
{ }

{ }

0 1 2

0 1 2 3 4 1

0 0 0 0 0 0

1 0 0 0

0 1 1 1

0 2 2 2

2 2 2 2

........
, , , , ,...,

, 0 , , , ,...,

, , , 0 , 0 ,..., 0

0 , , , , 0.. , 0

0 , 0 , , , ,..., 0
.
.

0 , 0 , 0 ,.., , ,

m

m

m m m m

C UB V B V B V B
UB u u u u u u

V B v v v v v

V B v v v

V B v v v

V B v v v

V B v v v

−

−

− − − −

= + + + +

=

=

=

=

=

=

 

 

 

Since in each row consists of m terms, the total delay can be calculated as following. 

 

( )2log ( 1) 3x A xTotal delay m T T T= − + +    

 ( )2log ( 1) 3 X ATotal delay m T T= − + +    
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4.11 Examples of Transfer matrices  
 

11 10 9 8 7 6 5 4 3 2
11 10 9 8 7 6 5 4 3 2 0

1

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=  

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
11 10 9 8 7 6 5 4 3 1

11 10 9 8 7 6 5 4 3 1 0

2

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=  

 

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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11 10 9 8 7 6 5 3 2 1
11 10 9 8 7 6 5 3 2 1 0

4

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=  

 

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
11 10 9 8 7 6 5 4 2 1

11 10 9 8 7 6 5 4 2 1 0

3

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

 

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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11 10 9 8 6 5 4 3 2 1
11 10 9 8 6 5 4 3 2 1 0

7

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

 
11 10 9 7 6 5 4 3 2 1

11 10 9 7 6 5 4 3 2 1 0

8

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

 

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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11 10 8 7 6 5 4 3 2 1
11 10 8 7 6 5 4 3 2 1 0

9

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

 

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

1 19 8 7 6 5 4 3 2 1
1 1 9 8 7 6 5 4 3 2 1 0

10

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

 

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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Using the transfer matrix, one can calculate the V matrices with ease, this could be 

demonstrated as follows: 

For example the transfer matrix below, from the previous example: 
11 10 9 8 7 6 5 4 3 1

11 10 9 8 7 6 5 4 3 1 0

2

( )
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

   

 

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

Using the transfer function and transposing it we can have, (for referral purposes this 

matrix is named as Ω): 

1 1
1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 
 
 
 
 
 
 
 

= Ω 
 
 
 
 
 
 
 
 

 

Using the transposed ‘Ω’ matrix one can calculate the V matrices(m*m) as such:  
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0 0

0 1

1

1 09 8 7 6 5 4 3 2 1

10 9 8

0

,
"1" ,
decrementing.

0
0 0 0 0 0 0 0 0 0 0 0
0

m

m

For V the first column of is used forV the first columnis all zeros and then
for every entry of in the a rowis added toV from a tothelast itemin
each row with a

a a a a a a a a a a

a a a
V

−

−

Ω
Ω

=
7 6 5 4 3 2 1

1 09 8 7 6 5 4 3 2 1

1 09 8 7 6 5 4 3 2 1

1 09 8 7 6 5 4 3 2 1

0
0
0
0

m m

a a a a a a a
a a a a a a a a a a

a a a a a a a a a a
a a a a a a a a a a

×

 
 
 
 
 
 
 
 
 
 
 

         

 

 

 

1 0

1 1

1

1 09 8 7 6 5 4 3 2

10 9 8 7 6 5

1

,
"1" ,

decrementing.
0 0
0 0

m

m

For V the first columnof is used forV the first twocolumns are all zeros and then
for every entry of in the a rowis added toV from a tothelast itemineach row
with a

a a a a a a a a a
a a a a a a

V

−

−

Ω
Ω

=

4 3 2

1 09 8 7 6 5 4 3 20 0
0 0 0 0 0 0 0 0 0 0 0
0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

m m

a a a
a a a a a a a a a

×

 
 
 
 
 
 
 
 
 
 
 

         
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1 1

1

1 1

1

( 1) , ( 2)
"1" ,

decrementing.
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

th
m m

m

m m

For V the m columnof is used forV the first m columns are all
zeros and then for every entry of in the a rowis added toV
from a tothelast itemineach row with a

V

− −

−

− −

− Ω −
Ω

=

10

10

10

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

m m

a
a
a

×

 
 
 
 
 
 
 
 
 
 
 
  

         
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6 5 4 3 2
6 5 4 3 2 1 0

6 5 4 3 2
6 5 4 3 2 1 0
7 6 5 4 3 2

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

5

:
( )

( )

( ) 1
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0

Additional exampleof calculationof matrices directly
A x a x a x a x a x a x a x a

B x b x b x b x b x b x b x b

F x x x x x x x
a
a a
a a a

UB a a a a
a a a a a
a

= + + + + + +

= + + + + + +

= + + + + + +

=

0

1

2

3

4

54 3 2 1 0

66 5 4 3 2 1 0

06 5 4 3 2 1

1

6 5 4 3 2 1 2

0 6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

0

0
0 0 0 0 0 0 0
0
0
0
0
0

b
b
b
b
b
ba a a a a
ba a a a a a a

ba a a a a a
b

a a a a a a b
V B a a a a a a

a a a a a a
a a a a a a
a a a a a a

   
   
   
   
   
   
   
   
   
   

  
 
 
 
 
 

=  
 
 
 
 
 

3

4

5

6

6 5 4 3 2 0

6 5 4 3 2 1

6 5 4 3 2 2

1 3

4

5

6

6 5 4 3

6 5 4 3

2 6 5 4 3

0 0
0 0
0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0
0 0 0
0 0 0

b
b
b
b

a a a a a b
a a a a a b
a a a a a b

VB b
b
b
b

a a a a
a a a a

V B a a a a

 
 
 
 
 
 
 
 
 
 
 

   
   
   
   
   

=    
   
   
   
   

  

=

0

1

2

3

4

5

6

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

b
b
b
b
b
b
b

  
  
  
  
  
  
  
  
  
  

   
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0

1

6 5 4 2

3 6 5 4 3

6 5 4 4

5

6

4 6 5

6 5

6 5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0

b
b

a a a b
V B a a a b

a a a b
b
b

V B a a
a a
a a

  
  
  
  
  

=   
  
  
  
  

   
 
 
 
 
 

=  
 
 
 

 

0

1

2

3

4

5

6

0

1

2

5 3

6 4

6 5

6 6

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

b
b
b
b
b
b
b

b
b
b

V B b
a b
a b
a b

 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  

=   
  
  
  
  

   
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5   Complexity Comparison 

 
This chapter is intended to compare the pentanomials and One Zero polynomials using 

Mastrovito algorithm.  

As previously mentioned Pentanomials are considered the next best in class where the 

trinomials AOP or ESP do not exist. 

Having One Zero polynomials exhibit vast coverage in finite field and improve space and 

time complexity over pentanomials will make this new class more efficient than the 

pentanomials without the compromise of coverage. 

 
Table 2: Complexity Comparison with OZP 

Polynomial Complexity ( XOR) Reference 

Trinomial 𝑚𝑚2 − 1 [10][11][13][14][15] 

EST 𝑚𝑚2 −
𝑚𝑚
2

 [15] 

AOP 𝑚𝑚2 − 1 [12] 

ESP m2 − Δ [11] 

Pentanomials m2+2m-3 [11] 

OZP 2 2 6m m+ −   

General 
(𝑚𝑚− 1)(𝑚𝑚 + 𝑘𝑘 − 1)

+ � (2𝑚𝑚 − 1 − 𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗

 
[11] 

 

In addition to the space complexity improvement shown in Table 2, the time complexity 

is shown in Table 3. 
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Table 3 Time Delay comparison 

Polynomial Time Complexity Reference 

Trinomial ( )2log ( ) 1 X An T T+ +    [10][11][13][14][15] 

EST ( )2log ( ) 1 X An T T+ +    [15] 

AOP ( )2log ( 1) 1 X An T T− + +    [12] 

ESP ( )2log ( ) 1 X An T T+ +    [11] 

Pentanomials ( )2log ( 1) 4 X An T T− + +    [11] 

OZP ( )2log ( 1) 3 X An T T− + +     

General 
(𝑚𝑚− 1)(𝑚𝑚 + 𝑘𝑘 − 1)

+ � (2𝑚𝑚 − 1 − 𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗

 
[11] 

 

Therefore it is proven that the One Zero Polynomials provide both shorter time delay and 
less space complexity. 
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6   Conclusion 

 

6.1 A Summary of Contribution  
 

The emphasis in this project is on the Polynomial basis and their one step and two step 

variation of multiplication algorithm.  

For the two step multiplication a conventional approach is demonstrated in detail (KOA 

and some of its variation.). Their efficiency and area of usage, as well as their advantages 

and disadvantages were described. 

The second step of the two step multiplication is the modularisation which is computed 

by means of transfer matrix. The complexity of this step in is directly dependent to the 

number of ones in that multiplication matrix.  

For one step multiplication the Mastrovito algorithm was described in detail and 

examples were provided.  

Mastrovito constructs a Z matrix form an operand and the irreducible polynomial, which 

this Z Matrix will multiply with the first operand. This one multiplication will result in 

both the multiplication and modulo reduction. 

Efficiency of Mastrovito multiplication greatly depends on the irreducible polynomial 

available for the field. Most efficient polynomials were listed with their limitations.  

Different variations of using Mastrovito was demonstrated in detail with their examples.  

For the degrees of m where the most efficient irreducible functions do not exist, (Such as 

Trinomial, AOP and ESP), the next best in class where considered to be the 

Pentanomials.  

In this thesis a new family of irreducible polynomials were introduced and it was proven 

to cover all the degrees m. In addition to the coverage it was proven that newly 

introduced polynomial (One Zero Polynomial), reduces the time and space complexity in 

multiplication.  
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6.2  Future work 
 

Additional research can be conducted in using One Zero Polynomials and hardware 

implementation. Also using One Zero Polynomials with alternative algorithms could 

yield better results and more efficient multiplication algorithm. 

Using One Zero Polynomial did improve Mastrovito, but calculations for KOA was not 

conducted, there are indications that using One Zero polynomials could potentially 

improve the time and space complexity if used in modularization in two step multipliers. 

More research could be applied into which coefficient of One Zero Polynomial being 

zero would yield most efficiency and under what circumstance. 
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Appendix A 

 

 

Polynomial, dual and normal basis representations of GF(24), generated by the  

irreducible polynomial p(x)= 1 + x + x4.[17]  

power of α Standard basis 

1, α, α2, α3 

Dual basis 

1, α3, α2, α 

Normal basis 

α3, α6, α12, α9 

- 0000 0000 0000 

0 1000 1000 1111 

1 0100 0001 1001 

2 0010 0010 1100 

3 0001 0100 1000 

4 1100 1001 0110 

5 0110 0011 0101 

6 0011 0110 0100 

7 1101 1101 1110 

8 1010 1010 0011 

9 0101 0101 0001 

10 1110 1011 1010 

11 0111 0111 1101 

12 1111 1111 0010 

13 1011 1110 1011 

14 1001 1100 0111 
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APPENDIX        B 

Maple code to calculate the availability of OZP in different degrees 

> interface(rtablesize=2): 
> poly:=x^4+x^3+x^2+x+1: 
> poly_orig:=poly: 
> i:=1: 
> FileTools[Text][Open]("Table1.txt", create=true, 
overwrite=true): 
> for m from 0 to 800 do 
>                     A[m]:=poly_orig + x^m: 
>           for n from 1 to m do 
>                                B[m]:=A[m] + x^n: 
>                                C[m]:=B[m] mod 2:      
>                                J:=irreduc(C[m]): 
                               k:=J ; 
                               l:=cat( "The value of M= ", 
m ,"     The  irreducible OZP exists=   ", k, "." ); 
>                                #D[m,(irreduc(C[m]))];  
>                           for y from 1 to m do  
                               D[m]:=B[m]-x^y: 
                               E[m]:=D[m] mod 2: 
>                                J:=irreduc(D[m]): 
                               k:=J ; 
                               l:=cat( "The value of M= ", 
m ,"     The  irreducible OZP exists=   ", k, "." ); 
>                                #D[m,(irreduc(D[m]))]; 
                          end do:  
>    #FileTools[Text][WriteInteger]( "Table1.txt",  m ); 
   FileTools[Text][WriteString]( "Table1.txt",  l ); 
FileTools[Text][WriteLine]( "Table1.txt"); 
>           end do: 
>                      poly_orig:=poly_orig + x^m: 
>  
> #D[m,(irreduc(C[m]))]; 
>  
>    
> end do: 
> FileTools[Text][Close]("Table1.txt"); 
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