
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Low Complexity Finite Field Multiplier for a New Class of Fields Low Complexity Finite Field Multiplier for a New Class of Fields

Seyed Shahabi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Shahabi, Seyed, "Low Complexity Finite Field Multiplier for a New Class of Fields" (2009). Electronic
Theses and Dissertations. 141.
https://scholar.uwindsor.ca/etd/141

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/141?utm_source=scholar.uwindsor.ca%2Fetd%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

i

Low Complexity Finite Field Multiplier for a New

Class of Fields

by

Seyed Mohammad Ali Shahabi

A Thesis

Submitted to the Faculty of Graduate Studies through Electrical and Computer Engineering in

Partial Fulfillment

of the Requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada

2009

ii

© 2009 Seyed Mohammad Ali Shahabi

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise

retained in a retrieval system or transmitted in any form, on any medium by any means

without prior written permission of the author.

iii

Low Complexity Finite Field Multiplier for a New

Class of Fields

by

Seyed Mohammad Ali Shahabi

APPROVED BY:

Dr. K. Li

Odette School of Business,

Dr. Kamal Tepe

Department of Electrical and Computer Engineering,

Dr. Huapeng Wu, Advisor

Department of Electrical and Computer Engineering,

 Dr. R. Rashidzadeh, Chair of Defense

Department of Electrical and Computer Engineering,

Sept 23, 2009

iv

AUTHOR’S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

v

Abstract

Finite fields is considered as backbone of many branches in number theory, coding

theory, cryptography, combinatorial designs, sequences, error-control codes, and

algebraic geometry. Recently, there has been considerable attention over finite field

arithmetic operations, specifically on more efficient algorithms in multiplications.

Multiplication is extensively utilized in almost all branches of finite fields mentioned

above.

Utilizing finite field provides an advantage in designing hardware implementation since

the ground field operations could be readily converted to VLSI design architecture.

Moreover, due to importance and extensive usage of finite field arithmetic in

cryptography, there is an obvious need for better and more efficient approach in

implementation of software and/or hardware using different architectures in finite fields.

This project is intended to utilize a newly found class of finite fields in conjunction with

the Mastrovito algorithm to compute the polynomial multiplication more efficiently.

vi

To my wife, the love of my life.

vii

Acknowledgments

There are several people who deserve my sincere thanks for their generous contributions

to this project. I would first like to express my sincere gratitude and appreciation to Dr.

Huapeng Wu, my supervisor for his invaluable guidance and constant support throughout

the course of this thesis work.

In addition to my advisor, I would like to thank the rest of my thesis committee: Dr.

Kamal Tepe from the electrical engineering department for his participation in my

seminars, reviewing my thesis, and his constructive comments.

A special thanks goes to Dr. Ashkan Hosseinzadeh Namin, for proofreading this thesis.

Finally, my deepest gratitude goes to my family for their unconditional love, support and

encouragement.

viii

Table of Contents

Author’s Declaration of Originality ... iv

Abstract .. iv

Acknowledgments... vii

List of Figures and Tables.. xi

List of Abbreviations .. xii

1 INTRODUCTION ..1

1.1 Motivation ..1

1.2 Thesis outline ...4

2 MATHEMATICAL BACKGROUND ...5

2.1 Fundamental Concepts ...5

2.2 Finite Fields ...5

2.3 Groups, Rings and Fields ...6

2.4 Binary Fields and Bases ...8

2.5 Comparison of Bases ...8

2.5.1 Polynomial basis ..8

2.5.2 Normal basis ..9

2.5.3 Dual basis ...10

2.5.4 Triangular basis ...10

2.5.5 Redundant basis ...10

2.6 IRREDUCIBLE POLYNOMIALS ..11

2.7 POLYNOMIAL BASIS ..12

ix

3 PREVIOUS WORK IN FINITE FIELD MULTIPLIER ..14

3.1 Multiplier Classes ..14

3.2 Conventional Approach ...15

3.3 Complexities for Two-Step Multiplication ..18

3.4 Karatsuba-Ofman Algorithm (KOA) ...19

3.5 Applying Karatsuba-Ofman Algorithm ...20

3.6 Second Step (Reduction Modulo) ..24

3.7 Issues with KOA ..26

3.8 Mastrovito Algorithm ..27

3.9 Efficient Classes of Fields for Mastrovito ...28

3.10 Availability of Irreducible Polynomial ..29

3.11 Summary of the Previous Related Work ...29

4 MAIN RESULTS..32

4.1 Motivation ..32

4.2 One Zero Polynomial Presentation ..32

4.3 Availability of OZP Irreducible Polynomial..33

4.4 Multiplication Using OZP..33

4.5 OZP and Mastrovito ...34

4.6 Calculation of Mastrovito with OZP..35

4.7 Complexity in OZP Multiplication ..42

4.8 Format Of U and V Matrices Where A1=0 ..44

4.9 Area Complexity of the Proposed Multiplier...45

4.10 Time Delay of the Proposed Multiplier ...49

4.11 Examples of Transfer Matrices ..50

x

5 COMPLEXITY COMPARISON..59

6 CONCLUSION ...61

6.1 Summary of Contribution ..61

6.2 Future Work ...62
References ..63
Appendix A ..67
Appendix B ..68

VITA AUCTORIS ...689

xi

List of Tables

Table 1: Complexity Comparison of Mastrovito Multipliers ... 31

Table 2: Complexity Comparison with OZP .. 59

Table 3 Time Delay comparison ... 60

List of Figures

Figure 1: Graphical depiction of polynomial multiplication .. 17

Figure 2: KOA Implementation of Multiplication of degree 4[13] 22

xii

List of Abbreviations

OZP One Zero Polynomial

BP Bit-parallel architectures

BS Bit-serial architectures

WL Word-level architectures

AEDS AND-Efficient Digit-Serial.

ASIC Application-Specific Integrated Circuit.

BPWS Bit-Parallel Word-Serial.

ESP Equally Spaced Polynomial.

CAD Computer Aided Design.

AOP All One Polynomial.

GF Galois Field.

IC Integrated Circuit.

IEEE Institute of Electrical and Electronics Engineers.

ISO International Organization for Standardization.

LUT Look-Up-Table.

NB Normal Basis.

NIST National Institute of Standards and Technology.

ONB Optimal Normal Basis.

RB Redundant Basis.

RNB Reordered Normal Basis.

VLSI Very-Large-Scale Integration.

XEDS XOR-Efficient-Digit-Serial.

1

1 Introduction

1.1 Motivation

Until modern times cryptography referred almost exclusively to encryption, which is the

process of converting ordinary information (plaintext) into unintelligible gibberish

(i.e., ciphertext).[2] Decryption is the reverse, in other words, moving from the

unintelligible ciphertext back to plaintext. A cipher (or cypher) contains a pair of

algorithms which create the encryption and the reversing decryption. The detailed

operation of a cipher is controlled both by the algorithm and in each instance by a key.

This is a secret parameter (ideally known only to the communicants) for a specific

message exchange context. Keys are important, as ciphers without variable keys are

trivially breakable and therefore less than useful for most purposes. Historically, ciphers

were often used directly for encryption or decryption without additional procedures such

as authentication or integrity checks.[19]

Modern cryptosystems could be classified into two categories, symmetric key encryption

(where both parties use the same secret key) and public key encryption (where each party

has a pair of keys: public key and private key). The first public key was invented in 1978

by Diffie and Hellman [3]. Although public key systems are computational intensive,

slow and costly, they have advantages over symmetric key systems in that the former can

provide security services such as key distribution/management and digital signature.

Therefore, public key systems have attracted more attentions and been adopted into many

security related standards.

http://en.wikipedia.org/wiki/Plaintext�
http://en.wikipedia.org/wiki/Cryptography#cite_note-kahnbook-1�
http://en.wikipedia.org/wiki/Plaintext�
http://en.wikipedia.org/wiki/Cipher�
http://en.wikipedia.org/wiki/Key_(cryptography)�

2

 Below is the list of security services using schemes introduced by cryptography.(X.800)

[6]

• Authentication

o Peer entity authentication

o Data Origin Authentication

• Access Control

• Data Confidentiality

• Data integrity

• Non repudiation

Elliptic Curve and ElGamal are two of the most common public key cryptosystems, and

both the systems can provide encryption, digital signature and key establishment. It is

noted that both Elliptic curve and ElGamal systems are based on finite field

computations. [6]

Since the security services provided by the cryptosystems require intensive finite field

computation, this necessity sparked a need for scientists and engineers to come up with

algorithms and architectures to perform finite field arithmetic more efficiently.

Each arithmetic operation used in finite fields has been the subject to improvements.

Most importantly is effective and efficient computation of multiplication, since

multiplication is the most used arithmetic operation in all cryptographic systems that

finite fields are involved.

There are two major complexity measures we have adopted for discussion and

comparison of various architectures for finite field arithmetic: Space complexity and

critical time delay. Space complexity can be the number of logic gates required for a

designed circuit, while critical time delay is usually measured by in the unit of delay

caused by one gate.

3

Current research in this area has been focusing on finding new parallel finite field

multiplication algorithms and architectures in order to further speed up the computation

demanded by the various security services. It is important to mention that the fields of

characteristic two are often chosen for hardware implementation because the ground field

operations addition and multiplication can be readily implemented with VLSI XOR and

AND gate, respectively.

4

1.2 Thesis Outline

The organization of the rest of this thesis is as follows:

Chapter 2 emphases are on a brief introduction of finite filed theory. In this section the

basic definitions, elementary properties of finite fields and arithmetic algorithms will be

discussed. In addition irreducible polynomials will be introduced, and a list of most used

irreducible polynomial will be reviewed. Different multiplication algorithms one step and

two step multiplication and their advantages and disadvantages will be demonstrated. In

Chapter 3 two major architectures of multiplication will be reviewed in detail and

compared. Chapter 4 will have an introduction to One Zero polynomials (OZP), in

addition to in-depth usage of Mastrovito multiplication algorithm using OZP.

In Chapter 5 a brief comparison between most used irreducible polynomials in

Mastrovito, is conducted. In this chapter the comparisons are conducted side by side and

the improvements gained using one Zero Polynomials are indicated. In Chapter 6

conclusions and comparisons are made between the proposed multiplier and those based

on pentanomials already in the literature. A few concluding remarks are also given.

5

2 Mathematical Background

2.1 Fundamental concepts

This section is intended to review the mathematical background on basic theorems and

arithmetical functions in finite fields. In this section a brief review of ring, group and

field will be conducted. In addition in this section it is intended to show most used basis

and polynomial representation and their usages.

2.2 Finite Fields

Finite field or Galois field (named in honor of Évariste Galois) is a class of fields that

contain only finitely many elements. The finite fields are classified by their size [4].

From a mathematical point of view, a finite field is a set of finite elements where one can

add, subtract, multiply, and divide such that properties of associativity, distributivity, and

commutativity are satisfied [1].

Most common representations of finite fields are:

• GF(2m) , Binary extension field presentation

• GF(p) , Prime field presentation

Binary extension field representation is most desirable due to its proximity and ease of

conversion to digital hardware implementation.

There exist different architectures in hardware and/or software for implementation of

finite field multipliers.

Multipliers have gain special focus, due to their vital role and extensive use, in

Cryptography and most algorithms in number theory. Ecommerce and credit based

banking solely rely on safety and security established encryption provided by finite

fields.

http://en.wikipedia.org/wiki/Field_(mathematics)�

6

2.3 Groups, Rings and Fields

Definition 2.1.1. [5] A group (G,*) is a set G together with a binary operation * on G

such that the following three properties hold:

1. The binary operator * is associative; that is, for any a, b, c ϵ G,

𝑎𝑎 * (𝑏𝑏* 𝑐𝑐) = (𝑎𝑎 * 𝑏𝑏) * 𝑐𝑐

2. There is an identity (or unity) element e in G such that for all

a ϵ G,

𝑎𝑎 * 𝑒𝑒 = 𝑒𝑒 * 𝑎𝑎 = 𝑎𝑎

3. For each a ϵ G, there exists an inverse element 𝑎𝑎−1 in G such that

𝑎𝑎 * 𝑎𝑎−1 = 𝑎𝑎−1 * 𝑎𝑎 = 𝑒𝑒

If for all a, b ϵ G, a * b = b * a , then G is referred to as an Abelian or commutative

group. A group with a finite number of elements is referred to as a finite group.

Definition 2.1.2. [5] A ring (r, +, *) is a set R together with two binary operations,

denoted by + and * , such that the following three properties hold:

1. R is an abelian group with respect to +.

2. The binary operator * is associative, which means for all

a, b, c ϵ R

𝑎𝑎 * (𝑏𝑏* 𝑐𝑐) = (𝑎𝑎 * 𝑏𝑏) * 𝑐𝑐

7

3. The distribution law holds, which means for all 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ϵ 𝑅𝑅

𝑎𝑎 * (𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎 *𝑏𝑏 + 𝑎𝑎 * 𝑐𝑐

and

 (𝑏𝑏 + c) * a = b * a + c * a

The identity element of the abelian group R with respect to + is called the zero element,

while the identity element with respect to * (if it exists) is called the identity element. A

ring is called commutative if the binary operator * is commutative.

Definition 2.1.3. [24] A field (f, +, *) is a set F together with two

binary operations, denoted by + and *, such that the following two properties hold:

1. F is a commutative ring under + and *.

2. Nonzero elements of F from a group with the binary operation *.

A field with a finite number of elements is referred to as a finite field. The order of a

finite field is the number of elements in the field. There exists a finite field F of order q if

and only if q is a prime power, that is

𝑞𝑞 = 𝑝𝑝𝑚𝑚 where 𝑝𝑝 is a prime number referred to as the characteristic of F and m is a

positive integer [6].

For any prime power q, there is essentially only one finite field of order q.

This means that any two finite fields of order q are structurally the same, except that the

labelling used to represent the field elements may be different. We say that any two finite

fields of order q are isomorphic, and denote such a field by Fqm or GF(qm) (GF stands for

Galois Field, in honor of Evariste Galois, a French mathematician who is known for his

work on the theory of equations and abelian integrals).[7]

8

2.4 Binary Fields and Bases

As mentioned in the introduction, there are several diverse representations of finite field

basis, depending on the arithmetic necessities of the scheme utilized; one can choose the

basis best fit.

In the next section; three most used bases will be demonstrated and their

advantages/disadvantages will be explained in more detail.

It is possible to convert one form of basis to another with a cost.

2.5 Comparison of Bases

This section is intended to provide more information about the different Field

representation, the structure and their most likely usage. Also a brief introduction on why

and where each representation is used. The focus of this thesis is primarily dealing with

polynomial basis.

In the next section of this thesis, more in-depth information is provided about the

polynomial basis.

2.5.1 Polynomial Basis

Polynomial base is the most popular form of basis used, Due to their inherent proximity

to digital logic make it possible for easy conversion to hardware and software

implementations.

“In mathematics, the polynomial basis is a basis for finite extensions of finite fields.

Let α ∈ GF(p m) be the root of a primitive polynomial of degree m over GF(p). The

polynomial basis of GF(pm) is then

http://en.wikipedia.org/wiki/Mathematics�
http://en.wikipedia.org/wiki/Basis_(linear_algebra)�
http://en.wikipedia.org/wiki/Finite_extension�
http://en.wikipedia.org/wiki/Finite_field�
http://en.wikipedia.org/wiki/Primitive_polynomial�

9

 {0,1,𝛼𝛼, … . . ,𝛼𝛼𝑚𝑚−1} , The set of elements of GF(pm) can then be represented as

[3]: �0,1,𝛼𝛼,𝛼𝛼2 … . . ,𝛼𝛼𝑝𝑝𝑚𝑚−1�

A polynomial p(x) with the degree of m over GF(2), could be represented in polynomial

form as:

A(x) = 𝛼𝛼 mxm+𝛼𝛼 m-1xm-1+⋯ + 𝛼𝛼 2x2 + 𝛼𝛼 1x + 𝛼𝛼 0

In this polynomial the coefficients are all members of Galios Fields or GF(2)={0,1}

2.5.2 Normal Basis

Squaring operation is conducted effortlessly in some applications. Normal Basis is

advantageous regarding this since squaring operation is trivial. Therefore in situations

and architectures which require extensive squaring, Normal Basis are favored.

As indicated before this property allows for hardware efficient multipliers designed. The

normal basis representation of GF(24) is given in Appendix A.

“ The normal basis theorem states that any Galois extension of fields has a normal basis.

In the case of finite fields, this means that each of the basis elements is related to any one

of them by applying the pth power mapping repeatedly, where p is the characteristic of the

field. Let GF(pm) be a field with pm elements, and β an element of it such that

the m elements {𝛽𝛽,𝛽𝛽𝑝𝑝 ,𝛽𝛽𝑝𝑝2 , … . ,𝛽𝛽𝑝𝑝𝑚𝑚−1 } are linearly independent. Then this set forms a

normal basis for GF(pm).

This basis is frequently used in cryptographic applications that are based on the discrete

logarithm problem such as elliptic curve cryptography. Hardware implementations of

normal basis arithmetic typically have far less power consumption than other bases. ”[5]

http://en.wikipedia.org/wiki/Characteristic_(algebra)�
http://en.wikipedia.org/wiki/Cryptography�

10

2.5.3 Dual Basis

Some architectures have been designed based on the Dual Basis, but most require

extensive conversion in basis prior to any implementation. The Dual basis representation

of GF(24) is given in Appendix A.

“In linear algebra, a dual basis is a set of vectors that forms a basis for the dual space of a

vector space. “[2]

2.5.4 Triangular Basis

There have been few algorithms which utilize the dual basis; however, using the Dual

Basis in most cases requires additional base conversion. The algorithms that use Dual

Basis employ the efficiency of this presentation for Bit-Serial in finite field multipliers.

2.5.5 Redundant basis

Redundant Basis algorithms utilize the squaring operations inherent to their Basis at no

cost. In addition forgoing the modular reduction at a cost of expanding in a larger ring

than the underlying field. Size of Cyclotomic ring underlying the field dictate the

efficiency for redundant basis.

http://en.wikipedia.org/wiki/Vector_space�
http://en.wikipedia.org/wiki/Basis_(linear_algebra)�
http://en.wikipedia.org/wiki/Dual_space�

11

2.6 Irreducible Polynomials

Definition A polynomial p(x) over GF(2) of degree m is irreducible if p(x) is not

divisible by any polynomial over GF(2) of degree less than m and greater than zero.[17]

On another note: A polynomial which cannot be factored or is not result of multiplication

of two polynomials over the same field is considered to be an irreducible polynomial over

that field.[8]

For example in finite field of Q[x]={A(x),B(x),.......C(x)}, f(x) is considered to be an

irreducible polynomial if first f(x) could not be factored in and also there should not exist

two polynomials in Q[x] where:

f(x)=A(x)B(x)

Similarly, in the finite field GF(2), x2+x+1 is irreducible.

But x2+1 is not, since

(x+1)(x+1)= x2+1 (mod 2).[8]

Calculation of irreducibility could become extensive which with aid of specific software

programs this task could be accomplished with ease.

 For the purpose of this thesis, the availability of irreducible polynomial over a new

family of polynomials were compiled, this code is appended to Appendix B .

 In addition to the code, the result is tabularized and attached to this project as Appendix

C .

Feasibility of any multiplication algorithm relies heavily on the extent of domain it can be

applied to. As indicated multiplications using Trinomials is the most efficient approach

but it has limited domain.

http://mathworld.wolfram.com/FiniteField.html�

12

2.7 Polynomial Basis

The emphasis of this project is on polynomial basis. in polynomial basis there are few

classes of fields that efficient multiplier can be implemented, most common presentation

could be listed as follows:

• All-One-Polynomials (AOP)

An AOP of degree m has all terms from xm to x0 with coefficients of 1, and can be

written as

𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 (𝑥𝑥) = �𝑥𝑥𝑖𝑖
𝑚𝑚

𝑖𝑖=0

Or

𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 (𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑚𝑚−1 + ⋯+ 𝑥𝑥 + 1

• Equally Spaced Polynomials (ESP)

An ESP could be represented as:

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = ∑ 𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚
𝑖𝑖=0

For

𝑖𝑖 = 0,1, … . ,𝑚𝑚 or

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝑥𝑥𝑠𝑠𝑠𝑠 + 𝑥𝑥𝑠𝑠(𝑚𝑚−1) + ⋯… + 𝑥𝑥𝑠𝑠 + 1

13

• Trinomials

 Trinomial is a polynomial consisting of three terms

 f(x) =xm+ xn + 1,

m>n

• Pentanomials

Pentanomials is a polynomial consisting of five terms

F(x) = xk1+ xk2 + xk3+ xk4 +1 ,

m > K1 > k2 > k3 > k4

As mentioned earlier extensive research has been conducted to come up with efficient

multiplication scheme in polynomial families listed above.

Generally, there are two aspects in introduction of a new method for polynomial

multiplication,

• Complexity (Number of AND and OR gates used to achieve the multiplication)

• Time complexity, (The time required to accomplish this task)

It is intended to compare the efficiency both in time and space complexity enhancement

realized in this new approach.

In conclusion, this thesis will demonstrate that, employment of this approach will provide

modest improvement over current most efficient multiplication schemes in addition to a

wide availability.

Most efficient multipliers were constructed using Trinomials, AOP and ESP.

For the classes of fields that the Trinomials do not exist, Pentanomials are considered

next best in class.

http://en.wikipedia.org/wiki/Polynomial�
http://en.wikipedia.org/wiki/Polynomial�

14

3 Previous Work in Finite Field Multiplier

3.1 Multiplier classes

In general, the multiplier implementation could be categorized in three different classes.

• Bit-parallel architectures

o A Bit-parallel architecture is the fastest architecture possible, which

multiplies two inputs in one clock cycle. Its main draw backs are large

area utilization and high power consumption.

• Bit-serial architectures

o A Bit-Serial architecture multiplier in a field of size m, takes m clock

cycles to finish one multiplication operation. The main advantage of this

class of multipliers is their low power consumption and area requirements.

The main disadvantage is the time complexity.

• Word-level architectures

Out of the three mentioned architectures Word-Level multipliers offer the most

architectural flexibility and the best advantage in regards to performance and possibility

of materializing VLSI implementation, therefore most practical.

There are many approaches in multiplication of two polynomials in

GF (2m) effectively and efficiently.

15

3.2 Conventional approach

In this section a conventional approach will be demonstrated using two simple

polynomials. Also a high level hardware manipulation will be demonstrated.

It is important to mention conventional approach is considered a two step multiplication.

Next section will only deal with the first step of multiplication which is only the term by

term multiplication, to complete this task modular reduction needs to be implemented.

In the conventional, approach each member of the polynomial would be multiplied to the

next polynomial, and then after the modularization would take place on the result of

multiplication.

This approach also known as pen and pencil approach should be used only as academic

basis not real problem solving approach.

Example:

Two-step Multiplication in (2)mGF

Let m=3, f(x)=x3+x+1, and A, B be two elements in 3(2)GF

2
2 1 0

2
2 1 0

2
2 1 0

() (),

() (),

mod () ()

A x a x a x a

B x b x b x b
and
C A B f x c x c x c

= + +

= + +

= × = + +

4 3 2
2 2 1 2 2 1 0 2 1 1 2 0 0 1 1 0 0 0

,

() () () ()

Since

A B a b x a b a b x a b a b a b x a b a b x a b× = + + + + + + + +

16

So the product C is solved as:

2 2 2

1 2 2 1 2 2 1 0 2 1 1 2 0

0 1 2 2 1 0 0

;
;

c a b
c a b a b a b a b a b a b
c a b a b a b

=
= + + + + +
= + +

3 4 2() 0 1,

2
2 2 1 2 2 1 0 2 1 1 2 0 0 0

2
2 2 2 2 1 2 2 1 0 2 1 1 2 0 1 2 2 1 0 0

mod ()
| |

()() ()(1) ()

() () ()

f x x x x x x

C A B f x
C A B A B

a b x x a b a b x a b a b a b x a b

a b x a b a b a b a b a b a b x a b a b a b

= = + = +

= ×
= × = ×

= + + + + + + + +

= + + + + + + + + +

17

Visual Calculation of complexity

Figure 1: Graphical depiction of polynomial multiplication

2
2 2 2 2 1 2 2 1 0 2 1 1 2 0 1 2 2 1 0 0() () ()a b x a b a b a b a b a b a b x a b a b a b= + + + + + + + + +

A B

18

3.3 Complexities for two-step multiplication

As shown in the previous section, we can conclude the complexity of multiplication

algorithm for two step multiplication is subdivided to two sections:

– Space complexity (# of logic gates):

• Step 1 requires m2 AND gates and (m-1)2 XOR gates

• Complexities of Step 2 depends on f(x) or matrix T

– Time delay

– Step 1:

1 2log ,

,
,

,
.

step AND XOR

AND

XOR

T T m T
T denote the delay of an AND gate
T denote the delay of an XOR gate

The total time delay for the first step of multiplication
is the additionof both delays in the first step

≤ +   

– Step 2: time delay again depends on f(x) the irreducible function.

19

3.4 Karatsuba-Ofman algorithm (KOA)

Employment of conventional multiplication approach, it would require n2 or Θ(n2)

arithmetic operations in order to accomplish the multiplication of two multi digit

numbers.(n2 or Θ(n2) also known as big O.

Discovered in 1960 by Dr. Karatsuba and published in a joint paper with Ofman in 1962.

KOA is a divide and conquer form algorithm, that divides the operands in two parts with

less number of digits (half number of digits) and forms the final result with the help of

the product of these parts.[9]

Using this approach the arithmetic operations for multiplication was reduced to:

Θ(nlog
2

3)

 Consider two degree 1 polynomials A(x) and B(x).

A(x) = a1x + a0

B(x) = b1x + b0

Let D0, D1, D0 ,1 be auxiliary variables with

D0 = a0b0

 D1 = a1b1

 D0 ’1 = (a0 + a1) (b0 + b1)

Then the polynomial C(x) = A(x) B(x) can be calculated in the

following way:

C(x) = D1x2 + (D0 ,1 - D0 - D1)x + D0

KOA could be used in recursive mode and applied for any degree m, utilizing the scheme

will yield more gate savings with longer delay. KOA is most efficient if the degree of

polynomials is a power of 2. KOA produces overlapping polynomial terms. These

overlapping terms come from the product of the three terms in the KOA formula.

20

3.5 Applying Karatsuba-Ofman algorithm

KOA is defined as two step multiplication scheme, which is comprised of first

polynomial multiplication and second reduction modulo of irreducible polynomial. KOA

only enhances the first step of polynomial multiplication. A main advantage of KOA

approach could be contributed to its recursive possibility. Only condition for using the

KOA recursively is to have the polynomials with degree of n-1 and power of 2. It will be

shown that for polynomials of different degrees, one can pad zeros to use the recursive

function of KOA.

A brief example of KOA multiplication for A(x), B(x) in a field of GF(2n) is shown

below:

0
1

1
1

1

0
1

1
1

1

...)(

...)(:

bxbxbxB
axaxaxALet

n
n

n
n

+++=

+++=
−

−

−
−

A(x),B(x) could be writ ten as:

LH

nn

nn

n

n

n

LH

nn

nn

n

n

n

BBxbxbxbbxbxxB

AAxaxaxaaxaxxA

+=++++++=

+=++++++=

−

−

−

−

−

−

−

−

2
0

1
1

1
2

1
22

1
2

1
2

2
0

1
1

1
2

1
22

1
2

1
2

)...()...()(

)...()...()(

Now let’s try the multiplication using the new notation.

2

2

() ()

{()() ()}

{() ()}

n
n

H H H L H L H H L L L L
Therefore

n
n

H H H H L L L H H L H H L L L L

A x B x

x A B A A B B A B A B x A B

x A B A B A B A B A B A B A B x A B

=

+ + + − + +

→

= + + + + − + +

Since in finite field of degree of 2 the additions and subtractions yield the same result, it

is possible to write:

21

2

() ()

{() ()}
n

n
H H H H L L L H H L H H L L L L

A x B x

x A B A B A B A B A B A B A B x A B

=

+ + + + − + +

The addition and subtraction are the same when using the Galios fields, GF(2).

Using the conventional approach the number of gates used to accomplish this task is:

of AND gates =
2n (1)

of XOR gates =
2)1(−n (2)

Where the two input XOR gates accomplish the coefficient’s addition, and coefficient

multiplication is accomplished with two input AND gates.

Employing the KOA approach reduces the complexity in multiplication, where the

number of gates for the same operation is listed below:

of AND gates = 2

4
3 n (3)

of XOR gates = 1
4
3 2 −+ nn (4)

At the first glance it could be deduced that using KOA in polynomial multiplication

reduces the number of AND gates and the expense of XOR gate, this deduction could be

better quantified in higher orders and also if this scheme used in recursive mode.

In order to generalize this conclusion and also calculate the general form of KOA

polynomial multiplication savings we can present the multiplication as : HH BA , LLBA

and))((LHLH BBAA ++ .

22

Also it has been shown [13] that the KOA could be recursively applied in a polynomial

multiplication.

In addition it is demonstrated that for a parallel implementation of this design in VLSI

the total complexity of AND gates and XOR gates could be calculated as:

of AND gates = 3log2n (5)

of XOR gates = 286 3log2 +− mm (6)

Observing the results mentioned above, in order to benefit from the KOA recursive

algorithm, we need to have at least n ≥ 2 to improve the number of AND gate complexity

and n ≥ 64 in order to reduce the XOR complexity. [13]

In addition to improvements in space complexity, reduction in time delay will be

rewarded using recursive KOA algorithm.

Figure 2: KOA Implementation of Multiplication of degree 4[13]

23

 The figure 2 is depiction of implementation of This is the implementation of KOA

multiplier for n=22. The time delay for this implementation is be calculated 6TA which

equals to XTn)log3(2 .[13]

24

3.6 Second step (Reduction Modulo)
 As indicated KOA Polynomial Multiplication is accomplished in two steps, KOA for

multiplication, modulo reduction.

There are multiple algorithms introduced for modulo reduction, using matrix for modulo

reduction is most used, this matrix is constructed with the irreducible function for the

reduction modulo.

The efficiency of the second step (modulo reduction) directly depends on the irreducible

function depicted for reduction .

Below is the simplified version of The Reduction modulo for the irreducible polynomial

multiplication in GF(2m), where T is the Multiplication matrices.

m m-1

1 2

2 3

(1)

2 2
1(m-1) 1

x x

. .

. .
1

m m

m m

m m

m
m

x x
x x

x

T

+ −

+ −

− ×

−
××

   
   
   
   
   =
   
   
   
     

×

For 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥 + 1 is a trinomial, Then T is formulated:

25

(m-1)

(1)

1 1 0 0 0 . . .0 0
0 1 1 0 0 . . .0 0
0 0 1 1 0 . . .0 0
0 0 0 1 1 . . .0 0
...
0 0 0 0 0 . . .1 0
0 0 0 0 0 . . .1 1

m

m m

T ×

− ×

 
 
 
 
 =  
 
 
 
  

The complexity weigh of T the transformation matrix is calculated according to the

number of 1’s in the transfer function. It is vital to mention that trinomials convey the

highest efficiency within the transfer functions.

The complexity of modularization with trinomials could be calculated as 2(m-1) XOR

gates, which is significantly fewer as compared to the general form of f(x) which required

O(m2) XOR gates.

As previously indicated, the most efficient polynomials f(x) are listed below:

• Trinomial

• All-one-polynomials (AOP),

• Equally spaced polynomials (ESP),

Note that the polynomials of above forms do not exist for all degrees of m.

26

3.7 Issues with KOA

KOA’s limitation is that it needs to be applied when the polynomial is of the degree of

2.In instances which the polynomials do not consist of even number of terms then it

becomes necessary to pad 0’s, if KOA is to be employed.

A second issue is the overlapping of the polynomial terms, this will cause in large gate

delays. It will be shown that the number of overlapping terms using KOA could be up to

2i-2. This overlap occurs due to multiplication of three terms in KOA.

3 2 1 2
3 2 1 0 3 2 1 0

3 2 1 2
3 2 1 0 3 2 1 0

2
3 2 3 2

3 2 1 0 3 2 1 0

3 2 3 2 1 0 1 0

1 0 1 0

() ()

() ()

()()
{(() ())(() ())

(()() ()())}
()()

[13

A a x a x a x a x a x a a x a

B b x b x b x b x b x b b x b

C A B x a x a b x b
a x a a x a b x b b x b

a x a b x b a x a b x b x
a x a b x b

= + + + = + + +

= + + + = + + +

= × = + + +
+ + + + + +
− + + + + +

+ + +
]

27

3.8 Mastrovito algorithm

Multiplication in finite field is consisted of two parts. Primarily the actual multiplication

and then the modular reduction. There are few schemes that combine the two steps into

one operation.

Mastrovito is one possible approach which combines the two steps into one.

Mastrovito could be briefly described as:

• One step multiplication which performs Multiplication and modular reduction in

one step

• To accomplish the multiplication and reduction the goal is to write C(x) as a

function of B(x), where matrix Z is what we need to solve.

0 0
0,0 0, 1

1 1

1,0 2, 1
1 1

. .
. . . .

. .
. . . .

. .
. .

n

n n n
n n

c b
z z

c b
C ZB

z z
c b

−

− − −
− −

   
    
    
    = = =     
    
        

1 1

,

1,

0

:

; 0 ; 0,..., 1

() , ; 1,..., 1 ; 0,..., 1
j t m t

i j

i
ji j

i j
t

Each element z can be defined as follows

a j i m
z

u i j a q a j m i m
− − − −

−

−
=

= = −
= 

− + = − = −∑

28

• Where qi,j is defined as

0,0 0,1 0, 1

1,0 1,1 1, 1

2,0 2,1 2, 1

1

2 2 1

. 1

.

. mo d()

.
.

m

m

m m m m

m

m

m m

q q qx
q q qx x

f x

q q qx x

−

−

− − − −

+

− −

                =                   

3.9 Efficient classes of fields for Mastrovito

Mastrovito algorithm efficiency and complexity is depended on the irreducible

polynomial available for the field, and what irreducible polynomial is chosen. Below

are the most efficient irreducible polynomials which Mastrovito could enhance.

a. Trinomials :

i. f(x) = xm + xn + 1

b. Equally spaced polynomials (EPS)

i. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑘𝑘∆ + 𝑥𝑥(𝑘𝑘−1)∆ + ⋯+ 𝑥𝑥∆ + 1

c. All one polynomials (AOP)

i. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑚𝑚−1 + 𝑥𝑥𝑚𝑚−2 … + 𝑥𝑥1 + 1 +1

29

d. Pentanomials

i. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑘𝑘1 + 𝑥𝑥𝑘𝑘2 + 𝑥𝑥𝑘𝑘3 + 1

where m > k1 > k2 > k3

3.10 Availability of irreducible polynomial

• For this purpose, a code was written to test the availability of one zero polynomial

from GF(25) to GF(2800).

• The availability of one zero polynomial was found to be close to %100.

• OZP did not exist for some OZP’s position of zero.

3.11 Summary of the previous related work

In this thesis, a new architecture and implementation will be proposed in a new class of

binary fields for bit-parallel multiplier described on GF(2m).

 The trinomials are the best in class fields used for finite fields multiplication, but the

trinomials do not cover all the degrees. Pentanomials are considered the next best in class

for polynomial multiplication where the trinomials do not exist.

There also exist other classes of fields where multiplication is efficient (not as efficient as

Trinomial) but also do not cover all ranges of m.

30

• Trinomials :

• 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑛𝑛 + 1

• Pentanomials

• 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑝𝑝 + 𝑥𝑥𝑞𝑞 + 1 where m>n>p>q

• Equally spaced polynomials (EPS)

• 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑘𝑘∆ + 𝑥𝑥(𝑘𝑘−1)∆ + … + 𝑥𝑥∆ + 1

• All one polynomials (AOP)

• 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑚𝑚−1 + … + 𝑥𝑥1 + 1

As indicated a new family of finite fields will be introduced in this thesis. This new class

of binary finite fields is generated with irreducible One Zero Polynomial (OZP).

Essentially this new class of finite field is the same as All One Polynomial with one

coefficient set to zero.

It will be demonstrated that using Mastrovito algorithm with this class of family “OZP”,

will provide more efficient multiplication algorithm with lower complexity as compared

to multipliers based on irreducible Pentanomials.

Next we present a comparison regarding area complexity for previous proposals.

31

The Table1 briefly describes the number of XOR gates needed for implementing the

multiplication using Mastrovito algorithm with different families of irreducible

polynomial:

Table 1: Complexity Comparison of Mastrovito Multipliers

Polynomial Complexity (XOR) Reference

Trinomial 𝑚𝑚2 − 1 [10][11][13][14][15]

EST 𝑚𝑚2 −
𝑚𝑚
2

 [15]

AOP 𝑚𝑚2 − 1 [12]

ESP m2 − Δ [11]

Pentanomials m2+2m-3 [11]

General
(𝑚𝑚− 1)(𝑚𝑚 + 𝑘𝑘 − 1)

+ � (2𝑚𝑚 − 1 − 𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗

[11]

The table above indicates that the best in class were Trinomials, EST, AOP and ESP is

ranked after.

32

4 Main Results

4.1 Motivation

The motivation for this project is to come up with a new scheme using a new class of

finite fields. This class should cover close to 100% GF(2m) and also be more efficient

than the pentanomials.

As indicated through this thesis, the new class of finite fields introduced is Called One

Zero Polynomial (OZP).

Multiplication using this class of fields (OZP) is not as efficient as where trinomials exist,

(Trinomials cover about 70% and Pentanomials cover the other 30%), however for the

classes of fields that trinomials don’t exist, OZP performance will be shown to be more

efficient than Pentanomials.

4.2 One Zero Polynomial presentation
OZP, (One Zero Polynomials) is a newly found class of polynomials that have potential

to replace Pentanomials for more efficient computations. The irreducible polynomial

used to create OZP is defined as follows:

1

1
() 1mm i

ji
f x x f x−

=
= + +∑

0 , 1
1i

For some j j m
Where f

Otherwise
≤ <

= 


33

As it can be observed OZP irreducible polynomial is similar to the one in the All One

Polynomial. The exception is that in OZP only one coefficient is equal to zero.

4.3 Availability of OZP irreducible polynomial
The main reason that any other family of polynomial is used instead of trinomials is the

availability of trinomials is limited. Therefore pentanomials were being used which cover

all the degrees that trinomials did not exist. Therefore, any other family of polynomials

being used must possess these criteria. To show the availability of this option a code was

written and simulated. The result for availability of one zero polynomials for m<800 was

found to be almost 100%.

The code and the simulation results are presented in tabular format in appendix C.

4.4 Multiplication using OZP

Let the finite field F2
m be generated with an irreducible m-term polynomial f(x).

Assuming the elements A(x) and B(x) are to be multiplied. The first step is to calculate

the raw multiplication result which is called C(x). The next step is to use the irreducible

polynomial to accomplish modularization.

Mastrovito algorithm as it was explained earlier in Chapter 2, as indicated this scheme

consolidates the two steps into one. Mathematically multiplication of two elements using

OZP can be defined as follows:

34

1 2 1
0 1 2 1

1

0
1 2 1

0 1 2 1
1

0

()

() ()

()

() ()

m
m

m
i

i
i

m
m

m
i

i
i

Let A x a a x a x a x or

A x a x

B x b b x b x b x or

B x b x

−
−

−

=

−
−

−

=

= + + +

=

= + + +

=

∑

∑

1 2 1
0 1 2 1

1

0
1

1

() () ()
()

() ()

() 1

0

m
m

m
i

i
i

m
m i

i
i

i

Where S x A x B x
S x s s x s x s x or

S x s x

F x x f x

Irreducible OZP polynomials were only one f
Reduction modulo the irreducible polynomial :

C(x) = S(x) mod f(x)

−
−

−

=

−

=

= ×

= + + +

=

= + +

=

∑

∑

4.5 OZP and Mastrovito
Instead of multiplying and then applying the reduction modulo to the system, in

Mastrovito a Z matrix is introduced. This matrix is product of both B(x) and F(x), (one

of the input operands and the irreducible polynomial).

To calculate the Z matrix there are many approaches, in next sections these algorithms

will be reviewed.

35

4.6 Calculation of Mastrovito with OZP

1 1 2 2

0 0 0

0

1

1

0

1

1

() () ()

can beexpanded :

0 1

2 2

0 1

2 2

m m m
i j i

i j i
i j i

i

i

j i j
j

i m

j i j
j i m

i

i j j
j

m

i j j
j i m

S x a x b x a x b x s x

Coefficient S as

a b i m
S

a b m i m

a b i m

a b m i m

− − −

= = =

−
=

−

−
= − +

−
=

−

−
= − +

  
= = =  

  


≤ ≤ −

= 
 ≤ ≤ −



≤ ≤ −
= 
 ≤ ≤ −


∑ ∑ ∑

∑

∑

∑

∑



i

1 2 2

0

1 2 2 1

0 0 1mod .

1

0 0 using

() () mo d () mo d ()

Further expansion of S we have,

() () mod ()

() ()

m m
i i

i i
i i m

m i m m
i i

i j j i j j
i j i m j i mNo req

m i
i m i

i j j i m j j
i j

C x S x f x S x S x f x

a b x a b x f x

a b x a b x

− −

= =

− − −

− −
= = = = − +

−
+

− + −
= =

 
= = + 

 

 
= +  

 

= +

∑ ∑

∑ ∑ ∑ ∑

∑ ∑


2 1

0 1 this for substitution

mod ()
m m

i j i

i i m

f x
− −

= = +

= −

 
 
 
∑ ∑


36

1
0,0 0, 1

1 2
1,0 1, 1

2 2
2,0 2, 1 1(1)(1) 1

, ,

.

1

m i

m m
m

m m
m

m i

m
m m m mm mm

tocalculate x one should notethat

t tx x
t tx x

T
x

t tx

+

−
−

+ −
−

+

−
− − − ×− ×− ×

     
     
     
     
   = Ψ =  
     
     
     
        






  



  


  
 



0

1

2 1

,0 ,1 ,2 , 1

1
1

,
0

1

, 1
0

. .

(, , , ,)

. . 0 2

.

, :

i

m m

i i i i i m

m
m i m j

i i j
j

m
m i j

i m j
j

m i

T
T

T
T

T

where T t t t t

X T t x i m

X t x

Nowreplacing X we have

− ×

−

−
+ − −

=

−
+

− −
=

+

 
 
 
 

Ψ = Ψ 
 
 
 
  
=

= Ψ = ≤ ≤ −

=

∑

∑







37



1 2 1

0 0 0 1 using this for substitution

1 2 1 1

, 1
0 0 0 1 0

() () () mo d ()

() () .

m i m m
i m i

i j j i m j j
i j i j i

i i m
m i m m m

i k
i j j i m j j i m k

i j i j i k

C x a b x a b x f x

a b x a b t x

Exchangeof i a

− − −
+

− + −
= = = = +

= −

− − − −

− + − − −
= = = = + =

 
= +  

 

= +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑



1 1 2 1

, 1
0 0 0 0 1

()
m i m m m

i i i
i j j m k j j k m ik

i j i k j k

nd k

a b x a b t x
− − − −

− + − − −
= = = = = +

  
= +   

   
∑ ∑ ∑ ∑ ∑



1 2 1 1

, 1
0 0 0 1 0

() ()
m i m m m

i i
i j j m k j j k m i i

i j k j k i
C X a b a b t x c x

− − − −

− + − − −
= = = = + =

 
= + = 

 
∑ ∑ ∑ ∑ ∑

2 1

, 1
0 0 1

()
i m m

i i j j m k j j k m i
j k j k

This part is the U matrix

C a b a b t
− −

− + − − −
= = = +

= +∑ ∑ ∑


38

1

0, 1
0 1

1

1 1, 1
2

1

2 2, 1
3

1

2 2 2, 1
1

:

. .

. .

. .

. .

i
i m

i i j j m j m i j
j j

This part is the U matrix

m

m j m i j
j

m

m j m i j
j

m

m j m m i j
j m

ThentheC coefficients areequal to

C a b a t b

a t b

a t b

a t b

−

− − − −
= =

−

+ − − −
=

−

+ − − −
=

−

− − − − −
= −

= +

+

+

+

∑ ∑

∑

∑

∑





()

0 0 0

1 1 1

,0 ,1 , 1

2 2 2

1 1 1

0

1

2

1

As indicated the Mastrovito algorithm in matrix format is:

.

, , ,

.

i i i i m

m m m

m m m

i i

m

m

C Z B
c z b
c z b

Where Z z z z
c z b
c z b

b
b

C Z
b
b

−

− − −

− − −

−

−

=

     
     
     
     = =
     
     
          

 
 
 
=


 

   



1

,
0

m

i j j
j

z b
−

=

 =




∑

0 1 2decomposing in mNow Z to Z U V V V −= + + + +

39

0 2

1 1 1
(0) (2)

, , ,
0 0 0

. . .

:

x

m

m m m
m

i i j j i j j i j j
j j jV

U V V

C u b v b v b

Or in matrix format we have

−

− − −
−

= = =

= + + +∑ ∑ ∑



  

0 0

1 0 1

11 2 1 0 1

0 0
0 0 0

0 0

mm m mm m

a b
a a b

UB

ba a a a −− − ××

   
   
   =
   
   

  

  



   

 

1

1

1 2 2 0

1 2 2 1

1 2 2
1

1 1

1

1 1 2 2 3 2 1
2

0 0
0 0
0 0
0 0 0 0 0

0 0 0 0 0

0,1,2

. . . .

3 1 0

m m

m m

m m

m mm m

m
v

m j j m m m
j

all zeros v

a a a b
a a a b
a a a

V B

b

i

c a b a b a b a b

for i to m C

− −

− −

− −

− ××

−

+ − − − −
=

   
   
   
   

=    
   
   
   

     

=

= = + + +

= − → =

∑











     





40

2

2

0

1 2 1

1 2
2

1 2

1 1

1

2 1 3 2 4 3 1
3

0 0 0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0 0
1,2,3

. . . .

0 4 1 0

m

m

m

m mm m

m
v

m j j m m m
j

all zeros v

b
a a b
a a

V B
a a

b

i

c a b a b a b a b

for i and to m C

−

−

−

− ××

−

+ − − − −
=

   
   
   
   

=    
   
   
   

     
=

= = + + +

= − → =

∑











     





2

2

0

1

2
1

1

11 1

1

2 2 1 1
1

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0

3, 2, 1

. .

0 4 0

m

m

m
m

m

mm mm m

m
v

m j j m m
j m

vall zeros

b
b

V B
a
a

ba

i m m m

c a b a b

for i to m C

−

−

−
−

−

−− ××

−

− − − −
= −

   
   
   
   

=    
   
   
   

     

= − − −

= =

= − → =

∑





     


 


  

 

41

0

0

1 2 3 2 0

1

1 2 3 2
0

1 2 3 2

11 2 3 2 1

0, 1

1

0, 1
1

0
0 0 0 0 0
0
0

0

0 1
1

. .

0 1

m m m

m m m

m m m

mm m m mm m

m i

m
v

m j m i j
j

v

m

a a a a b
b

a a a a
V B

a a a a

ba a a a

i
t

Otherwise

c a t b

i
C

a

− − −

− − −

− − −

−− − − ××

− −

−

− − −
=

   
   
   
   

=    
   
   
   

     

=
= 


=

=
=

∑








 

     



0

1

1

1
1

1 1 2 2 1 1
1

.

. . . .

m

j j
j

m
vi

m j j m m m
j

b Otherwise

c a b a b a b a b

−

−
=

−
≠

− − − −
=







→ = = + + +

∑

∑ 

42

4.7 Complexity in OZP multiplication

2
1

, 11
0 0

,

1

2
()

2 2

() () ().
, , :

:

i i i

i m
m

i i j j m k j j k m ik
j k

i j

m

m

m

m

Assume that C x A x B x Then the relationship between
a b and c is as follows

c a b a b t

where t is defind as

x x
x
x

x

−
−

− + − − −+
= =

+

+
− ×

−

= ×

   = +      

 
 
 
  = ×
 
 
  

∑ ∑ ∑

m 1 mT


1

2

3

1

, 1
0

1

 mod ()

m

m

m

m
m i k

i m k
k

Exchanging k with i

x
x

or

x f x t x

−

−

−

−
+

− −
=

 
 
 
 
 
 
  

= ∑





43

0

1

,
0

1

(0) (1) (2)

1
1 1 (0) (2)

, , ,0 0
0

,
((), ()):

.

.

Decomposing Z into:

......

...

m

i i i j j
j

m

m

m
m m m

i i j j i j j i j jj j
j

From Mastrovito we had
C ZB where Z f A x f x

b

c Z z b

b

Z U V V V

c U b V b V b

−

=

−

−

−
− − −
= =

=

= =

 
 
 = × =
 
 
 

= + + +

⇒ = + + +

∑

∑ ∑ ∑

44

4.8 Format of U and V matrices where a1=0

0

1 0

1 2 1 0

1 2 3 2

1 2 3 2
0

1 2 3 2

1 2 3 2

1 2

1 2
2

1 2

0 . . . 0
0 . 0 0

. . . . 0 0
. .

0 .
0 0 0 0 . 0
0 .
0 .
.
0 .

0 0 0 . 0 0
0 0 0 .
0 0 0 .
0 0 0 .
0 0 0 . 0 0
.

m m

m m m

m m m

m m m

m m m

m

m

m

a
a a

U

a a a a

a a a a

a a a a
V

a a a a

a a a a

a a
a a

V
a a

− −

− − −

− − −

− − −

− − −

−

−

−

 
 
 =
 
 
 

 
 
 
 

=  
 
 
 
  



=

2
1

1

1

0 0 0 . 0 0
0 0 0 . 0 0
.
0 0 0 . .
0 0 0 . .
0 0 0 . .

m
m

m

m

V
a
a
a

−
−

−

−


 
 
 
 
 
 
 
  

 
 
 
 

=  
 
 
 
  

45

4.9 Area Complexity of the Proposed Multiplier

The area complexity of each decomposed matrix (UB and VxBx) is calculated and then

added to find the total area complexity of this proposed multiplier.

0 1 2

0 1 2.

m

m

Z U V V V

C Z B UB V B VB V B

−

−

= + + + +

= = + + + +





0 0

1 0 1

11 2 1 0 1

2

2

:

0 0
0 0 0

0 0

: 1 2 3
2 2

: 0 1 2 3 (1)
2 2

mm m mm m

Complexity

a b
a a b

UB

ba a a a

m mNumber of AND Gates m

m mNumber of XOR Gates m

−− − ××

   
   
   =
   
   

  


+ + + + = +


 + + + + + − = −

  



   

 





46

1 2 3 2 0

1

1 2 3 2
0

1 2 3 2

11 2 3 2 1

:

0
0 0 0 0 0
0
0

0

: 1
: (2) (1)

m m m

m m m

m m m

mm m m mm m

Complexity

a a a a b
b

a a a a
V B

a a a a

ba a a a

Number of AND Gates m
Number of XOR Gates m m

− − −

− − −

− − −

−− − − ××

   
   
   
   

=    
   
   
   

     

−
 − + −








 

     



1 2 2 0

1 2 2 1

1 2 2
1

1 1

:

0 0
0 0
0 0
0 0 0 0 0

0 0 0 0 0

: 2
: (3) 3

m m

m m

m m

m mm m

Complexity

a a a b
a a a b
a a a

V B

b

Number of AND Gates m
Number of XOR Gates m

− −

− −

− −

− ××

   
   
   
   

=    
   
   
   

     

−
 − +











     



47

0

1

2
1

1

11 1

:

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0

: 1
: 0 3

m
m

m

mm mm m

Complexity

b
b

V
a
a

ba

Number of AND Gates
Number of XOR Gates

−
−

−

−− ××

   
   
   
   

=    
   
   
   

     


 +





     


 


  

 

() ()

(#) 0 (#) 2 (#)

2
#

2 2
2

:

:

1 2 1
2 2

()
2 2 2 2

of ANDGATES of ANDGATES m of ANDGATES

Total ANDGATES

Total Complexity

Total Number of AND gates
UB V B V B

m m m m

m m m m m

−= + + +

→ + + − + − + +

= + + − =





48

() () ()

()

(#) 0 (#) 2 (#)

2
#

2

2

:

:

() [2 1] [3 3]
2 2

[4 3] [0 3]

() [1 2 (2)] (1) 3 (2)
2 2

2 2

of XORGATES of XORGATES m of XORGATES

Total ANDGATES

Total Complexity

Total Number of XOR gates
UB V B V B

m m m m m

m

m m m m m

m m

−= + + +

→ − + − + − + − +

+ − + + + +

= − + + + + − + − + × −

= − +







2

2

2

3 6
2 2

3 6
2 6

m m m

m m m
m m

 
− + − 

 
= − + −

= + −

0 1 2

0 1 2.

m

m

Z U V V V

C Z B UB V B VB V B

−

−

= + + + +

= = + + + +





49

4.10 Time Delay of the Proposed Multiplier

To calculate the time delay and generalize it, the vector matrices are calculate

{ }
{ }
{ }
{ }
{ }

{ }

0 1 2

0 1 2 3 4 1

0 0 0 0 0 0

1 0 0 0

0 1 1 1

0 2 2 2

2 2 2 2

........
, , , , ,...,

, 0 , , , ,...,

, , , 0 , 0 ,..., 0

0 , , , , 0.. , 0

0 , 0 , , , ,..., 0
.
.

0 , 0 , 0 ,.., , ,

m

m

m m m m

C UB V B V B V B
UB u u u u u u

V B v v v v v

V B v v v

V B v v v

V B v v v

V B v v v

−

−

− − − −

= + + + +

=

=

=

=

=

=

Since in each row consists of m terms, the total delay can be calculated as following.

()2log (1) 3x A xTotal delay m T T T= − + +  

 ()2log (1) 3 X ATotal delay m T T= − + +  

50

4.11 Examples of Transfer matrices

11 10 9 8 7 6 5 4 3 2
11 10 9 8 7 6 5 4 3 2 0

1

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

11 10 9 8 7 6 5 4 3 1

11 10 9 8 7 6 5 4 3 1 0

2

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

51

11 10 9 8 7 6 5 3 2 1
11 10 9 8 7 6 5 3 2 1 0

4

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

11 10 9 8 7 6 5 4 2 1

11 10 9 8 7 6 5 4 2 1 0

3

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

52

11 10 9 8 6 5 4 3 2 1
11 10 9 8 6 5 4 3 2 1 0

7

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

11 10 9 7 6 5 4 3 2 1

11 10 9 7 6 5 4 3 2 1 0

8

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

53

11 10 8 7 6 5 4 3 2 1
11 10 8 7 6 5 4 3 2 1 0

9

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

1 19 8 7 6 5 4 3 2 1
1 1 9 8 7 6 5 4 3 2 1 0

10

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

54

Using the transfer matrix, one can calculate the V matrices with ease, this could be

demonstrated as follows:

For example the transfer matrix below, from the previous example:
11 10 9 8 7 6 5 4 3 1

11 10 9 8 7 6 5 4 3 1 0

2

()
0 :

Let F x a x a x a x a x a x a x a x a x a x a x a
Let a then

= + + + + + + + + + +
=

1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Using the transfer function and transposing it we can have, (for referral purposes this

matrix is named as Ω):

1 1
1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 
 
 
 
 
 
 
 

= Ω 
 
 
 
 
 
 
 
 

Using the transposed ‘Ω’ matrix one can calculate the V matrices(m*m) as such:

55

0 0

0 1

1

1 09 8 7 6 5 4 3 2 1

10 9 8

0

,
"1" ,
decrementing.

0
0 0 0 0 0 0 0 0 0 0 0
0

m

m

For V the first column of is used forV the first columnis all zeros and then
for every entry of in the a rowis added toV from a tothelast itemin
each row with a

a a a a a a a a a a

a a a
V

−

−

Ω
Ω

=
7 6 5 4 3 2 1

1 09 8 7 6 5 4 3 2 1

1 09 8 7 6 5 4 3 2 1

1 09 8 7 6 5 4 3 2 1

0
0
0
0

m m

a a a a a a a
a a a a a a a a a a

a a a a a a a a a a
a a a a a a a a a a

×

 
 
 
 
 
 
 
 
 
 
 

         

1 0

1 1

1

1 09 8 7 6 5 4 3 2

10 9 8 7 6 5

1

,
"1" ,

decrementing.
0 0
0 0

m

m

For V the first columnof is used forV the first twocolumns are all zeros and then
for every entry of in the a rowis added toV from a tothelast itemineach row
with a

a a a a a a a a a
a a a a a a

V

−

−

Ω
Ω

=

4 3 2

1 09 8 7 6 5 4 3 20 0
0 0 0 0 0 0 0 0 0 0 0
0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

m m

a a a
a a a a a a a a a

×

 
 
 
 
 
 
 
 
 
 
 

         

56

1 1

1

1 1

1

(1) , (2)
"1" ,

decrementing.
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

th
m m

m

m m

For V the m columnof is used forV the first m columns are all
zeros and then for every entry of in the a rowis added toV
from a tothelast itemineach row with a

V

− −

−

− −

− Ω −
Ω

=

10

10

10

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

m m

a
a
a

×

 
 
 
 
 
 
 
 
 
 
 
  

         

57

6 5 4 3 2
6 5 4 3 2 1 0

6 5 4 3 2
6 5 4 3 2 1 0
7 6 5 4 3 2

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

5

:
()

()

() 1
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0

Additional exampleof calculationof matrices directly
A x a x a x a x a x a x a x a

B x b x b x b x b x b x b x b

F x x x x x x x
a
a a
a a a

UB a a a a
a a a a a
a

= + + + + + +

= + + + + + +

= + + + + + +

=

0

1

2

3

4

54 3 2 1 0

66 5 4 3 2 1 0

06 5 4 3 2 1

1

6 5 4 3 2 1 2

0 6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2 1

0

0
0 0 0 0 0 0 0
0
0
0
0
0

b
b
b
b
b
ba a a a a
ba a a a a a a

ba a a a a a
b

a a a a a a b
V B a a a a a a

a a a a a a
a a a a a a
a a a a a a

   
   
   
   
   
   
   
   
   
   

  
 
 
 
 
 

=  
 
 
 
 
 

3

4

5

6

6 5 4 3 2 0

6 5 4 3 2 1

6 5 4 3 2 2

1 3

4

5

6

6 5 4 3

6 5 4 3

2 6 5 4 3

0 0
0 0
0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0
0 0 0
0 0 0

b
b
b
b

a a a a a b
a a a a a b
a a a a a b

VB b
b
b
b

a a a a
a a a a

V B a a a a

 
 
 
 
 
 
 
 
 
 
 

   
   
   
   
   

=    
   
   
   
   

  

=

0

1

2

3

4

5

6

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

b
b
b
b
b
b
b

  
  
  
  
  
  
  
  
  
  

   

58

0

1

6 5 4 2

3 6 5 4 3

6 5 4 4

5

6

4 6 5

6 5

6 5

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0

b
b

a a a b
V B a a a b

a a a b
b
b

V B a a
a a
a a

  
  
  
  
  

=   
  
  
  
  

   
 
 
 
 
 

=  
 
 
 

 

0

1

2

3

4

5

6

0

1

2

5 3

6 4

6 5

6 6

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

b
b
b
b
b
b
b

b
b
b

V B b
a b
a b
a b

 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  

=   
  
  
  
  

   

59

5 Complexity Comparison

This chapter is intended to compare the pentanomials and One Zero polynomials using

Mastrovito algorithm.

As previously mentioned Pentanomials are considered the next best in class where the

trinomials AOP or ESP do not exist.

Having One Zero polynomials exhibit vast coverage in finite field and improve space and

time complexity over pentanomials will make this new class more efficient than the

pentanomials without the compromise of coverage.

Table 2: Complexity Comparison with OZP

Polynomial Complexity (XOR) Reference

Trinomial 𝑚𝑚2 − 1 [10][11][13][14][15]

EST 𝑚𝑚2 −
𝑚𝑚
2

 [15]

AOP 𝑚𝑚2 − 1 [12]

ESP m2 − Δ [11]

Pentanomials m2+2m-3 [11]

OZP 2 2 6m m+ −

General
(𝑚𝑚− 1)(𝑚𝑚 + 𝑘𝑘 − 1)

+ � (2𝑚𝑚 − 1 − 𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗

[11]

In addition to the space complexity improvement shown in Table 2, the time complexity

is shown in Table 3.

60

Table 3 Time Delay comparison

Polynomial Time Complexity Reference

Trinomial ()2log () 1 X An T T+ +   [10][11][13][14][15]

EST ()2log () 1 X An T T+ +   [15]

AOP ()2log (1) 1 X An T T− + +   [12]

ESP ()2log () 1 X An T T+ +   [11]

Pentanomials ()2log (1) 4 X An T T− + +   [11]

OZP ()2log (1) 3 X An T T− + +  

General
(𝑚𝑚− 1)(𝑚𝑚 + 𝑘𝑘 − 1)

+ � (2𝑚𝑚 − 1 − 𝑗𝑗)
𝑗𝑗𝑗𝑗𝑗𝑗

[11]

Therefore it is proven that the One Zero Polynomials provide both shorter time delay and
less space complexity.

61

6 Conclusion

6.1 A Summary of Contribution

The emphasis in this project is on the Polynomial basis and their one step and two step

variation of multiplication algorithm.

For the two step multiplication a conventional approach is demonstrated in detail (KOA

and some of its variation.). Their efficiency and area of usage, as well as their advantages

and disadvantages were described.

The second step of the two step multiplication is the modularisation which is computed

by means of transfer matrix. The complexity of this step in is directly dependent to the

number of ones in that multiplication matrix.

For one step multiplication the Mastrovito algorithm was described in detail and

examples were provided.

Mastrovito constructs a Z matrix form an operand and the irreducible polynomial, which

this Z Matrix will multiply with the first operand. This one multiplication will result in

both the multiplication and modulo reduction.

Efficiency of Mastrovito multiplication greatly depends on the irreducible polynomial

available for the field. Most efficient polynomials were listed with their limitations.

Different variations of using Mastrovito was demonstrated in detail with their examples.

For the degrees of m where the most efficient irreducible functions do not exist, (Such as

Trinomial, AOP and ESP), the next best in class where considered to be the

Pentanomials.

In this thesis a new family of irreducible polynomials were introduced and it was proven

to cover all the degrees m. In addition to the coverage it was proven that newly

introduced polynomial (One Zero Polynomial), reduces the time and space complexity in

multiplication.

62

6.2 Future work

Additional research can be conducted in using One Zero Polynomials and hardware

implementation. Also using One Zero Polynomials with alternative algorithms could

yield better results and more efficient multiplication algorithm.

Using One Zero Polynomial did improve Mastrovito, but calculations for KOA was not

conducted, there are indications that using One Zero polynomials could potentially

improve the time and space complexity if used in modularization in two step multipliers.

More research could be applied into which coefficient of One Zero Polynomial being

zero would yield most efficiency and under what circumstance.

63

References

[1] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.

Cambridge University Press, Cambridge, England, 1997.

[2] A. J. Menezes et. al, Applications of Finite Fields, Kluwer, 1993.

[3] D.G. Cantor, “On Arithmetical Algorithms over Finite Fields,” J. Combinatorial

Theory, Series A 50, pp. 285-300, 1989.

[4] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[5] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Application,

Cambridge University Press, 1986.

[6] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve

Cryptography. Springer, New York, NY, 2003.

[7] Ashkan Hosseinzadeh Namin, H.Wu, and M.Ahmadi, High Speed World Level

Finite Field Multipliers in F(2m), IEEE Trans on VLSI, To appear, 2009

[8] Karatsuba A.; Ofman Y. Multiplication of multidigit numbers by automata, Soviet
Physics-Doklady 7, p.595-596, 1963

[9] D.E. Knuth, “The Art of Computer Programming,” Addison-Wesley, Reading,

Massachusetts, 2nd edition, 1981

64

[10] E.D. Mastrovito “VLSI Architecture for multiplication over finite field GF(2m),”

Applied Algebra, Algebraic ALGORITHNS AND Error-Correcting Codes, T.

Mora, ed., PP297-309, Berlin: Springer-Verlag 1988.

[11] E.D. Mastrovito “VLSI Architecture for Computation in Galios field GF(2m),”

PHD thesis, Dep. Of electrical Eng.,Linkoping Univ., Linkoping, Sweden, 1991.

[12] C.K. Kos and B. Sunar, “Low-Complexity Bit-Parallel Canonical and Normal

Basis Multipliers for a Class of Finite Fields“. IEEE Trans. Computers , vol.47,

no, 3. Pp.353-356, Mar. 1998.

[13] C. Paar, “Efficient VLSI Architecture for Bit-Parallel Computation in Galios

Fields.” PhD Thesis, Universitat GH Essen, VDI Verlog, 1994.

[14] C. Paar, “A new architecture for a parallel Finite Fields Multiplier with low

complexity based on composite fields .” IEEE Trans. Computers , vol.45, no, 7.

Pp.856-861, July. 1996.

 [15] C.K. Kos and B. Sunar, “Mastrovito Multiplier for all Trinomials“. IEEE Trans.

Computers , vol.48, no, 5. PP.522-527, May. 1999.

[16] J.L. Massey, J.K. Omura, “Computational method and apparatus for finite field

arithmetic”, U.S. Patent Aplication, submitted 1981.

[17] Ernest Jamro, “THE DESIGN OF A VHDL BASED SYNTHESIS TOOL FOR

BCH CODECS,” School of Engineering,The University of Huddersfield.

September 1997

[18] M. Leone, “A New Low Complexity Parallel Multiplier for a Class of Finite Fields”,

65

Proc. Cryptographic Hardware and Embedded Systems (CHES 2001),.

 [19] E.D. Mastrovito, “VLSI Architectures for Multiplication Over Finite Field

GF(2m)”, Proc. Sixth Int'l Conf., AAECC-6, T. Mora, ed., pp. 297-309, Rome,

Jul.1988.

[20] P.K. Meher, Y. Ha, C.Y. Lee, “An Optimized Design for Serial-Parallel Finite Field

Multiplication over GF(2m) Based on All-One Polynomials”, Proc. 2009 Conf. on

Asia and South Pacific Design Automation, Yokohama, Japan, pp. 201-225, 2009.

 [21] H. Wu, “Bit-Parallel Polynomial Basis Multiplier for New Classes of Finite Fields”,

IEEE Trans. Computers, Vol. 57, No. 8, pp. 1023-1031, Aug 2008

[22] H.Wu, M.A. Hasan, I.F. Blake, “New low-complexity bit-parallel finite field

multipliers using weakly dual bases”, IEEE Trans. Computers, Vol.51, No. 11,

pp. 1223-1234, Nov. 2002.

[23] H. Wu, M.A. Hasan, I.F. Blake, and S. Gao, “Finite Field Multiplier Using

Redundant Representation,” IEEE Trans. Computers, Vol. 51, No. 11, pp. 1306-

1316, Nov. 2002.

[24] T. Zhang, K. Parhi, “Systematic Design of Original and Modified Mastrovito

Multipliers for General Irreducible Polynomials”, IEEE Trans. Computers, Vol.

50, No. 7, pp. 734-749, Jul. 2001.

[25] G. H. Golub and C. E Van Loan, Matrix Computations, Johns Hopkins University
Press,
3rd edition, 1996.

[26] M. A. Hasan, M. Z. Wang, and V. K. Bhargava, “Modular construction of low
complexity parallel multipliers for a class of finite fields GF(2”)”, IEEE Trans. on
Computers, vol.41, pp. 962-971, Aug. 1992.

66

[27] J.-C. Bajard, L. Imbert, and G.A. Jullien, “Parallel Montgomery Multiplication in

GF(2k) Using Trinomial Residue Arithmetic,” Proc. 17th IEEE Symp. Computer
Arithmetic (ARITH ’05), 2005.

[28] T.C. Bartee and D.I. Schneider, Computations with Finite Fields, Inform. Contr.,
vol. 6, pp. 79-98, Mar. 1963.

[29] R. W. K. Odoni, &&Zeros of random polynomials over "nite "elds,'' in

Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 111,
March 1992, Part, 2. pp. 193}197.

[30] W. M. Schmidt, ‘Equations over Finite Fields, An Elementary Approach,''

Lectures Notes in Math., Vol. 536, Springer-Verlag, 1976.

[31] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.

[32] D.G. Cantor and E. Kaltofen, “On Fast Multiplication of Polynomials over

Arbitrary Algebras,” Acta Informatica, vol. 28, pp. 693-701, 1991.

[33] S. S. Erdem. Improving the Karatsuba-Ofman Multiplication Algorithm for
Special Applications. PhD thesis, Department of Electrical and Computer
Engineering, Oregon State University, November 2001.

[34] K. Posch and R. Posch, “Modulo Reduction in Residue Number Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 6, no. 5, pp. 430-461, 1995.

[35] J. Bajard, L. Didier, and P. Kornerup, “Modular Multiplication and Base
Extensions in Residue Number Systems,” Proc. 15th IEEE Symp. Computer
Arithmetic (ARITH ’01), pp. 59-65, 2001.

67

Appendix A

Polynomial, dual and normal basis representations of GF(24), generated by the

irreducible polynomial p(x)= 1 + x + x4.[17]

power of α Standard basis

1, α, α2, α3

Dual basis

1, α3, α2, α

Normal basis

α3, α6, α12, α9

- 0000 0000 0000

0 1000 1000 1111

1 0100 0001 1001

2 0010 0010 1100

3 0001 0100 1000

4 1100 1001 0110

5 0110 0011 0101

6 0011 0110 0100

7 1101 1101 1110

8 1010 1010 0011

9 0101 0101 0001

10 1110 1011 1010

11 0111 0111 1101

12 1111 1111 0010

13 1011 1110 1011

14 1001 1100 0111

68

APPENDIX B

Maple code to calculate the availability of OZP in different degrees

> interface(rtablesize=2):
> poly:=x^4+x^3+x^2+x+1:
> poly_orig:=poly:
> i:=1:
> FileTools[Text][Open]("Table1.txt", create=true,
overwrite=true):
> for m from 0 to 800 do
> A[m]:=poly_orig + x^m:
> for n from 1 to m do
> B[m]:=A[m] + x^n:
> C[m]:=B[m] mod 2:
> J:=irreduc(C[m]):
 k:=J ;
 l:=cat("The value of M= ",
m ," The irreducible OZP exists= ", k, ".");
> #D[m,(irreduc(C[m]))];
> for y from 1 to m do
 D[m]:=B[m]-x^y:
 E[m]:=D[m] mod 2:
> J:=irreduc(D[m]):
 k:=J ;
 l:=cat("The value of M= ",
m ," The irreducible OZP exists= ", k, ".");
> #D[m,(irreduc(D[m]))];
 end do:
> #FileTools[Text][WriteInteger]("Table1.txt", m);
 FileTools[Text][WriteString]("Table1.txt", l);
FileTools[Text][WriteLine]("Table1.txt");
> end do:
> poly_orig:=poly_orig + x^m:
>
> #D[m,(irreduc(C[m]))];
>
>
> end do:
> FileTools[Text][Close]("Table1.txt");

69

VITA AUCTORIS

NAME: Seyed Mohammad Ali Shahabi

PLACE OF BIRTH: Tehran, Iran

YEAR OF BIRTH: 1975

EDUCATION: Motahary High School, Tehran, Iran

 1990-1994

University of Western Ontario, London, Canada

1996-2001 B.Sc.

University of Windsor, Windsor, Ontario

2006-2009 M.A.Sc.

	Low Complexity Finite Field Multiplier for a New Class of Fields
	Recommended Citation

	Author’s Declaration of Originality
	I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	Motivation
	Thesis Outline

	2 Mathematical Background
	Fundamental concepts
	Finite Fields
	Groups, Rings and Fields
	Binary Fields and Bases
	Comparison of Bases
	Polynomial Basis
	Normal Basis
	Dual Basis
	Triangular Basis
	Redundant basis

	Irreducible Polynomials
	Polynomial Basis
	Conventional approach
	Complexities for two-step multiplication
	Karatsuba-Ofman algorithm (KOA)
	Applying Karatsuba-Ofman algorithm
	Second step (Reduction Modulo)
	Issues with KOA
	Mastrovito algorithm
	Efficient classes of fields for Mastrovito
	Availability of irreducible polynomial
	Summary of the previous related work

	4 Main Results
	Motivation
	One Zero Polynomial presentation
	Availability of OZP irreducible polynomial
	Multiplication using OZP
	OZP and Mastrovito
	Calculation of Mastrovito with OZP
	Complexity in OZP multiplication
	Format of U and V matrices where a1=0
	Area Complexity of the Proposed Multiplier
	Time Delay of the Proposed Multiplier
	Examples of Transfer matrices

	5 Complexity Comparison
	6 Conclusion
	A Summary of Contribution
	Future work

	References
	Appendix A

