
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

FPGA Implementation of Blind Source Separation using FastICA FPGA Implementation of Blind Source Separation using FastICA

Al-Laith Taha
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Taha, Al-Laith, "FPGA Implementation of Blind Source Separation using FastICA" (2010). Electronic
Theses and Dissertations. 145.
https://scholar.uwindsor.ca/etd/145

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/145?utm_source=scholar.uwindsor.ca%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FPGA Implementation of Blind
Source Separation using FastICA

By

AL-LAITH TAHA

A Thesis

Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial Fulfillment

of the Requirements for the Degree of Master of Applied Science at

The University of Windsor

Windsor, Ontario, Canada

2010

© 2010 AL-LAITH TAHA

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise
retained in a retrieval system or transmitted in any form, on any medium by any means

without prior written permission of the author.

iv

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any

other material from the work of other people included in my thesis, published or otherwise, are

fully acknowledged in accordance with the standard referencing practices. Furthermore, to the

extent that I have included copyrighted material that surpasses the bounds of fair dealing within

the meaning of the Canada Copyright Act, I certify that I have obtained a written permission

from the copyright owner(s) to include such material(s) in my thesis and have included copies of

such copyright clearances to my appendix.

 I declare that this is a true copy of my thesis, including any final revisions, as approved by

my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University of Institution.

v

Abstract

Fast Independent Component Analysis (FastICA) is a statistical method used to separate

signals from an unknown mixture without any prior knowledge about the signals. This

method has been used in many applications like the separation of fetal and maternal

Electrocardiogram (ECG) for pregnant women. This thesis presents an implementation of

a fixed-point FastICA in field programmable gate array (FPGA). The proposed design

can separate up to four signals using four sensors. QR decomposition is used to improve

the speed of evaluation of the eigenvalues and eigenvectors of the covariance matrix.

Moreover, a symmetric orthogonalization of the unit estimation algorithm is implemented

using an iterative technique to speed up the search algorithm for higher order data input.

The hardware is implemented using Xilinx virtex5-XC5VLX50t chip. The proposed

design can process 128 samples for the four sensors in less than 63 ns when the design is

simulated using 10 MHz clock.

vi

Acknowledgments

I would like to express my sincere appreciation to my supervisor, Dr. Esam

Abdel-Raheem for his invaluable guidance and encouragement. He guided me throughout

my thesis with great patience. I would also like to express my gratitude to the other

members of my committee, Dr. Mohammed A. S. Khalid and Dr. W. Abdul-Kader, for

their help and assistance.

I can’t forget those days when I worked side by side with my fellow graduate

students of the ECE department, Iman, Ishaq, Mohamed Islam. They give me a lot of

help and encouragement during my study.

I would not forget my parents for their constant and unconditional support

throughout my research.

Finally, my sincere appreciation to Canadian Microelectronics Corporation (CMC)

for providing the computer and FPGA workstations for this research.

vii

Table of Contents

Author's Declaration of Originality …………………………………………….……….……......… iv

Abstract…………………………………………………………………………………….……...… v

Acknowledgment .. vi

List of Figures.. x

List of Tables ... xii

List of Abbreviations .. xiv

1 Introduction ... 1

 1.1 Background..…………………………………………………………………...….…...1

 1.2 FPGA background..…………………………………………………...........……….... 5

 1.3 Thesis objective..…………………………………………………………………... …6

 1.4 Thesis organization ………………………………………………………………... …6

2 Independent Component Analysis……………………………………….……….....……..8

2.1 Introduction……………………….……………………………………….…..…..…..8

2.2 General statistical settings……………….……………………………………….…....8

2.3 Principle component analysis……..……………………….……….……….…..........11

2.3.1 PCA algorithm……………………………………………………..…….….12

2.3.2 Whitening limitations……………………………………………..….…..….14

2.4 Higher order statistics……………………….………..……….………………...........15

2.4.1 Central moments and kurtosis………………….………….………….….…15

2.4.2 Fixed-point FastICA algorithm using kurtosis……….……….……...….…17

T a b l e o f c o n t e n t s

viii

2.5 FastICA using orthogonalization technique….……..……….………….……............18

2.5.1 FastICA using deflationary orthogonalization……………………...………...19

2.5.2 FastICA using symmetric orthogonalization……………………..………......20

2.6 Summary………………….….……..……….………….…….....................................23

3 Proposed Architecture and FPGA Implementation...…………….………………..…....24

3.1 Introduction…………….….…………….…………….…….......................................24

3.2 Proposed model…………….….……..……………….……..24

3.3 Realization of eigenvalues and eigenvectors.………….……......................................26

3.4 FastICA using symmetric orthogonalization…..…….……...28

3.5 FPGA implementation…..…….……...29

3.6 Hardware implementation…..…….……..31

3.6.1 Implementation of whitening ……………………………………….….........33

 3.6.1.1 Implementation of Centering block…………………..…….........37

 3.6.1.2 Implementation of the covariance matrix ………..……………....39

 3.6.1.3 Implementation of QR decomposition …………………………...41

3.6.2 FastICA implementation …………………………………..….………..........43

 3.6.2.1 Implementation of One-unit FastICA………………………........46

 3.6.2.2 Implementation of Symmetric orth………………….……...........48

3.7 Summary …………………………………………………..….……………............50

4 Simulation result...…………….………………..…...51

4.1 Introduction…………….….……..……………….……..51

4.2 Separating four signals....….……..……………….……..51

4.3 Separating ECG signals..….……..……………….……..56

4.4 Summary …………………………………………………..….……….......................60

5 Conclusions and Future Work...…………….………………..….......................................61

References...…………….………………..…..63

T a b l e o f c o n t e n t s

ix

Appendix A…..67

VITA AUCTORIS...…………….……….…..68

x

List of Figures

Number Page

Figure 1.1 The instantaneous mixtures source separation example 2

Figure 2.1 Linear instantaneous BSS problem 9

Figure 2.2 Sources before mixing 10

Figure 2.3 Mixed Signals that contain some underlying hidden factors 10

Figure 2.4 Separated Signals 11

Figure 2.5 Deflationary orthogonalization block diagram 20

Figure 2.6 Symmetric Orthogonalization block diagram 22

Figure 3.1 QR decomposition flow chart 26

Figure 3.2 Whitening Block Diagram 27

Figure 3.3 Symmetrical orthogonalization simulation using iterative approaches 29

Figure 3.4 Fixed-point Representation 30

Figure 3.5 Main Implementation Block 32

Figure 3.6 Whitening block 34

Figure 3.7 Whitening implementation block 35

Figure 3.8 Implementation of centering 37

Figure 3.9 Implementation of the covariance matrix 40

Figure 3.10 FastICA block diagram 43

Figure 3.11 FastICA main block 44

L i s t o f F i g u r e s

xi

Figure 3.12 Hardware implementation of One-unit FastICA 48

Figure 3.13 Implementation of Symmetric orth using iterative method 49

Figure 4.1 Four signals before mixing 52

Figure 4.2 Four signals after mixing 53

Figure 4.3 FastICA MATLAB simulation 54

Figure 4.4 Whitening gate-level simulation 54

Figure 4.5 FastICA implementation gate-level simulation 55

Figure 4.6 Square wave error analysis 55

Figure 4.7 ECG signals 56

Figure 4.8 ECG separation simulation in MATLAB 57

Figure 4.9 ECG gate-level simulation 58

Figure 4.10 ECG absolute error analysis 60

xii

List of Tables

Number Page

Table 3.1 Bocks word length used 31

Table 3.2 Complete system FPGA resources utilization report 33

Table 3.3 Complete system performance report 33

Table 3.4 Whitening FPGA resources utilization report 35

Table 3.5 Whitening performance report 36

Table 3.6 Whitening timing report 36

Table 3.7 Mean calculations result 38

Table 3.8 Centering FPGA resources utilization report 38

Table 3.9 Centering performance report 39

Table 3.10 Centering timing report 39

Table 3.11 Covariance matrix implementation result 40

Table 3.12 Covariance FPGA resources utilization report 41

Table 3.13 Covariance performance report 41

Table 3.14 Covariance timing report 41

Table 3.15 QR FPGA resources utilization report 42

Table 3.16 QR performance report 43

Table 3.17 QR timing report 43

Table 3.18 B initial condition 45

Table 3.19 FastICA FPGA resources utilization report 45

L i s t o f t a b l e s

xiii

Table 3.20 FastICA performance report 46

Table 3.21 FastICA timing report 46

Table 3.22 One-unit FastICA FPGA resources utilization report 47

Table 3.23 One-unit FastICA performance report 47

Table 3.24 One-unit FastICA timing report 47

Table 3.25 Symmetric orth FPGA resources utilization report 50

Table 3.26 Symmetric orth performance report 50

Table 3.27 Symmetric orth timing report 50

Table 4.1 Unmixing matrix result 57

xiv

List of Abbreviations

Abbreviation Definition

ADC Analogue to digital converter
BSS Blind source separation
DSP Digital signal processing
ECG Electrocardiogram
EEG Electroencephalography
FECG Fetal electrocardiogram
FPGA Field program gate array
FASTICA Fast independent component analysis
GMSC Global maximum stopping criterion
ICA Independent component analysis
IO Input output
MC Minor component
MECG Fetal electrocardiogram
PCA Principle component analysis
PC Principle component
pdf Probability density function
VHDL Very high scale Hardware description language

1

Chapter 1

Introduction

1.1 Background

If we consider the situation of attending a party, our ears capture numerous sounds: a

friend’s voice, the voices of others, background music, ringing telephones, and many

others. If one concentrates, one can hear what a person is saying and you will filter any

other sound. One can also change his/her focus of attention. For example, one may pay

attention to your friend’s speech first and shift focus to the music if it is playing a song

you like. The ability to focus and recognize a specific source called the cocktail party

effect [1, 2, 3]. If we were to record these sources by placing microphones in many places

inside the room, the playback would be jumbled mix of sounds. One might be able to

pick out a few words here and there, but there is no way one would be able to hear the

conversation details. If there were as many microphones in the room as people, it is

possible to extract and separate each individual conversation by using blind source

separation algorithms [4]. This would allow us to hear everything in the room. In another

words, Blind source separation (BSS) defined as the method that separate or estimate the

original sources from an array of sensors or transducers without having any prior

knowledge of the original sources [4]. BSS also is also a general class of signal

processing methods that extract statistically independent source signals from linear

mixtures with no or little information about the sources or the mixing conditions [5, 6]. In

1 . I n t r o d u c t i o n

2

instantaneous mixing, the mixtures are weighted sums of the individual source signals

without dispersion or time delay, as shown in Fig. 1.1. Most of the mixtures in reality are

added sources or sometimes called instantaneous mixtures.

Figure 1.1: The instantaneous mixtures source separation example

In Figure 1.1, S refers to the original sources matrix 𝑺, 𝑨 is the mixing matrix and 𝑿

is the observation matrix. The matrices 𝑺 and 𝑿 are both of size 𝑀 × 𝑁 matrices while

the matrix 𝑨 is of size 𝑀 × 𝑀. The values M and N are the number of sensors and the

number of samples, respectively. The matrix 𝑺 has the form:

 𝑺 = �
s11 ⋯ s1𝑁
⋮ ⋱ ⋮

s𝑀1 ⋯ s𝑀𝑁
� (1.1)

1 . I n t r o d u c t i o n

3

The observation matrix X can be modeled as Follows:

𝑿 = 𝑨𝑺 (1.2)

or

 𝑿 = �

𝒙𝟏
𝒙𝟐
.
𝒙𝑴

� = �
𝑥11 ⋯ 𝑥1𝑁
⋮ ⋱ ⋮

𝑥𝑀1 ⋯ 𝑥𝑀𝑁
� = �

𝑎11 ⋯ 𝑎1𝑀
⋮ ⋱ ⋮

𝑎𝑀1 ⋯ 𝑎𝑀𝑀
� �
𝑠11 ⋯ 𝑠1𝑁
⋮ ⋱ ⋮
𝑠𝑀1 ⋯ 𝑠𝑀𝑁

� (1.3)

The coefficients of the mixing matrix A are unknown. The goal of the BSS algorithms is

to find a demixing matrix W that has the following form:

 𝒀 = 𝑾 𝑿 (1.4)

where W is an 𝑀 × 𝑀 matrix, Y and X are 𝑀 ×𝑁 matrices. The obtained estimated

sources Y using BSS algorithms have certain unknown factors such as arbitrary scaling,

permutation, and delay of estimated source signals. However, the most relevant

information is contained in the waveforms of these signals, thus these unknown factors

do not affect the separation if statistical methods like BSS are used [7]. Historically,

principle component analysis (PCA) has been widely used for the same types of problems

currently being investigated using BSS algorithms [3, 8]. The main difference between

the two approaches is that BSS finds non-Gaussian and independent sources signals,

whereas PCA finds sources, which are uncorrelated and have Gaussian distributions [3].

 The performance of BSS algorithms such as FastICA is better in comparison with

the PCA [5] because PCA does not work on super-Gaussian or sub-Gaussian distributions

while FastICA does [6]. Since BSS does not require any prior knowledge about the

mixed signals, BSS has attracted many areas of research. For example, in surveillance

application where the goal is to find a specific voice among many [9, 10]. In addition,

wireless communication has adopted BSS to suppress the co-channel interference in

1 . I n t r o d u c t i o n

4

multi-antenna system without requiring the receiving end to decode the signals [11]. The

most useful application in utilizing the BSS techniques would be in the area of

biomedical signal processing, where BSS is applied in Electrocardiography (ECG). Some

of the applications involve the separation of the Mother ECG (MECG) from the fetal

ECG (FECG) [12, 13]. In addition, some complex scenarios involve separating the

MECG from a twin fetal [14]. Recently, Field programmable gate array (FPGA)

technology has been the choice of implementation in the area of digital signal processing

and neural networks. Kim et al. [15] implemented real-time blind source separation and

adaptive noise cancellation for speech enhancement in FPGA. Du and Qi [16]

implemented a parallel ICA on the Multi FPGA pilchard, a reconfigurable computing

development environment dedicated for Sun Microsystems [18]. Celik et al. [17]

implemented a mixed-signal real-time blind source separation that can only unmix two

independent sources. The design in [17] is implemented using 0.5µm COMS technology.

Kuo-kai et al [19] implemented full real-time FPGA based FastICA system and used

extra circuitry to acquire the signals using two sensors. Two separate modules were used.

The first module was used to acquire the mixed signals using an analogue to digital

converter and filters. The second module converted the separated signals to analogue

using an digital to analogue converter.

All the previously proposed FPGA implementation focused on implementing ICA

algorithms with the assumption that only two signals are mixed and only two sensors are

used to capture the mixed signals for separations. In addition, the previous work

implemented the blind source separation algorithm using algebraic solutions. For higher

dimension signals, implementing the BSS algorithm algebraically is too complex. In

1 . I n t r o d u c t i o n

5

addition, it can result in a very large propagation delay and, in turn, affects the overall

system performance.

1.2 FPGA background

FPGA is a large-scale integrated circuit that can be programmed after it is manufactured

rather than being limited to a predetermined unchangeable hardware function. FPGA

technology is widely used in digital signal processing [20]. It combines the speed of

dedicated blocks, application-optimized hardware and reprogrammability of

microprocessors, which makes it suitable for high speed implementation of blind source

separation. FPGA has been the choice of implementation of most of digital signal

processing algorithms. DSP algorithms can be designed, tested and implemented on an

FPGA chip without any fabrication delays. FPGAs consist of the following elements:

1. Programmable logic cells which provide the functional elements for construction

 of the user’s input.

2. Input output (IO) Blocks which provide the interface between the logic cells and the

output pins.

3. Programmable interconnects which provide the routing paths to connect the input

and output of logic cells and the IO pins.

Modern FPGAs provide high-level arithmetic and control structures, such as

multipliers, counters, multiply accumulate units, memory resources and processor cores.

These resources provide high performance, low power consumption and are highly

suitable for DSP applications [21]. The behavior of an FPGA can be defined by using a

hardware description language (HDL) such as VHDL or Verilog or by arranging blocks

of existing functions using a schematic-oriented design tool. The design is compiled and

1 . I n t r o d u c t i o n

6

synthesized using proprietary FPGA place-and-route tools. The compilation and synthesis

process generates a bit file that can be downloaded on the FPGA [21, 22].

Although FPGAs are similar to custom Application-specific integrated circuit

(ASIC) design, FPGAs can implement and test proposed designs instead of sending them

to the manufacturer and wait for the chip to be tested afterwards.

1.3 Thesis objective

The thesis focuses on the following areas:

1. Investigating different types of independent component analysis (ICA) algorithms

for non-Gaussian signals and compare the results with principle component analysis

(PCA).

2. Developing an efficient numerical solution instead of the algebraic solution for

FastICA.

3. Investigating the development of FastICA algorithm using different types of

orthogonalization techniques.

4. Implementing FastICA algorithm in XILINX virtex5-XC5VLX50t FPGA.

The main challenge in this thesis is implementing the ICA algorithm for higher

order data inputs. The complexity of the circuit grows exponentially depending on the

size of the demixing matrix W. In addition, FPGA is used to implement the algorithm.

1.4 Thesis organization

This thesis is organized as follows: Chapter 2 provides the mathematical analysis of the

ICA algorithm, which is FastICA. Chapter 3 describes the proposed FastICA model using

QR method and the symmetrical orthogonalization as well as the hardware

implementation of the proposed algorithm using FPGA technology, Chapter 4 provides

1 . I n t r o d u c t i o n

7

simulations of the proposed hardware and presents two experiments while Chapter 5

provides concluding remarks and suggestions for future work to enhance the design.

8

Independent Component Analysis

Chapter 2

2.1 Introduction

This Chapter provides the mathematical theory behind ICA method. ICA is one of a

family of techniques, including PCA and blind deconvolution, for solving the BSS

problems. ICA is a method for finding underlying factors in a multidimensional data.

This Chapter also explains the PCA method and its limitations. Finally, a special ICA

algorithm called FastICA is presented and compared with the PCA method.

2.2 General statistical settings

The main goal of any statistical model is to find a suitable representation of the

parameters of a multivariable system that render the essential structure governing the

variables more visible. This usually presents computational and representational obstacles

that must be tackled.

To illustrate the above, a linear system is shown in Fig. 2.1. In the system, every input

vector in 𝑿 contains a linear combination of observed sensor samples of size N as in

Equation (1.4) given in Chapter 1. In the figure, 𝑾 is the demixing matrix of size 𝑀 × 𝑀.

The aim, as explained in Chapter 1, is to determine the output matrix 𝒀. However, the

system contains unknown sources with no prior knowledge of the noise type and its

contribution to the system.

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

9

Moreover, the difficulty of this model lies in the fact that it requires determining the

elements of the 𝑾 matrix using linear algebra, which finds a simple solution to 𝑾 only

by assuming the signals independence [23].

Figure 2.1: Linear instantaneous BSS problem

Fig. 2.2 shows four source signals that result in the mixture shown in Fig. 2.3 when

mixed together. The problem is that the original signals information is not usually

available. In fact, it is nearly impossible to know what these signals might contain when

they are mixed. But with the aid of BSS techniques, it is possible to extract or at least

estimate the hidden signals. For example, considering matrices 𝑾 and 𝑿 of sizes 4 × 4

and 4 × 𝑁, respectively, using statistical independence only, the original signals in Fig.

2.2 can be estimated by multiplying 𝑾 by 𝑿 as follows:

 𝒀 = �

𝒚𝟏
𝒚𝟐
𝒚𝟑
𝒚𝟒

� = �

𝑤11
𝑤21
𝑤31
𝑤41

 𝑤12
𝑤22
𝑤32
𝑤42

 𝑤13
𝑤23
𝑤33
𝑤43

 𝑤14
 𝑤24
 𝑤34
 𝑤44

� �

𝑥11
𝑥21
𝑥31
𝑥41

 𝑥12
 𝑥22
 𝑥32
 𝑥42

 𝑥13
 𝑥23
 𝑥33
 𝑥43

⋯
…
⋯
…

 𝑥1𝑁
 𝑥2𝑁
 𝑥3𝑁
 𝑥4𝑁

� (2.1)

As a result, Y contains four vectors that are the separated signals which are the

result of estimation using only the information of the signals. Fig. 2.3 shows clearly four

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

10

distinct signals that are not dependent of the other. The separated signals are easily

distinguished as square, sin, sawtooth, and random noise waves.

Figure 2.2: Sources before mixing

Figure 2.3: Mixed Signals that contain some underlying hidden factors

0 0.5 1 1.5 2
-2

-1

0

1

2

0 0.5 1 1.5 2
-4

-2

0

2

4

0 0.5 1 1.5 2
-4

-2

0

2

4

0 0.5 1 1.5 2
-2

-1

0

1

2

Source # 1 Source # 2

Source # 3

time

Source # 4

time

time time

0 0.5 1 1.5 2
-2

-1

0

1

2

time

M
ix

tu
re

 #
 1

0 0.5 1 1.5 2
-4

-2

0

2

4

time

M
ix

tu
re

 #
 2

0 0.5 1 1.5 2
-4

-2

0

2

4

time

M
ix

tu
re

 #
 3

0 0.5 1 1.5 2
-4

-2

0

2

4

time

M
ix

tu
re

 #
 4

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

11

Figure 2.4: Separated Signals

2.3 Principle component analysis (PCA)

PCA has been widely used in pattern recognition and signal processing [24]. The

algorithm decomposes a set of mixed signals into a set of uncorrelated signals [7]. Given

a set of multivariate measurements, the purpose of the PCA is to find a smaller set of

variables with less redundancy that would result in a good representation of the data.

PCA can classify signals based on the mixture statistical information (variances.). Each

principle component (PC) represents a cluster of information in the mixture. The PC that

has the highest variance is referred as the major component while those components with

the smallest variances called the minor components [25]. If the PCs contain high

statistical information (high variances), it means that those PCs contains real signals and

0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4
-2

-1

0

1

2

0 1 2 3 4
-4

-2

0

2

4

time

time time

Separated output

time

y4

y2

y2

y1

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

12

if the PCs contain very low variances, it is an indication that the mixture contains

unwanted signals like noise or interference [25].

2.3.1 PCA algorithm

PCA transforms a process such that the data are represented along a new set of

orthogonal dimensions with a diagonal covariance matrix [24]. In addition, the PC

coefficient with the largest variance is the first principle component; the PC coefficient

with the second largest variance is the second most important and so on. The PCA

algorithm consists of the following steps [24]:

1. Centering: Centering is used as a preprocessing in PCA. Centering is the process of

calculating the mean of the observation matrix 𝑿 and subtracting it from the source. It

can be defined as:

 𝑿𝒄𝒆𝒏 = 𝑿 − 𝒖𝒉 (2.2)

where 𝑿𝒄𝒆𝒏 is the centered observation matrix and has the same dimension as 𝑿. The

1 × 𝑁 h vector of all 1s, i.e.,

 𝒉[𝑛] = 1 for 𝑛 = 1, … ,𝑁 (2.3)

Moreover, u is an 𝑀 × 1 vector which is the empirical mean of X and can be calculated

as:

 𝑢[𝑚] = 1
𝑁
∑ 𝑿(𝑚, 𝑛) for 𝑚 = 1, … ,𝑀 𝑁
𝑛=1 (2.4)

2. Calculating Covariance matrix and its eigenvalues and eigenvectors: The PCA

algorithm is based on calculating the eigenvalues and eigenvectors of the 𝑀 × 𝑀

covariance matrix 𝑪𝒙 which is defined as [25].

 𝑪𝒙 = 𝐸[𝑿𝑿𝑻] (2.5)

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

13

where E[∙] is the expectation operation. The covariance matrix is used to compute the

eigenvectors. Each eigenvector corresponds to a specific eigenvalue. Since the covariance

matrix is real and symmetric, the eigenvectors are real and orthonormal [26].

Traditionally, the eigenvalues of a matrix is calculated algebraically using the following

steps [16], [19]:

a) Find the characteristic equation of 𝑪𝒙 by setting det(𝑪𝒙 − 𝜆𝑚𝑰) = 0 of the

covariance matrix where I is an identity matrix that has the same dimensions as 𝑪𝒙

and 𝜆𝑚 are the eigenvalues to be found.

b) Find the roots of the characteristic equation which are the eigenvalues of 𝑪x.

The complexity of finding the roots of the characteristic equation increases when

the order of 𝑪𝒙 increase. Most of the previous separation models using PCA

approach use only 2 × 2 matrices [27, 28], which result in second order

polynomials [25]. For higher order matrices, an iterative numerical solution is used

[29]. The most common numerical methods used to find the eigenvalues and

eigenvectors for higher order matrices are the upper triangular matrix, the power

method, the orthogonal iteration, the QR decomposition and the singular value

decomposition [29, 30].

4. Whitening: which is the last stage in the PCA technique, it forces the sources in the

mixture to be uncorrelated but with a unit variance [25]. The whitening matrix V can be

expressed in terms of the eigenvalues and eigenvectors of 𝑪x as follows [25]:

 𝑽 = 𝑫−𝟏/𝟐𝑬𝑻 (2.6)

where E is an 𝑀 × 𝑀 matrix containing all the eigenvectors of 𝑪𝒙 , while 𝑫 is an 𝑀 × 𝑀

diagonal matrix with the values in the diagonal comprising the eigenvalues of 𝑪𝒙. The

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

14

matrix 𝑽 is also called the square root of the covariance matrix, i.e. 𝑪𝒙−1 2⁄ [34].

The last step in the PCA is to find the uncorrelated signals 𝒁 using the following

equation:

 𝒁 = 𝑽𝑿𝒄𝒆𝒏 (2.7)

where 𝒁 and 𝑿𝒄𝒆𝒏 are 𝑀 × 𝑁matrices. In general, 𝑽 solves half of the ICA problem

which means forcing the signals to be uncorrelated and transforms the signals

orthogonally [31]. In most applications, this is not sufficient to ensure that the signals are

independent, which is why whitening solves only half of the ICA problem. However, the

whitening step reduces the computations of separation by half [34]. More specifically, the

orthogonal nature of 𝑽 reduces the problem from finding 𝑘2 parameters which are the

elements of 𝑽 to finding only 𝑘 (𝑘 − 1)/2 parameters [32].

2.3.2 Whitening limitations

Assume that the data in the ICA model is whitened using Equation (2.7). The whitening

matrix transforms the mixing matrix A in equation (1.2) into a new mixing matrix called

À = 𝑽𝑨 so that the new ICA model is written as follows:

 𝒁 = 𝑽𝑿 = 𝑽𝑨𝑺 (2.8)

Unfortunately, whitening cannot solve the ICA problem, since whiteness or

uncorrelatedness does not imply independence [28]. Uncorrelatedness is weaker than

independence, and is not by itself sufficient to estimate any ICA model [32].

On the other hand, whitening is useful as a preprocessing step in ICA. The usefulness of

whitening resides in the fact that the new mixing matrix À is orthogonal [28, 33]. This

means that we can restrict the search in the mixing matrix to the space of orthogonal

matrices. That means instead of estimating 𝑘2 parameters that are the elements of the

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

15

original matrix A [7], we only need to estimate an orthogonal mixing matrix À. Thus, it

could be said that whitening solves half of the ICA problem because whitening is a very

simple and standard procedure, much simpler than any ICA algorithms. The remaining

half of ICA can be estimated by some other methods like FastICA [34], which is the

focus of this thesis. However, PCA can be used as a preprocessing step before the ICA

algorithms [31].

2.4 Higher order statistics

Most of the standard methods in signal processing systems utilize system’s statistical

information in linear discrete-time system. Although their theory is well defined and

developed [35-38], these methods are utilizing the second order statistics and are driven

by the assumptions of the source signals being stationary and are jointly governed by a

Gaussian linear underlying system. Recently, an interest in the higher order statistics has

began to grow in the signal processing area. At the same time, neural network has grown

popular with the development of several new, efficient learning algorithms [32, 23, 39].

Neural networks consist of computational blocks called neurons. The output of the

neurons depends nonlinearly on the input [40]. An example of the nonlinearity is the

hyperbolic tangent tanh(𝑼), the matrix 𝑼 is of size 𝑀 × 𝑁 which is the inner product

𝑼 = 𝑾𝑿. It introduces nonlinearity to the process [40]. ICA requires the use of higher

order statistics via nonlinearities [33, 40]. In the following, the concept of kurtosis and its

role in the higher orders statistics [33].

2.4.1 Central moments and kurtosis

The mean of the data vector 𝒛 is defined as:

𝑢 = 𝐸{𝒛} (2.9)

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

16

where 𝒛 is a vector in the whitened data matrix 𝒁. In addition, the 𝑗 𝑡ℎ central moment is

defined as:

 𝑢𝑗 = 𝐸{(𝒛 − 𝑢)𝑗} (2.10)

The second central moment is the standard deviation of the whitened data Z denoted as

𝜎2. The third central moment is called skewness and it will be used in this thesis.

However, the fourth moment has been intensively used in the area of blind source

separation [32, 35, 39]. Moments that are higher than 4th order are rarely used in practice

[32] and will not be discussed in the thesis.

The fourth moment on the other hand, is simple and effective in some BSS algorithm like

FastICA. The fourth central moment is [32]:

 𝑢4 = 𝐸[(𝒛 − 𝑢)4] (2.11)

The fourth central moment is also called the Kurtosis and can be rewritten as [33].

 𝐾𝑢𝑟𝑡(𝒛) = 𝐸[𝒛4 − 3[𝐸[𝒛2]]2 (2.12)

 We can also rewrite it in the following form [31]:

 𝐾𝑢𝑟𝑡(𝒛) = 𝐸[𝒛4]
𝐸[𝒛2]2

− 3 (2.13)

For whitened data 𝐸[𝒛2] = 1, the Kurtosis is reduced to the following [38]:

 𝐾𝑢𝑟𝑡(𝒛) = 𝐸[𝒛4] − 3 (2.14)

This implies that for the whitened data, the fourth order moment can be used instead of

the Kurtosis to represent the fourth order central moment of 𝒁. The most important

property of the kurtosis is that it has the ability to detect non-Gaussian signals. If the

kurtosis is zero, it implies that the distribution is Gaussian. If the Kurtosis is negative, the

distribution is sub Gaussian. If the kurtosis is positive, the distribution is super-Gaussian.

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

17

However, the absolute value of the Kurtosis is used for simplicity since it is only needed

to know if the signal is non-Gaussian or not [33, 38, 39, 40].

2.4.2 Fixed-point FastICA algorithm using kurtosis

In the previous section, the Kurtosis has been introduced as a measure of non-Gaussianity

[32]. The advantage of such technique can be adapted by neural networks [36]. However,

the convergence is slow and the choice of the input sequence has to be chosen carefully

[40]. A bad choice of the input sequence would lead to divergence. Alternatively, the

fixed-point iterative algorithm that has been developed by Hyvarinen and Oja is used

[39]. To achieve a more efficient fixed-point iteration, the gradient must point to the

direction of the weight vector 𝒘𝒎 = [𝑤1,𝑤2, … ,𝑤𝑀]𝑇. The gradient must equal to 𝒘𝒎

multiplied by some value. As a result, the weight vector 𝒘𝒎 can be written as [39]:

 𝒘𝒎 = [𝐸{𝒁(𝒘𝒎
𝑻 𝒁)3} − 3‖𝒘𝒎‖2𝒘𝒎] (2.15)

Equation (2.15) is further simplified as a fixed-point iteration algorithm by computing the

right hand side and assign the new value to 𝒘𝒎. Thus Equation (2.15) can be rewritten as

follows [39]:

 𝒘𝒎 ← 𝐸{𝒁(𝒘𝒎
𝑻 𝒁)3} − 3𝒘𝒎 (2.16)

 𝒘𝒎 ←𝒘m ‖𝒘m‖⁄ (2.17)

The weight vector 𝒘𝒎 is divided by its norm using Equation (2.17) after every

iteration in the FastICA, is a necessary normalization step to keep the variance of the

term 𝒘𝑚
𝑇 𝒁 constant [33]. If the PCA is considered as a preprocessing stage prior to the

FastICA, the FastICA algorithm would have the following steps:

1. Center the input 𝑿.

2. Whiten the 𝑿cen matrix to give 𝒁.

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

18

3. Choose 𝑀 the number of independent components to be estimated.

4. Initialize the first vector w to any random numbers.

5. Run the FastICA algorithm on 𝒘.

6. Normalize 𝒘 by dividing it by its norm.

7. If 𝒘 has not converged, go back to step 3.

where w is a vector in 𝑾 = [𝒘𝟏,𝒘𝟐,𝒘𝟑, … ,𝒘𝑴]𝑻 . However, it can be noticed that the

algorithm searches for a single weight vector in 𝑾 which means only one signal can be

estimated. That is why this method is called one-unit FastICA [32]. To estimate the other

weight vectors 𝒘𝑀 , an orthogonalization step is needed after the search has converged to

the first weight vector 𝒘𝟏 [40]. Otherwise, the search might converge to the same

maxima [34] if other initial values were to be applied in step 2. Actually, this iterative

technique has a very fast convergence and reliable [30]. The algorithm has two main

superior advantages over the normal gradient-based algorithms. Firstly, the convergence

of this algorithm is cubic. It implies that the convergence is rapid [31]. Secondly, this

algorithm has no learning rate or other adjustable parameters [32].

2.5 FastICA using orthogonalization techniques

So far, the search algorithm that has been discussed finds one component in the mixture.

In most of time, 𝑿 has more than one component, that is why it is necessary to account

for the other components in the weight matrix 𝑾. Also, the search algorithms don’t

usually converge to orthogonal results as in theory [32], which is why orthogonalization

must be applied at every step in FastICA [41]. The key concept of orthogonalization is

that the weight matrix 𝑾 corresponds to the different components in the projection

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

19

subspace. The most common techniques are the Gram-Schmidt or sometimes called

deflationary orthogonalization method and the symmetric orthogonalization [32].

2.5.1 FastICA using deflationary orthogonalization

Deflationary orthogonalization is simple and the oldest technique in orthogonalization

[41]. It estimates the independent components one by one using Gram-Schmidt method.

Followed by running the one-unit FastICA for 𝒘𝑚 where m is the number of independent

components 𝑚 = 1, . . ,𝑀 . After every iteration, projections (𝒘𝑚+1
𝑇 𝒘𝒊)𝒘𝒊 where

𝑖 = 1, … ,𝑀 of the previously estimated m vectors is subtracted from 𝒘𝑚+1 [31]. After

the first successful calculation, the values of the first weight vector 𝒘1 are obtained.

Similarly, after the mth iteration , the values of the corresponding vector 𝒘m are obtained.

The resulting values of all the vectors obtained from the iterations are placed in the final

unmixing matrix 𝑾 of size 𝑀 × 𝑀.

It is worth noting that for simplicity purposes, an intermediate matrix 𝑩 is used by

the algorithm to hold the values of the generated 𝒘m as they are obtained in the

corresponding iteration. When the final iteration is complete, the final separation matrix

𝑾 is equivalent to 𝑩.

The final output matrix 𝒀 is then obtained by multiplying 𝑾 by the whitened data matrix

𝒁 [32, 34, 42, 43].

The deflationary orthogonalization can be added to the one-unit FastICA so that the

algorithm can separate M independent components using the following steps [30]:

1. Center the input 𝑿 so that it has zero mean.

2. Whiten the 𝑿𝑐𝑒𝑛 matrix to give 𝒁.

3. Choose 𝑀, the number of independent components to be estimated. (set 𝑚 = 1).

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

20

4. Initialize the vector 𝒘𝑚 to any random numbers.

5. Initiate the FastICA algorithm on 𝒘𝑚.

6. If 𝒘𝑚 has not converged, go back to step 3.

7. Start the deflationary orthogonalization using the following Equation:

 𝒘𝒎 ←𝒘𝑚 − ∑ �𝒘𝑚
𝑇 𝒘𝑗�𝒘𝑗𝑚−1

𝑗=1 (2.18)

8. Normalize 𝒘𝑚 by dividing it by its norm.

 𝒘𝑚 = 𝒘𝑚 ‖𝒘𝑚‖⁄ (2.19)

9. Set 1+← mm . If m is not greater than the desired number of IC, go back to step 2.

The norm in step 7 is the second norm [32]. The Deflationary orthogonalization is

shown in Fig. 2.5. It is clear that the process is serial, which indicates that the weight

vectors 𝒘𝑀 are calculated sequentially.

Figure 2.5: Deflationary orthogonalization block diagram

2.5.2 FastICA using symmetric orthogonalization

In some cases, sequential orthogonalization like the deflationary approach is not suitable

for implementation [28]. Symmetric orthogonalization on the other hand finds the

orthogonal vectors 𝒘𝑚 that are the vectors of 𝑾 in parallel. Symmetric orthogonalization

is performed by first initiating the iterative step of the one-unit algorithm on 𝑾, followed

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

21

by orthogonalizing 𝑾 using symmetrical method. The symmetrical orthogonalization is

performed using the following equation [30, 32, 36]:

 𝑾← (𝑾𝑾𝑇)−1 2⁄ 𝑾 (2.20)

In other words the FastICA steps using the symmetrical orthogonalization can be

described as:

1. Center the input 𝑿 so that it has zero mean.

2. Whiten the 𝑿cen matrix to give 𝒁.

3. Choose 𝑀, the number of Independent components to be estimated. (Set 𝑚 = 1).

4. Initialize the vector 𝒘𝑚 𝑚 = 1, … ,𝑀 to any random numbers.

5. Initiate the FastICA algorithm on every 𝒘𝑚 in parallel.

6. Perform a symmetric orthogonalization of the matrix 𝑾 = [𝒘𝟏, … ,𝒘𝒎]𝑇 using

Equation (2.20).

7. Normalize 𝑾 by dividing it by its norm.

8. If 𝑾 has not converged, go back to step 3.

The inverse square root (𝑾𝑾𝑻)−1 2⁄ is obtained from the eigenvalue decomposition of

(𝑾𝑾𝑻) = 𝑬 𝑑𝑖𝑎𝑔(𝑑1, … ,𝑑𝑚) 𝑬𝑇 [29], where E is an 𝑀 × 𝑀 matrix that contains the

eigenvectors of (𝑾𝑾𝑻) and �𝑑1
−1 2⁄ , … , 𝑑𝑚

−1 2⁄ � are the eigenvalues of (𝑾𝑾𝑻). The

eigenvalue decomposition can be further expanded as [38]:

 (𝑾𝑾𝑻)−1 2⁄ = 𝑬 𝑑𝑖𝑎𝑔�𝑑1
−1 2⁄ , … , 𝑑𝑚

−1 2⁄ �𝑬𝑇 (2.21)

Fig. 2.6 shows FastICA algorithm using symmetrical orthogonalization. The

algorithm starts by initializing 𝑾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to some random values. The orthogonalization is

performed after every iteration in the FastICA. The FastICA algorithm is monitored by

two parameters 𝜀 and the maximum number of iterations [32].

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

22

Figure 2.6: FastICA algorithm using Symmetric Orthogonalization

Notwithstanding, this method has some practical limitation due to the complexity of

the matrix inversion calculation [30], especially when the order of W is high. An

alternative iterative approach reported in [30, 32, 38] is used to solve this issue and is

described by:

1. 𝑾 = 𝑾 ‖𝑾‖⁄ (2.22)

2. 𝑾 = 3
2
𝑾 − 1

2
𝑾𝑾𝑇𝑾 (2.23)

3. If 𝑾𝑾𝑻 is not close enough to the identity matrix go back step 2.

The technique starts with a non-orthogonal matrix 𝑾. The iterations continue until

𝑾𝑾T~ 𝑰 is achieved. The convergence of the method is proven in Appendix A.

The advantage of this technique relies on the fact that matrix inversion is

computationally intensive and calculating Equation (2.20) in every loop in the FastICA

renders the hardware slow and inefficient [39]. Instead, Equations (2.22) and (2.23) are

used to replace Equation (2.20). The norm in Equation (2.22) can be any norm, but for

simplicity the second norm is used which is the maximum summation of the largest

absolute value of any row or column in the weight matrix 𝑾 [30, 41, 42].

2 . I n d e p e n d e n t C o m p o n e n t A n a l y s i s

23

2.6 Summary

In this chapter, the PCA and ICA models have been explained. Independent component

analysis (ICA) is a method for finding underlying factors or components from

multivariate (multidimensional) statistical data. What distinguishes ICA from other

methods is that it looks for components that are both statistically independent and non-

Gaussian where the PCA just decorelates the signals based on their variances. This

chapter also explained the FastICA algorithm and how to use orthogonalization

techniques to find all components of 𝑾. In addition, deflationary and symmetrical

orthogonalizations methods were discussed.

24

Chapter 3

Proposed Architecture and FPGA Implementation

3.1 Introduction

Having presented the PCA and FastICA algorithms in Chapter 2, I now detail the

implementation process of the FastICA using PCA as a preprocessing stage. In Section

3.2, the proposed model is explained, after which the realization of the eigenvalues and

eigenvectors is given in Section 3.3. The FastICA orthogonalization process is explained in

Section 3.4. Section 3.5 gives the details of the hardware implementation while Section 3.6

presents the final implementation of the algorithm. The chapter ends with a summary in section

3.7.

3.2 Proposed model

The proposed BSS model accepts up to four input sensors. This assumption is interrupted

as the model can separate up to four mixed signals in the mixture. The sources in the

mixture are assumed to be independent and non-Gaussian. Let 𝒀 describes the separated

signals in Equation (2.1) with the model being expanded to account for 4 signals. The

number of samples is set to 𝑁 = 128. The components of 𝒀 are estimated by multiplying

the 4 × 4 unmixing matrix 𝑾 by the 4 × 128 input matrix 𝑿. It is noted that the input

signals are also assumed to be independent and non-Gaussian.

 𝒀 = 𝑾𝑿 = �

𝑤11

𝑤21

𝑤31
𝑤41

 𝑤12

 𝑤22

 𝑤32
 𝑤42

 𝑤13

 𝑤23

 𝑤33
 𝑤43

 𝑤14

 𝑤24

 𝑤34
 𝑤44

� �

𝑥11
𝑥21

𝑥31
𝑥41

 𝑥12
 𝑥22

 𝑥32
 𝑥42

 𝑥13

 𝑥23

 𝑥33
 𝑥43

⋯
…
⋯
…

 𝑥1,128
 𝑥2,128

 𝑥3,128
 𝑥4,128

� (3.1)

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

25

Equation (3.1) shows the mathematical model used in the separation of the mixed signals.

The goal of the ICA algorithm is to estimate the unmixing matrix 𝑾. To do so, the PCA

algorithm is first applied to force the signals to be uncorrelated and then the FastICA

algorithm is applied. However, calculating the whitening matrix is not straightforward

since the 𝑪𝑥 have the same dimension as 𝑾, i.e.

 𝑪𝒙 = �

𝑐11
𝑐21
𝑐31
𝑐41

 𝑐12
 𝑐22
 𝑐32
 𝑐42

 𝑐13
 𝑐23
 𝑐33
 𝑐43

 𝑐14
 𝑐24
 𝑐34
 𝑐44

� (3.2)

Finding the eigenvalues and eigenvectors algebraically for large covariance

matrices such as Equation (3.2) is not computationally efficient. Instead, numerical

solution is used in implementation [28]. However, only few iterative techniques can

converge to find all the eigenvalues of the required matrices. For example, the power

method finds only the dominant eigenvalue. Moreover, the convergence of the power

method is the eigenvalues convergence is too slow and is not suitable for implementation

[28]. The only simple and robust numerical solution that can find all eigenvalues and

eigenvectors is the QR decomposition method [43]. However, the method works only on

symmetric and positive definite matrix, fortunately, the 𝑪𝒙 have these two properties [44,

45].

Since the covariance matrix is symmetrical, the only elements in the covariance

matrix that are not repeated are the diagonal elements. Hence, the covariance matrix can

be put in the form:

 𝑪𝒙 = �

𝑐11
𝑐01
𝑐02
𝑐03

 𝑐01
 𝑐11
 𝑐12
 𝑐13

 𝑐02
 𝑐12
 𝑐33
 𝑐23

 𝑐03
 𝑐13
 𝑐23
 𝑐33

� (3.3)

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

26

3.3 Realization of eigenvalues and eigenvectors

In this thesis, the QR decomposition is used to find the eigenvalues and eigenvectors

numerically instead of finding them algebraically. Figure 3.1 shows the flow chart that

describes the QR decomposition method [26].

The value K is the number of the maximum iterations. There is no specific value for K,

however, QR decomposition can achieve good result if the value of K is more than 10

[26]. Nevertheless, in this work, it is decided to set 𝐾 = 20 so that the result of the QR

decomposition is approximately close to 3-significant figures. The matrices 𝑹 and 𝑸 that

result from the method are both of size 𝑀 ×𝑀. High-precision approximation is required

because the hardware implementation is carried out using fixed-point number system and

the error that builds in the calculation may affect the result of the QR decomposition

method.

Figure 3.1: QR decomposition flowchart

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

27

According to Fig. 3.1, the eigenvalues are obtained by taking the diagonal elements

of the 𝑹 matrix. However, the eigenvectors require more steps to get the final 𝑬 matrix.

The output of the flowchart given in Fig. 3.1 is two matrices 𝑫 and 𝑬 representing

the eigenvalues and eigenvectors respectively. Their role is to obtain the whitening

matrix 𝑽 as given in Equation (3.4) given as follow:

 𝑽 = 𝑫−𝟏/𝟐𝑬𝑻 = �
 𝑑1

−1 2⁄

0
0
0

 0
 𝑑2

−1 2⁄

 0
 0

 0
 0

 𝑑3
−1 2⁄

 0

 0
 0
 0

 𝑑4
−1 2⁄

� �

𝑒11
𝑒21
𝑒31
𝑒41

 𝑒12
 𝑒22
 𝑒32
 𝑒42

 𝑒13
 𝑒23
 𝑒33
 𝑒43

 𝑒14
 𝑒24
 𝑒34
 𝑒44

�

𝑇

 (3.4)

In the equation, for each eigenvector of matrix 𝑬 (e.g. [𝑒11 𝑒12 𝑒13 𝑒14]𝑇) is

represented by a column denoting the corresponding eigenvalue in matrix

𝑫 ([𝑑1
−1 2⁄ 0 0 0]𝑇).

The uncorrelated output 𝒁 is obtained by multiplying the whitening matrix 𝑽

obtained from Equation (3.4) by 𝑿𝒄𝒆𝒏. Fig. 3.2 shows the complete centering and

whitening process using the QR decomposition.

Figure 3.2: Whitening block diagram

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

28

3.4 FastICA using symmetric orthogonalization

This thesis focuses on implementing the FastICA algorithm by utilizing symmetric

orthogonalization. This modification entails that the final unmixing matrix 𝑾 (shown in

Fig. 2.6 of Chapter 2) is 4 × 4 as given in Equation (3.1).

To begin with, finding the symmetric orthogonalization of the unmixing matrix 𝑾

((𝑾𝑾𝑇)−1 2⁄ 𝑾 given in Equation (2.20) requires calculating the term (𝑾𝑾𝑇)−1 2⁄ . A

standard algebraic method is to multiply the eigenvalues and eigenvectors 𝑬 and 𝑫 of the

term (𝑾𝑾𝑇) [31]. The problem is that for higher-order matrices (such as the 4 ×

4 unmixing matrix 𝑾 of this work), calculating the eigenvalues and eigenvectors 𝑬 and

𝑫 (both 4 × 4) is computationally-intensive [32]. What complicates the matter further is

that this calculation must be performed iteratively in every step of the FastICA algorithm

given in Chapter 2.

Alternative approaches have been proposed. One such approach is to use an

iterative model to speed up the process of symmetrical orthogonalization. This approach

was introduced in Chapter 2, Equations (2.22) and (2.23). Indeed, the iterative method

converges to the same solution provided by the more expensive algerbraic method after

less than 20 iterations as the simulation I performed given in Fig. 3.3 shows. The

simulation given in the figure is separates the sources using the iterative method. The x-

axis represents the number of iterations required for convergence while the y-axis

represents the error between the current result of the iterative approach and the final

result given by the algebraic approach. The simulation ends when the two solutions

match giving zero error.

The figure does not mean that the iterative solution is slower than the algebraic one

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

29

because we are only modeling the number of iterations and not the time required to reach

a solution. In fact, the 15 iterations performed by the iterative method converge to a

solution much faster than the computations performed algebraically. This is a known

property of iterative methods [34].

Figure 3.3: Symmetrical orthogonalization simulation using iterative approaches

3.5 FPGA implementation

It is well-known that the FPGA implementation of the FastICA algorithm is carried out

using XILINX virtex5-XC5VLX50t FPGA chip. The LX50t chip has superior speed and

larger area over the other virtex5 family [46]. The design is implemented using VHDL

language. Since the system is designed to account for higher order data (four sensors),

hierarchy is adopted throughout the design to provide a better control over the overall

hardware structure and to monitor the overflow and underflow of each block.

Furthermore, implementation of DSP systems using floating-point arithmetic

requires a huge hardware area and may lead to inefficient design especially for FPGA

implementation [18]. On the other hand, fixed-point representation results in efficient

hardware design. In this thesis, two’s complement fixed-point arithmetic, is used. It

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

30

consists of an integer part and a fractional part as shown in Fig. 3.4.

 Figure 3.4: Fixed-point representation

The word length was selected based on several simulation attempts. Most of the

results were faulty when a small word length was used since the small word length was

not sufficient to represent the values. After several simulations attempts, the choice of the

word length was decided not to be the same for various implementation blocks. For

example, the QR decomposition block, the I/O and the intermediate signals word lengths

were set to (26:13) which indicates 26 bits with 13 bits representing the integer part and

13 bits representing the fractional bits. This way, the integer part can represent numbers

in the range of 213 = 8192. For the Centering and Covariance blocks, the word length

was set to 16 bits because the calculation of the Centering and the Covariance were not

complex and 16 bits were enough to represent for the intermediate variables like signals

and storage elements within the implementation blocks. In general, the word lengths of

the other blocks are listed in Table 3.1:

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

31

Table 3.1: Blocks word length used.

BLOCK Word length measured in bits
Integer fractional

Centering 8 8
Covariance 8 8

QR decomposition 13 13
Whitening 13 13

Symmetric orthogonalization 13 13
One-unit FactICA 13 13

FastICA 13 13

3.6 Hardware implementation

This Section describes the implementation stages of the complete system. The main block

is divided into two stages namely Whitening and FastICA as shown in Fig. 3.5. Both

stages have no control over each other. However, when the first stage, i.e. the whitening

stage finishes its operation and the result is ready, the second stage is triggered by the

main controller in Fig. 3.5. The main controller starts the process of the entire design; it

enables and disables each block in the design based on the order of operation.

The controller consists of a finite state machine (FSM). The GO_FASTICA and

GO_whitening signals are used to enable both stages in the design. In addition,

CLK_whitening and CLK_FASTICA are the clocks supplied to Whitening and FastICA

blocks. Address_sel_mem1 and CLK_mem1 are used for an intermediate RAM that

holds the result of the Whitening stage and feed it to the FastICA block when required.

Different clocks are used to reduce the power consumption and to provide a better control

over the design. First, the controller activates the Whitening block to preprocess the

signals and when the process is complete, the Whitening_busy signal becomes low

allowing the controller to activate the FastICA. However, in order to pipeline the design,

the Whitening block stays on after the process is complete to process another packet of

data while the FastICA block is processing the first whitened packet of whitened data.

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

32

New_one control signal activates the whole process again when the FastICA finishes

processing the first packet, the signal FastICA_Busy goes low when the first packet is

processed by the FastICA to indicate that FastICA is ready to take another block of data

from the Whitening block. Each packet contains 26 × 128 × 4 bits of data stored in a

ROM. Nevertheless, for the sake of simulation, only one packet of 128 samples is used in

testing the implementation.

Figure 3.5: Main implementation block

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

33

Table 3.2: Complete system FPGA resources utilization report.

Information Count Percentage Use
Slice Registers 27779 of 28800 96%

Slice LUTs 28403 of 28800 99%
Slice LUTs used as Logic 28584 of 28800 99%
Slice LUTs used as RAM 413
LUT Flip Flop pairs used 27674

LUT Flip Flop pairs with an unused Flip Flop 10689 of 27674 39%
LUT Flip Flop pairs with an unused LUT 5432 of 27674 20%

Fully used LUT-FF pairs 11553 of 27674 41%
Unique control sets 326

IOs 240
Bonded IOBs 240 of 360 67%

BUFG/BUFGCTRLs 26 of 32 81%
Block RAM/FIFO 51 of 60 85%

DSP48Es 45 of 48 94%

Table 3.3: Complete system performance report.

Clock
name Frequency response MAX operating frequency Estimated period Input

sampling

CLK 20.0 MHz 16.2 MHz 62.5 ns 1.857
KSPS

Table 3.2 shows the complete system FPGA resources utilization report. In can be

noticed that the system has been fully synthesized on a single FPGA chip since the area

of implementation is still less than 28800 registers which is the available Slice registers in

virtex5-XC5VLX50t. The total number of I/O pins used is 240 pins out of 360. Table 3.3

shows the maximum operating clock which is measured as 16.2 MHz when the system

CLK is 20 MHz. The following sections describe the details of implementation of the

algorithm.

3.6.1 Implementation of whitening

The Whitening block contains three stages namely, Centering, Covariance, and QR

decomposition blocks as shown in Fig. 3.6.

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

34

Figure 3.6: Whitening block

The first stage is the Centering block where the data is first fetched from the

memory and the expected values are calculated and subtracted from the 𝑿 according to

Equation (2.2). The second stage calculates the covariance matrix of the centered signals

while the third stage calculates the eigenvalues and eigenvectors of the covariance

matrix. The MAIN CONTROLLER activates the Whitening block first. The Whitening

implementation block is shown in Fig. 3.7. There are 128 samples fetched to the

centering block for processing. RAM block 1 is activated to store 𝑿𝑐𝑒𝑛 after the data is

centered. R_w1 and R_w2 are the controller’s read and write operations in both RAM

Modules. RAM Module 2 is in read mode as the Whitening result is available and the

whiten_busy signal goes low. Multiplier 2 whitens the data by multiplying the 𝑽 by 𝑿𝑐𝑒𝑛.

RAM Module 2 keeps the whitened results for further analysis by other blocks. In

addition, the data in RAM Module 2 will be available until another packet of information

is processed and is ready to be written into RAM 2.

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

35

Figure 3.7: Whitening implementation block

Table 3.4 shows the resources utilization of the Whitening block when implemented

separately. The overall area utilization is about 25% of the overall FPGA chip area. In

addition, Table 3.5 indicates the Whitening maximum frequency, which is measured as

63 MHz when the block is simulated using the input CLK_Whitening set to 50 MHz .

Table 3.6 is an extension of Table 3.5. It shows the timing details of CLK_Whitening

through the Whitening clock.

Table 3.4: Whitening FPGA resources utilization report.

Information Count Percentage
Use

Slice Registers 7407 of
28800

25%

Slice LUTs 8382 of
28800 29%

Slice LUTs used as Logic 8202 of
28800 28%

Slice LUTs used as RAM 180
LUT Flip Flop pairs used 10834

LUT Flip Flop pairs with an unused Flip
Flop

3427 of
10834 31%

LUT Flip Flop pairs with an unused LUT 2452 of 22%

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

36

10834

Fully used LUT-FF pairs 4955 of
10834 45%

Unique control sets 368
IOs 240

Bonded IOBs 240 of 360 67%
BUFG/BUFGCTRLs 1 of 32 3%

Block RAM/FIFO 11 of 60 18%
DSP48Es 27 of 48 56%

Table 3.5: Whitening performance report.

Clock name Input frequency MAX operating
frequency

Estimated
period

Input
sampling

CLK_Whitening 50.0 MHz 62.189 MHz 16.08 ns 6.857 KSPS

Table 3.6: Whitening timing report.

Clock name Path name Estimated
Frequency Estimated period

CLK_Whitening Input to Register 135.2 MHz 7.3964 ns

CLK_Whitening Register to
Register (worst case) 62.189 MHz 16.08 ns

CLK_Whitening Register to Output 265.4 MHz 3.7679 ns

It is worth noting that there is an apparent discrepancy between the input frequency

in Tables 3.3 and 3.5. In order to explain this, I draw attention to the fact that for blocks

varying in complexity, the maximum frequency that can be assigned to the block will

vary. This is because each block can take a certain frequency after which the simulation

will not be correct due to internal delays.

For example, in Table 3.3, the input frequency assigned to the complete system has

to be low to account for all the blocks in the design to avoid timing problems. This is

because if a higher frequency is used, the intermediate blocks will not produce the correct

results in time for the following blocks to process the data. Using the same logic, a higher

frequency was used in Table 3.5 as the system is simpler than that of Table 3.3 and will

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

37

therefore permit such increase. In the rest of this section, different input frequencies will

be set to accommodate the design complexity accordingly.

3.6.1.1 Implementation of Centering block

The centering stage is the first sub block of the whitening operation. Centering means

removing the mean of each input vector (128 samples) by subtracting the mean values

from the original signals. The Centering stage contains 16-bit adders, 16-bit dividers and

16-bit subtractors. The mean of the four signals are calculated simultaneously since the

signals are loaded at the same time to the Centering block as shown in Fig. 3.8. Table 3.7

also shows the mean gate-level results in comparison with the simulated MATLAB.

According to Table 3.7, the results from the MATLAB simulation is considered very

close to the gate-level simulation.

Figure 3.8: Implementation of centering

In addition, the accuracy of the Centering block can be increased by increasing the

number of bits per word but since the block doesn’t play a major rule in the

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

38

implementation process, 16 bits is considered adequate for all signals in the Centering

block given in Fig. 3.8.

Table 3.7: Mean calculations result.

The Centering Controller enables the three blocks in series using FSM. After the adder’s

result is available, a 16-bit divider is used to compute the mean of the four results over

128 samples according to Equation (2.4). Moreover, the ROM that holds the input

requires 128 cycles to load the 128 input samples to the Centering block. In addition, the

adder, the divider and the subtractor require 3 clock cycles to complete their task.

According to the simulation results, the Centering output is available after 131 clock

cycles. Table 3.8 shows the Centering FPGA resources utilization report. Table 3.9 shows

the maximum frequency when the input the CLK_cen frequency is 100 MHz. It is measured

as 150.7 MHz, in other words, this block cannot accept more than 150 MHz as CLK_cen.

Table 3.10 provides more details about the CLK_cen path throughout the design.

Table 3.8: Centering FPGA resources utilization report.

Information Count Percentage Use
Slice Registers 2548 of 28800 8%

Slice LUTs 1417 of 28800 4%
Slice LUTs used as Logic 1417 of 28800 4%

LUT Flip Flop pairs with an unused Flip Flop 369 of 2917 12%
LUT Flip Flop pairs with an unused LUT 1500 of 10865 51%

Fully used LUT-FF pairs 1048 of 10865 35%
Unique control sets 146

IOs 134
Bonded IOBs 0 of 360 0%

Block RAM/FIFO 4 of 60 6%

Variable name MATLAB Result Gate-level Simulation
res1 0.3488 0.3486
res2 0.2758 0.2756
res3 0.3044 0.3041
res4 0.2663 0.2661

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

39

Table 3.9: Centering performance report.

Clock
name Input frequency MAX operating

frequency Estimated period Input sampling

CLK_cen 100.0 MHz 150.7 MHz 6.6340 ns 231.194 KSPS

Table 3.10: Centering timing report.

Clock name Path name Estimated Frequency Estimated period
CLK_cen Input to register 538.2 MHz 1.8580 ns
CLK_cen Register to register(worst case) 150.7 MHz 6.6340 ns
CLK_cen Register to output 2123.1 MHz 0.4710 ns

3.6.1.2 Implementation of the covariance matrix

The covariance matrix in Equation (2.5) is realized in hardware using multiplier and

divider units and a 16-bit register is used to hold the covariance result. Fig. 3.9 shows the

Covariance matrix implementation. The Multiplier Module performs most of the

calculations of the covariance matrix. According to Equation (3.3), 10 multiplications are

required to calculate a 4 × 4 covariance matrix since there are 6 repeated elements in the

covariance matrix. The Multipliers are based on the onboard XLINIX LogiCORE IP

multiplier core [46]. XILINX multipliers reduce time and area in the FPGA chip

resources. The XILINX IP multiplier takes 5 clock cycles to converge to the answer [46].

The multipliers have to process all the 128 samples, thus the multiplier module requires

128 × 5 clock cycles to converge to the answer. The adder/divider module uses the

XILINX adder and the LogiCORE IP fixed-point divider v.4. The adder/divider module

performs the 𝐸[∙] operation in Equation (3.3). The COVAR Controller unit enables each

block based on the availability of the result in every block.

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

40

Figure 3.9: Implementation of the covariance matrix

The COV_busy goes low when the result is available by the covariance register. Table

3.11 shows the Covariance matrix implementation’s simulation for the example in Fig.

2.3. The word length used is (16:7) bits where 7 bits are reserved for the fractional part.

It can be seen that the result is correct up to three significant figures which is an

acceptable result when used as input for the other blocks.

Table 3.11: Covariance matrix implementation result.

𝑪𝒙 MATLAB simulation Gate-level simulation
𝑐11 𝑐12 𝑐13 𝑐14 2.5563 1.2269 1.2417 1.2220 2.5557 1.2266 1.2412 1.2217
𝑐21 𝑐22 𝑐23 𝑐24 1.2269 1.2877 1.4621 1.2220 1.2266 1.2871 1.4614 1.2290
𝑐31 𝑐32 𝑐33 𝑐34 1.2417 1.4621 1.7307 1.3725 1.2414 1.4614 1.7300 1.3721
𝑐41 𝑐42 𝑐43 𝑐44 1.2220 1.2296 1.3725 1.1819 1.2217 1.2290 1.3721 1.1816

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

41

Table 3.12: Covariance matrix FPGA resources utilization report.

Information Count Percentage Use
Slice Registers 2228 of 28800 7%

Slice LUTs 1165 of 28800 4%
Slice LUTs used as Logic 1149 of 28800 3%

Slice LUTs used as Memory 16 of 7680 0%
Slice LUTs used as RAM 16
LUT Flip Flop pairs used 2717

LUT Flip Flop pairs with an unused Flip Flop 489 of 2717 18%
LUT Flip Flop pairs with an unused LUT 1552 of 2717 57%

Fully used LUT-FF pairs 676 of 2716 24%
Unique control sets 149

Bonded IOBs 149 of 360 41%
Block RAM/FIFO 3 of 60 5%

DSP48Es 1 of 48 2%

Table 3.13 and 3.14 show the max frequency of the covariance matrix block when the

input CLK_COVAR is 100 MHz.

Table 3.13: Covariance performance report.

Clock name Input
frequency

MAX operating
frequency

Estimated
period

Input
sampling

CLK_COVAR 100.0 MHz 158.3 MHz 6.319 ns 35.763 KSPS

Table 3.14: Covariance timing report.

Clock name Path name Estimated Frequency Estimated period
CLK_COVAR Input to register 272.3 MHz 3.6730 ns
CLK_COVAR Register to register(worst case) 158.3 MHz 6.3190 ns
CLK_COVAR Register to output 2123.1 MHz 0.4710 ns

3.6.1.3 Implementation of QR decomposition

QR decomposition has two stages. The first stage is the implementation of the main QR

decomposition and the second stage is reserved for rearranging the eigenvalues and

eigenvectors. XILINX ACCELDSP tool 10.0 offers a complete pipelined QR

decomposition block. Unfortunately, the block’s results (Q and R) produced by

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

42

ACCELDSP tool are not aligned properly (each vector in Q does not correspond to the

same vector in R). Later this could cause the Whitening process to produce a faulty result

(refer to equation 3.4). An extra stage is required to make sure that all the eigenvalues in

R matrix correspond to all the eigenvectors in Q. Fig. 3.7 shows the complete

implementation of the Whitening block including the eigenvalues and eigenvectors

conditioning blocks. The eigenvector conditioning block aligns and calculates 𝑸𝑇. The

eigenvalue condition block aligns the R matrix and calculates the term 𝑹−1 2⁄ . It is

important to mention that the matrix R has only diagonal elements and the rest of the

elements in R are zeroes, which means that only 4 elements are needed from the 4 × 4 R

matrix in the implementation. According to Equation (3.4) this reduces the calculation of

the matrix 𝑹−1 2⁄ to only calculate the elements ((r11)-1/2, (r22)-1/2, (r33)-1/2, (r44)-1/2). Four

XILIX LogiCORE parallel square root modules are used for this purpose. It is imperative

to know that QT and 𝑹−1 2⁄ operations that are explained earlier are not part of the QR

decomposition but they are whitening operations incorporated within the QR

decomposition to pipeline the design, according to Equation (3.4). Tables 3.15-3.1 7

show the QR implementation and timing reports.

Table 3.15: QR FPGA resources utilization report.

Information Count Percentage Use
Slice Registers 1221 of 28800 4%

Slice LUTs 2536 of 28800 8%
Slice LUTs used as Logic 2516 of 28800 8%
Slice LUTs used as RAM 20
LUT Flip Flop pairs used 2808

LUT Flip Flop pairs with an unused Flip Flop 1587 of 2808 56%
LUT Flip Flop pairs with an unused LUT 272 of 2808 9%

Fully used LUT-FF pairs 949 of 2808 33%
Unique control sets 230

Bonded IOBs 84 of 360 23%
BUFG/BUFGCTRLs 1 of 32 3%

Block RAM/FIFO 4 of 60 6%
DSP48Es 18 of 48 37%

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

43

Table 3.16: QR performance report.

Clock name Input frequency MAX operating frequency Estimated period Input sampling
CLK_QR 50.0 MHz 76.5 MHz 13.0730 ns 10.657 KSPS

Table 3.17: QR timing report.

Clock name Path name Estimated Frequency Estimated period
CLK_QR Input to Register 225.2 MHz 4.4410 ns
CLK_QR Register to Register (worst case) 76.5 MHz 13.0730 ns
CLK_QR Register to Output 306.4 MHz 3.2640 ns

The QR decomposition maximum frequency is 76.5 MHz when the input CLK_QR

is set to 50 MHz. The maximum operating frequency of the Whitening block is dictated

by the slowest block in the design. For example, the slowest block in the Whitening block

is the QR decomposition. According to Table 3.5, the Whitening maximum frequency is

62 MHz when all the blocks are simulated together.

3.6.2 FastICA implementation

The FastICA block contains the Symmetric orth, the One-unit FastICA, NORM Divider

and the error Calculation blocks as shown in Fig. 3.10. The Symmetric orth and the Norm

Divider are the implementations of Equation (2.22) and (2.23) respectively.

Figure 3.10: FastICA blocks

The Error Calculation block plays a major role in monitoring the convergence of the

algorithm and decides wither to stop the separation or to keep the search active by

Norm Divider

Error Calculator Symmetrical orthogonalization

One-unit FastICA

FASTICA

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

44

passing the result of the one-unit FastICA back to the Symmetric orth block. Once the

term 𝑾𝑇𝑾 is close to the identity matrix, the result is passed to multiplier Module 1 to

get the separation matrix 𝑾. However, if the result is not converged, the global stopping

criterion is set to 70 iterations, which is in most cases more than enough for convergence.

According to Equation (3.1), the separated signals are calculated by multiplying 𝑾 by the

whitened data 𝒁. This process is achieved by Multiplier Module 2. The Module contains

4 multipliers in parallel used to multiply the 128 whitened samples by the 4 × 4

separation matrix 𝑾.

Figure 3.11: FastICA main block

The Norm Divider BLOCK consists of 26-bit fixed-point adder and divider that add

the elements of 𝑾 then divide each element of 𝑾 by that value. The RAM block holds

the result until another set of 128 samples is ready to be written, the rw signal controls the

read and write operations of the RAM Module 1. The GO_FAST signal triggers the one-

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

45

unit FastICA algorithm to start the search using initial matrix 𝑩𝒊𝒏𝒊𝒕𝒊𝒂𝒍 . The matrix

contains random arbitrary values that are stored in the One-unit FastICA. Table 3.18

shows the content of 𝑩𝒊𝒏𝒊𝒕𝒊𝒂𝒍.

Table 3.18: 𝑩 initial condition.

𝑏11 𝑏12 𝑏13 𝑏14 -0.1493 -0.5911 0.37934 -0.1747
𝑏21 𝑏22 𝑏23 𝑏24 2.449 -0.6547 -0.3303 -0.9573
𝑏31 𝑏32 𝑏33 𝑏34 0.473 -1.0807 -0.4999 1.2925
𝑏41 𝑏42 𝑏43 𝑏44 0.1169 -0.0477 -0.0359 0.4409

 Once Fast_Busy signal becomes low, the error calculation block is activated to

determine if the search termination condition is met. The symmetric orthogonalization is

activated if the FastICA algorithm termination conditions are not met. The process is

repeated until the algorithm is converged when the error equals to |𝑾+ −𝑾| < 𝜀 which

is the difference between the current 𝑾+ and the previously calculated 𝑾. The 𝜀-value

can be chosen to any value but for good approximation it is set to 0.001 [33]. If 𝜀 is not

reached, the global maximum stopping criterion (GMSC) terminates the search. The

GMSC was set to 70 iterations based on the results of several simulations. The GMSC

role is to force the FastICA to quit searching if the algorithm cannot find an optimum 𝑾

(refer to Fig. 2.5 for more details).

Table 3.19: FastICA FPGA resources utilization report.

Information Count Percentage Use
Slice Registers 19872 of 28800 69%

Slice LUTs 20021 of 28800 70%
Slice LUTs used as Logic 19982 of 28800 69%
Slice LUTs used as RAM 240
LUT Flip Flop pairs used 18544

LUT Flip Flop pairs with an unused Flip Flop 3639 of 18544 19%
LUT Flip Flop pairs with an unused LUT 4352 of 18544 24%

Fully used LUT-FF pairs 10553 of 18544 57%
Unique control sets 368

IOs 240

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

46

Bonded IOBs 240 of 360 67%
BUFG/BUFGCTRLs 17 of 32 53%

Block RAM/FIFO 51 of 60 85%
DSP48Es 27 of 48 56%

Table 3.19 shows the resources utilization of the FastICA block. The overall FPGA

chip area utilized is about 70%. In addition, Tables 3.20 and 3.21 show the maximum

operating frequency which is 63 MHz when the input CLK_FASTICA is set to 20 MHz.

Table 3.20: FastICA performance report.

Clock name Input frequency MAX operating frequency Estimated period Input sampling
Clock 20.0 MHz 23.3 MHz 43.48 ns 6.857 KSPS

Table 3.21: FastICA timing report.

Clock name Path name Estimated Frequency Estimated period
Clock Input to Register 76.2 MHz 0.135 ns
Clock Register to Register (worst case) 23.3 MHz 43.448 ns
Clock Register to Output 165.4 MHz 6.06 ns

3.6.2.1 Implementation of One-unit FastICA

One-unit FastICA is the main building block of the FastICA algorithm and is the most

computationally intensive block throughout the system. Besides the triggering inputs

signals, the inputs are the whitened signals 𝒁 and result of the Symmetric orth block 𝑾.

Fig. 3.12 shows the implemented One-unit FastICA algorithm. Five multiplier modules,

mean block and a subtractor module are used to implement the one-unit FastICA. B

Decision Block is used to feed multiplier module 5 with the either 𝑩𝒊𝒏𝒊𝒕𝒊𝒂𝒍 or the result of

the Symmetric orth block. Once the result is available by the subtractor unit, Fast_Busy

signal goes low triggering the FastICA main controller to proceed and deactivate the unit.

Deactivating the unit is very important in saving power since no clocks are fed to the one-

unit FastICA, thus saving power.

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

47

Table 3.22: One-unit FastICA FPGA resources utilization report.

Information Count Percentage Use
Slice Registers 19272 of 28800 67%

Slice LUTs 19821 of 28800 69%
Slice LUTs used as Logic 19282 of 28800 67%
Slice LUTs used as RAM 230
LUT Flip Flop pairs used 18123

LUT Flip Flop pairs with an unused Flip Flop 3439 of 18123 19%
LUT Flip Flop pairs with an unused LUT 4152 of 18123 23%

Fully used LUT-FF pairs 10353 of 18123 57%
Unique control sets 368

IOs 139
Bonded IOBs 139 of 360 39%

BUFG/BUFGCTRLs 17 of 32 53%
Block RAM/FIFO 43 of 60 72%

DSP48Es 20 of 48 42%

Table 3.23: One-unit FastICA performance report.

Clock name Input frequency MAX operating frequency Estimated period Input sampling
CLK_FAST 20.0 MHz 25.7 MHz 40.06 ns 8.857 KSPS

Table 3.24: One-unit FastICA timing report.

Clock name Path name Estimated Frequency Estimated period
CLK_FAST Input to Register 78.2 MHz 0.135 ns
CLK_FAST Register to Register (worst case) 25.7 MHz 40.06 ns
CLK_FAST Register to Output 185.4 MHz 5.4 ns

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

48

Figure 3.12: Hardware implementation of One-unit FastICA

3.6.2.2 Implementation of Symmetric orth

The implementation of Symmetric orth in Equations (2.22) and (2.23) are shown in Fig.

3.13. The design consists of 2 Multiplier Modules, NORM Calculator BLOCK, SQRT

Calculator Module and Subtraction Module. The B matrix is fetched to the Symmetric

orth block by the error calculation block in Fig. 3.11 to find a new orthogonal space. This

is a required step in the FastICA algorithm so that the One-unit FastICA algorithm starts

searching for another component in the mixing matrix W. Otherwise, the One-unit

FastICA will converge to the same weight matrix W.

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

49

Figure 3.13: Implementation of Symmetric orth using iterative method

Table 3.25 shows the FPGA chip resources utilization report of the Symmetric orth

block. The maximum operating frequency is almost 225 MHz when the input

CLK_Symm is set to 100 MHz as in Table 3.26 while the timing report is provided in

Table 3.27. It is observed that the estimated maximum frequency is about twice the input

CLK_Symm, is due to the fact that numerical solution is used instead of the normally

used matrix inversion in calculating the orthogonalization process (refer to chapter 2 for

more details).

3 . P r o p o s e d A r c h i t e c t u r e a n d F P G A I m p l e m e n t a t i o n

50

Table 3.25: Symmetric orth FPGA resources utilization report.

Information Count Percentage Use
Slice Registers 158 of 28800 0%

Slice LUTs 199 of 28800 0%
Slice LUTs used as Logic 199 of 28800 0%
LUT Flip Flop pairs used 200

LUT Flip Flop pairs with an unused Flip Flop 42 of 200 21%
LUT Flip Flop pairs with an unused LUT 1 of 200 0%

Fully used LUT-FF pairs 157 of 200 78%
Unique control sets 41

IOs 34
Bonded IOBs 34 of 360 9.5%

BUFG/BUFGCTRLs 1 of 32 3%
DSP48Es 0 of 48 0%

Table 3.26: Symmetric orth performance report.

Clock name Input frequency MAX operating frequency Estimated period Input sampling
CLK_Symm 100.0 MHz 224.1 MHz 4.4630 ns 1120.032 KSPS

Table 3.27: Symmetric orth timing report.

Clock name Path name Estimated Frequency Estimated period
CLK_Symm Input to Register 457.7 MHz 2.1850 ns
CLK_Symm Register to Register (worst case) 224.1 MHz 4.4630 ns
CLK_Symm Register to Output 2123.1 MHz 0.4710 ns

3.7 Summary

In this chapter, the proposed design and its implementation are presented. The proposed

BSS model accepts up to 4 input sensors. It means that the model can separate up to four

mixed signals in the mixture. The proposed Whitening and FastICA architectures and

their FPGA implementations have been discussed. The proposed Whitening

implementation is based on the QR decomposition. Also, the FastICA was designed

based on an iterative symmetrical orthogonalization. The overall system was synthesized

on a single virtex5-XC5VLX50t FPGA chip. The overall system operating frequency was

measured as 16 MHz.

51

Chapter 4

Simulation Results

4.1 Introduction

This chapter is intended to show the Gate-level simulation of the proposed architecture.

Since the algorithm is running in off-line mode (the input is stored on a ROM instead of

obtaining them one by one by means of an analogue to digital convertor (ADC)). The

results of the Gate-level simulations are compared with those obtained using MATLAB

environment. Two experiments are conducted using the proposed architecture. The inputs

are stored in memory BLOCK 1 in the Whitening block. The operating frequency used

for both experiments is 10 MHz which is less than the maximum operating frequency,

i.e.16 MHz.

4.2 Separating four signals

The first experiment involves the separation of four signals that are pre-mixed in

MATLAB. The four signals have the following properties:

 Signal 1 = 𝑟𝑎𝑛𝑑𝑛(𝑀,𝑁) (4.1)

 Signal 2 = square(4πt) (4.2)

 Signal 3 = 𝑠𝑖𝑛(2𝜋𝑡) (4.3)

 Signal 4 = 𝑠𝑖𝑛(7𝜋𝑡) (4.4)

where t = [0 , 0.1 , … , 1.5], the signals are randomly mixed by adding them as follows:

4 . S i m u l a t i o n R e s u l t

52

𝑋1 =(Signal 1 + Signal 2) (4.5)

𝑋2 =(Signal 3 + 0.6 Signal 2) (4.6)

 𝑋3 =(Signal 1 + 0.9 Signal 4) (4.7)

𝑋4 =(Signal 2 + Signal 4) (4.8)

Fig. 4.1 shows the signals before the mixing Equations. It is crucial to know the

information of the signals beforehand so that the results can be compared with the actual

signals after the algorithm is converged to the answer. Fig. 4.2 shows the signals after

mixing them.

Figure 4.1: Four signals before mixing

0 0.5 1 1.5
-3

-2

-1

0

1

2

3

time

A
m

pl
itu

de

0 0.5 1 1.5
-3

-2

-1

0

1

2

3

time

A
m

pl
itu

de

0 0.5 1 1.5
-3

-2

-1

0

1

2

3

time

A
m

pl
itu

de

0 0.5 1 1.5
-3

-2

-1

0

1

2

3

time

A
m

pl
itu

de

Gaussian Noise

sin(2*pi*time) sin(7*pi*time)

Square Wave

4 . S i m u l a t i o n R e s u l t

53

Figure 4.2: Four signals after mixing

Figures 4.3 and 4.4 show the results of the implementation of the algorithm to

separate the four signals 𝑿1, 𝑿2, 𝑿3 and 𝑿4, each having a (26:13) word length. Fig 4.4

shows how whitening fails to separate the four signals. However, Figures 4.3 and 4.5

show the results of separation using the FastICA algorithm in both MATLAB and the

gate-level simulations. It is clear that all four signals are separated. To measure the error

between the MATLAB signals and the estimated signals, the square wave was examined

since the error can be measured by subtracting the separated vectors |𝒚2| − |𝒚4| that are

shown in Figures 4.3(b) and Fig.4.5 (d), respectively. The difference between the two

signals is less than 0.01 and is shown in Fig. 4.6.

4 . S i m u l a t i o n R e s u l t

54

Figure 4.3: FastICA MATLAB simulation

Figure 4.4: Whitening gate-level simulation

4 . S i m u l a t i o n R e s u l t

55

Figure 4.5: FastICA gate-level simulation

Figure 4.6: Square wave error analysis

4 . S i m u l a t i o n R e s u l t

56

4.3 Separating ECG signals

The main goal of this work is to separate four singles. Those signals are assumed to be

taken from four sensors. In complex situations like the separation of the fetal ECG

(FECG) from the mother ECG (MECG), more than two sensors are needed to better aid

the separation process using FastICA algorithm [48-53]. Real ECG data taken from the

American heart association [48] is used to test the performance of the proposed FastICA

architecture. The data are taken from sensors placed on the abdominal and the thorax of a

pregnant woman.

Figure 4.7: ECG signals [47]

The signals in Fig. 4.7 contain the MECG and FECG. It is difficult to separate the signals using

only Whitening [53]. Also, it is difficult to compare the results of the separation with the

predetermined or original signals like in the previous example [53, 55].

4 . S i m u l a t i o n R e s u l t

57

Table 4.1 shows the gate-level result of the final unmixing matrix W. The simulations

result is more or less close to the MATLAB simulation result. The error in the output is

due to many factors like the quantization error, round off error since fixed-point

representation is used, also overflow and underflow are very difficult to omit [20].

Table 4.1 Unmixing matrix result.

W MATLAB W Gate-level Simulation
-0.106 -0.083 0.043 -0.036 -0.124 -0.087 0.058 -0.052
-0.030 -0.047 0.020 -0.061 -0.043 -0.025 0.032 -0.241
0.061 -0.203 0.024 0.216 0.051 -0.344 0.046 0.312
-0.132 -0.257 -0.190 0.049 -0.143 -0.134 -0.163 0.038

Fig. 4.8 and 4.9 show the result of multiplying the unmixing matrix 𝑾 by 𝒁.

Figure 4.8: ECG separation simulation in MATLAB

4 . S i m u l a t i o n R e s u l t

58

Figure 4.9: ECG gate-level simulation

According to [49, 51, 52], the main goal in FECG separation applications is to suppress

the MECG and clarify the FECG so that doctors can diagnose the fetal heart health

condition before birth [51]. The simulations given in Figures 4.8 and 4.9 show that the

MATLAB and gate-level simulations did in produce one successful output out of four.

For MATLAB, this successful output is given in Fig. 4.8(c), where one can clearly see

FECG at almost the 70th sample. As for the other three MATLAB trials (Figures 4.8(a),

4.8(b) and 4.8(d)), this separation was not achieved. For instance, looking at Fig. 4.8(a)

shows that the MATLAB output is very similar to the input signal given in Fig. 4.7(a).

This is the case for the output given in Fig. 4.8(b), while the output given in Fig. 4.8(d) is

simply jumbled signals.

4 . S i m u l a t i o n R e s u l t

59

For the gate-level simulation, the clarity of the FECG is shown in Fig. 4.9(b) while

Figures 4.9(a), 4.9(c) and 4.9(d) the sharp appearance of FECG is not clear and the

signals are not separated.

It is important to note that the separated signals given in Figures 4.8(c) and 4.9(b)

are known to be in fact the FECG signals and not those of the mother because of the

amplitude of the separated signal. The FECG signals has a much lower amplitude than

that of MECG (the FECG amplitude is usually < 10 while the MECG amplitude is much

higher than 10.

Another important point to note is the difference in the order of separation between

MATPLAB and gate-level simulations. For example, MATLAB simulations show the

FECG as the third separated signal while the gate-level simulation show the FECG as the

second output. This is not an issue since the order of vectors 𝒘𝑴 of the unmixing weight

matrix W might change depending on the convergence of the FastICA. Figures 4.8(c) and

4.9(b) show the separated FECG, according to [48, 49], the FECG heart signal is

considered clear and the mother ECG was completely removed.

Finally, there is an apparent difference in the shapes of the signals generated by

MATLAB and gate-level simulations. A closer look at the figures however, shows that

this difference does not exist when the algorithms succeed in separating the FECG as the

successful simulations of Figures 4.8(c) and 4.9(b) have the same shape and no

discrepancy between them exists. The rest of the figures did not succeed in separating the

FECG and therefore have shapes that do not reflect the desired outcome.

Fig. 4.10 shows the absolute error analysis taken from the FECG in Fig. 4.8(c) and

4.9(b). The error in Fig. 4.10 is larger than the error in Fig. 4.6 due to the fact the ECG

4 . S i m u l a t i o n R e s u l t

60

signals are more complex than the previous example since ECG signals are not Gaussian

in nature [52].

Figure 4.10: ECG absolute error analysis

4.4 Summary

This chapter describes the simulation results of FastICA algorithm. Four predetermined

mixed signals are fed as input to the FastICA algorithm. The separation gate–level

simulation results were compared to the MATLAB results and an error was calculated.

The produced error is less than 0.01. The second simulation example was set to separate

the FECG from the MECG signal. The separation was clear and the MECG was

successfully suppressed. The MATLAB simulation and the gate-level simulations were

compared to insure the functionality of the purposed FastICA implementation.

61

Conclusions and Future Work

Chapter 5

The goal of this thesis was to investigate the feasibility of implementing FastICA

algorithm using four sensors. Increasing the number of sensors has a huge impact on the

complexity of the algorithm and may render the hardware implementation impractical if

the algebraic solution is used in both the preprocessing stage and in the main FastICA

algorithm. To solve this issue, numerical solutions were used in the implementation of

the system instead of the normally used algebraic method.

 The implementation was carried out using the virtex 5 chip, which offers a variety

of built-in fast multiplies, dividers and subtractors that were used intensively in this

design. The system was fully implemented on a single chip. The maximum clock this

system can use is 16 MHz. The ECG test signals were separated using four sensors

readings. Real-time ECG separation can adopt this design since the design can be

modified to account for real time applications. More than 128 samples can be added to

the system after some modifications to the main controller. It is suffice to say that the

proposed architecture can be extended account for more sensors to separate more

complex applications.

5 . C o n c l u s i o n s a n d F u t u r e w o r k

62

The proposed architecture can be used as a building block to separate real-time

signals by adding an analogue to digital converter before the Whitening block to acquire

data and digital to analogue converter at the output to change the output back to analogue.

The design can be further optimized by running the Whitening stage multiple times to

process more samples before the FastICA busy signal goes low.

 Given that the method presented here embodies a good solution for signal

separation when four sources are mixed, the work can be extended by answering the

question of how our method performs compared to algebraic methods when three or less

signals are used. More specifically, we would like to find out ; 1) whether or not the

performance gained using numerical methods is necessary when less signals are used 2)

the conditions (if any) under which the numerical approach is more preferred compared

to the algebraic solution.

 Another important direction to follow is to extend the method presented here to

account for online applications where the data is received and processed right away.

Online applications require extra stages including ADC to process the input and a digital

to analog convertor (DAC) to convert the output signals for display purposes. More

memories are required to store the incoming packets from the ADC to be processed by

the system.

 Finally, this work can be used for signal separation in other applications such as

Electroencephalography (EEG), electrical imaging of the heart, data mining and wireless

communication applications.

63

References

 [1] B. Arons. A review of the cocktail party effect. Journal of the American Voice I/O Society,
12:35–50, July 1992.

[2] B. Arons. A review of the cocktail party effect. Journal of the American Voice I/O Society,
12:35–50, July 1992.

[3] J. V. Stone. Independent Component Analysis. MIT Press, 2004.

[4] P. Comon. Independent component analysis: A new concept? Signal Processing, 36:287–
314, Apr. 1994.

[5] A. J. Bell and T.J. Sejnowski. An information maximization approach to blind separation
and blind deconvolution. Neural Comput, 7:1129–1159, 1995.

[6] F. J. Theis. Mathematics in Independent Component Analysis. Lagos Verlag, 2002.

[7] J. T. Cobb. Statistical Properties of Synthetic Aperture Sonar Image Textures. In Proc.
SPIE Conference, Orlando, Florida, March 17-20, 2008.

[8] N. Mitianoudis. Audio Source Separation using Independent Component Analy-sis. PhD
thesis, Department of Electronic Engineering, Queen Mary, Universityof London, 2004.

[9] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal
separation. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors,
Advances in Neural Information Processing Systems, volume 8, pages 757–763. The MIT
Press, 1996.

[10] C. Cherry. Some experiments on the recognition of speech, with one and with two ears.
Journal of Acoustical Society of America, 25:975–981, 1953.

[11] Ye (Geoffrey) Li,’ Adaptive Blind Source Separation and Equalization for Multiple-
Input/Multiple-Output Systems’. IEEE transaction on information theory, vol. 44, NO. 7,
November 1998.

[12] Soliet, E.A., Gadallah, E. M. and Salah, A., Optimum detection of the fetus heart ECG
signal, ICEENG l999.

R e f e r e n c e s

64

[13] N.J.R. Muniraj and R.S.D. Wahidhabanu. A Novel Technique for Canceling Maternal ECG
from Fetal ECG Using Virtex FPGA. Journal of Engineering and Applied Sciences 2 (5):
859-863, 2007.

[14] De Lathauwer L, Callaerts D, De Moor B, Vandewalle J. Fetal electrocardiogram
extraction by source subspace separation. In proc. IEEE workshop on HOS. Girona, Spin,
June 12-14 1995:134-138.

[15] C. M. Kim, H. M. Park, T. Kim, Y. K. Choi, and S. Y. Lee, “FPGA implementation of ICA
algorithm for blind signal separation and adaptive noise canceling,” IEEE Trans. Neural
Netw., vol. 14, no. 5, pp.1038–1046, Sep. 2003.

[16] Hongtao Du and Hairong Qi “A Reconfigurable FPGA System for Parallel Independent
Component Analysis”. EURASIP Journal on Embedded Systems. volume 2006, Article ID
23025, Pages 1–12

[17] A. Celik, M. Stanacevic, and G. Cauwenberghs, “Mixed-signal realtime adaptive blind
source separation,” in Proc. IEEE Int. Symp. Circuits Syst., May 2004, vol. 5, pp. V-760–
V-763.

[18] P. H. W. Leong and Leong Leong Cheung and O. Y. H. Cheung and T. Tung and C. M.
Kwok and M. Y. Wong and K. H. Lee, “Pilchard -- A Reconfigurable Computing Platform
with Memory Slot Interface”, in Proc IEEE Symp. Field-Programmable Custom
Computing Machine (FCCM), 2001, pp. 170-179

 [19] Kuo-kai "FPGA Implementation of fastICA based on Floating-point Arithmetic design for
real- Time Blind source Separation". Neural Networks, 2006. IJCNN '06. International
Joint Conference on, 2785 – 2792.2006.

[20] Kevin Banovi´c , “Blind Adaptive Equalization for QAM Signals: New Algorithms and
FPGA Implementation”, University of Windsor, Master’s Thesis, 2006.

[21] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays,2nd ed.,
ser. Signals and Communication Technology Series. New York, USA: Springer-Verlag,
February 2007.

[22] D. Pellerin and S. Thibault, Practical FPGA programming in C. Englewood Cliffs, N.J.,
USA: Prentice-Hall, 2005.

[23] Aapo hayvarinen “Independent Component analysis”. Adaptive and Learning Systems for
Signal Processing, Communications, and Control Published Online: 15 May 2002.

[24] J.-F. Cardoso. Blind signal separation: Statistical principles. Proceedings of the IEEE,
86:2009–2025, Oct. 1998.

[25] Hotelling, H., Analysis of complex of statistical variables into principal components.
Journal of educational psychology, 1993.24:p.417-441,498-520.

http://scialert.net/asci/author.php?author=N.J.R.%20Muniraj&last=�
http://scialert.net/asci/author.php?author=%20R.S.D.%20Wahidhabanu&last=�
http://scialert.net/asci/author.php?author=%20R.S.D.%20Wahidhabanu&last=�
http://scialert.net/asci/author.php?author=%20R.S.D.%20Wahidhabanu&last=�
http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/xpl/mostRecentIssue.jsp?punumber=11216�
http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/xpl/mostRecentIssue.jsp?punumber=11216�

R e f e r e n c e s

65

[26] A. L. Garcia. Probability and Random Processes for Electrical Engineering. Addison-
Wesley, 2nd Edition, 1994.

[27] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue
problem, Quart. Appl. Math. 9 (1951), 1729.

[28] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, NY, 2002.

[29] Xiaojun wang, Miriam leeser. A Truly Two-Dimensional Systolic Array FPGA
Implementation of QR Decomposition. ACM Transactions on Embedded Computing
Systems (TECS). Volume 9, Issue 1 October 2009.

[30] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices, Lin. Alg. App. 34 (1980), 269295.

[31] A. Papoulis. Probability, random variables and stochastic processes. McGraw-Hill, 2
edition, 1984

[32] A. Hyv¨arinen. One-unit learning rules for independent component analysis: A statistical
analysis. Advances in Neural Information Processing Systems, 9:480–486, 1997.

[33] A. Hyv¨arinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley
Sons, 2001.

[34] A. Hyv¨arinen. Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans. Neural Networks, 10:626–634, May 1999.

[35] C. Jutten and J. Herault. Blind separation of sources, part i: An adaptive algorithm based on
neuromimetic architecture. Signal Processing, 24:1–10, 1991

[36] S. Haykin. Neural Networks - A Comprehensive Foundation. Prentice Hall, 2nd
edition,1998.

[37] A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing,. Wiley, 2002.

[38] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.

[39] A. Hyv¨arinen. Beyond independent components. In Proc. Int. Conf on Articial Neural
Networks, Edinburgh, UK, pages 809–814, 1999.

[40] A. Hyv¨arinen, P. Hoyer, and E. Oja. Sparse code shrinkage: denoising by nonlinear
maximum likelihood estimation. In Proceedings of the 1998 conference on Advances in
neural information processing systems II, pages 473–479, Cambridge, MA, 1999. MIT
Press.

[41] S. C. Douglas. Blind source separation and independent component analysis: A crossroads
of tools and ideas. In 4th International Symposium on Independent component analysis and
blind signal separation (ICA2003), pages 1–10, Nara, Japan, 2003.

R e f e r e n c e s

66

[42] A. Hyv¨arinen. Survey on independent component analysis. Neural Computing Surveys,
2:94–128, 1999.

[43] A. Hyv¨arinen. A family of fixed-point algorithms for independent component analysis. In
Proceedings IEEE Int. Conf. on Acoustic, Speech, and Signal Processing (ICASSP’97),
pages 3917–3920, Munich, Germany, 1997.

[44] S. C. Douglas. Fixed-point fastica algorithms for the blind separation of complex valued
signal mixtures. In Signals, Systems and Computers, 2005. Conference Record of the
Thirty-Ninth Asilomar Conference, pages 1320– 1325, Pacific Grove, CA, 2005.

[45] H. Hu, “Positive definite constrained least-squares estimation of matrices,” Linear Algebra
and it’s Applications, vol. 229, pp. 167–174, 1995.

[46] H. Hu and I Olkin, “A numerical procedure for finding the positive definite matrix closest to
a patterned matrix,” Statistical and Probability Letters, vol. 12, pp. 511–515, 1991.

[47] Xilinx datasheets 2010 , accessed 19 Jan 2010.
http://www.xilinx.com/onlinestore/silicon/online_store_v5.htm

[48] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE,
Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex Physiologic Signals. Circulation
101(23):e215-e220, 2000.

[49] McSharry P E, Clifford G D, Tarassenko L and Smith L A 2003 A dynamical model for
generating synthetic electrocardiogram signals IEEE Trans. Biomed. Eng. 50 289–94

[50] Vanderschoot J, Callaerts D, Sansen W, Vandewalle J, Vantrappen G and Janssens J
1987a Two methods for optimal MECG elimination and FECG detection from skin
electrode signals IEEE Trans. Biomed. Eng. 34 233–43

[51] Vanderschoot J, Callaerts D, Sansen W, Vandewalle J, Vantrappen G and Janssens J 1987b
Two methods for optimal MECG elimination and FECG detection from skin electrode
signals IEEE Trans. Biomed. Eng. 34 233–43

[52] Westgate J A, Bennet L and Gunn A 2002 The role of fetal ECG monitoring in labour
Fetal Matern. Med. Rev. 13 119–39

[53] Zarzoso V, Nandi A and Bacharakis E 1997 Maternal and foetal ECG separation using
blind source separation

[54] Kanjilal, P. P., Palit, S. And Saha, G., Fetal ECG Extraction using singular value
decomposition, IEEE, Vol. BME-44, N0.1, January 1997 methods IMA J. Math. Appl.
Med. Biol. 14 207–25

[55] Francisco Castells, Pablo Laguna,” Principal Component Analysis in ECG
SignalProcessing”Hindawi Publishing Corporation EURASIP Journal on Advances in
Signal ProcessingVolume 2007, Article ID 74580, 21 pages

67

Appendix A

Considering W+ to be the result of applying once the iteration step in 2.21 on W. Let

WWT =EDET be the eigenvalue decomposition of WWT. Then we have

 𝑾+𝑾𝑻 = 9
4
𝐸𝐷𝐸𝑇 − 3

2
𝐸𝐷2𝐸𝑇 + 1

4
𝐸𝐷3𝐸𝑇 (A.1)

2 39 3 1()

4 2 4
TE D D D E= − + (A.2)

It is imperative to know that due to normalization in 2.22, all the eigenvalues of 𝑾𝑾T are

in the interval [0,1]. 2.23 shows that for every eigenvalue of WWT , say λi , 𝑾+𝑾+
𝑻 has a

corresponding eigenvalue h(λi) where h(∙) is defined as:

2 39 3 1()

4 2 4
h λ λ λ λ= − + (A.3)

Therefore, after k iterations, the eigenvalues of WWT are obtained as h(h(h(…h(λi))),

where h is applied k times on the λi, which are the eigenvalues of WWT for the original

matrix before the iterations.

68

VITA AUCTORIS

AL-laith taha was born in Baghdad, Iraq on November 5, 1982. He received his B.Eng. degree in

electrical and electronics engineering in 2006 from the University of Northumbria at Newcastle,

UK. He received his M.Eng in electrical and computer engineering from the University of

Windsor in 2008. He is currently a candidate in the electrical and computer engineering M.A.Sc.

program at the University of Windsor. His research interests include blind source separation for

non-Gaussian signals, adaptive signals processing, FPGA implementation of DSP algorithms.

Computer arithmetic and high-performance VLSI circuit design.

	FPGA Implementation of Blind Source Separation using FastICA
	Recommended Citation

	declaration pages
	AL-LAITH TAHA

	signeturepage
	declaration page4
	Author’s Declaration of Originality

	Preface
	table of contents
	list of figures
	list of tables
	Number Page

	list of abbrevations
	List of Abbreviations

	chapter 1
	chapter 2
	chapter 3
	chapter 4
	chapter 5
	references
	References

	appdex A
	Appendix A

	VITA auctos
	VITA AUCTORIS

