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Abstract 

 

Fast Independent Component Analysis (FastICA) is a statistical method used to separate 

signals from an unknown mixture without any prior knowledge about the signals. This 

method has been used in many applications like the separation of fetal and maternal 

Electrocardiogram (ECG) for pregnant women. This thesis presents an implementation of 

a fixed-point FastICA in field programmable gate array (FPGA). The proposed design 

can separate up to four signals using four sensors. QR decomposition is used to improve 

the speed of evaluation of the eigenvalues and eigenvectors of the covariance matrix. 

Moreover, a symmetric orthogonalization of the unit estimation algorithm is implemented 

using an iterative technique to speed up the search algorithm for higher order data input. 

The hardware is implemented using Xilinx virtex5-XC5VLX50t chip. The proposed 

design can process 128 samples for the four sensors in less than 63 ns when the design is 

simulated using 10 MHz clock.  

 

 

 

 

  



vi  
 

 

 

Acknowledgments 

 

I would like to express my sincere appreciation to my supervisor, Dr. Esam 

Abdel-Raheem for his invaluable guidance and encouragement. He guided me throughout 

my thesis with great patience. I would also like to express my gratitude to the other 

members of my committee, Dr. Mohammed A. S. Khalid and Dr. W. Abdul-Kader, for 

their help and assistance.  

I can’t forget those days when I worked side by side with my fellow graduate 

students of the ECE department, Iman, Ishaq, Mohamed Islam. They give me a lot of 

help and encouragement during my study.  

I would not forget my parents for their constant and unconditional support 

throughout my research.  

Finally, my sincere appreciation to Canadian Microelectronics Corporation (CMC) 

for providing the computer and FPGA workstations for this research. 

 

 

 

 

 

 

 



vii  
 

 

 

Table of Contents 

 
Author's Declaration of Originality …………………………………………….……….……......… iv 

Abstract…………………………………………………………………………………….……...…  v 

Acknowledgment ............................................................................................................................ vi 

List of Figures.................................................................................................................................. x 

List of Tables ................................................................................................................................. xii 

List of Abbreviations .................................................................................................................... xiv 

1           Introduction ....................................................................................................................... 1 

             1.1     Background..…………………………………………………………………...….…...1 

             1.2     FPGA background..…………………………………………………...........……….... 5 

             1.3     Thesis objective..…………………………………………………………………... …6 

             1.4     Thesis organization ………………………………………………………………... …6 

2           Independent Component Analysis……………………………………….……….....……..8 

2.1     Introduction……………………….……………………………………….…..…..…..8 

2.2     General statistical settings……………….……………………………………….…....8 

2.3     Principle component analysis……..……………………….……….……….…..........11 

2.3.1      PCA algorithm……………………………………………………..…….….12 

2.3.2      Whitening limitations……………………………………………..….…..….14 

2.4     Higher order statistics……………………….………..……….………………...........15 

2.4.1       Central moments and kurtosis………………….………….………….….…15 

2.4.2       Fixed-point FastICA algorithm using kurtosis……….……….……...….…17 



T a b l e  o f  c o n t e n t s  
 
 

viii  
 

2.5     FastICA using orthogonalization technique….……..……….………….……............18 

2.5.1    FastICA using deflationary orthogonalization……………………...………...19 

2.5.2    FastICA using symmetric orthogonalization……………………..………......20 

2.6     Summary………………….….……..……….………….…….....................................23 

3           Proposed Architecture and FPGA Implementation...…………….………………..…....24 

3.1     Introduction…………….….…………….…………….…….......................................24 

3.2     Proposed model…………….….……..……………….……........................................24 

3.3     Realization of eigenvalues and eigenvectors.………….……......................................26 

3.4     FastICA using symmetric orthogonalization…..…….…….........................................28 

3.5     FPGA implementation…..…….……...........................................................................29 

3.6     Hardware implementation…..…….……......................................................................31 

3.6.1     Implementation of whitening ……………………………………….….........33 

    3.6.1.1     Implementation  of Centering block…………………..…….........37 

    3.6.1.2     Implementation of the covariance matrix ………..……………....39 

    3.6.1.3     Implementation of QR decomposition …………………………...41 

3.6.2     FastICA implementation …………………………………..….………..........43 

     3.6.2.1    Implementation  of One-unit FastICA………………………........46 

     3.6.2.2    Implementation  of Symmetric orth………………….……...........48 

3.7        Summary …………………………………………………..….……………............50 

4           Simulation result...…………….………………..….............................................................51 

4.1     Introduction…………….….……..……………….……..............................................51 

4.2     Separating four signals....….……..……………….……..............................................51 

4.3     Separating ECG signals..….……..……………….……..............................................56 

4.4     Summary …………………………………………………..….……….......................60 

5           Conclusions and Future Work...…………….………………..….......................................61 

References...…………….………………..…......................................................................................63 



T a b l e  o f  c o n t e n t s  
 
 

ix  
 

Appendix A…......................................................................................................................................67 

VITA AUCTORIS...…………….……….…......................................................................................68 



x  
 

 

 

 

List of Figures 
 

Number          Page 

Figure 1.1         The instantaneous mixtures source separation example   2 

Figure 2.1         Linear instantaneous BSS problem     9 

Figure 2.2         Sources before mixing       10 

Figure 2.3         Mixed Signals that contain some underlying hidden factors  10 

Figure 2.4         Separated Signals       11 

Figure 2.5         Deflationary orthogonalization block diagram    20 

Figure 2.6         Symmetric Orthogonalization block diagram    22 

Figure 3.1         QR decomposition flow chart      26 

Figure 3.2         Whitening Block Diagram      27 

Figure 3.3         Symmetrical orthogonalization simulation using iterative approaches 29 

Figure 3.4         Fixed-point Representation      30 

Figure 3.5         Main Implementation Block       32 

Figure 3.6         Whitening block        34 

Figure 3.7         Whitening implementation block      35 

Figure 3.8         Implementation of centering      37 

Figure 3.9         Implementation of the covariance matrix      40 

Figure 3.10       FastICA block diagram       43 

Figure 3.11       FastICA main block       44 



L i s t  o f  F i g u r e s  
 

xi  
 

Figure 3.12       Hardware implementation of One-unit FastICA    48 

Figure 3.13       Implementation of Symmetric orth using iterative method  49 

Figure 4.1         Four signals before mixing      52 

Figure 4.2         Four signals after mixing      53 

Figure 4.3         FastICA MATLAB simulation      54 

Figure 4.4         Whitening gate-level simulation      54 

Figure 4.5         FastICA implementation gate-level simulation    55 

Figure 4.6         Square wave error analysis      55 

Figure 4.7         ECG signals        56 

Figure 4.8         ECG separation simulation in MATLAB     57 

Figure 4.9         ECG gate-level simulation      58 

Figure 4.10       ECG absolute error analysis      60 

 



xii  
 

 

 

List of Tables 

Number          Page 

Table 3.1      Bocks word length used           31 

Table 3.2      Complete system FPGA resources utilization report        33 

Table 3.3      Complete system performance report         33 

Table 3.4      Whitening FPGA resources utilization report       35 

Table 3.5      Whitening performance report         36 

Table 3.6      Whitening timing report          36 

Table 3.7      Mean calculations result          38 

Table 3.8      Centering FPGA resources utilization report       38 

Table 3.9      Centering performance report         39 

Table 3.10    Centering timing report               39 

Table 3.11    Covariance matrix implementation result                40 

Table 3.12    Covariance FPGA resources utilization report          41 

Table 3.13    Covariance performance report            41 

Table 3.14    Covariance timing report             41 

Table 3.15    QR FPGA resources utilization report           42 

Table 3.16    QR performance report             43 

Table 3.17    QR timing report              43 

Table 3.18    B initial condition              45 

Table 3.19     FastICA FPGA resources utilization report           45 



L i s t  o f  t a b l e s  
 
 
 

xiii  
 

Table 3.20    FastICA performance report              46 

Table 3.21    FastICA timing report                   46 

Table 3.22    One-unit FastICA FPGA resources utilization report              47 

Table 3.23    One-unit FastICA performance report                47 

Table 3.24    One-unit FastICA timing report                 47 

Table 3.25    Symmetric orth FPGA resources utilization report               50 

Table 3.26    Symmetric orth performance report                50 

Table 3.27    Symmetric orth timing report                 50 

Table 4.1      Unmixing matrix result                     57 

 

 

 



xiv  
 

 

 

 

List of Abbreviations 

 

Abbreviation   Definition 

ADC    Analogue to digital converter 
BSS    Blind source separation 
DSP    Digital signal processing 
ECG    Electrocardiogram 
EEG    Electroencephalography 
FECG    Fetal electrocardiogram 
FPGA    Field program gate array 
FASTICA   Fast independent component analysis 
GMSC    Global maximum stopping criterion 
ICA    Independent component analysis 
IO    Input output 
MC    Minor component 
MECG    Fetal electrocardiogram 
PCA    Principle component analysis 
PC    Principle component 
pdf    Probability density function  
VHDL    Very high scale Hardware description language 



1  
 

 

Chapter  1 

Introduction 

 

1.1      Background 

If we consider the situation of attending a party, our ears capture numerous sounds: a 

friend’s voice, the voices of others, background music, ringing telephones, and many 

others. If one concentrates, one can hear what a person is saying and you will filter any 

other sound. One can also change his/her focus of attention. For example, one may pay 

attention to your friend’s speech first and shift focus to the music if it is playing a song 

you like. The ability to focus and recognize a specific source called the cocktail party 

effect [1, 2, 3]. If we were to record these sources by placing microphones in many places 

inside the room, the playback would be jumbled mix of sounds. One might be able to 

pick out a few words here and there, but there is no way one would be able to hear the 

conversation details. If there were as many microphones in the room as people, it is 

possible to extract and separate each individual conversation by using blind source 

separation algorithms [4]. This would allow us to hear everything in the room. In another 

words, Blind source separation (BSS) defined as the method that separate or estimate the 

original sources from an array of sensors or transducers without having any prior 

knowledge of the original sources [4]. BSS also is also a general class of signal 

processing methods that extract statistically independent source signals from linear 

mixtures with no or little information about the sources or the mixing conditions [5, 6]. In 
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instantaneous mixing, the mixtures are weighted sums of the individual source signals 

without dispersion or time delay, as shown in Fig. 1.1. Most of the mixtures in reality are 

added sources or sometimes called instantaneous mixtures.  

 

Figure 1.1: The instantaneous mixtures source separation example 

In Figure 1.1, S refers to the original sources matrix 𝑺, 𝑨 is the mixing matrix and 𝑿 

is the observation matrix. The matrices 𝑺 and 𝑿 are both of size 𝑀 × 𝑁 matrices while 

the matrix 𝑨 is of size 𝑀 × 𝑀. The values M and N are the number of sensors and the 

number of samples, respectively. The matrix  𝑺 has the form: 

 𝑺 = �
s11 ⋯ s1𝑁
⋮ ⋱ ⋮

s𝑀1 ⋯ s𝑀𝑁
�                 (1.1) 
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The observation matrix X can be modeled as Follows:  

𝑿 =  𝑨𝑺                                   (1.2) 

or 

 𝑿 = �

𝒙𝟏
𝒙𝟐
.
𝒙𝑴

� = �
𝑥11 ⋯ 𝑥1𝑁
⋮ ⋱ ⋮

𝑥𝑀1 ⋯ 𝑥𝑀𝑁
� = �

𝑎11 ⋯ 𝑎1𝑀
⋮ ⋱ ⋮

𝑎𝑀1 ⋯ 𝑎𝑀𝑀
� �
𝑠11 ⋯ 𝑠1𝑁
⋮ ⋱ ⋮
𝑠𝑀1 ⋯ 𝑠𝑀𝑁

�     (1.3) 

The coefficients of the mixing matrix A are unknown. The goal of the BSS algorithms is 

to find a demixing matrix W that has the following form: 

            𝒀 =  𝑾 𝑿                      (1.4) 

where W is an 𝑀 × 𝑀 matrix, Y and X are 𝑀 ×𝑁 matrices. The obtained estimated 

sources Y using BSS algorithms have certain unknown factors such as arbitrary scaling, 

permutation, and delay of estimated source signals. However, the most relevant 

information is contained in the waveforms of these signals, thus these unknown factors 

do not affect the separation if statistical methods like BSS are used [7]. Historically, 

principle component analysis (PCA) has been widely used for the same types of problems 

currently being investigated using BSS algorithms [3, 8]. The main difference between 

the two approaches is that BSS finds non-Gaussian and independent sources signals, 

whereas PCA finds sources, which are uncorrelated and have Gaussian distributions [3].  

        The performance of BSS algorithms such as FastICA is better in comparison with 

the PCA [5] because PCA does not work on super-Gaussian or sub-Gaussian distributions 

while FastICA does [6]. Since BSS does not require any prior knowledge about the 

mixed signals, BSS has attracted many areas of research.  For example, in surveillance 

application where the goal is to find a specific voice among many [9, 10]. In addition, 

wireless communication has adopted BSS to suppress the co-channel interference in 
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multi-antenna system without requiring the receiving end to decode the signals [11]. The 

most useful application in utilizing the BSS techniques would be in the area of 

biomedical signal processing, where BSS is applied in Electrocardiography (ECG). Some 

of the applications involve the separation of the Mother ECG (MECG) from the fetal 

ECG (FECG) [12, 13]. In addition, some complex scenarios involve separating the 

MECG from a twin fetal [14]. Recently, Field programmable gate array (FPGA) 

technology has been the choice of implementation in the area of digital signal processing 

and neural networks. Kim et al. [15] implemented real-time blind source separation and 

adaptive noise cancellation for speech enhancement in FPGA. Du and Qi [16] 

implemented a parallel ICA on the Multi FPGA pilchard, a reconfigurable computing 

development environment dedicated for Sun Microsystems [18]. Celik et al. [17] 

implemented a mixed-signal real-time blind source separation that can only unmix two 

independent sources. The design in [17] is implemented using 0.5µm COMS technology. 

Kuo-kai et al [19] implemented full real-time FPGA based FastICA system and used 

extra circuitry to acquire the signals using two sensors. Two separate modules were used. 

The first module was used to acquire the mixed signals using an analogue to digital 

converter and filters. The second module converted the separated signals to analogue 

using an digital to analogue converter.  

All the previously proposed FPGA implementation focused on implementing ICA 

algorithms with the assumption that only two signals are mixed and only two sensors are 

used to capture the mixed signals for separations. In addition, the previous work 

implemented the blind source separation algorithm using algebraic solutions. For higher 

dimension signals, implementing the BSS algorithm algebraically is too complex. In 
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addition, it can result in a very large propagation delay and, in turn, affects the overall 

system performance.  

1.2      FPGA background  

FPGA is a large-scale integrated circuit that can be programmed after it is manufactured 

rather than being limited to a predetermined unchangeable hardware function. FPGA 

technology is widely used in digital signal processing [20]. It combines the speed of 

dedicated blocks, application-optimized hardware and reprogrammability of 

microprocessors, which makes it suitable for high speed implementation of blind source 

separation. FPGA has been the choice of implementation of most of digital signal 

processing algorithms. DSP algorithms can be designed, tested and implemented on an 

FPGA chip without any fabrication delays. FPGAs consist of the following elements: 

1. Programmable logic cells which provide the functional elements for construction 

       of the user’s input. 

2. Input output (IO) Blocks which provide the interface between the logic cells and the 

output pins. 

3. Programmable interconnects which provide the routing paths to connect the input 

and output of logic cells and the IO pins. 

Modern FPGAs provide high-level arithmetic and control structures, such as 

multipliers, counters, multiply accumulate units, memory resources and processor cores. 

These resources provide high performance, low power consumption and are highly 

suitable for DSP applications [21]. The behavior of an FPGA can be defined by using a 

hardware description language (HDL) such as VHDL or Verilog or by arranging blocks 

of existing functions using a schematic-oriented design tool. The design is compiled and 
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synthesized using proprietary FPGA place-and-route tools. The compilation and synthesis 

process generates a bit file that can be downloaded on the FPGA [21, 22]. 

Although FPGAs are similar to custom Application-specific integrated circuit 

(ASIC) design, FPGAs can implement and test proposed designs instead of sending them 

to the manufacturer and wait for the chip to be tested afterwards.   

1.3      Thesis objective  

The thesis focuses on the following areas: 

1. Investigating different types of independent component analysis (ICA) algorithms 

for non-Gaussian signals and compare the results with principle component analysis 

(PCA). 

2. Developing an efficient numerical solution instead of the algebraic solution for 

FastICA. 

3. Investigating the development of FastICA algorithm using different types of 

orthogonalization techniques.   

4. Implementing FastICA algorithm in XILINX virtex5-XC5VLX50t FPGA.  

The main challenge in this thesis is implementing the ICA algorithm for higher 

order data inputs. The complexity of the circuit grows exponentially depending on the 

size of the demixing matrix W. In addition, FPGA is used to implement the algorithm.  

1.4      Thesis organization  

This thesis is organized as follows: Chapter 2 provides the mathematical analysis of the 

ICA algorithm, which is FastICA. Chapter 3 describes the proposed FastICA model using 

QR method and the symmetrical orthogonalization as well as the hardware 

implementation of the proposed algorithm using FPGA technology, Chapter 4 provides 
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simulations of the proposed hardware and presents two experiments while Chapter 5 

provides concluding remarks and suggestions for future work to enhance the design.  
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Independent Component Analysis 

Chapter 2 

 

2.1       Introduction 

This Chapter provides the mathematical theory behind ICA method. ICA is one of a 

family of techniques, including PCA and blind deconvolution, for solving the BSS 

problems. ICA is a method for finding underlying factors in a multidimensional data. 

This Chapter also explains the PCA method and its limitations. Finally, a special ICA 

algorithm called FastICA is presented and compared with the PCA method.  

2.2      General statistical settings 

The main goal of any statistical model is to find a suitable representation of the 

parameters of a multivariable system that render the essential structure governing the 

variables more visible. This usually presents computational and representational obstacles 

that must be tackled.  

To illustrate the above, a linear system is shown in Fig. 2.1. In the system, every input 

vector in 𝑿 contains a linear combination of observed sensor samples of size N as in 

Equation (1.4) given in Chapter 1. In the figure, 𝑾 is the demixing matrix of size 𝑀 × 𝑀. 

The aim, as explained in Chapter 1, is to determine the output matrix 𝒀. However, the 

system contains unknown sources with no prior knowledge of the noise type and its 

contribution to the system. 
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Moreover, the difficulty of this model lies in the fact that it requires determining the 

elements of the 𝑾 matrix using linear algebra, which finds a simple solution to 𝑾 only 

by assuming the signals independence [23]. 

 

Figure 2.1: Linear instantaneous BSS problem 

Fig. 2.2 shows four source signals that result in the mixture shown in Fig. 2.3 when 

mixed together. The problem is that the original signals information is not usually 

available. In fact, it is nearly impossible to know what these signals might contain when 

they are mixed. But with the aid of BSS techniques, it is possible to extract or at least 

estimate the hidden signals. For example, considering matrices 𝑾 and 𝑿 of sizes 4 × 4 

and 4 × 𝑁, respectively, using statistical independence only, the original signals in Fig. 

2.2 can be estimated by multiplying 𝑾 by 𝑿 as follows: 

               𝒀 = �

𝒚𝟏
𝒚𝟐
𝒚𝟑
𝒚𝟒

� = �

𝑤11 
𝑤21
𝑤31
𝑤41

 𝑤12  
𝑤22
𝑤32
𝑤42

 𝑤13  
𝑤23
𝑤33
𝑤43

 𝑤14
 𝑤24
 𝑤34
 𝑤44

� �

𝑥11
𝑥21
𝑥31
𝑥41

 𝑥12
 𝑥22
 𝑥32
 𝑥42

 𝑥13
 𝑥23
 𝑥33
 𝑥43

⋯
…
⋯
…

 𝑥1𝑁
 𝑥2𝑁
 𝑥3𝑁
 𝑥4𝑁

�                                 (2.1)   

As a result, Y contains four vectors that are the separated signals which are the 

result of estimation using only the information of the signals. Fig. 2.3 shows clearly four 
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distinct signals that are not dependent of the other. The separated signals are easily 

distinguished as square, sin, sawtooth, and random noise waves.   

 

Figure 2.2: Sources before mixing 

 

Figure 2.3: Mixed Signals that contain some underlying hidden factors 

0 0.5 1 1.5 2
-2

-1

0

1

2

0 0.5 1 1.5 2
-4

-2

0

2

4

0 0.5 1 1.5 2
-4

-2

0

2

4

0 0.5 1 1.5 2
-2

-1

0

1

2

Source # 1 Source # 2

Source # 3

time

Source # 4

time

time time

0 0.5 1 1.5 2
-2

-1

0

1

2

time

M
ix

tu
re

 #
 1

0 0.5 1 1.5 2
-4

-2

0

2

4

time

M
ix

tu
re

 #
 2

0 0.5 1 1.5 2
-4

-2

0

2

4

time

M
ix

tu
re

 #
 3

0 0.5 1 1.5 2
-4

-2

0

2

4

time

M
ix

tu
re

 #
 4



2 .  I n d e p e n d e n t  C o m p o n e n t  A n a l y s i s   
 

11  
 

 

Figure 2.4: Separated Signals 

2.3      Principle component analysis (PCA)   

PCA has been widely used in pattern recognition and signal processing [24]. The 

algorithm decomposes a set of mixed signals into a set of uncorrelated signals [7]. Given 

a set of multivariate measurements, the purpose of the PCA is to find a smaller set of 

variables with less redundancy that would result in a good representation of the data. 

PCA can classify signals based on the mixture statistical information (variances.). Each 

principle component (PC) represents a cluster of information in the mixture. The PC that 

has the highest variance is referred as the major component while those components with 

the smallest variances called the minor components [25]. If the PCs contain high 

statistical information (high variances), it means that those PCs contains real signals and 
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if the PCs contain very low variances, it is an indication that the mixture contains 

unwanted signals like noise or interference [25].  

2.3.1   PCA algorithm  

PCA transforms a process such that the data are represented along a new set of 

orthogonal dimensions with a diagonal covariance matrix [24]. In addition, the PC 

coefficient with the largest variance is the first principle component; the PC coefficient 

with the second largest variance is the second most important and so on. The PCA 

algorithm consists of the following steps [24]: 

1. Centering: Centering is used as a preprocessing in PCA. Centering is the process of 

calculating the mean of the observation matrix 𝑿 and subtracting it from the source. It 

can be defined as: 

     𝑿𝒄𝒆𝒏 = 𝑿 − 𝒖𝒉              (2.2) 

where 𝑿𝒄𝒆𝒏 is the centered observation matrix and has the same dimension as 𝑿. The 

1 × 𝑁 h vector of all 1s, i.e., 

     𝒉[𝑛] = 1             for  𝑛 = 1, … ,𝑁                                  (2.3) 

Moreover, u is an 𝑀 × 1 vector which is the empirical mean of X and can be calculated 

as: 

                        𝑢[𝑚] = 1
𝑁
∑ 𝑿(𝑚, 𝑛)    for 𝑚 = 1, … ,𝑀    𝑁
𝑛=1         (2.4) 

2. Calculating Covariance matrix and its eigenvalues and eigenvectors: The PCA 

algorithm is based on calculating the eigenvalues and eigenvectors of the 𝑀 × 𝑀 

covariance matrix 𝑪𝒙  which is defined as [25].  

                           𝑪𝒙 = 𝐸[𝑿𝑿𝑻]                       (2.5) 
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where E[∙] is the expectation operation.  The covariance matrix is used to compute the 

eigenvectors. Each eigenvector corresponds to a specific eigenvalue. Since the covariance 

matrix is real and symmetric, the eigenvectors are real and orthonormal [26]. 

Traditionally, the eigenvalues of a matrix is calculated algebraically using the following 

steps [16], [19]: 

a)  Find the characteristic equation of 𝑪𝒙 by setting det(𝑪𝒙 − 𝜆𝑚𝑰) = 0 of the 

covariance matrix where I is an identity matrix that has the same dimensions as 𝑪𝒙 

and 𝜆𝑚 are the eigenvalues to be found. 

b) Find the roots of the characteristic equation which are the eigenvalues of 𝑪x. 

The complexity of finding the roots of the characteristic equation increases when 

the order of  𝑪𝒙 increase. Most of the previous separation models using PCA 

approach use only 2 × 2 matrices [27, 28], which result in second order 

polynomials [25]. For higher order matrices, an iterative numerical solution is used 

[29]. The most common numerical methods used to find the eigenvalues and 

eigenvectors for higher order matrices are the upper triangular matrix, the power 

method, the orthogonal iteration, the QR decomposition and the singular value 

decomposition [29, 30].     

4. Whitening: which is the last stage in the PCA technique, it forces the sources in the 

mixture to be uncorrelated but with a unit variance [25]. The whitening matrix V can be 

expressed in terms of the eigenvalues and eigenvectors of 𝑪x as follows [25]: 

                                                          𝑽 = 𝑫−𝟏/𝟐𝑬𝑻         (2.6) 

where E is an 𝑀 × 𝑀  matrix containing all the eigenvectors of 𝑪𝒙 , while 𝑫 is an 𝑀 × 𝑀  

diagonal matrix with the values in the diagonal comprising the eigenvalues of 𝑪𝒙. The 
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matrix 𝑽 is also called the square root of the covariance matrix, i.e. 𝑪𝒙−1 2⁄  [34].  

The last step in the PCA is to find the uncorrelated signals 𝒁 using the following 

equation: 

                                                           𝒁 = 𝑽𝑿𝒄𝒆𝒏                                      (2.7) 

where 𝒁 and 𝑿𝒄𝒆𝒏 are 𝑀 × 𝑁matrices. In general, 𝑽 solves half of the ICA problem 

which means forcing the signals to be uncorrelated and transforms the signals 

orthogonally [31]. In most applications, this is not sufficient to ensure that the signals are 

independent, which is why whitening solves only half of the ICA problem. However, the 

whitening step reduces the computations of separation by half [34]. More specifically, the 

orthogonal nature of 𝑽 reduces the problem from finding 𝑘2 parameters which are the 

elements of 𝑽 to finding only 𝑘 (𝑘 − 1)/2 parameters [32]. 

2.3.2    Whitening limitations 

Assume that the data in the ICA model is whitened using Equation (2.7). The whitening 

matrix transforms the mixing matrix A in equation (1.2) into a new mixing matrix called 

À = 𝑽𝑨 so that the new ICA model is written as follows: 

                                                             𝒁 = 𝑽𝑿 = 𝑽𝑨𝑺             (2.8) 

Unfortunately, whitening cannot solve the ICA problem, since whiteness or 

uncorrelatedness does not imply independence [28]. Uncorrelatedness is weaker than 

independence, and is not by itself sufficient to estimate any ICA model [32]. 

On the other hand, whitening is useful as a preprocessing step in ICA. The usefulness of 

whitening resides in the fact that the new mixing matrix À is orthogonal [28, 33]. This 

means that we can restrict the search in the mixing matrix to the space of orthogonal 

matrices. That means instead of estimating 𝑘2 parameters that are the elements of the 
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original matrix A [7], we only need to estimate an orthogonal mixing matrix À. Thus, it 

could be said that whitening solves half of the ICA problem because whitening is a very 

simple and standard procedure, much simpler than any ICA algorithms. The remaining 

half of ICA can be estimated by some other methods like FastICA [34], which is the 

focus of this thesis. However, PCA can be used as a preprocessing step before the ICA 

algorithms [31].  

2.4      Higher order statistics 

Most of the standard methods in signal processing systems utilize system’s statistical 

information in linear discrete-time system. Although their theory is well defined and 

developed [35-38], these methods are utilizing the second order statistics and are driven 

by the assumptions of the source signals being stationary and are jointly governed by a 

Gaussian linear underlying system. Recently, an interest in the higher order statistics has 

began to grow in the signal processing area. At the same time, neural network has grown 

popular with the development of several new, efficient learning algorithms [32, 23, 39]. 

Neural networks consist of computational blocks called neurons. The output of the 

neurons depends nonlinearly on the input [40]. An example of the nonlinearity is the 

hyperbolic tangent tanh(𝑼), the matrix 𝑼 is of size 𝑀 × 𝑁 which is the inner product 

𝑼 = 𝑾𝑿. It introduces nonlinearity to the process [40]. ICA requires the use of higher 

order statistics via nonlinearities [33, 40]. In the following, the concept of kurtosis and its 

role in the higher orders statistics [33].  

2.4.1    Central moments and kurtosis  

The mean of the data vector 𝒛 is defined as:   

𝑢 = 𝐸{𝒛}                                          (2.9) 
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where 𝒛 is a vector in the whitened data matrix 𝒁. In addition, the 𝑗 𝑡ℎ central moment is 

defined as: 

                                            𝑢𝑗 = 𝐸{(𝒛 − 𝑢 )𝑗}                     (2.10) 

The second central moment is the standard deviation of the whitened data Z denoted as 

𝜎2. The third central moment is called skewness and it will be used in this thesis. 

However, the fourth moment has been intensively used in the area of blind source 

separation [32, 35, 39]. Moments that are higher than 4th order are rarely used in practice 

[32] and will not be discussed in the thesis.  

The fourth moment on the other hand, is simple and effective in some BSS algorithm like 

FastICA. The fourth central moment is [32]:   

            𝑢4 = 𝐸[(𝒛 − 𝑢 )4]               (2.11) 

The fourth central moment is also called the Kurtosis and can be rewritten as [33]. 

                                             𝐾𝑢𝑟𝑡(𝒛) = 𝐸[𝒛4 − 3[𝐸[𝒛2]]2                            (2.12) 

 We can also rewrite it in the following form [31]: 

                                            𝐾𝑢𝑟𝑡(𝒛) = 𝐸[𝒛4]
𝐸[𝒛2]2

− 3              (2.13)     

For whitened data 𝐸[𝒛2]  = 1, the Kurtosis is reduced to the following [38]: 

                                              𝐾𝑢𝑟𝑡(𝒛) = 𝐸[𝒛4] − 3                          (2.14) 

This implies that for the whitened data, the fourth order moment can be used instead of 

the Kurtosis to represent the fourth order central moment of 𝒁. The most important 

property of the kurtosis is that it has the ability to detect non-Gaussian signals. If the 

kurtosis is zero, it implies that the distribution is Gaussian. If the Kurtosis is negative, the 

distribution is sub Gaussian. If the kurtosis is positive, the distribution is super-Gaussian. 
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However, the absolute value of the Kurtosis is used for simplicity since it is only needed 

to know if the signal is non-Gaussian or not [33, 38, 39, 40].    

2.4.2   Fixed-point FastICA algorithm using kurtosis 

In the previous section, the Kurtosis has been introduced as a measure of non-Gaussianity 

[32]. The advantage of such technique can be adapted by neural networks [36]. However, 

the convergence is slow and the choice of the input sequence has to be chosen carefully 

[40]. A bad choice of the input sequence would lead to divergence. Alternatively, the 

fixed-point iterative algorithm that has been developed by Hyvarinen and Oja is used 

[39]. To achieve a more efficient fixed-point iteration, the gradient must point to the 

direction of the weight vector 𝒘𝒎 = [𝑤1,𝑤2, … ,𝑤𝑀]𝑇. The gradient must equal to 𝒘𝒎 

multiplied by some value. As a result, the weight vector 𝒘𝒎 can be written as [39]: 

                                                 𝒘𝒎 = [𝐸{𝒁(𝒘𝒎
𝑻 𝒁)3} − 3‖𝒘𝒎‖2𝒘𝒎]                          (2.15) 

Equation (2.15) is further simplified as a fixed-point iteration algorithm by computing the 

right hand side and assign the new value to 𝒘𝒎. Thus Equation (2.15) can be rewritten as 

follows [39]: 

                                                  𝒘𝒎 ← 𝐸{𝒁(𝒘𝒎
𝑻 𝒁)3} − 3𝒘𝒎                           (2.16) 

                   𝒘𝒎 ←𝒘m ‖𝒘m‖⁄                                                     (2.17) 

The weight vector 𝒘𝒎 is divided by its norm using Equation (2.17) after every 

iteration in the FastICA, is a necessary normalization step to keep the variance of the 

term 𝒘𝑚
𝑇 𝒁 constant [33]. If the PCA is considered as a preprocessing stage prior to the 

FastICA, the FastICA algorithm would have the following steps: 

1. Center the input 𝑿. 

2. Whiten the 𝑿cen matrix to give 𝒁. 
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3. Choose 𝑀 the number of independent components to be estimated. 

4. Initialize the first vector w to any random numbers.   

5. Run the FastICA algorithm on 𝒘. 

6. Normalize 𝒘 by dividing it by its norm. 

7. If 𝒘 has not converged, go back to step 3. 

where w is a vector in 𝑾 = [𝒘𝟏,𝒘𝟐,𝒘𝟑, … ,𝒘𝑴]𝑻 . However, it can be noticed that the 

algorithm searches for a single weight vector in 𝑾 which means only one signal can be 

estimated. That is why this method is called one-unit FastICA [32]. To estimate the other 

weight vectors 𝒘𝑀 , an orthogonalization step is needed after the search has converged to 

the first weight vector 𝒘𝟏 [40]. Otherwise, the search might converge to the same 

maxima [34] if other initial values were to be applied in step 2. Actually, this iterative 

technique has a very fast convergence and reliable [30]. The algorithm has two main 

superior advantages over the normal gradient-based algorithms. Firstly, the convergence 

of this algorithm is cubic. It implies that the convergence is rapid [31]. Secondly, this 

algorithm has no learning rate or other adjustable parameters [32].    

2.5      FastICA using orthogonalization techniques  

So far, the search algorithm that has been discussed finds one component in the mixture. 

In most of time, 𝑿 has more than one component, that is why it is necessary to account 

for the other components in the weight matrix 𝑾. Also, the search algorithms don’t 

usually converge to orthogonal results as in theory [32], which is why orthogonalization 

must be applied at every step in FastICA [41]. The key concept of orthogonalization is 

that the weight matrix 𝑾 corresponds to the different components in the projection 
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subspace. The most common techniques are the Gram-Schmidt or sometimes called 

deflationary orthogonalization method and the symmetric orthogonalization [32]. 

2.5.1   FastICA using deflationary orthogonalization 

Deflationary orthogonalization is simple and the oldest technique in orthogonalization 

[41]. It estimates the independent components one by one using Gram-Schmidt method. 

Followed by running the one-unit FastICA for 𝒘𝑚 where m is the number of independent 

components 𝑚 = 1, . . ,𝑀 . After every iteration, projections (𝒘𝑚+1
𝑇 𝒘𝒊)𝒘𝒊 where 

𝑖 = 1, … ,𝑀 of the previously estimated m vectors is subtracted from 𝒘𝑚+1 [31]. After 

the first successful calculation, the values of the first weight vector 𝒘1  are obtained. 

Similarly, after the mth iteration , the values of the corresponding vector 𝒘m are obtained. 

The resulting values of all the vectors obtained from the iterations are placed in the final 

unmixing matrix 𝑾 of size 𝑀 × 𝑀.  

It is worth noting that for simplicity purposes, an intermediate matrix 𝑩  is used by 

the algorithm to hold the values of the generated 𝒘m as they are obtained in the 

corresponding iteration. When the final iteration is complete, the final separation matrix 

𝑾 is equivalent to 𝑩. 

The final output matrix 𝒀 is then obtained by multiplying 𝑾 by the whitened data matrix 

𝒁 [32, 34, 42, 43]. 

The deflationary orthogonalization can be added to the one-unit FastICA so that the 

algorithm can separate M independent components using the following steps [30]: 

1. Center the input 𝑿 so that it has zero mean. 

2. Whiten the 𝑿𝑐𝑒𝑛 matrix to give 𝒁. 

3. Choose 𝑀, the number of independent components to be estimated. (set 𝑚 = 1). 
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4. Initialize the vector 𝒘𝑚 to any random numbers.   

5. Initiate the FastICA algorithm on 𝒘𝑚. 

6. If 𝒘𝑚 has not converged, go back to step 3. 

7. Start the deflationary orthogonalization using the following Equation: 

                                       𝒘𝒎 ←𝒘𝑚 − ∑ �𝒘𝑚
𝑇 𝒘𝑗�𝒘𝑗𝑚−1

𝑗=1       (2.18) 

8. Normalize 𝒘𝑚 by dividing it by its norm. 

                                    𝒘𝑚 = 𝒘𝑚 ‖𝒘𝑚‖⁄                                                          (2.19) 

9. Set 1+← mm . If m is not greater than the desired number of IC, go back to step 2. 

The norm in step 7 is the second norm [32]. The Deflationary orthogonalization is 

shown in Fig. 2.5. It is clear that the process is serial, which indicates that the weight 

vectors  𝒘𝑀  are calculated sequentially. 

 

Figure 2.5: Deflationary orthogonalization block diagram 

2.5.2   FastICA using symmetric orthogonalization  

In some cases, sequential orthogonalization like the deflationary approach is not suitable 

for implementation [28]. Symmetric orthogonalization on the other hand finds the 

orthogonal vectors 𝒘𝑚 that are the vectors of 𝑾 in parallel. Symmetric orthogonalization 

is performed by first initiating the iterative step of the one-unit algorithm on 𝑾, followed 
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by orthogonalizing 𝑾 using symmetrical method. The symmetrical orthogonalization is 

performed using the following equation [30, 32, 36]: 

                                                              𝑾← (𝑾𝑾𝑇)−1 2⁄ 𝑾      (2.20) 

In other words the FastICA steps using the symmetrical orthogonalization can be 

described as: 

1. Center the input 𝑿 so that it has zero mean. 

2. Whiten the 𝑿cen matrix to give 𝒁. 

3. Choose 𝑀, the number of Independent components to be estimated. (Set 𝑚 = 1). 

4. Initialize the vector 𝒘𝑚  𝑚 = 1, … ,𝑀 to any random numbers.   

5. Initiate the FastICA algorithm on every 𝒘𝑚 in parallel. 

6. Perform a symmetric orthogonalization of the matrix 𝑾 = [𝒘𝟏, … ,𝒘𝒎]𝑇 using 

Equation (2.20). 

7. Normalize 𝑾 by dividing it by its norm. 

8. If 𝑾 has not converged, go back to step 3. 

The inverse square root (𝑾𝑾𝑻)−1 2⁄  is obtained from the eigenvalue decomposition of 

(𝑾𝑾𝑻) = 𝑬 𝑑𝑖𝑎𝑔(𝑑1, … ,𝑑𝑚) 𝑬𝑇  [29], where E is an 𝑀 × 𝑀 matrix that contains the  

eigenvectors of (𝑾𝑾𝑻) and �𝑑1
−1 2⁄ , … , 𝑑𝑚

−1 2⁄ � are the eigenvalues of (𝑾𝑾𝑻). The 

eigenvalue decomposition can be further expanded as [38]: 

        (𝑾𝑾𝑻)−1 2⁄ = 𝑬 𝑑𝑖𝑎𝑔�𝑑1
−1 2⁄ , … , 𝑑𝑚

−1 2⁄ �𝑬𝑇        (2.21) 

Fig. 2.6 shows FastICA algorithm using symmetrical orthogonalization. The 

algorithm starts by initializing 𝑾𝑖𝑛𝑖𝑡𝑖𝑎𝑙  to some random values. The orthogonalization is 

performed after every iteration in the FastICA. The FastICA algorithm is monitored by 

two parameters 𝜀 and the maximum number of iterations [32].  
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Figure 2.6: FastICA algorithm using Symmetric Orthogonalization  

Notwithstanding, this method has some practical limitation due to the complexity of 

the matrix inversion calculation [30], especially when the order of W is high. An 

alternative iterative approach reported in [30, 32, 38] is used to solve this issue and is 

described by:  

1. 𝑾 = 𝑾 ‖𝑾‖⁄                                                 (2.22) 

2. 𝑾 = 3
2
𝑾 − 1

2
𝑾𝑾𝑇𝑾                                                         (2.23)      

3. If  𝑾𝑾𝑻  is not close enough to the identity matrix go back step 2. 

The technique starts with a non-orthogonal matrix 𝑾. The iterations continue until 

𝑾𝑾T~ 𝑰 is achieved. The convergence of the method is proven in Appendix A.  

The advantage of this technique relies on the fact that matrix inversion is 

computationally intensive and calculating Equation (2.20) in every loop in the FastICA 

renders the hardware slow and inefficient [39]. Instead, Equations (2.22) and (2.23) are 

used to replace Equation (2.20). The norm in Equation (2.22) can be any norm, but for 

simplicity the second norm is used which is the maximum summation of the largest 

absolute value of any row or column in the weight matrix 𝑾 [30, 41, 42]. 
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2.6  Summary 

In this chapter, the PCA and ICA models have been explained. Independent component 

analysis (ICA) is a method for finding underlying factors or components from 

multivariate (multidimensional) statistical data. What distinguishes ICA from other 

methods is that it looks for components that are both statistically independent and non-

Gaussian where the PCA just decorelates the signals based on their variances. This 

chapter also explained the FastICA algorithm and how to use orthogonalization 

techniques to find all components of 𝑾. In addition, deflationary and symmetrical 

orthogonalizations methods were discussed.  
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Chapter 3 

Proposed Architecture and FPGA Implementation 

 

3.1       Introduction 

Having presented the PCA and FastICA algorithms in Chapter 2, I now detail the 

implementation process of the FastICA using PCA as a preprocessing stage. In Section 

3.2, the proposed model is explained, after which the realization of the eigenvalues and 

eigenvectors is given in Section 3.3.  The FastICA orthogonalization process is explained in 

Section 3.4. Section 3.5 gives the details of the hardware implementation while Section 3.6 

presents the final implementation of the algorithm. The chapter ends with a summary in section 

3.7.  

3.2       Proposed model 

The proposed BSS model accepts up to four input sensors. This assumption is interrupted 

as the model can separate up to four mixed signals in the mixture. The sources in the 

mixture are assumed to be independent and non-Gaussian. Let 𝒀 describes the separated 

signals in Equation (2.1) with the model being expanded to account for 4 signals. The 

number of samples is set to 𝑁 = 128. The components of 𝒀 are estimated by multiplying 

the 4 ×  4 unmixing matrix 𝑾 by the 4 ×  128 input matrix 𝑿. It is noted that the input 

signals are also assumed to be independent and non-Gaussian.  

                                  𝒀 = 𝑾𝑿 = �

𝑤11

𝑤21

𝑤31
𝑤41

  𝑤12

  𝑤22

  𝑤32
  𝑤42

  𝑤13

  𝑤23

  𝑤33
  𝑤43

  𝑤14

  𝑤24

  𝑤34
  𝑤44

� �

𝑥11
𝑥21

𝑥31
𝑥41

  𝑥12
  𝑥22

  𝑥32
  𝑥42

  𝑥13

  𝑥23

  𝑥33
  𝑥43

⋯
…
⋯
…

  𝑥1,128
  𝑥2,128

  𝑥3,128
  𝑥4,128

�                    (3.1) 
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Equation (3.1) shows the mathematical model used in the separation of the mixed signals. 

The goal of the ICA algorithm is to estimate the unmixing matrix 𝑾. To do so, the PCA 

algorithm is first applied to force the signals to be uncorrelated and then the FastICA 

algorithm is applied. However, calculating the whitening matrix is not straightforward 

since the 𝑪𝑥 have the same dimension as 𝑾, i.e. 

 𝑪𝒙 = �

𝑐11
𝑐21
𝑐31
𝑐41

  𝑐12
  𝑐22
  𝑐32
  𝑐42

  𝑐13
  𝑐23
  𝑐33
  𝑐43

  𝑐14
  𝑐24
  𝑐34
  𝑐44

�                                            (3.2) 

Finding the eigenvalues and eigenvectors algebraically for large covariance 

matrices such as Equation (3.2) is not computationally efficient. Instead, numerical 

solution is used in implementation [28]. However, only few iterative techniques can 

converge to find all the eigenvalues of the required matrices. For example, the power 

method finds only the dominant eigenvalue. Moreover, the convergence of the power 

method is the eigenvalues convergence is too slow and is not suitable for implementation 

[28]. The only simple and robust numerical solution that can find all eigenvalues and 

eigenvectors is the QR decomposition method [43]. However, the method works only on 

symmetric and positive definite matrix, fortunately, the 𝑪𝒙 have these two properties [44, 

45]. 

Since the covariance matrix is symmetrical, the only elements in the covariance 

matrix that are not repeated are the diagonal elements. Hence, the covariance matrix can 

be put in the form: 

                                     𝑪𝒙 = �

𝑐11
𝑐01
𝑐02
𝑐03

  𝑐01
  𝑐11
  𝑐12
  𝑐13

  𝑐02
  𝑐12
  𝑐33
  𝑐23

  𝑐03
  𝑐13
  𝑐23
  𝑐33

�                                                 (3.3) 
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3.3       Realization of eigenvalues and eigenvectors  

In this thesis, the QR decomposition is used to find the eigenvalues and eigenvectors 

numerically instead of finding them algebraically. Figure 3.1 shows the flow chart that 

describes the QR decomposition method [26].  

The value K is the number of the maximum iterations. There is no specific value for K, 

however, QR decomposition can achieve good result if the value of K is more than 10 

[26]. Nevertheless, in this work, it is decided to set 𝐾 = 20 so that the result of the QR 

decomposition is approximately close to 3-significant figures. The matrices 𝑹 and 𝑸 that 

result from the method are both of size 𝑀 ×𝑀. High-precision approximation is required 

because the hardware implementation is carried out using fixed-point number system and 

the error that builds in the calculation may affect the result of the QR decomposition 

method. 

 

Figure 3.1: QR decomposition flowchart 
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According to Fig. 3.1, the eigenvalues are obtained by taking the diagonal elements 

of the 𝑹 matrix. However, the eigenvectors require more steps to get the final 𝑬 matrix. 

The output of the flowchart given in Fig. 3.1 is two matrices 𝑫 and 𝑬 representing 

the eigenvalues and eigenvectors respectively. Their role is to obtain the whitening 

matrix 𝑽 as given in Equation (3.4) given as follow:  

 

 𝑽 = 𝑫−𝟏/𝟐𝑬𝑻 = �
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�
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         (3.4) 

 

In the equation, for each eigenvector of matrix 𝑬 (e.g. [𝑒11   𝑒12  𝑒13  𝑒14]𝑇) is 

represented by a column denoting the corresponding eigenvalue in matrix 

𝑫 ([𝑑1
−1 2⁄ 0  0  0]𝑇). 

The uncorrelated output 𝒁 is obtained by multiplying the whitening matrix 𝑽 

obtained from Equation (3.4) by 𝑿𝒄𝒆𝒏. Fig. 3.2 shows the complete centering and 

whitening process using the QR decomposition.   

 

Figure 3.2: Whitening block diagram 
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3.4       FastICA using symmetric orthogonalization  

This thesis focuses on implementing the FastICA algorithm by utilizing symmetric 

orthogonalization. This modification entails that the final unmixing matrix 𝑾 (shown in 

Fig. 2.6 of Chapter 2) is 4 × 4 as given in Equation (3.1).   

To begin with, finding the symmetric orthogonalization of the unmixing matrix 𝑾 

((𝑾𝑾𝑇)−1 2⁄ 𝑾 given in Equation (2.20) requires calculating the term (𝑾𝑾𝑇)−1 2⁄ . A 

standard algebraic method is to multiply the eigenvalues and eigenvectors 𝑬 and 𝑫 of the 

term (𝑾𝑾𝑇) [31]. The problem is that for higher-order matrices (such as the 4 ×

4 unmixing matrix 𝑾 of this work), calculating the eigenvalues and eigenvectors 𝑬 and 

𝑫 (both 4 × 4)  is computationally-intensive [32]. What complicates the matter further is 

that this calculation must be performed iteratively in every step of the FastICA algorithm 

given in Chapter 2.  

Alternative approaches have been proposed. One such approach is to use an 

iterative model to speed up the process of symmetrical orthogonalization.  This approach 

was introduced in Chapter 2, Equations (2.22) and (2.23). Indeed, the iterative method 

converges to the same solution provided by the more expensive algerbraic method after 

less than 20 iterations as the simulation I performed given in Fig. 3.3 shows. The 

simulation given in the figure is separates the sources using the iterative method. The x-

axis represents the number of iterations required for convergence while the y-axis 

represents the error between the current result of the iterative approach and the final 

result given by the algebraic approach. The simulation ends when the two solutions 

match giving zero error.  

The figure does not mean that the iterative solution is slower than the algebraic one 
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because we are only modeling the number of iterations and not the time required to reach 

a solution. In fact, the 15 iterations performed by the iterative method converge to a 

solution much faster than the computations performed algebraically. This is a known 

property of iterative methods [34].  

 

Figure 3.3: Symmetrical orthogonalization simulation using iterative approaches 

3.5       FPGA implementation  

It is well-known that the FPGA implementation of the FastICA algorithm is carried out 

using XILINX virtex5-XC5VLX50t FPGA chip. The LX50t chip has superior speed and 

larger area over the other virtex5 family [46]. The design is implemented using VHDL 

language. Since the system is designed to account for higher order data (four sensors), 

hierarchy is adopted throughout the design to provide a better control over the overall 

hardware structure and to monitor the overflow and underflow of each block. 

Furthermore, implementation of DSP systems using floating-point arithmetic 

requires a huge hardware area and may lead to inefficient design especially for FPGA 

implementation [18]. On the other hand, fixed-point representation results in efficient 

hardware design. In this thesis, two’s complement fixed-point arithmetic, is used. It 
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consists of an integer part and a fractional part as shown in Fig. 3.4. 

 

    Figure 3.4: Fixed-point representation 

The word length was selected based on several simulation attempts. Most of the 

results were faulty when a small word length was used since the small word length was 

not sufficient to represent the values. After several simulations attempts, the choice of the 

word length was decided not to be the same for various implementation blocks. For 

example, the QR decomposition block, the I/O and the intermediate signals word lengths 

were set to (26:13) which indicates 26 bits with 13 bits representing the integer part and 

13 bits representing the fractional bits. This way, the integer part can represent numbers 

in the range of 213 = 8192.  For the Centering and Covariance blocks, the word length 

was set to 16 bits because the calculation of the Centering and the Covariance were not 

complex and 16 bits were enough to represent for the intermediate variables like signals 

and storage elements within the implementation blocks. In general, the word lengths of 

the other blocks are listed in Table 3.1: 
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Table 3.1:  Blocks word length used. 

BLOCK Word length measured in bits 
Integer fractional 

Centering 8 8 
Covariance 8 8 

QR decomposition 13 13 
Whitening 13 13 

Symmetric orthogonalization 13 13 
One-unit FactICA 13 13 

FastICA 13 13 
    

3.6       Hardware implementation  

This Section describes the implementation stages of the complete system. The main block 

is divided into two stages namely Whitening and FastICA as shown in Fig. 3.5. Both 

stages have no control over each other. However, when the first stage, i.e. the whitening 

stage finishes its operation and the result is ready, the second stage is triggered by the 

main controller in Fig. 3.5. The main controller starts the process of the entire design; it 

enables and disables each block in the design based on the order of operation.  

The controller consists of a finite state machine (FSM). The GO_FASTICA and 

GO_whitening signals are used to enable both stages in the design. In addition, 

CLK_whitening and CLK_FASTICA are the clocks supplied to Whitening and FastICA 

blocks. Address_sel_mem1 and CLK_mem1 are used for an intermediate RAM that 

holds the result of the Whitening stage and feed it to the FastICA block when required. 

Different clocks are used to reduce the power consumption and to provide a better control 

over the design. First, the controller activates the Whitening block to preprocess the 

signals and when the process is complete, the Whitening_busy signal becomes low 

allowing the controller to activate the FastICA. However, in order to pipeline the design, 

the Whitening block stays on after the process is complete to process another packet of 

data while the FastICA block is processing the first whitened packet of whitened data. 
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New_one control signal activates the whole process again when the FastICA finishes 

processing the first packet, the signal FastICA_Busy goes low when the first packet is 

processed by the FastICA to indicate that FastICA is ready to take another block of data 

from the Whitening block. Each packet contains 26 × 128 × 4 bits of data stored in a 

ROM. Nevertheless, for the sake of simulation, only one packet of 128 samples is used in 

testing the implementation.  

 

Figure 3.5: Main implementation block  
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Table 3.2: Complete system FPGA resources utilization report. 

Information Count Percentage Use 
Slice Registers 27779  of  28800     96% 

Slice LUTs 28403 of 28800 99% 
Slice LUTs used as Logic 28584 of 28800 99% 
Slice LUTs used as RAM 413  
LUT Flip Flop pairs used 27674  

LUT Flip Flop pairs with an unused Flip Flop 10689 of 27674 39% 
LUT Flip Flop pairs with an unused LUT 5432 of 27674 20% 

Fully used LUT-FF pairs 11553 of 27674 41% 
Unique control sets 326  

IOs 240  
Bonded IOBs 240 of 360 67% 

BUFG/BUFGCTRLs 26 of 32 81% 
Block RAM/FIFO 51 of 60 85% 

DSP48Es 45 of 48 94% 
 

Table 3.3: Complete system performance report. 

Clock 
name Frequency response MAX operating frequency Estimated period Input 

sampling 

CLK 20.0 MHz 16.2 MHz 62.5 ns 1.857 
KSPS 

 

Table 3.2 shows the complete system FPGA resources utilization report. In can be 

noticed that the system has been fully synthesized on a single FPGA chip since the area 

of implementation is still less than 28800 registers which is the available Slice registers in 

virtex5-XC5VLX50t. The total number of I/O pins used is 240 pins out of 360. Table 3.3 

shows the maximum operating clock which is measured as 16.2 MHz when the system 

CLK is 20 MHz. The following sections describe the details of implementation of the 

algorithm.  

3.6.1    Implementation of whitening 

The Whitening block contains three stages namely, Centering, Covariance, and QR 

decomposition blocks as shown in Fig. 3.6. 
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Figure 3.6: Whitening block 

The first stage is the Centering block where the data is first fetched from the 

memory and the expected values are calculated and subtracted from the 𝑿 according to 

Equation (2.2). The second stage calculates the covariance matrix of the centered signals 

while the third stage calculates the eigenvalues and eigenvectors of the covariance 

matrix. The MAIN CONTROLLER activates the Whitening block first. The Whitening 

implementation block is shown in Fig. 3.7. There are 128 samples fetched to the 

centering block for processing. RAM block 1 is activated to store 𝑿𝑐𝑒𝑛 after the data is 

centered. R_w1 and R_w2 are the controller’s read and write operations in both RAM 

Modules. RAM Module 2 is in read mode as the Whitening result is available and the 

whiten_busy signal goes low. Multiplier 2 whitens the data by multiplying the 𝑽 by 𝑿𝑐𝑒𝑛. 

RAM Module 2 keeps the whitened results for further analysis by other blocks. In 

addition, the data in RAM Module 2 will be available until another packet of information 

is processed and is ready to be written into RAM 2.  
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Figure 3.7: Whitening implementation block 

Table 3.4 shows the resources utilization of the Whitening block when implemented 

separately.  The overall area utilization is about 25% of the overall FPGA chip area. In 

addition, Table 3.5 indicates the Whitening maximum frequency, which is measured as 

63 MHz when the block is simulated using the input CLK_Whitening set to 50 MHz . 

Table 3.6 is an extension of Table 3.5. It shows the timing details of CLK_Whitening 

through the Whitening clock.  

Table 3.4: Whitening FPGA resources utilization report. 

Information Count Percentage 
Use 

Slice Registers 7407  of  
28800     

25% 

Slice LUTs 8382 of 
28800 29% 

Slice LUTs used as Logic 8202 of 
28800 28% 

Slice LUTs used as RAM 180  
LUT Flip Flop pairs used 10834  

LUT Flip Flop pairs with an unused Flip 
Flop 

3427 of 
10834 31% 

LUT Flip Flop pairs with an unused LUT 2452 of 22% 
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10834 

Fully used LUT-FF pairs 4955 of 
10834 45% 

Unique control sets 368  
IOs 240  

Bonded IOBs 240 of 360 67% 
BUFG/BUFGCTRLs 1 of 32 3% 

Block RAM/FIFO 11 of 60 18% 
DSP48Es 27 of 48 56% 

 

Table 3.5: Whitening performance report. 

Clock name Input frequency MAX operating 
frequency 

Estimated 
period 

Input 
sampling 

CLK_Whitening 50.0 MHz 62.189 MHz 16.08 ns 6.857 KSPS 
 

Table 3.6: Whitening timing report. 

Clock name Path name Estimated 
Frequency Estimated period 

CLK_Whitening Input to Register 135.2 MHz 7.3964 ns 

CLK_Whitening Register to 
Register (worst case) 62.189 MHz 16.08 ns 

CLK_Whitening Register to Output 265.4 MHz 3.7679 ns 
 

It is worth noting that there is an apparent discrepancy between the input frequency 

in Tables 3.3 and 3.5. In order to explain this, I draw attention to the fact that for blocks 

varying in complexity, the maximum frequency that can be assigned to the block will 

vary. This is because each block can take a certain frequency  after which the simulation 

will not be correct due to internal delays.  

For example, in Table 3.3, the input frequency assigned to the complete system has 

to be low to account for all the blocks in the design to avoid timing problems. This is 

because if a higher frequency is used, the intermediate blocks will not produce the correct 

results in time for the following blocks to process the data. Using the same logic, a higher 

frequency was used in Table 3.5 as the system is simpler than that of Table 3.3 and will 
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therefore permit such increase. In the rest of this section, different input frequencies will 

be set to accommodate the design complexity accordingly.  

3.6.1.1 Implementation of Centering block 

The centering stage is the first sub block of the whitening operation. Centering means 

removing the mean of each input vector (128 samples) by subtracting the mean values 

from the original signals. The Centering stage contains 16-bit adders, 16-bit dividers and 

16-bit subtractors. The mean of the four signals are calculated simultaneously since the 

signals are loaded at the same time to the Centering block as shown in Fig. 3.8. Table 3.7 

also shows the mean gate-level results in comparison with the simulated MATLAB. 

According to Table 3.7, the results from the MATLAB simulation is considered very 

close to the gate-level simulation. 

 

Figure 3.8: Implementation of centering 

In addition, the accuracy of the Centering block can be increased by increasing the 

number of bits per word but since the block doesn’t play a major rule in the 
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implementation process, 16 bits is considered adequate for all signals in the Centering 

block given in Fig. 3.8. 

Table 3.7: Mean calculations result. 

  

 

 

The Centering Controller enables the three blocks in series using FSM. After the adder’s 

result is available, a 16-bit divider is used to compute the mean of the four results over 

128 samples according to Equation (2.4). Moreover, the ROM that holds the input 

requires 128 cycles to load the 128 input samples to the Centering block. In addition, the 

adder, the divider and the subtractor require 3 clock cycles to complete their task. 

According to the simulation results, the Centering output is available after 131 clock 

cycles. Table 3.8 shows the Centering FPGA resources utilization report. Table 3.9 shows 

the maximum frequency when the input the CLK_cen frequency is 100 MHz. It is measured 

as 150.7 MHz, in other words, this block cannot accept more than 150 MHz as CLK_cen.  

Table 3.10 provides more details about the CLK_cen path throughout the design.  

Table 3.8: Centering FPGA resources utilization report. 

Information Count Percentage Use 
Slice Registers 2548 of  28800 8% 

Slice LUTs 1417 of  28800 4% 
Slice LUTs used as Logic 1417 of  28800 4% 

LUT Flip Flop pairs with an unused Flip Flop 369 of 2917 12% 
LUT Flip Flop pairs with an unused LUT 1500 of 10865 51% 

Fully used LUT-FF pairs 1048 of 10865 35% 
Unique control sets 146  

IOs 134  
Bonded IOBs 0 of 360 0% 

Block RAM/FIFO 4 of 60 6% 
 

 

Variable name MATLAB Result Gate-level Simulation 
res1 0.3488 0.3486 
res2 0.2758 0.2756 
res3 0.3044 0.3041 
res4 0.2663 0.2661 
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Table 3.9: Centering performance report. 

Clock 
name Input frequency MAX operating 

frequency Estimated period Input sampling 

CLK_cen 100.0 MHz 150.7 MHz 6.6340 ns 231.194 KSPS 
 

Table 3.10: Centering timing report. 

Clock name  Path name Estimated Frequency  Estimated period 
CLK_cen Input to register 538.2 MHz 1.8580 ns 
CLK_cen Register to register(worst case) 150.7 MHz 6.6340 ns 
CLK_cen Register to output 2123.1 MHz 0.4710 ns 

 

3.6.1.2 Implementation of the covariance matrix 

The covariance matrix in Equation (2.5) is realized in hardware using multiplier and 

divider units and a 16-bit register is used to hold the covariance result. Fig. 3.9 shows the 

Covariance matrix implementation. The Multiplier Module performs most of the 

calculations of the covariance matrix. According to Equation (3.3), 10 multiplications are 

required to calculate a 4 × 4 covariance matrix since there are 6 repeated elements in the 

covariance matrix. The Multipliers are based on the onboard XLINIX LogiCORE IP 

multiplier core [46]. XILINX multipliers reduce time and area in the FPGA chip 

resources. The XILINX IP multiplier takes 5 clock cycles to converge to the answer [46]. 

The multipliers have to process all the 128 samples, thus the multiplier module requires 

128 × 5 clock cycles to converge to the answer. The adder/divider module uses the 

XILINX adder and the LogiCORE IP fixed-point divider v.4. The adder/divider module 

performs the 𝐸[∙] operation in Equation (3.3). The COVAR Controller unit enables each 

block based on the availability of the result in every block. 
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Figure 3.9: Implementation of the covariance matrix 

The COV_busy goes low when the result is available by the covariance register. Table 

3.11 shows the Covariance matrix implementation’s simulation for the example in Fig. 

2.3. The word length used is (16:7) bits where 7 bits are reserved for the fractional part. 

It can be seen that the result is correct up to three significant figures which is an 

acceptable result when used as input for the other blocks.  

Table 3.11: Covariance matrix implementation result. 

𝑪𝒙 MATLAB simulation Gate-level simulation 
𝑐11 𝑐12 𝑐13 𝑐14 2.5563 1.2269 1.2417 1.2220 2.5557 1.2266 1.2412 1.2217 
𝑐21 𝑐22 𝑐23 𝑐24 1.2269 1.2877 1.4621 1.2220 1.2266 1.2871 1.4614 1.2290 
𝑐31 𝑐32 𝑐33 𝑐34 1.2417 1.4621 1.7307 1.3725 1.2414 1.4614 1.7300 1.3721 
𝑐41 𝑐42 𝑐43 𝑐44 1.2220 1.2296 1.3725 1.1819 1.2217 1.2290 1.3721 1.1816 
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Table 3.12: Covariance matrix FPGA resources utilization report. 

Information Count Percentage Use 
Slice Registers 2228 of 28800 7% 

Slice LUTs 1165 of  28800 4% 
Slice LUTs used as Logic 1149 of  28800    3% 

Slice LUTs used as Memory 16 of 7680 0% 
Slice LUTs used as RAM 16  
LUT Flip Flop pairs used 2717  

LUT Flip Flop pairs with an unused Flip Flop 489 of 2717     18% 
LUT Flip Flop pairs with an unused LUT 1552 of 2717     57% 

Fully used LUT-FF pairs 676 of 2716     24% 
Unique control sets 149  

Bonded IOBs 149 of 360 41% 
Block RAM/FIFO 3 of 60 5% 

DSP48Es 1 of 48 2% 
 

Table 3.13 and 3.14 show the max frequency of the covariance matrix block when the 

input CLK_COVAR is 100 MHz.  

 

Table 3.13: Covariance performance report. 

Clock name Input 
frequency 

MAX operating 
frequency 

Estimated 
period 

Input 
sampling 

CLK_COVAR 100.0 MHz 158.3 MHz 6.319 ns 35.763 KSPS 
 

Table 3.14: Covariance timing report. 

Clock name  Path name Estimated Frequency  Estimated period 
CLK_COVAR Input to register 272.3  MHz 3.6730 ns 
CLK_COVAR Register to register(worst case) 158.3 MHz 6.3190 ns 
CLK_COVAR Register to output 2123.1 MHz 0.4710 ns 

 

3.6.1.3 Implementation of QR decomposition   

QR decomposition has two stages. The first stage is the implementation of the main QR 

decomposition and the second stage is reserved for rearranging the eigenvalues and 

eigenvectors. XILINX ACCELDSP tool 10.0 offers a complete pipelined QR 

decomposition block. Unfortunately, the block’s results (Q and R) produced by 
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ACCELDSP tool are not aligned properly (each vector in Q does not correspond to the 

same vector in R). Later this could cause the Whitening process to produce a faulty result 

(refer to equation 3.4). An extra stage is required to make sure that all the eigenvalues in 

R matrix correspond to all the eigenvectors in Q. Fig. 3.7 shows the complete 

implementation of the Whitening block including the eigenvalues and eigenvectors 

conditioning blocks. The eigenvector conditioning block aligns and calculates 𝑸𝑇. The 

eigenvalue condition block aligns the R matrix and calculates the term 𝑹−1 2⁄ . It is 

important to mention that the matrix R has only diagonal elements and the rest of the 

elements in R are zeroes, which means that only 4 elements are needed from the 4 × 4 R 

matrix in the implementation. According to Equation (3.4) this reduces the calculation of 

the matrix 𝑹−1 2⁄  to only calculate the elements ((r11)-1/2, (r22)-1/2, (r33)-1/2, (r44)-1/2). Four 

XILIX LogiCORE parallel square root modules are used for this purpose. It is imperative 

to know that QT and 𝑹−1 2⁄   operations that are explained earlier are not part of the QR 

decomposition but they are whitening operations incorporated within the QR 

decomposition to pipeline the design, according to Equation (3.4).  Tables 3.15-3.1 7 

show the QR implementation and timing reports. 

Table 3.15: QR FPGA resources utilization report. 

Information Count Percentage Use 
Slice Registers 1221 of 28800 4% 

Slice LUTs 2536 of 28800 8% 
Slice LUTs used as Logic 2516 of 28800 8% 
Slice LUTs used as RAM 20  
LUT Flip Flop pairs used 2808  

LUT Flip Flop pairs with an unused Flip Flop 1587 of 2808 56% 
LUT Flip Flop pairs with an unused LUT 272 of 2808 9% 

Fully used LUT-FF pairs 949 of 2808 33% 
Unique control sets 230  

Bonded IOBs 84 of 360 23% 
BUFG/BUFGCTRLs 1 of 32 3% 

Block RAM/FIFO 4 of 60 6% 
DSP48Es 18 of 48 37% 
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Table 3.16: QR performance report. 

Clock name Input frequency MAX operating frequency Estimated period Input sampling 
CLK_QR 50.0 MHz 76.5 MHz 13.0730 ns 10.657 KSPS 

 

Table 3.17: QR timing report. 

Clock name  Path name Estimated Frequency  Estimated period 
CLK_QR Input to Register 225.2 MHz 4.4410   ns 
CLK_QR Register to Register (worst case)  76.5   MHz 13.0730 ns 
CLK_QR Register to Output 306.4 MHz 3.2640   ns 

 

The QR decomposition maximum frequency is 76.5 MHz when the input CLK_QR 

is set to 50 MHz. The maximum operating frequency of the Whitening block is dictated 

by the slowest block in the design. For example, the slowest block in the Whitening block 

is the QR decomposition. According to Table 3.5, the Whitening maximum frequency is 

62 MHz when all the blocks are simulated together.    

3.6.2   FastICA implementation 

The FastICA block contains the Symmetric orth, the One-unit FastICA, NORM Divider 

and the error Calculation blocks as shown in Fig. 3.10. The Symmetric orth and the Norm 

Divider are the implementations of Equation (2.22) and (2.23) respectively.  

 

 

 

 

 

Figure 3.10: FastICA blocks 

The Error Calculation block plays a major role in monitoring the convergence of the 

algorithm and decides wither to stop the separation or to keep the search active by 

Norm Divider 

Error Calculator Symmetrical orthogonalization 

One-unit FastICA 

FASTICA 
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passing the result of the one-unit FastICA back to the Symmetric orth block. Once the 

term   𝑾𝑇𝑾  is close to the identity matrix, the result is passed to multiplier Module 1 to 

get the separation matrix 𝑾. However, if the result is not converged, the global stopping 

criterion is set to 70 iterations, which is in most cases more than enough for convergence. 

According to Equation (3.1), the separated signals are calculated by multiplying 𝑾 by the 

whitened data 𝒁. This process is achieved by Multiplier Module 2. The Module contains 

4 multipliers in parallel used to multiply the 128 whitened samples by the 4 × 4 

separation matrix 𝑾.  

 

Figure 3.11: FastICA main block 

The Norm Divider BLOCK consists of 26-bit fixed-point adder and divider that add 

the elements of 𝑾 then divide each element of 𝑾 by that value. The RAM block holds 

the result until another set of 128 samples is ready to be written, the rw signal controls the 

read and write operations of the RAM Module 1. The GO_FAST signal triggers the one-
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unit FastICA algorithm to start the search using initial matrix 𝑩𝒊𝒏𝒊𝒕𝒊𝒂𝒍 . The matrix 

contains random arbitrary values that are stored in the One-unit FastICA. Table 3.18 

shows the content of  𝑩𝒊𝒏𝒊𝒕𝒊𝒂𝒍. 

Table 3.18: 𝑩 initial condition. 

𝑏11 𝑏12 𝑏13 𝑏14 -0.1493 -0.5911 0.37934 -0.1747 
𝑏21 𝑏22 𝑏23 𝑏24 2.449 -0.6547 -0.3303 -0.9573 
𝑏31 𝑏32 𝑏33 𝑏34 0.473 -1.0807 -0.4999 1.2925 
𝑏41 𝑏42 𝑏43 𝑏44 0.1169 -0.0477 -0.0359 0.4409 

 

 Once Fast_Busy signal becomes low, the error calculation block is activated to 

determine if the search termination condition is met. The symmetric orthogonalization is 

activated if the FastICA algorithm termination conditions are not met. The process is 

repeated until the algorithm is converged when the error equals to |𝑾+ −𝑾| < 𝜀 which 

is the difference between the current 𝑾+ and the previously calculated 𝑾. The 𝜀-value 

can be chosen to any value but for good approximation it is set to 0.001 [33]. If 𝜀 is not 

reached, the global maximum stopping criterion (GMSC) terminates the search. The 

GMSC was set to 70 iterations based on the results of several simulations. The GMSC 

role is to force the FastICA to quit searching if the algorithm cannot find an optimum 𝑾 

(refer to Fig. 2.5 for more details). 

Table 3.19: FastICA FPGA resources utilization report. 

Information Count Percentage Use 
Slice Registers 19872  of  28800     69% 

Slice LUTs 20021 of 28800 70% 
Slice LUTs used as Logic 19982 of 28800 69% 
Slice LUTs used as RAM 240  
LUT Flip Flop pairs used 18544  

LUT Flip Flop pairs with an unused Flip Flop 3639 of 18544 19% 
LUT Flip Flop pairs with an unused LUT 4352 of 18544 24% 

Fully used LUT-FF pairs 10553 of 18544 57% 
Unique control sets 368  

IOs 240  
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Bonded IOBs 240 of 360 67% 
BUFG/BUFGCTRLs 17 of 32 53% 

Block RAM/FIFO 51 of 60 85% 
DSP48Es 27 of 48 56% 

 

Table 3.19 shows the resources utilization of the FastICA block.  The overall FPGA 

chip area utilized is about 70%. In addition, Tables 3.20 and 3.21 show the maximum 

operating frequency which is 63 MHz when the input CLK_FASTICA is set to 20 MHz.   

Table 3.20: FastICA performance report. 

Clock name Input frequency MAX operating frequency Estimated period Input sampling 
Clock 20.0 MHz 23.3 MHz 43.48 ns 6.857 KSPS 

 

Table 3.21: FastICA timing report. 

Clock name  Path name Estimated Frequency  Estimated period 
Clock Input to Register 76.2 MHz 0.135 ns 
Clock Register to Register (worst case)  23.3 MHz 43.448 ns 
Clock Register to Output 165.4 MHz 6.06 ns 

 

3.6.2.1 Implementation of One-unit FastICA  

One-unit FastICA is the main building block of the FastICA algorithm and is the most 

computationally intensive block throughout the system. Besides the triggering inputs 

signals, the inputs are the whitened signals 𝒁 and result of the Symmetric orth block 𝑾. 

Fig. 3.12 shows the implemented One-unit FastICA algorithm. Five multiplier modules, 

mean block and a subtractor module are used to implement the one-unit FastICA. B 

Decision Block is used to feed multiplier module 5 with the either 𝑩𝒊𝒏𝒊𝒕𝒊𝒂𝒍 or the result of 

the Symmetric orth block. Once the result is available by the subtractor unit, Fast_Busy 

signal goes low triggering the FastICA main controller to proceed and deactivate the unit. 

Deactivating the unit is very important in saving power since no clocks are fed to the one-

unit FastICA, thus saving power.  
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Table 3.22: One-unit FastICA FPGA resources utilization report. 

Information Count Percentage Use 
Slice Registers 19272  of  28800     67% 

Slice LUTs 19821 of 28800 69% 
Slice LUTs used as Logic 19282 of 28800 67% 
Slice LUTs used as RAM 230  
LUT Flip Flop pairs used 18123  

LUT Flip Flop pairs with an unused Flip Flop 3439 of 18123 19% 
LUT Flip Flop pairs with an unused LUT 4152 of 18123 23% 

Fully used LUT-FF pairs 10353 of 18123 57% 
Unique control sets 368  

IOs 139  
Bonded IOBs 139 of 360 39% 

BUFG/BUFGCTRLs 17 of 32 53% 
Block RAM/FIFO 43 of 60 72% 

DSP48Es 20 of 48 42% 
 

Table 3.23: One-unit FastICA performance report. 

Clock name Input frequency MAX operating frequency Estimated period Input sampling 
CLK_FAST 20.0 MHz 25.7 MHz 40.06 ns 8.857 KSPS 

 

Table 3.24: One-unit FastICA timing report. 

Clock name  Path name Estimated Frequency  Estimated period 
CLK_FAST Input to Register 78.2 MHz 0.135 ns 
CLK_FAST Register to Register (worst case)  25.7 MHz 40.06 ns 
CLK_FAST Register to Output 185.4 MHz 5.4    ns 
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Figure 3.12: Hardware implementation of One-unit FastICA  

3.6.2.2 Implementation of Symmetric orth 

The implementation of Symmetric orth in Equations (2.22) and (2.23) are shown in Fig. 

3.13.  The design consists of 2 Multiplier Modules, NORM Calculator BLOCK, SQRT 

Calculator Module and Subtraction Module. The B matrix is fetched to the Symmetric 

orth block by the error calculation block in Fig. 3.11 to find a new orthogonal space. This 

is a required step in the FastICA algorithm so that the One-unit FastICA algorithm starts 

searching for another component in the mixing matrix W. Otherwise, the One-unit 

FastICA will converge to the same weight matrix W.  
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Figure 3.13: Implementation of Symmetric orth using iterative method 

Table 3.25 shows the FPGA chip resources utilization report of the Symmetric orth 

block. The maximum operating frequency is almost 225 MHz when the input 

CLK_Symm is set to 100 MHz as in Table 3.26 while the timing report is provided in 

Table 3.27. It is observed that the estimated maximum frequency is about twice the input 

CLK_Symm, is due to the fact that numerical solution is used instead of the normally 

used matrix inversion in calculating the orthogonalization process (refer to chapter 2 for 

more details).   
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Table 3.25: Symmetric orth FPGA resources utilization report. 

Information Count Percentage Use 
Slice Registers 158 of  28800     0% 

Slice LUTs 199 of 28800 0% 
Slice LUTs used as Logic 199 of 28800 0% 
LUT Flip Flop pairs used 200  

LUT Flip Flop pairs with an unused Flip Flop 42 of 200 21% 
LUT Flip Flop pairs with an unused LUT 1 of 200 0% 

Fully used LUT-FF pairs 157 of 200 78% 
Unique control sets 41  

IOs 34  
Bonded IOBs 34 of 360 9.5% 

BUFG/BUFGCTRLs 1 of 32 3% 
DSP48Es 0 of 48 0% 

 

Table 3.26: Symmetric orth performance report. 

Clock name Input frequency MAX operating frequency Estimated period Input sampling 
CLK_Symm 100.0 MHz 224.1 MHz 4.4630 ns 1120.032  KSPS 

 

Table 3.27: Symmetric orth timing report. 

Clock name  Path name Estimated Frequency  Estimated period 
CLK_Symm Input to Register 457.7 MHz 2.1850 ns 
CLK_Symm Register to Register (worst case)  224.1 MHz 4.4630 ns 
CLK_Symm Register to Output 2123.1 MHz 0.4710 ns 

 

3.7      Summary  

In this chapter, the proposed design and its implementation are presented. The proposed 

BSS model accepts up to 4 input sensors. It means that the model can separate up to four 

mixed signals in the mixture. The proposed Whitening and FastICA architectures and 

their FPGA implementations have been discussed. The proposed Whitening 

implementation is based on the QR decomposition. Also, the FastICA was designed 

based on an iterative symmetrical orthogonalization. The overall system was synthesized 

on a single virtex5-XC5VLX50t FPGA chip. The overall system operating frequency was 

measured as 16 MHz.  
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Chapter 4 

Simulation Results 

 

4.1 Introduction  

This chapter is intended to show the Gate-level simulation of the proposed architecture. 

Since the algorithm is running in off-line mode (the input is stored on a ROM instead of 

obtaining them one by one by means of an analogue to digital convertor (ADC)).  The 

results of the Gate-level simulations are compared with those obtained using MATLAB 

environment. Two experiments are conducted using the proposed architecture. The inputs 

are stored in memory BLOCK 1 in the Whitening block. The operating frequency used 

for both experiments is 10 MHz which is less than the maximum operating frequency, 

i.e.16 MHz.  

4.2 Separating four signals  

The first experiment involves the separation of four signals that are pre-mixed in 

MATLAB. The four signals have the following properties: 

  Signal 1 = 𝑟𝑎𝑛𝑑𝑛(𝑀,𝑁)                                     (4.1) 

  Signal 2 = square(4πt)                                      (4.2) 

      Signal 3 = 𝑠𝑖𝑛(2𝜋𝑡)                                              (4.3) 

      Signal 4 = 𝑠𝑖𝑛(7𝜋𝑡)                                              (4.4)    

where t = [0 , 0.1 , … , 1.5], the signals are randomly mixed by adding them as follows: 
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𝑋1 =(Signal 1 + Signal 2)                                      (4.5)    

𝑋2 =(Signal 3 + 0.6 Signal 2)                                (4.6)    

 𝑋3 =(Signal 1 + 0.9 Signal 4)                                (4.7)    

𝑋4 =(Signal 2 + Signal 4)                                      (4.8)    

Fig. 4.1 shows the signals before the mixing Equations. It is crucial to know the 

information of the signals beforehand so that the results can be compared with the actual 

signals after the algorithm is converged to the answer. Fig. 4.2 shows the signals after 

mixing them.  

 

Figure 4.1: Four signals before mixing 
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Figure 4.2: Four signals after mixing 

Figures 4.3 and 4.4 show the results of the implementation of the algorithm to 

separate the four signals 𝑿1, 𝑿2, 𝑿3 and 𝑿4, each having a (26:13) word length. Fig 4.4 

shows how whitening fails to separate the four signals. However, Figures 4.3 and 4.5 

show the results of separation using the FastICA algorithm in both MATLAB and the 

gate-level simulations. It is clear that all four signals are separated. To measure the error 

between the MATLAB signals and the estimated signals, the square wave was examined 

since the error can be measured by subtracting the separated vectors |𝒚2| − |𝒚4| that are 

shown in Figures 4.3(b) and Fig.4.5 (d), respectively. The difference between the two 

signals is less than 0.01 and is shown in Fig. 4.6.  
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Figure 4.3: FastICA MATLAB simulation 

 

Figure 4.4: Whitening gate-level simulation  
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Figure 4.5: FastICA gate-level simulation  

 

Figure 4.6: Square wave error analysis  
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4.3   Separating ECG signals   

The main goal of this work is to separate four singles. Those signals are assumed to be 

taken from four sensors. In complex situations like the separation of the fetal ECG 

(FECG) from the mother ECG (MECG), more than two sensors are needed to better aid 

the separation process using FastICA algorithm [48-53]. Real ECG data taken from the 

American heart association [48] is used to test the performance of the proposed FastICA 

architecture. The data are taken from sensors placed on the abdominal and the thorax of a 

pregnant woman.  

 

Figure 4.7: ECG signals [47]  

The signals in Fig. 4.7 contain the MECG and FECG. It is difficult to separate the signals using 

only Whitening [53]. Also, it is difficult to compare the results of the separation with the 

predetermined or original signals like in the previous example [53, 55]. 
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Table 4.1 shows the gate-level result of the final unmixing matrix W. The simulations 

result is more or less close to the MATLAB simulation result. The error in the output is 

due to many factors like the quantization error, round off error since fixed-point 

representation is used, also overflow and underflow are very difficult to omit [20]. 

Table 4.1 Unmixing matrix result. 

W MATLAB W Gate-level Simulation 
-0.106 -0.083 0.043 -0.036 -0.124 -0.087 0.058 -0.052 
-0.030 -0.047 0.020 -0.061 -0.043 -0.025 0.032 -0.241 
0.061 -0.203 0.024 0.216 0.051 -0.344 0.046 0.312 
-0.132 -0.257 -0.190 0.049 -0.143 -0.134 -0.163 0.038 

   

Fig. 4.8 and 4.9 show the result of multiplying the unmixing matrix 𝑾 by 𝒁.  

 

Figure 4.8: ECG separation simulation in MATLAB   
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Figure 4.9: ECG gate-level simulation  

According to [49, 51, 52], the main goal in FECG separation applications is to suppress 

the MECG and clarify the FECG so that doctors can diagnose the fetal heart health 

condition before birth [51].  The simulations given in Figures 4.8 and 4.9 show that the 

MATLAB and gate-level simulations did in produce one successful output out of four. 

For MATLAB, this successful output is given in Fig. 4.8(c), where one can clearly see 

FECG at almost the 70th sample. As for the other three MATLAB trials (Figures 4.8(a), 

4.8(b) and 4.8(d)), this separation was not achieved. For instance, looking at Fig. 4.8(a) 

shows that the MATLAB output is very similar to the input signal given in Fig. 4.7(a). 

This is the case for the output given in Fig. 4.8(b), while the output given in Fig. 4.8(d) is 

simply jumbled signals.  
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For the gate-level simulation, the clarity of the FECG is shown in Fig. 4.9(b) while 

Figures 4.9(a), 4.9(c) and 4.9(d) the sharp appearance of FECG is not clear and the 

signals are not separated.  

It is important to note that the separated signals given in Figures 4.8(c) and 4.9(b) 

are known to be in fact the FECG signals and not those of the mother because of the 

amplitude of the separated signal. The FECG signals has a much lower amplitude than 

that of MECG (the FECG amplitude is usually < 10 while the MECG amplitude is much 

higher than 10. 

Another important point to note is the difference in the order of separation between 

MATPLAB and gate-level simulations. For example, MATLAB simulations show the 

FECG as the third separated signal while the gate-level simulation show the FECG as the 

second output. This is not an issue since the order of vectors 𝒘𝑴 of the unmixing weight 

matrix W might change depending on the convergence of the FastICA. Figures 4.8(c) and 

4.9(b) show the separated FECG, according to [48, 49], the FECG heart signal is 

considered clear and the mother ECG was completely removed.  

Finally, there is an apparent difference in the shapes of the signals generated by 

MATLAB and gate-level simulations. A closer look at the figures however, shows that 

this difference does not exist when the algorithms succeed in separating the FECG as the 

successful simulations of Figures 4.8(c) and 4.9(b) have the same shape and no 

discrepancy between them exists. The rest of the figures did not succeed in separating the 

FECG and therefore have shapes that do not reflect the desired outcome.  

Fig. 4.10 shows the absolute error analysis taken from the FECG in Fig. 4.8(c) and 

4.9(b). The error in Fig. 4.10 is larger than the error in Fig. 4.6 due to the fact the ECG 
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signals are more complex than the previous example since ECG signals are not Gaussian 

in nature [52].  

 

Figure 4.10: ECG absolute error analysis 

4.4       Summary  

This chapter describes the simulation results of FastICA algorithm. Four predetermined 

mixed signals are fed as input to the FastICA algorithm. The separation gate–level 

simulation results were compared to the MATLAB results and an error was calculated. 

The produced error is less than 0.01. The second simulation example was set to separate 

the FECG from the MECG signal. The separation was clear and the MECG was 

successfully suppressed. The MATLAB simulation and the gate-level simulations were 

compared to insure the functionality of the purposed FastICA implementation. 
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Conclusions and Future Work 

Chapter  5 

 

The goal of this thesis was to investigate the feasibility of implementing FastICA 

algorithm using four sensors. Increasing the number of sensors has a huge impact on the 

complexity of the algorithm and may render the hardware implementation impractical if 

the algebraic solution is used in both the preprocessing stage and in the main FastICA 

algorithm. To solve this issue, numerical solutions were used in the implementation of 

the system instead of the normally used algebraic method. 

 The implementation was carried out using the virtex 5 chip, which offers a variety 

of built-in fast multiplies, dividers and subtractors that were used intensively in this 

design. The system was fully implemented on a single chip. The maximum clock this 

system can use is 16 MHz. The ECG test signals were separated using four sensors 

readings. Real-time ECG separation can adopt this design since the design can be 

modified to account for real time applications. More than 128 samples can be added to 

the system after some modifications to the main controller.  It is suffice to say that the 

proposed architecture can be extended account for more sensors to separate more 

complex applications. 
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The proposed architecture can be used as a building block to separate real-time 

signals by adding an analogue to digital converter before the Whitening block to acquire 

data and digital to analogue converter at the output to change the output back to analogue. 

The design can be further optimized by running the Whitening stage multiple times to 

process more samples before the FastICA busy signal goes low.  

 Given that the method presented here embodies a good solution for signal 

separation when four sources are mixed, the work can be extended by answering the 

question of how our method performs compared to algebraic methods when three or less 

signals are used. More specifically, we would like to find out ; 1) whether or not the 

performance gained using numerical methods is necessary when less signals are used 2) 

the conditions (if any) under which the numerical approach is more preferred compared 

to the algebraic solution.  

 Another important direction to follow is to extend the method presented here to 

account for online applications where the data is received and processed right away. 

Online applications require extra stages including ADC to process the input and a digital 

to analog convertor (DAC) to convert the output signals for display purposes. More 

memories are required to store the incoming packets from the ADC to be processed by 

the system.  

 Finally, this work can be used for signal separation in other applications such as 

Electroencephalography (EEG), electrical imaging of the heart, data mining and wireless 

communication applications.  
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Appendix A 

 

 

Considering W+ to be the result of applying once the iteration step in 2.21 on W. Let 

WWT =EDET be the eigenvalue decomposition of WWT. Then we have  

                                              𝑾+𝑾𝑻 = 9
4
𝐸𝐷𝐸𝑇 − 3

2
𝐸𝐷2𝐸𝑇 + 1

4
𝐸𝐷3𝐸𝑇    (A.1) 

           
2 39 3 1( )

4 2 4
TE D D D E= − +     (A.2) 

It is imperative to know that due to normalization in 2.22, all the eigenvalues of 𝑾𝑾T are 

in the interval [0,1]. 2.23 shows that for every eigenvalue of WWT , say λi , 𝑾+𝑾+
𝑻  has a 

corresponding eigenvalue h(λi) where h(∙) is defined as: 

      
2 39 3 1( )

4 2 4
h λ λ λ λ= − +      (A.3) 

Therefore, after k iterations, the eigenvalues of WWT are obtained as h(h(h(…h(λi))), 

where h is applied k times on the λi, which are the eigenvalues of WWT for the original 

matrix before the iterations. 
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