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ABSTRACT 

Real-time embedded vision systems can be used in a wide range of applications 

and therefore the demand has been increasing for them.  

In this thesis, an FPGA-based embedded vision system capable of recognizing 

objects in real time is presented. The proposed system architecture consists of multiple 

Intellectual Properties (IPs), which are used as a set of complex instructions by an 

integrated 32-bit CPU Microblaze. Each IP is tailored specifically to meet the needs of 

the application and at the same time to consume the minimum FPGA logic resources. 

Integrating both hardware and software on a single FPGA chip, this system can achieve 

the real-time performance of full VGA video processing at 32 frames per second (fps). In 

addition, this work comes up with a new method called Dual Connected Component 

Labelling (DCCL) suitable for FPGA implementation. 
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1 INTRODUCTION 

1.1 Problem Statement 

In computer vision, object recognition is to identify a given object in an image or 

a series of images (video), for the purpose of extracting some explicit information that is 

to be used in subsequent analysis or further operations.  

Image recognition is still an active and challenging research area in general, 

especially for handling unconstrained environments, and usually incorporates a variety of 

steps. According to [50], there are no shortcuts and the following six steps must be 

noticed: image formation, conditioning, labeling, grouping, extracting and matching. 

Image formation is a function of multiple variables including the camera sensor, lens, 

illumination and the surface reflectivity condition, etc. The remaining five steps 

constitute a canonical decomposition of the recognition problem, each step preparing and 

transforming the data in the right way for the next step.  

Simply focusing on the image analysis problem and viewing it from another angle, 

we can divide it into two steps: location and identification [15]. Location is pinpointing 

the position of the expected object that is usually unknown in an image. Based on some 

certain properties such as intensity, color, texture, etc, the image under detection is 

segmented into separate regions, and some of which are selected and named candidates 

for further analysis. Following the candidates selection, an identification function 

analyzes what the object is inside the candidate region.  
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With the advance of computer industry, one of the tremendous changes of 

computer vision system is the shift of processing platform from conventional desktop 

computers or powerful workstations to embedded processors [56]. This is a shift 

representing the trend of computer technology, and is also a natural shift catering to the 

market needs. As we already witnessed over the past decades, embedded vision 

technologies have emerged in a wide variety of important applications from industry to 

commerce and from civilian to military.  

Typically an embedded CPU (16-bit or 32-bit processor) or a Digital Signal 

Processor (DSP) is used as the system controller and algorithm processor in embedded 

vision system. The Field Programmable Gate Array (FPGA) has also been adopted in the 

last decade, but is often only limited to glue logic for interfacing various electronic 

devices on board, while the complicated image processing algorithms are implemented 

on a DSP or an embedded CPU. This is because in part that FPGA development is a trial 

and error process, presents many challenges, and requires designers to simultaneously 

cope with both high level (algorithm and system architecture, etc,) and low level (logic 

circuit, memory management, time domain, etc.) design [1]. For many designers, 

especially those under the heavy pressure of time-to-market, it is unaffordable to develop 

a pure FPGA-based system. 

However, FPGAs have some unique features [2, 4], which make itself stand out 

from other processors: real hardware parallel processing capabilities enables FPGA 

technology to have higher data throughput than MCU or DSP; Reconfigurability makes it 

possible to update internal logic, which is far more flexible than custom designed ASIC; 
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Abundant logic and I/O resources make an FPGA the perfect platform for developing 

System on Chip (SOC). 

SOC means that all components of an electronic system including software and 

hardware are integrated into a single chip. It is a hot topic in embedded system researches 

because it is compact in size and highly integrated, and thereby can not only reduce the 

board BOM (Bill of Material) but also can enhance system performance within small size 

scale. Thanks to the tremendous improvement in FPGA technology over the last decade, 

for example higher chip density, smaller package, more special features and better 

development suit,  it certainly became one of the most promising platform for SOC 

development. 

 

Figure 1: Target under Detection 

The primary goal of this thesis is to develop an FPGA based embedded vision 

system for recognizing in real time the certain blob pattern shown in figure 1. As an 

example, this vision system can be used to track and monitor the process of assembling 

nuts on an engine automatically. As we can see from the application scenario shown in 

figure 2, the target is assembled on a torque gun and is rotating when the torque gun is 
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fastening or unfastening the nuts. By identifying the location and orientation of the target, 

it is possible to make sure that every nut is mounted correctly. Hence this vision system 

can assist by increasing nut assembly accuracy, reducing rework, and thereby increase the 

productivity and profitability of the automotive manufacturing process. 

  

Figure 2:  Application Scenario 

 

Figure 3: Blob Pattern 

As we can see, there are five faces on a target. Each of them has a black square in 

the center named the heart block. The heart block contains up to 4 white dots, and is also 

surrounded by 12 smaller black dots. The largest black dot is defined as the origin of the 
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face. The ID of each face is determined by the relative position of the origin and the 

white dots. 

The main focus of this project has been designing hardware architecture and 

porting the PC based algorithm to the FPGA system, as well as developing the reusable 

Intellectual Property (IP). 

1.2 Thesis Organization 

The following content is organized as follows. The second chapter provides a 

review of the FPGA implementation for image processing, analyzes the features of image 

processing algorithms, and explains the advantages as well as the challenges of FPGA 

implementation for image recognition. In addition, the general architecture of FPGA 

implementation for image identification is developed. Furthermore, the recent advances 

and state-of-art FPGA technologies, including embedded CPU integrated with FPGA and 

the advanced tools for developing the FPGA system, are introduced. The final part of the 

second chapter also describes some existing FPGA-based embedded vision system. 

In chapter three, the FPGA based embedded vision system developed in this 

thesis is explained. Its hardware architectures, including board level architecture, IP level 

architecture as well as circuit level architecture are described first. Here, the architecture 

design is focusing on reducing the silicon area and occupying the least resources. Several 

reusable IPs are designed and reused in the whole architecture. The usage of each 

reusable IP will be explained in depth. Next the proposed recognition algorithm is 

explained in detail from the view point of software flow. In the subsequent sections, the 
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related software design is described, including a Windows GUI application and the 

firmware running on an embedded CPU (called Microblaze) integrated in FPGA 

In the fourth chapter, the experiment results are presented and the related analysis 

is explained. During the whole design process, multiple design options are chosen and 

then implemented. Their advantages and disadvantages will be addressed and the 

experiment results will be explained in detail. 

Finally, the fifth chapter presents the conclusion of this thesis as well as the 

suggestions for the future work of this FPGA-based embedded vision system. 
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2 REVIEW OF LITERATURE 

2.1 Overview of FPGA Implementation for Image Recognition 

Image recognition has been used in a wide range of industrial, commercial, 

civilian and military applications for over two decades. Some notable applications 

include medical image analysis, public video surveillance, automatic vehicle guidance 

and human machine interface. One of the inherent limitations encountered when dealing 

with images is the large data size that impedes development of systems for real-time 

implementation.  

In order to enhance real-time implementation, two aspects of implementation are 

endeavoured; one is to optimize algorithm and the other is to adopt a novel hardware 

platform. The most popular hardware platform used is the general purpose central 

processing unit due to its matured operating system and user-friendly interface. However, 

due to increase in image size, data width, interruption of operating system by user 

instructions and other regular management real-time application becomes less realizable. 

Two possible approaches to enhance the performance of a hardware processor are 

to increase the operation frequency and to use parallel operation. For the latter case 

research community has already witnessed the adoption of a variety of processors, such 

as multi-core CPU, Digital Signal Processors (DSPs), Single Instruction Multiple Data 

(SIMD) processor, and Graphics Processing Unit (GPU). These processors are designed 

to enhance parallel processing. Take DSP as an example, its Harvard architecture 
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separates storage and signal pathways for instructions and data. This is done to ensure 

that both data and instruction can be fetched simultaneously to realize temporal 

parallelism. In addition, there are also other components inside DSP to realize parallel 

operation such as Multiply and Accumulate (MAC). 

Field Programmable Gate Arrays (FPGAs) have emerged decades ago but were 

traditionally used for glue logic. With an increase in its logic density, FPGA began to 

become a useful parallel platform for image processing. It is made up of a large number 

of logic arrays and abundant I/O pads, and forms a general and unspecified logic circuit 

ready for custom configuration. FPGA’s advantage relies in its parallel processing 

capability, which offers temporal parallelism at the expense of spatial parallelism. 

Another significant feature of FPGA is its software like reconfiguration flexibility [2].  

Some FPGA novice may think that FPGA’s advantage rests with its super high 

operation frequency. Unfortunately, owing to the limitation of its architecture and 

manufacture process, contemporary FPGA can only run at a maximum of several 

hundred MHz, while a common CPU in our PC can easily reach several Giga Hz clock 

frequencies. In terms of operation frequency, FPGA is absolutely a loser.  

The reason why FPGA can outperform other processors is that FPGA is a real 

parallel processor, for example it will take 5 operation cycles for CPU to finish an 

addition: (1) fetch instruction from memory, (2) decode the meaning of fetched 

instruction, (3) fetch data from memory, (4) execute addition operation, (5) write the 

result back to memory; while for FPGA, it will only take one operation cycle to finish 

this operation. If there are 20 addition operations, a CPU will take 100 cycles to finish 

while FPGA still can finish it in one cycle because FPGA can use 20 adders 
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simultaneously. Now assuming that the CPU can run at 2GHz clock frequency and each 

operation will take only one clock cycle, then to finish 20 additions will cost s05.0 . 

Assuming that the operation clock of FPGA is 100MHz, and then it will only take s01.0  

to finish the same 20 operations. Hence it is easy to realize the benefits offered by 

FPGA’s parallelism. In particular for operator intensive processing, more significant 

improve-ments can be achieved by FPGA compared to serial processors like CPU. 

However, not every image processing algorithm is suitable for FPGAs. It is 

significant to understand FPGAs’ strength and limitation. The positive side of FPGA has 

been addressed above, and the remaining paper will present its negative side. In addition, 

some issues of FPGA implementation for image processing will be discussed. 

2.2 Algorithm Feature and FPGA Implementation Challenges  

Image processing algorithms vary depending on different application, hence 

numerous algorithms exist. But they can be classified into two groups: memory-

independent algorithm and memory-dependent algorithm. 

Memory-independent algorithms have the following two features enabling it to 

perform in a stream-like mode and thus are easy to implement in FPGA. 

1) Neighbouring operation.  

The so-called Neighbouring operation is popular among many image processing 

algorithms, for example, Median Filter, Edge detector (including Sobel, Prewitt, 

Laplacian and Gaussian, Canny), Harris Corner detector, and stereo vision algorithms. 

They all can be processed with a sliding window in a raster scan order (similar to the 
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incoming pixel stream from a digital camera). In literatures, these algorithms are called 

neighbour operation or kernel operation or point operation. 

2) One-pass operation.  

It means that there are no iterations in the algorithm and image processing can be 

done in just one pass. This feature eliminates the demands for storing one whole frame of 

image data into memory. 

Many neighbouring operators are also one-pass operators but some are not, for 

example one basic image processing algorithm called Connected Components Labeling, 

also belongs to a neighbouring operator class but it cannot be completed in one pass. In 

[3], a single pass connected components algorithm is presented but it is not practical in 

real applications since it occupies too many on-chip memories. When it comes to High 

Definition (HD) image, off-chip memory is necessary to store image data. 

Memory-independent algorithms are suitable for FPGA implementation because it 

eliminates the requirement of off-chip memory. Usually, only a small amount of image 

data is stored temporarily in the on-chip memory of FPGA for window processing. This 

reduces the cost of board components and increases the speed of system so as to realize 

real video-rate processing. 

On the contrary, memory-dependent algorithms usually require at least two 

iterations in operation, and cannot finish operations in one pass. So it has to store 

incoming image data into external memory for practical application.  

When it comes to memory-dependent algorithms, the limitation of FPGA 

becomes evident.  
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a) The introduction of external memory will hinder the speed of the whole system 

since the bottleneck lies in the interface between FPGA and the external memory. The 

memory bandwidth will determine the overall system performance. 

b) Memory-dependent algorithms often concern complicated operation. It may be 

relatively easier to develop from the view point of pure software like Matlab or C 

language, but it is not always easy to change software into pure hardware [1].   

In addition, FPGA has some other issues that should be paid attention to, for 

example the difference between fixed point number and floating point number, as well as 

the available operations in FPGA. During algorithm development, floating-point numbers 

are often used because they represent infinite precision. If the algorithm is to be 

implemented in hardware, floating-point numbers are not always feasible. The solution is 

to convert very precise floating-point numbers to less precise fixed-point numbers. This 

process in Matlab is called quantization. Quantization is an iterative process, and requires 

comparing the results of floating-point and fixed-point process, so becomes the most 

difficult step for designers. As for available operators, during algorithm development, 

there is no limitation on the type of operations. But, it is not true for FPGA development. 

Only a limited set of operations can be synthesized, such as addition and deduction. 

Arbitrary division and multiplication should be avoided as long as it is possible for the 

purpose of saving resources and reducing circuit size. 

2.3 System Architecture For Video Rate Image Processing 

Real-time image processing is closely related with hardware structure. Assuming 

that one digital camera sensor is used for capturing image data, if the system can handle 
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every frame at the speed of camera’s video output, then we say it is a video rate image 

processing system.  

According to the discussion in section 2, it is apparent that it is relatively easier to 

implement memory-independent algorithms in FPGA for video rate processing. Hence, 

the following general system architecture is provided for solving this problem. 

 

Figure 4: General Architecture of FPGA Implementation for Image Processing 

This figure 4 displays an image acquisition and processing system. Image video is 

captured via camera, and then transferred to FPGA for processing and the processed 

result is output via output interface. Here, one FPGA and six external memories are 

displayed for concept illustration. In real hardware platform, multiple FPGAs can be used, 

and the number of external memories can be any number larger than or equal to 2. The 

key point of this general architecture is the adoption of multiple independent external 

memories, which could work as buffer and assist pipe-line processing or ping-pang 

operation. Addition of external Memories will only increase output latency while the 

system throughput will remain the same.  

Furthermore, no matter how complex the algorithm is, it is still possible to reach 

video-rate operation by simply expanding the number of external memory units. For in-
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stance if the image processing operation will take a period of 1 video frame, we can use 

only 2 external memories for video-rate processing. If the processing is too compli-cated 

and will take a period of 10 video frames, then we merely increase the number of 

memory units to 11. In short, it is always possible to reach video-rate operation at the 

expense of extra memories. 

Here it should be pointed out that it is possible for multiple circuit blocks to 

access one single external memory in a Time Division Multiplexing (TDM) way, which 

could get an effect of near-parallel processing. But there are two problems: 1) a memory 

controller that can handle multi-port access is needed. This demand will increase the 

complexity of FPGA design. Fortunately, current FPGA vender already began to provide 

this kind of controller for free, such as the MPMC (Multi-Port Memory Controller) 

provided by Xlinx. 2) But another problem cannot be avoided: memory throughput. With 

the increase of the problem scale, the throughput of memory will become a bottleneck for 

the whole system. Unlike average CPU or DSP, FPGA is a parallel processor by nature. It 

is better to use multiple memories so that the potential parallel processing capability of 

FPGA could be fully exploited.  

2.4 FPGA Based Embedded Processor 

In recent years, embedded processors are provided by many FPGA venders in the 

form of hard IP existing in silicon fabric or in the form of soft IP which can be 

incorporated within FPGA. Figure 4 also shows an embedded CPU inside an FPGA. The 

coexistence of an embedded processor and traditional digital logic fabric is to grant the 

flexilibility of incorporating both software and hardware in one chip. In this way, the 



14 
 

14 

contradiction between the challenge of FPGA implementation and the system 

performance can be compromised since different algorithm fit different platform. The 

algorithms suit parallel application can be realized in FPGA logic fabric, while the 

algorithm suit serial processor can be realized in embedded CPU inside the FPGA.  

The partition of hardware and software can be determined by two factors. One is 

the required update time of processing. For example, if one part of a process needs 

microsecond or millisecond update time, then it can be processed by software. But if one 

part of a process requires 10-100 μs update time, then hardware logic must be exploited 

instead of software. The other factor influencing our choice of choosing hardware or 

software is the feature of algorithm itself. Only when the algorithm has a large portion 

suitable for parallelization, the potential speedup can be achieved by employing FPGA. 

Therefore it is necessary to understand every part of the algorithm and make an informed 

division between software and hardware. 

Table 1 lists part of the contemporary FPGA-based processors [4]. Some of them 

exist in silicon as a hard IP, and some can be incorporated within the FPGA as a soft IP. 

Table 1: FPGA-Based Processor 

Processor name Type/Bits Interface bus FPGA vendor 

MicroBlaze Soft/32 IBM Coreconnect Xilinx 

NIOS Soft/32 Avalon Altera 

LatticeMico32 Soft/32 Wishbone Lattice 

CoreMP7 Soft/32 APB Actel 

ARM Cortex-M1 Soft/32 AHB Vendor independent 

LatticeMico8 Soft/8 Input/Output ports Lattice 
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Core8051 Soft/8 Nil Actel 

Core8051s Soft/8 APB Actel 

PicoBlaze Soft/8 Input/Output ports Xilinx 

PowerPC Hard/32 IBM Coreconnect Xilinx 

AVR Hard/8 Input/Output ports Atmel 

 

 

Figure 5: Functional Block Diagram of MicroBlaze Core 

In this project, a MicroBlaze embedded processor soft core is adopted. It is a 32-

bit Reduced Instruction Set Computer (RISC) optimized in Xilinx FPGA. As a kind of 

soft IP, it can be synthesized and incorporated into some particular Xilinx FPGA by using 

general logic fabric resources. Figure 5 shows a functional block diagram of the 

MicroBlaze core. 

The Microblaze is a reconfigurable soft core, containing both fixed and 

configurable features. Its fixed features include: 
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 Thirty-two 32-bit general purpose registers 

 32-bit instruction word with three operands and two addressing modes 

 32-bit address bus 

 Single issue pipeline 

There are dozens of configurable features including optional on-chip bus, optional 

data and instruction cache to name a few. This flexible reconfiguration enables the users 

to choose their desired set of features according to their design requirements. 

2.5 IP Designed with System-Level Tools 

One of the goals of the FPGA design is to ease the transformation from algorithm 

to real hardware circuit. In recent years, a number of system-level tools began to emerge. 

Table 2 lists some of the system-level tools that have emerged so far. 

Table 2: System-Level Algorithm Mapping Tools 

 Tool Name Tools Developer 

System Generator for DSP Xilinx 

AccelDSP Xilinx 

Simulink HDL Coder Mathworks 
Matlab based 

Synplify DSP Synplicity 

System-C OSCI 

Catapult-C Mentor Graphics 

Impulse-C 
Impulse Accelerated 

Technologies 

C/C++ based 

Mitrion-C Mitrionics 
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DIME-C Nallatech 

Handel-C Celoxica 

Carte SRC Computers 

Streams-C Los Alamos National Laboratory

 

C/C++ based tools are developed for designing the hardware and the software 

simultaneously, and for easing the creation of test benches. Based on this tool a software 

programmer are not supposed to understand the hardware in depth, and thereby 

expatiating the design process, increasing productivity. To take Impulse-C as an example, 

it uses the communicating process programming model to develop highly parallel, mixed 

hardware/software algorithms and applications. But as stated in [57], C/C++ language 

programming is not a replacement for the existing hardware description languages such 

as Verilog HDL and VHDL. It can be used to describe a wide variety of functions that fit 

the FPGA hardware, but we cannot expect that it is used to describe a low-level hardware 

structures.   

Compared to C/C++ based tools, the Matlab based tools have a much shorter 

learning curve. While among the Matlab based tools, AccelDSP is more flexible than 

others, and therefore is recommended here. 

The AccelDSP is a high-level DSP synthesis tool facilitating the mapping from a 

Matlab floating-point design to a Xilinx FPGA fixed-point design. It reads and analyzes 

the Matlab code and then automatically generates a fixed-point version of Matlab design. 

Next, this fixed-point design will be verified, simulated and finally a synthesizable RTL 

HDL code will be generated. 
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Every AccelDSP project must have two “.m” files i.e. a script m-file and a 

function m-file. The script m-file is used to apply stimulus and plot results whereas the 

function m-file is used for realizing the design functions. Certain style of the Matlab 

codes are mandatory and the synthesizable Matlab codes must use loops to process every 

pixel, and at the same time complicated functions and operations like convolution cannot 

be adopted. 

The users can decide if the auto-referred data precision is enough; and if not, 

users are allowed to manually adjust the model to reduce quantization error. In the flow 

of AccelDSP design, this conversion from floating-point to fixed-point is the most critical 

and time consuming process. 

Compared to hand-coded RTL module, the results of AccelDSP are less efficient 

in terms of area and timing. The generated RTL code also lacks readability, making it 

difficult to maintain, however, it is still worthwhile to use AccelDSP since it can 

dramatically reduce design time. 

2.6 Existing FPGA-Based Embedded Vision System 

In the past literatures, lots of works have been done to implement the image 

recognition algorithms on a FPGA. However, many of them only focus on some simple 

ones which can be finished in one pass and do not require the aid of external memories. 

For instance, some neighbourhood operations, which typically include median filter, 

Sobel, Prewitt, Laplacian, Gaussian, Canny [5, 7] and Harris corner detector as well as 

stereo vision algorithms [51], etc. In addition some researchers also exert themselves to 

tailor their algorithms to eliminate the introduction of off-chip memory, for example [48]. 
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However, many image recognition algorithms are by nature iterative operations 

and cannot work without the aid of off-chip memory. For example, one basic image 

processing algorithm named the Connected Components Labeling, which also belongs to 

neighbourhood operator, cannot be completed in one pass. In [3], a single pass connected 

components algorithm is presented, but it is difficult to be used in real applications since 

it consumes too many on-chip memories. Optical flow is another example that needs the 

introduction of external memory, and a corresponding solution is described in [52], which 

unfortunately can only deal with a QVGA-size (320 240) video image.  

As a matter of fact, it is better to introduce off-chip memory when implementing 

complicated algorithms on FPGA for the purpose of reducing costs and making the 

system flexible. One solution described in [55] is a negative example. It requires a bigger 

FPGA when dealing with higher resolution images, making it too expensive to affordable 

and loosing the expandability.  

In recent years, CPU integrated in FPGA enhances the processing capability of 

FPGA, and making FPGA a promising platform to develop SOC. [53] describes a FPGA-

based people detection system, which adopts a 32-bit soft processor named the 

Microblaze. However, in [53], not only the hardware logic circuit on the FPGA is used, 

but also the embedded soft CPU is involved in computation, which jeopardizes the 

system performance deeply: only a low system speed of 2.5 frames per second (fps) is 

reached. It is hard to be used in real-time application. In [54] another FPGA-based vision 

system adopting integrated CPU is described. In this work, all the algorithm operations 

are performed on hardware logic of FPGA, while the soft CPU is only used to sequence 
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the general operation. However, the system only achieves a low speed performance of 

processing VGA (640 480) at 10fps.  

The following two figures display the FPGA board used in [51] and [54] 

respectively. They both adopt Xilinx Virtex-4 series FPGA. 

 

Figure 6: FPGA Board Used in [51] 

 

Figure 7: FPGA Board Used in [54] 

The work in this thesis presents an expandable FPGA-based vision system 

integrating both hardware and software on a single FPGA chip. Multiple IPs are called as 
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a set of complex instructions by the embedded Microblaze CPU to perform the whole 

algorithm. By virtue of the hardware parallel architecture, a real-time performance of full 

VGA process at 32 fps rate is achieved.  
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3 DESIGN AND METHODOLOGY 

3.1 Board-Level System Architecture 

The proposed embedded vision system is capable of acquiring and processing VGA 

video to extract the pre-defined object information in real time. Its board-level diagram is 

shown in the following figure. 

 

Figure 8: System Architecture Diagram in Board Level 

The camera on the left hand side provides FPGA with a raw video stream through the 

Image Acquisition port under the control of I2C bus. An external DDR2 memory is 

introduced for the algorithm operation, because the algorithm is an iterative process and 

requires handling large amount of image data. Through the Multi-Port Memory 

Controller (MPMC), and embedded Microblaze CPU and internal digital logic are 

connected to external DDR2 memory for fetching and storing data. The peripheral GPIO 

is used to control several LEDs on the board so that the internal logic status can be 

observed. Finally, considering the bandwidth usage and the system flexibility, we use 

USB and RS232 to respectively transmit the video stream and the analysis to a computer 
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to display on a Windows Graphic User Interface (GUI) application. A RS232 port is used 

to transfer analysis because it consists of only the object ID along with its coordinates, 

and occupies a small bandwidth. However, the video stream is another story, consuming 

a large amount of bandwidth, so a USB 2.0 is adopted for video transmission. 

 

Figure 9: Functional Block Diagram of OV10121 

1) Camera: an omnivision OV10121 Black/White CMOS WVGA High Dynamic Range 

(HDR) Camera Sensor is selected. This device incorporates a 768-by-506 image 

array capable of operating at up to 30 frames per second. Through the Serial Camera 

Control Bus (SCCB) interface, all the camera functions including exposure control, 

gain, white balance and windowing, etc., can be programmed. The SCCB is an 

updated I2C bus and conforms to the conventional I2C protocol. The most important 

feature of this device is its proprietary HDR technology that enables the OV10121 to 

handle extreme variations of bright and dark conditions within the same scene, 
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making it perform like the human eye under quickly changing lighting conditions. 

Figure 9 displays the functional block diagram of OV10121.  

2) FPGA: Xilinx Virtex-5 XC5VLX110-FF676 FPGA is adopted. Built on a 65-nm 

copper process technology, Virtex-5 FPGAs are a programmable alternative to 

custom ASIC technology. It offers a good optional solution for addressing the needs 

of high-performance logic designers, high-performance DSP designers, and high-

performance embedded systems designers, with unprecedented logic, DSP, hard/soft 

microprocessor, and connectivity capabilities. In addition to its huge amount of logic 

resources (110,592 logic cells), XC5VLX110 contains many hard-IP system level 

blocks, including powerful 36-Kbit block RAM/FIFOs, 550 MHz second-generation 

25 18 DSP slices, enhanced clock management tiles with integrated DCM (Digital 

Clock Managers), phase-locked-loop (PLL) clock generators, and advanced 

configuration options. All of these features make XC5VLX110 a good platform to 

develop sophisticated image processing algorithms. 

 

Figure 10: Virtex 5 FPGA 

3.2 IP-Level System Architecture 
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Board-level architecture shown in the above subsection only focuses on the 

interconnection of components on a board, but does not display the circuit architecture 

inside the FPGA. The following figure illustrates the system architecture inside the 

FPGA in IP level. 

Each square block in Figure 11 represents a circuit unit, and is called an IP. Each 

IP can perform a certain function, and is equipped with a uniform interface called PLB so 

that each IP can be connected together with Microblaze (the soft-CPU core provided by 

Xilinx), to form an integrated system.  

Blob RecognitionUSB 2.0 
Interface

Camera 
Image 

Acquisition

MPMC (Multi-Port Memory Controller)

VFBC VFBC VFBC VFBC

Camera

Microblaze
32-bit RISC 

CPU

RS232

Clock 
Generator

I2C GPIO

I2C

PLB

 

Figure 11: System Architecture Diagram In IP Level 

 Microblaze is a 32-bit RISC CPU soft core, and is integrated here for controlling 

through the PLB bus the operation of every other IP in the system. A whole suite of 
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development tools including compiler and assemblers are provided by Xilinx to help 

the designer code in C or C++. 

 The PLB is one element of the IBM CoreConnect architecture, and is a high-

performance synchronous bus designed for connection of processors to high-

performance peripheral devices. The PLB includes multiple advanced features 

concerning its data transfer, bandwidth usage, pipeline architecture, bus arbitration, 

and memory guard methodology to name a few. Most of these features map well to 

the FPGA architecture, however, some can result in the inefficient use of FPGA 

resources or can lower system clock rates. As a result, Xilinx uses an efficient subset 

of the PLB for Xilinx-developed PLB devices.  

 The Clock Generator is an IP provided by Xilinx, and is responsible for providing 

clocks for every other IP according to system wide clock requirements.  

 MPMC stands for Multi-Port Memory Controller, and is used to access external 

DDR2 memory. It is a fully parameterizable memory controller that supports 

SDRAM/DDR/DDR2/DDR3/LPDDR memory. In addition, MPMC provides access 

to memory for one to eight ports. 

 VFBC stands for Video Frame Buffer Controller, and is a connection layer between 

each IP and the MPMC. It provides each IP with access to external DDR2 memory, 

and allows IPs to read and write data in two dimensional (2D) sets regardless of the 

size or the organization of external memory transactions.  The VFBC includes 

separate Asynchronous FIFO interfaces for command input, write data input, and 

read data output. This is useful to decouple the video IP from the memory clock 

domain. 
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 GPIO stands for general purpose I/O, and is a port to control some external LEDs for 

indicating the system status. 

 RS232 is a serial communication port to communicate with a computer for receiving 

instructions and outputting results. 

 Image Acquisition is a video timing generator to match the video output port of an 

Omnivision camera, and then capture its generated video stream. 

 I2C is a 2-wire bus to write/read the registers of an Omnivision camera OV10121, 

thereby controlling its operation mode. Omnivision uses an updated I2C bus 

interface called Serial Camera Control Bus (SCCB) interface, which conforms to the 

protocol of conventional I2C bus interface. 

 USB stands for Universal Serial Bus, and is used in this project to communicate with 

a computer for receiving instructions from user and outputting video stream to a 

computer for display. This USB IP is designed to interface with an on-board Cypress 

EZ-USB FX2™ USB Microcontroller. The EZ-USB FX2 device is a single-chip 

integrated USB 2.0 transceiver, Serial Interface Engine (SIE) and 8051 

microcontroller. This device supports full-speed (12 Mbps) and high-speed (480 

Mbps) modes. The FX2 interface to the Virtex-5 FPGA is a programmable state 

machine that supports 8- or 16-bit parallel data transfers. The USB FX2 device is 

used in a slave mode where the FPGA accesses the FX2 like a FIFO. 

 Blob Recognition is the IP handling the blob recognition algorithm. The embedded 

algorithm is iterative by nature and operates a large amount of data. So two VFBCs 

are adopted here to ease the operation of the frequent fetching of data from an 

external memory and storing the temporary results back to it.  
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Among all of these IPs, four of them, including Image Acquisition, I2C, USB and 

Blob Recognition, are designed by the author. In the following subsections, the design of 

these four IPs will be addressed. 

3.3 Peripheral IP Design 

3.3.1 Image Acquisition IP 

Image Acquisition IP is a video timing generator to match the video output port of 

Omnivision OV10121 camera, so that the generated video stream can be captured and 

stored in an external DDR2 memory through the FPGA.  The related input and output 

pins of the OV10121 are listed in Table 3. 

Table 3: Pin of OV10121 Digital Video Interface 

Item Signal Pin Type Function/Description 

1 PWDN Input 

Power down mode selection 

0: Normal Mode 

1: Power down mode 

PWDN has an internal pull-down resistor. 

2 HREF Output Horizontal valid pixel reference signal output 

3 VSYNC Output Vertical sync output 

4 PCLK Output Pixel clock output 

5 XCLK Input System clock input; 6~30MHz 

6 Y[9:0] Output 10-bit digital video output data port 

 

The video timing specification of OV10121 is shown below.  
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Figure 12: Horizontal Timing 

 

Figure 13: VGA Frame Timing 

The Image Acquisition IP can be divided into three parts. The first is a timing 

generator called an Image Capture Interface. It is used to generate the two inputs of the 

OV10121, XCLK and PWDN, and also receives the incoming 10-bit digital video stream 

Y[9:0] according to the timing of PCLK, HREF and VSYNC. The second part is called 

Video to VFBC, and is used for transferring the captured video stream to an external 

DDR2 memory via the VFBC port. The third one is a PLB interface for connecting this 
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IP to a PLB bus so that it can be under the control of the Microblaze. The following is the 

functional diagram of Image Acquisition IP. 

 

Figure 14: Image Acquisition IP Functional Diagram 

3.3.2 I2C IP 

The Omnivision OV10121 camera uses an updated version of the I2C bus 

interface called Serial Camera Control Bus (SCCB) interface, which conforms to the 

protocol of the conventional I2C bus interface. 

The I2C bus is a popular serial, two-wire interface used in many systems because 

of its low overhead. The two-wire interface minimizes interconnections so ICs have 

fewer pins, and the number of traces required on printed circuit boards is reduced. 

Capable of 100 KHz or 400 KHz operations, each device connected to the bus is software 

addressable by a unique address with a simple Master/Slave protocol. 

The I2C bus consists of two wires, a serial data (SDA) and serial clock (SCL), 

which carry information between the devices connected to the bus. The number of 

devices connected to the same bus is limited only by a maximum bus capacitance of 400 

pF. Both the SDA and SCL lines are bidirectional lines, connected to a positive supply 

voltage via a pull-up resistor. When the bus is free, both lines are High. The output stages 
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of devices connected to the bus must have an open-drain or open-collector in order to 

perform the wired-AND function. 

Each device on the bus has a unique address and can operate as either a 

transmitter or receiver. In addition, devices can also be configured as Masters or Slaves. 

A Master is the device which initiates a data transfer on the bus and generates the clock 

signals to permit that transfer. Any other device that is being addressed is considered a 

Slave. The I2C protocol defines an arbitration procedure that insures that if more than 

one Master simultaneously tries to control the bus, only one is allowed to do so and the 

message is not corrupted. The arbitration and clock synchronization procedures defined 

in the I2C specification are supported in this project. 

Data transfers on the I2C bus are initiated with a START condition and are 

terminated with a STOP condition. Normal data on the SDA line must be stable during 

the High period of the clock. The High or Low state of the data line can only change 

when SCL is Low. The START condition is a unique case and is defined by a High-to-

Low transition on the SDA line, while the SCL is High. Likewise, the STOP condition is 

a unique case and is defined by a Low-to-High transition on the SDA line, while the SCL 

is High. The definitions of data, START and STOP, insure that the START and STOP 

conditions will never be confused as data. This is shown in the following figure. 

 

Figure 15: I2C Bus Protocal 
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In this thesis, a custom I2C IP is designed and has the following specifications: 

 Only supports master operation. Does not support slave mode. 

 Supports multiple-master operation 

 Supports I2C WAIT state (I2C clock line SCL is held LOW by external 

devices) 

 Only supports byte write/read, and does not support page write and sequential 

read 

 Data transfer format is seven-bit address format 

 The PLB controller interface 

 400KHz Operation since the Omnivision OV10121 camera sensor requires 

400Khz operation. 

The following figure displays the diagram of the designed I2C IP. It can be 

divided into two major blocks, the PLB interface and the I2C controller. The PLB 

interface is for connecting the I2C controller to Microblaze through a PLB bus, and the 

I2C controller is for generating the I2C signal timing conforming to the I2C protocol. 

 

Figure 16: Block Diagram of I2C Master Controller 

The I2C bus interface logic consists of several different processes. 

 Arbitration is to insure that if more than one Master simultaneously tries to 

control the bus, only one is allowed to do so and the message is not corrupted.  
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 Generation of SCL, SDA, START and STOP Conditions is to generate the 

SCL and SDA signal outputs on the I2C bus when in Master mode.  

 Start/Stop Detection is to monitor Start/Stop conditions on the I2C bus.  

 I2C State Machine contains two state machines: Main State Machine and 

One-Bit State Machine. The first one is responsible for the whole flow of the 

I2C controller, while the latter one is responsible for generating one bit.  

3.3.3 USB IP 

USB stands for Universal Serial Bus, and is used in this thesis to communicate 

with a computer for receiving instructions and outputting video stream to display. This 

USB IP is designed to interface with an on-board Cypress EZ-USB FX2 USB 

Microcontroller CY7C68013A. The EZ-USB FX2 device is a single-chip integrated USB 

2.0 transceiver, Serial Interface Engine (SIE) and 8051 microcontroller. This device 

supports full-speed (12 Mbps) and high-speed (480 Mbps) modes. The FX2 interface to 

the Virtex-5 FPGA is a programmable state machine that supports 8 or 16-bit parallel 

data transfers. The USB FX2 device is used in a slave mode where the FPGA accesses 

the FX2 like a FIFO. 

USB development requires the knowledge of both developing a Windows 

Operation System based application and designing embedded systems, and requires 

mastering high-level protocol and low-level circuit design, which is a very complicated 

process. In this thesis, the FPGA based glue logic to interface the CY7C68013A is 

designed. In addition, with the aid of the development suit provided by Cypress, a 

Windows GUI application is designed to display the video stream and to control the 
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operation of the FPGA system. In this subsection, only the logic design of the USB 

interface will be addressed.  

Figure 17 displays the diagram of the designed USB interface IP. It can be 

divided into three major blocks:  

 FIFO Controller generates the Cypress defined slave FIFO signal timing to 

interface with the on-board Cypress USB controller. 

 PLB interface connects the USB IP to the Microblaze through a PLB bus. 

 USB To VFBC transfers the video data stored in an external memory to a 

computer via a VFBC port. 
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Figure 17: Interface between Slave mode EZ-USB and FPGA USB IP 

The on-board Cypress EZ-USB FX2 USB Microcontroller is configured to work 

in slave mode, and is controlled by an external master: the FPGA. FPGA accesses it like 

a 16-bit FIFO. 

 The USB Interface logic inside the FPGA accesses the FIFOs through an 8 or 

16-bit wide data bus, FD[15:0]. The data bus is bidirectional, with its output 

drivers controlled by the SLOE pin. 
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 Slave-mode EZ-USB FX2 contains four slave FIFIOs. The FIFOADR[1:0] 

pins select which of the four FIFOs are connected to the FD bus and which 

are controlled by the FPGA. 

 In asynchronous mode (IFCONFIG.3 = 1), SLRD and SLWR are read and 

write strobes; in synchronous mode (IFCONFIG.3 =0), SLRD and SLWR 

work as enable signals. In this project, synchronous mode is adopted. 

 The slave FIFO interface can be clocked from either an internal or an external 

source. In this thesis, the internal clock source is adopted and is also 

configured to output on the interface clock (IFCLK) pin to clock the USB 

Interface logic inside the FPGA. In this way, the FPGA logic design is 

simplified. 

 

Figure 18: USB Slave FIFO Synchronous Timing Models 

 Four pins — FLAGA, FLAGB, FLAGC, and FLAGD— are adopted to 

indicate the status of the EZ-USB’s FIFOs: ‘FIFO full’ or ‘FIFO empty’. 

 PKTEND is asserted by the FPGA to commit an IN packet to the USB 

regardless of the packet’s length. Usually it used when the master wishes to 

send a ‘short’ packet. 

In this project, the USB IP will not only transfer the video stream to a computer, 

but also will receive some instructions from it. So the logic of this USB IP can be divided 
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into two state machines: one is for writing the slave FIFO, and the other is for reading the 

slave FIFO. These two state machines will have a similar operation process, so only the 

FIFO write state machine is shown below as an example. 

 

Figure 19: State Machine of Synchronous FIFO Writes 

3.4 Core Algorithm IP Design 

Blob Recognition IP is just the circuit block that contains the core algorithm to 

search and identify the target. In the following subsections, this algorithm will be 

explained from the viewpoint of software at first, and then the FPGA implementation will 

be addressed.  

3.4.1 Blob Recognition Algorithm  

The proposed blob recognition algorithm is aiming at processing a gray-scale 

image in VGA size, and can be divided into three major steps as below: 

 Image scale down: the incoming video stream is in VGA (640x480) size. In 

order to decrease the processing time and to reduce the resources for 

computation, this incoming VGA video image is downscaled by factors of 

four to QQVGA (160x120). 
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 Candidate location: given a downscaled QQVGA image in which the position 

of the target is unknown, this step is supposed to search for every possible 

candidate. Multiple candidates may be chosen according to a certain criterion, 

which exerts strong influence upon the performance of the whole system.  
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Figure 20: Flow Chart of Proposed Algorithm 

 Object identification: given each candidate, the related image data will be 

captured from the main memory to process and analyze. An identification 

algorithm inspired by the unique feature of the blob face is adopted to extract 

the explicit information of each face. 
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The latter two steps can be divided into finer processes, and are illustrated in 

Figure 20.  

3.4.1.1 Gaussian Smoothing  

The Gaussian Smoothing is used to blur the image under detection for further 

processing. Each pixel is replaced with a weighted average of its neighbourhood when 

the mask is sliding over the image. It belongs to the neighborhood operation (or is called 

a pixel operation or a kernel operation), and is a kind of widly used image processing 

filter defined by the following equation.  
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where, (0, 0) is the center of the mask, and  determines how fast the weight 

decay. Usually, the sum of the mask coefficients is 1. The selected Gaussian mask is 

shown in Figure 21. 

1 4 7 4 1 

4 16 26 16 4 

7 26 41 26 7 

4 16 26 16 4 

1 4 7 4 1 

Figure 21: 5-by-5 Gaussian Kernel 

It is worthwhile to notice the parameters inside the mask since they are all 

selected carefully for the purpose of simplifying computation and reducing logic 

resources. In this Gaussian kernel, only three parameters, 7, 26 and 41, need the 

multiplication operation, while the other parameters only require a simple shift operation. 

This is because that performing multiplication or division of unsigned integers by powers 
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of two only involves a logic shift. Taking the parameter 4 as an example, to shift left by 

two bits on a number has the same effect of multiplying it by 4.  

3.4.1.2 Binarization  

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 
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1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

Figure 22: 11-by-11 Average Kernels 

Binarization is to binarize the gray-scale image under detection.  In the literature, 

there are many algorithms about binarization, such as the Otsu method. The Otsu method 

is a kind of global threshold method, and is sensitive to abrupt change of lighting 

conditions. So researchers turn to adaptive binarization algorithms focusing on local 

threshold. When it comes to different applications, different binarization methods are 

used. In this project, based on the size of the image under detection, the specific blob 

pattern and the experience accumulated through many experiments, an average filter 
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based adaptive threshold method is adopted. The kernel of this average filter is 11-by-11 

in size, and is shown in Figure 22. 

Each pixel is replaced with ‘1’ or ‘0’ according to the following equation when 

the mask is sliding over the image.  Where, ‘1’ represents white pixel, and ‘0’ 

represents a black pixel,  
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DeltaavgIntIntif
BW









_)0,0(

_)0,0(

0

1
)0,0(  ,   ( 2 ) 

where, (0, 0) is the center of the mask, and BW(0,0) is the value that is going to 

be assigned to the center pixel of the mask; Int(0,0) represents the current intensity 

value of the center pixel, and the Int_avg is the average intensity value of the 

neighbourhood; Delta is a parameter determining the threshold. 
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Figure 23: Example of Image Smooth and Binarization 

  The Gaussian Smoothing and Binarization methods are tailored in such a way that 
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the black heart block in a face can be correctly segmented from its background, which is 

just the key to successfully selecting a target candidate. Figure 23 shows an example of 

the results of these two steps. 

3.4.1.3 Candidates Search and Store 

This step tries to find all the sub-images that contain an object and then stores into 

memory the coordinates and the size of the selected sub-images (candidates). In order to 

search for the possible candidates, the following method is proposed: given a binarized 

image, each component is grouped and labelled by using a Connected Component 

Labelling (CCL) method, and then the dimension of each component is measured, 

including maximum x axis, maximum y axis, minimum x axis, minimum y axis and 

center of the component.  It is expected to choose all the possible candidates according to 

this simple measurement and some certain criterion, for example the ratio of width and 

height and the distance between the center of the component to the border of the image. 

CCL scans an image and groups its pixels into components based on pixel 

connectivity. But the traditional CCL can only handle one single type of pixel at a time, 

either black or white.  In this project both black and white components are taken into 

consideration, hence the following Dual Connected Component Labeling (DCCL) 

method is proposed. 

Similar to the conventional CCL method described in [50], DCCL also adopts a 

2 3 mask and an equivalent table.  

 2 3 mask: the connectivity of each pixel is checked when a 2 3 window is 

sliding across an image, where the 2 3 window is shown below. “A” is the 

pixel under detection. 
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 Equivalent table: it is used to store the label values that actually belong to 

one single component. 

 

Figure 24: 2x3 Mask of DCCL 

However, unlike the conventional CCL method, DCCL changes the data structure 

and adopts another equivalent table called a BW_EQ table for storing the information of 

connectivity between different types of pixels. 

 Data structure: In the 2 3 mask, each pixel is represented by an N-bit data.  

 (N-1 downto 1) bits represent label value. 

 Nth bit indicates the type of pixel: 1 ->black, 0 ->white. 

For example:  

B(N) = 1 indicates that pixel B is a pixel in black color. 

B(N-1 downto 1) = 3 indicates that B is labelled number 3. 

 BW_EQ table: an equivalent table that stores the information of connectivity 

between black and white components. 

Each DCCL processing will be done according to the following order: E -> D -> 

C -> B.  A is the pixel under detection. 

 Label Assignment: starting from pixel E, it searches the first pixel which has 

the same Nth bit as that of pixel A, and also has a non-zero label value. If 

found, then its label is assigned to pixel A. Or if not found, a new label is 

assigned to A. 
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 Equivalent Table: after the label assignment, label comparison continues 

between A and other pixels with the same Nth bit. If different labels are 

found, the labels are stored into equivalent table. 

 BW_EQ Table: it finds all the pixels with a different Nth bit from that of A, 

and then store the labels into the BW_EQ table. 

After black and white components are grouped and labelled by the DCCL method, 

the dimension of each labelled component will be measured for the purpose of selecting 

target candidates. In this thesis, based on the measured size of the segmented heart block, 

it is possible to estimate the size of the candidate image block, since there is a certain 

geometric relationship between the blobs inside a face: the heart block is a square shape 

and the length of its side is almost one third of the length of the side of the square bound. 

This relationship is shown in Figure 25.  

D

 

Figure 25: Geometric Relationship of Blob Face 

Finally, the coordinates and the dimension information of all the chosen 

candidates are stored in a buffer for further processing one by one. 

3.4.1.4 Normalization of Candidate Image Block 

Every candidate image may have different image sizes. It is helpful for the next 

ID identification process to have the candidate image block normalized. In this project, 
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the normalization size is 96-by-96. However, owing to the limitation of the FPGA 

memory interface, only the transformation listed in Table 4 is adopted. 

Image normalization scales an image to a certain size. It is a popular image 

processing operation. In this project, a traditional bilinear interpolation method is adopted: 

the incoming image data comes through a filter, and the output pixel value of the filter is 

a weighted average of pixels in the nearest 2-by-2 neighbourhood. Figure 26 is an 

example of normalization from 128-by-128 to 96-by-96. 

Table 4: Normalization List 

96x96     -> 96x96 256x256 -> 96x96 384x384 -> 96x96  

128x128 -> 96x96 288x288 -> 96x96 416x416 -> 96x96  

160x160 -> 96x96 320x320 -> 96x96  448x448 -> 96x96  

192x192 -> 96x96 352x352 -> 96x96  480x480 -> 96x96 

224x224 -> 96x96   

 

 

Figure 26: Normalization from 128-by-128 to 96-by-96 

3.4.1.5 Recognition of Face ID 

The target is a cube, and has 5 faces with different blob patterns in black and 

white. These blob patterns look like nested squares. From Figure 27, it can be seen that 

there is a black square named a heart block in the center of each face. This heart block is 
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surrounded by 12 small black dots, while the 12 black dots are bounded by another black 

square border again.  

Among the 12 black dots, the largest one is defined as the origin of the face. The 

relative position between the origin and the white dots inside the heart block determines 

the ID of the face. In this project, up to four white dots may be located inside the heart 

block, and the face ID is calculated by the following equation, 

3210 2*42*32*22*1 WWWWID  ,    ( 3 ) 

where, Wx = 1 only if a white dot appears on the position of Px (x=1 or 2 or 3 or 

4). Position Px is determined based on the relative position between the corner of the 

heart block and the origin in a clock-wise direction. 

 

Figure 27: Definition of Blob Face 

 

Figure 28: Example of Blob Faces 
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Figure 28 gives examples of face ID. Where, up to 2 white dots exist inside the 

heart block. 

An intuitive ID recognition algorithm inspired by the feature of the blob face is 

proposed. The whole flow chart is illustrated in Figure 29. 

Is heart block 
found?

Find the heart 
block

Find the white 
frame

Find all the white 
dots inside the 

heart blockIs the white 
frame found?

Are there 12 
black dots?

Find all the black 
dots inside the 

white frame

Count Face ID

Yes

Yes

Yes

No

No

No

Output Face IDOutput No 
Face ID

End

 

Figure 29: Recognition of Face ID 

1) Find out the heart block: every face has a heart block in square shape. Since 

the candidate image block is located based on the segmented heart block, the 

center of the cropped image block is by nature the center of the heart block.  
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In addition, we introduce a bias parameter for the tolerance of the possible 

mismatch caused by image distortion or previous image processing. 

2) Find out the white frame: two features are helpful to find the white frame: 1) 

The central coordinates of the white frame should be very close to the center 

of the heart block; 2) The white frame is surrounding the heart block. The 

purpose of obtaining the white frame is to search for the 12 black dots 

surrounding the heart block. 

3) Find out 12 black dots surrounding the heart block: as mentioned before, the 

connectivity information between black and white components can be 

achieved through DCCL method, and is stored in BW_EQ table. Combining 

the information of white frame and the BW_EQ table, the black dots can be 

easily screened out. 

4) Find all the white dots inside the heart block: with the aid of BW_EQ table 

and the measured geometric dimension of each labelled component, it is easy 

to get all the white dots. These white dots are used to calculate the ID of the 

face.  

5) Count face ID: given the information of all the black dots and the white dots, 

it is possible to calculate the ID of a face. However, in order to make sure the 

position of the origin of the face as well as the position of the white dots 

inside the heart block, a fine division of the blob face is illustrated in Figure 

30.  
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 Locate origin:  the origin of a face is the largest black dot among the 12 

black dots inside the white frame. Its location is defined by 8 zones based 

on its relative position with the heart block: 

TOP_LEFT, TOP_MID, TOP_RIGHT,         

MID_LEFT, MID_RIGHT,                  

BOTTOM_LEFT, BOTTOM_MID, BOTTOM_RIGHT 

 Locate white dots inside the heart block: the location of white dots inside 

the heart block is defined by the following 8 zones.  

     UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT,  

      LEFT_EDGE, RIGHT_EDGE, TOP_EDGE, BOTTOM_EDGE 

UP_LEFT UP_RIGHT

DOWN_LEFT DOWN_RIGHT

LEFT_EDGE RIGHT_EDGE

TOP_EDGE

BOTTOM_EDGE

TOP_LEFT TOP_MID TOP_RIGHT

MID_LEFT MID_RIGHT

BOTTOM_LE
FT

BOTTOM
_MID

BOTTOM_RI
GHT

TOP_LEFT TOP_MID TOP_RIGHT

MID_LEFT MID_RIGHT

BOTTOM_LE
FT

BOTTOM
_MID

BOTTOM_RI
GHT

 

Figure 30: Division of Blob Face 

 If the origin is located in the following zones:  

 TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_RIGHT 

Then the following zones are checked to see where the white dot lies in, 
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  UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT 

 If the origin is located in the following zones:  

 TOP_MID, MID_LEFT, MID_RIGHT, BOTTOM_MID 

Then the following zones are checked to see where the white dot lies in, 

 LEFT_EDGE, RIGHT_EDGE, TOP_EDGE, BOTTOM_EDGE 

In short, according to the geometric relationship of the origin, white dots and the 

heart block, it is possible to calculate the ID of a face. 

3.4.2 FPGA Implementation of Algorithm  

The algorithm described in the section 3.4.1 is a specifically tailored version of 

algorithm for FPGA implantation, since there are some challenges when it comes to 

FPGA,  such as limited computation resources and contentions caused by parallel 

processing. In this section, the practical FPGA implementation of each function in the 

algorithm is addressed. 

3.4.2.1 Gaussian Smoothing Circuit 

 

Figure 31: Gaussian Smoothing Circuit 
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Gaussian smoothing belongs to neighborhood operation (or called pixel operation 

or kernel operation), and is suitable for FPGA implementation. Observing the flow of the 

whole algorithm, it can be noticed that the Gaussian Smoothing method is used twice: 

one is to blur the incoming QQVGA image, and the other is to blur the normalized 

candidate image block. In order to reduce FPGA resources, only one Gaussian smooth IP 

is built inside and reused. 

In order to handle both QQVGA and normalized candidate image block, this 

Gaussian Smooth IP adopts Dual Port RAM (DPRAM) because the output tap can be 

changed accordingly. In total, four DPRAM are used to compose a 5-by-5 kernel. 

 This Gaussian smoothing IP is designed by using Xilinx AccelDSP. The 

synthesized results are shown below. 

 

Figure 32: Synthesized results of Gaussian Smoothing IP by Xilinx AccelDSP 

3.4.2.2 Binarization Circuit 

 Just similar to the Gaussian Smooth function, this Binarization function is also 

used twice in the algorithm flow: One is to binarize the QQVGA image, and the other is 
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to binarize the normalized image. For the same reason of reducing resources, Binarization 

IP adopts the architecture similar to that of Gaussian Smoothing IP, and uses DPRAM to 

handle both QQVGA and normalized image. However, 11 DPRAM instead of 5 DPRAM 

are used for composing a 11-by-11 average kernel.  

 This Binarization IP is also designed by using Xilinx AccelDSP. The synthesized 

results are shown below. 

 

Figure 33: Synthesized results of Average Fitler IP by Xilinx AccelDSP 

3.4.2.3 DCCL and Label Group Circuit 

DCCL
Label[N-1:0]

Label Group

Process Block for 
Black Components

eq_label

bw_eq_label

x_axis

y_axis

Label[N]

vsync

hsync

Process Block for 
White Components

vsync

hsync

BW_EQ 
Output

Binarized 
Image data

Bounding 
Axis Output

Central Axis
Output

 

Figure 34: Block Diagram of Candidates Search and Store 
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This IP finds out all the possible candidates and then stores them into the memory 

for further processing. The diagram of this IP is divided into two main blocks and is 

shown in Figure 34: One is DCCL and the other is Label Group. 

Figure 35 illustrates the architecture of DCCL. Given a binarized image, DCCL 

groups and labels pixels based on their connectivity information. The results of DCCL 

will be stored in the memory of the Label Group block. The Label Group block organizes 

all the collected labels so that each labelled component’s dimension can be measured. 

In DCCL, two Dual Port RAM (DPRAM) are used for forming the 2-by-3 mask 

operation. The reason why DPRAM is used instead of FIFO is that DPRAM is more 

flexible than FIFO to handle images in different sizes. Here each pixel in DPRAM has N-

bit data, and the Nth bit indicates the type of pixel: 1 means black, and 0 means white. 

The remaining N-1 bits represent the label value. By using a 2-by-3 mask operation, each 

pixel is assigned a triplet including a label, an equivalent label indicating the connectivity 

with the same type of component, as well as a list of bw_eq_label indicating the 

connectivity with different type of components. 

Binarized 
Image data

Mask operation

A DPRAM 1

DPRAM 2

B

D EC

vsync

hsync

Label[N:0]

eq_label

bw_eq_label

x_axis

y_axis

vsync

hsync

 

Figure 35: Block Diagram of DCCL 

DCCL is a kind of one pass method and processes one pixel at a time. The output 

label information should be collected and reorganized to get each component’s dimension. 

This is done by the Label Group circuit block shown in Figure 36. 
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Figure 36:  Block Diagram of Label Group 

In stead of storing every labeled pixel, Label Group circuit block only records the 

maximum, minimum and central coordinates of each labeled components and their 

corresponding equivalent label, so that memory recourses can be saved.  The six 

measured coordinates includes Maximum x axis, Maximum y axis, Minimum x axis, 

Minimum y axis, Central x axis and Central y axis. The maximum and minimum axis on 

x and y direction roughly indicates the border of a component, and are only updated by 

comparing the coordinate of the incoming labeled pixel with the labeled component 

border. So this operation only uses a comparator. The calculation of central coordinate 

involves addition and division according to the following equation, 
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where (xc , yc) refers to the coordinates of the center point of a labeled component, 

N is the pixel number of a component, and (xi , yi) is the ith pixel coordinates of a 

component.  

The final output of the Label Group block consists of the maximum and minimum 

coordinates on border, one central coordinates, and the BW_EQ label information. 

3.4.2.4 Normalization Circuit 

Normalization IP is responsible for resizing each candidate image to a predefined 

size, which is 96-by-96 in this thesis. This is because that every candidate image may 

have different image size, and it is easier for ID identification function to handle some 

images with fixed size than to process a series of images with random size.  In this thesis, 

only image downscale is used since the minimum candidate image size is 96 96.  

To downscale an image, a conventional bilinear interpolation method is adopted: 

the incoming image data get through a filter, and the output pixel value of the filter is a 

weighted average of pixels in the nearest 2-by-2 neighbourhood. The parameters of the 

bilinear interpolation are selected carefully to reduce FPGA resources. Only the 

following 4 sets of parameters are used, (1,0), (0.5, 0.5), (0.75, 0.25), and (0.25, 0.75). It 

is easy to understand that (1, 0) does not require any computation, and the (0.5, 0.5) only 

needs logic shift right by 1 bit. The parameter 0.25 is done by shit left by 2 bits. In terms 

of 0.75, the calculation is operated according to the following equation: 

4/)2(4/375.0  indataindataindataindataresult    ( 5 ) 
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As a result, the whole normalization operation is simplified to only involve 

addition and shift operations, and multiplier is not used. 

Figure 37 displays the block diagram of the architecture of normalization IP. Only 

one FIFO is used to store one row of normalized image data, which will be used to 

process for interpolation in the column wise direction. 

 

Figure 37: Block Diagram of Image Normalization 

Here, since normalization IP only resizes an incoming image to an image in 96-

by-96 size, only one FIFO in 96 bytes length is adopted. There are two mask operations 

in Figure 37: row interpolation mask and column interpolation mask. Each mask contains 

only two registers.  The remaining circuits in this IP are all combination logic circuit such 

as adders, shifters and multiplexers. In short, this IP can perform a simplified version of 

image resize function with limited number of scale factors within small area of FPGA 

logic gates.  In addition, this IP is a one-pass circuit and does not require any iterative 

operation. 

3.4.2.5 Face ID Recognition Circuit 

Face ID Recognition IP consists of majorly 6 circuit blocks: 

 Heart Block Search: this circuit block is to find out the black heart block of a 

face. This operation requires checking each component and selecting heart 

block according to the fact that the heart block is a black square nested by 
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another black square. So the ratio of width to height is examined to find a 

component in square shape. In addition, the geometric size is checked to 

ignore the background noise which is too big or too small. Furthermore, the 

center coordinates of a component is checked to make sure that the full blob 

face can be cropped from original VGA image.  

 White Frame Search: this circuit block finds out the white frame surrounding 

the black heart block. Just similar to the operation of searching the black 

heart block, this circuit only checks the size and the center coordinates of 

each white component. Once a white component is surrounding the black 

heart block, and its central point is within a certain distance of the center of 

the black heart block, and then we can make sure to choose a white frame. 

 Black Dots inside White Frame Search: this circuit block finds out the 12 

black dots inside the white frame. Combining the information of BW_EQ 

table with that of white frame, it is easy to find all the black dots inside the 

white frame. 

 White Dots inside Heart Block Search: this circuit block finds out all the 

white dots inside the black heart block. Just like the process of Black Dots 

inside White Frame Search, this circuit just checks the information stored in 

BW_EQ table to find out all the white dots.  

 ID Calculation: this circuit block calculates the ID of a face. Given all the 

information provided by the previous four circuit blocks, this circuit makes 

sure the location of the origin of the face at first, and then calculates the face 

ID according to the relative position between white dot and the origin. Here a 
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look up table storing the information of every possible position combination 

of the origin and white dots are used. So that the operation of the logic can be 

simplified and the speed of the circuit can be faster. 

 State Machine: this circuit controls the operation of the other logic circuit 

blocks. Face ID Recognition processes the labelled component in a iterative 

way. It fetches the stored information of labelled component frequently to 

compare and sort. So a state machine is used to manage the operation of the 

whole IP. 

The following functional block diagram illustrates the architecture of the IP.  

 

Figure 38: Block Diagram of ID Recognition IP 
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4 ANALYSIS OF RESULTS 

4.1 IP Design Verification 

Verification is a key step in the FPGA design flow. Without complete verification, 

there is no guarantee that the designed source code is safe to use. As for verification, 

there are several stages as described below:  

 Function simulation: to make sure the correctness of RTL code. 

 After synthesis simulation: to make sure the correctness of synthesized net list. 

 After PAR (Place and Route) simulation: to verify net list and timing. 

 

Figure 39: Testbench Architecture 

Testbench is an environment built for providing the Device under Test (DUT) 

with stimulus, and for receiving and analyzing the output of the DUT. Figure 39 

illustrates the general architecture of a testbench. DUT communicates with and receives 

input signals from the Stimulus module. DUT is also connected to a Sink module to 

output its generated results. The final simulation results are verified in Result 
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Comparison module. Building testbench is the necessary step for verifying an IP. Every 

different IP requires a different testbench. The verification method in this work is 

described as follows, 

 Image Acquisition IP: a dummy camera which can generate a set of 

predefined dummy data in VGA size is designed for the stimulus of the IP. 

The output of the IP is automatically checked with the predefined VGA-size 

dummy data. 

 Gaussian Smoothing IP: the stimulus is a set of images in QQVGA size or 

normalization size. The output of the IP is compared with the results of the 

corresponding Matlab code. 

 Binarization IP: the stimulus is a set of images in QQVGA size or 

normalization size. The output of the IP is compared with the results of the 

corresponding Matlab code. 

 DCCL IP: the stimulus is a set of images in QQVGA size or normalization 

size. The output of the IP is compared with the results of the corresponding 

Matlab code. 

 Normalization IP: the stimulus is a set of images in different size defined in 

subsection 3.4.1.4. The output of the IP is compared with the results of the 

corresponding Matlab code. 

 Blob Identification IP: the stimulus is a set of images in normalization size. 

The output is checked by manual comparison since the output is just the face 

ID. 
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 I2C IP: a custom defined microcontroller interface is used for stimulus and an 

EEPROM is introduced for verifying the write/read of I2C bus.  

4.2 Hardware Environment Description 

 

Figure 40: Experiment FPGA Board 

The proposed solution is entirely integrated into an AVNET Xilinx XC5VLX110 

Evaluation Kit shown in Figure 40. An Omnivision OV10121 camera is manually wired 

to the FPGA board for capturing video image. 

This FPGA board has the following features: 

 FPGA 

— Xilinx Virtex-5, XC5VLX110-FF676 FPGA 

 I/O Connectors 
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— Two EXP™ general-purpose I/O expansion connectors 

— One 0.1” USB Debug Header 

— One 50-pin 0.1” Header supports Avnet System ACE Module (SAM) 

— 80 pin LVDS connector supports 10-bit plus Frame and Clock TX and RX data. 

 Memory 

— 64 MB DDR2 SDRAM 

— 16 MB FLASH 

 Communication 

— RS-232 serial port 

— USB 2.0 

— 10/100/1000 Ethernet 

 Power 

—  Regulated 3.3V, 2.5V, 1.8V, and 0.9V supply voltages derived from an 

external 5V supply 

— SSTL2 Termination Regulator 

 Configuration 

— XCF32P 32Mbit configuration PROM 

—  Xilinx Parallel Cable IV or Platform USB Cable support for JTAG 

Programming/Configuration 

 Display 

— 2x16 character LCD display 
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4.3 Experiment Results 

 The Microblaze and the Blob Recognition IP are both running at 100MHz clock 

frequency, and the DDR2 Memory is running at 200MHz clock frequency. 

 The consuming time of the Blob Recognition IP can be estimated by adding up 

the processing time of the three processing steps together.  

The first step, image downscale, is just a data decimation operation. It only 

increases one clock delay, which can be ignored here. The second step, candidate location, 

consumes about 4.1 milliseconds. However, the consuming time of the third step is 

unpredictable since it depends on the number of the candidates and the size of the 

candidates. The more numbers of candidate or the larger the candidate’s image size, the 

more consumed time. However, the candidate’s number and the candidate’s size will 

affect each other. If the candidate’s size is very big, there must be small number of 

candidates. Otherwise, a lot of candidates may exist there. In addition, the processing 

time of normalization circuit varies from 98 microseconds to 2.3 milliseconds when the 

candidate size changes from 96 96 to 480 480. The remaining processing time of the 

third step is 450 microseconds if the candidate is a true blob face; otherwise it will 

decrease accordingly.  

To take a common case that there are 7 candidates with medium size as an 

example, the third step may finish within 10 milliseconds. Hence, the total consuming 

time for a common case will be at maximum 15 milliseconds, which means that Blob 

Recognition IP can process a VGA video stream at 66.7 fps. But owing to the band-width 

of USB2.0 and the performance of the camera, as well as the variety of environment, this 

system is designed to process VGA image at 32 fps.  
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Figure 41: Experiment Results in Different Background 

Experiments demonstrated that, at 32 fps speed, the system can reliably process 

VGA video stream and recognize, within the distance from 0.2m to 0.7m, each blob face 

over a large range of lighting conditions as long as the target is clearly visible in the 

video image. Some of the experiment cases are given in Figure 41, in which every 

detected blob is marked to highlight the process results. Please note that the 9 sub-images 

in Figure 41 represent 9 different test cases, which are arranged aiming at four variables: 

the angle of the target, the position of the target in a image: boundary or center, the 

background objects and the illumination conditions. In these cases the huge difference of 

the variables cannot fail the work of the system, and thereby demonstrates its robustness. 
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The consumed FPGA resources are listed in Table 5. We can see that only half of 

the FPGA resources are occupied, which makes room for integrating more complicated 

algorithms or adding additional peripherals into the FPGA such as Ethernet. 

Table 5: Occupied FPGA Resources Summery 

Slice Logic Utilization Used Available Utilization 

Slice Registers 21,878 69,120 31% 

Slice LUTs 18,212 69,120 26% 

Occupied Slices 9,237 17,280 53% 

BlockRAM/FIFO 66 128 51% 

Total Memory used 2,250 4,608 48% 

DSP48Es 15 64 23% 

PLL_ADVs 2 6 33% 

BUFG/BUFGCTRLs 14 32 43% 

 

There are two interfaces between the FPGA system and the PC: one is a RS232 port and 

the other is a USB 2.0 port. These two ports can be used for both input and output. 

  RS232:  

 Output: Display the results of the face ID recognition. 

 Input: Receive the instructions from user. 

 USB:  

 Output: Display the VGA video stream on the monitor of a PC. 

 Input: Receive the instructions from user. 
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Figure 42: Hyper Terminal GUI 

Users can use either RS232 port or USB port to control the operation of the FPGA 

board. Only the Hyper Terminal application provided by Windows Operation System is 

required if RS232 interface is used for instruction input. From Figure 42, we can also see 

that the result of ID recognition is displayed on the GUI of Hyper Terminal. 

In terms of the USB port, based on the USB 2.0 Windows driver provided by the 

Cypress, a Windows GUI application is designed for displaying video stream and 

inputting instructions, which is shown in Figure 43. 
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Figure 43: Windows GUI Application 

Two menus are supposed to be used frequently. The first menu, Capture_Image, 

is used to capture just one still image. The second menu, Video, is used for capturing 

dynamic video image. When different menu is selected, the corresponding instructions 

are transmitted to FPGA via the USB port, and then the related mode registers of the 

FPGA circuit are updated. 

4.4 Experiment Analysis 

FPGA design is a trial and error process, concerning both high level algorithm 

development and low level logic circuit design. In this thesis, the final architecture and 

the parameters described previously are the results of iterative experiments and 
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improvement. This thesis also developed some other options and these are described 

bellow. 

4.4.1 The Development of System Architecture  

Architecture: Many FPGA implementations in the literature majorly focus on one-

pass algorithm. Once the algorithms become complicated, they need iterative operations 

and require accessing external memory for example, many designers will resort to DSP or 

CPU. This is because it is inefficient for FPGA to access external memory. In addition, 

designing memory controller takes a lot of time.  

So the initial solution of this thesis is to find a one-pass algorithm that can take 

advantage of on-chip memory. But three facts make this kind of thought impossible. 1) 

Image processing needs to process large amount of data; 2) Iteration is a must. The 

problem in this thesis is in nature cannot be solved with a one-pass algorithm. Hence it is 

necessary to introduce a memory for temporarily storing the intermediate data. 3) The on-

chip memory integrated on the FPGA cannot handle one frame of VGA image data. So it 

is impossible to fulfill the whole algorithm without the introduction of an external 

memory.   

As a result, MPMC and VFBC are studied and adopted for accessing external 

DDR2 memory. VFBC is specifically developed by Xilinx for image processing 

application. Unfortunately, there is something wrong with the VFBC in the version 10.1 

ISE Design Suite, which is solved by Xilinx in the version 11.4 version ISE Design Suite. 

However, this bug in the VFBC costs the author lots of time and energy, and delays the 

project a lot. 
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When the MPMC and VFBC are verified to be usable, the remaining IPs are 

organized in such a way that each IP can access external DDR2 memory respectively. It 

is believed that only in this way the true parallel processing can be realized, and the 

parallel processing capability of an FPGA can be fully exploited.  

Besides parallel processing, IP reuse is an important aspect in FPGA development. 

It is not only for reuse in the next project, but also for the reuse in the current project. In 

this way, the logic resources will be less occupied. For example, Gaussian Smoothing IP 

and Binarization IP are both reused in different positions of the algorithm flow. But at the 

beginning of the development, different IPs are used because different mask size is 

necessary for different image size. Fortunately, after the optimization of the architecture 

and the parameters, the same IP can be used for images with different size. This will also 

be addressed in the next subsection again. 

4.4.2 The Development of Mask Size  

In the proposed algorithm, mask operation or kernel operation is used. A 5-by-5 

mask is chosen for Gaussian Smoothing IP, and 11-by-11 is selected for Binarization IP. 

In addition, the normalization IP uses a 96-by-96 normalization image size. 

Please note that the mask size and the normalization size are not decided 

randomly. On the contrary, they are selected very carefully after many experiments.  

It is easy to understand that the bigger the mask size is, the more neighbourhoods 

will be involved into computation. As a result, in many cases, for example adaptive 

threshold, bigger mask can behave better. But big mask size will cost too many on-chip 

memories on FPGA, which is often unaffordable. Usually, 3-by-3, 5-by-5 and 7-by-7 
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mask are used for FPGA-based image processing. But there are more concerns about 

mask size in this thesis. 

 As for Gaussian Smoothing IP, the bigger the mask size is, the more blurred 

the image will be. The benefit of a big mask size is to reduce the number of 

components that are grouped and labelled in DCCL step. As a result, the on-

chip memories are reduced and the computation time can be decreased. But 

the side effect is that it may connect the black heart block of a face to its 

peripheral black pixels, and then it is difficult to segment the correct 

candidate image. 

 As for Binarization IP, two factors affect its performance. One is the size of 

the mask; the other is the threshold bias for binarizing each pixel. The 

performance will be very sensitive to the threshold bias if the mask is too 

small compared with the normalization image. Figure 44 shows the results 

segmented by different mask size as well as different threshold bias. In figure 

44, A is a normalized candidate image. B is the binarized image by using a 5-

by-5 mask with a big threshold bias. We can see that any unnecessary black 

curves appeare in image B, which is not expected. C is the binarized image 

by using the same 5-by-5 mask with a small threshold bias. It has much less 

unexpected black curves than that of B, but introduces some additional white 

dots inside the black heart block, which are also not expected. D is the 

binarized image by using an 11-by-11 mask. It is clear that the segmented 

image is very clean inside the face area and does not contain any unexpected 
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black or white dots. In addition, it is found that 11-by-11 mask is not 

sensitive to the threshold bias when the normalization size is 96-by-96. 

 

Figure 44: Results of Binerization IP with Different Parameters 
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5 CONCLUSION AND RECOMMENDATIONS 

5.1 Summary of Contributions 

Embedded vision systems capable of recognizing objects in real time can be used 

in a wide range of applications and therefore their demand is increasing day by day. 

Traditional embedded vision system often adopts embedded CPU or DSP for algorithm 

implementation. When it comes to an FPGA, most time only glue logic instead of core 

algorithm is realized on it. This is because that FPGA development is a complicated 

process requiring both high level (algorithm development and computer architecture, etc,) 

and low level (logic circuit design, memory management, and clock distribution, etc.) 

development. It often costs so much time that the implementation of algorithm on FPGA 

becomes unaffordable.  

But FPGA based embedded vision system has the following unique features that 

lend itself great advantages over other processors, and also make itself a perfect SOC 

development platform. 

 Real hardware parallel signal processing capability 

 Flexible reconfigurability 

 Abundant interface resources for connecting external devices 

The main contribution of this thesis is to develop a FPGA based embedded vision 

system, which can identify each blob face ID in real time. Differing from many other 

FPGA platforms that introduce another processor for core algorithm implementation, this 
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system realizes all the algorithms on a single FPGA chip. The architecture of this FPGA 

system is designed in such a way that each IP block has the capability to access external 

DDR2 memory so that the parallel processing capability of FPGA can be fully exploited. 

Besides, each IP is tailored carefully in order to reuse them in the same system and then 

to reduce occupied logic resources. Hence, fully system-level pipeline operation and 

compact size scale of FPGA circuit are two important features of this FPGA system. 

In addition, it should be pointed out that the algorithm implemented on the FPGA 

is an updated version of PC based algorithm designed by C language. However, lots of 

operations used in this PC based software are not suitable for FPGA implementation. 

Therefore, another contribution of this thesis is to change the original C language 

software for FPGA implementation. Besides, during this algorithm update, a new Dual 

Connected Component Labelling method is also proposed. 

5.2 Future Work 

Under certain lighting conditions and certain view angles, the developed FPGA 

system may fail to identify a visible blob face. Therefore, there is still room for 

improving the ID recognition algorithm.  

Besides, it is worthwhile to add in more external memories for enhancing parallel 

processing capabilities. Actually, in this project, the existence of only one external DDR2 

memory does impact the performance of the whole system. When FPGA is configured to 

process VGA video stream at 32 fps rate, and simultaneously to transfer VGA video to a 

PC via USB2.0 port, the system may become unstable. This is because that the bandwidth 

of the external DDR2 memory is not big enough to handle such a huge data processing 
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throughput. Hence, the bottleneck of the system lies in the external memory bandwidth. 

In the future, it is better to add in one more external DDR2 memory to ease this 

bottleneck. 

Furthermore, based on the designed embedded vision system, more complicated 

algorithms can be integrated to realize more advanced application. For example, it is 

possible to extend the current algorithm to detect the orientation and the 3-D location of 

the blob target within a given space by using one or more cameras. This will concern 3-D 

object identification and tracking, as well as the resultant camera calibration. Based on 

the current designed FPGA system, the period of further development can be shorten a lot 

since only the Blob Recognition IP is required to be updated for the new algorithm. 
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