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Abstract  

The flexible job shop scheduling problem (F-JSSP) is mathematically formulated.  One novel 

position-based and three sequence-based mixed integer linear programming models are 

developed. Since F-JSSPs are strongly NP-hard, MILPs fail to solve large-size instances 

within a reasonable timeframe. Thus, a meta-heuristic, a hybrid of artificial immune and 

simulated annealing (AISA), is developed for use with larger instances of the F-JSSP.   

To prove the efficiency of developed MILPs and AISA, they are compared against  

state-of-the-art MILPs and meta-heuristics in literature. Comparative evaluations are 

conducted to test the quality and performance of the developed models and solution 

technique respectively. To this end, size complexities of the developed MILPs are 

investigated. The acquired results demonstrate that the proposed MILPs outperform the 

state-of-the-art MILP models in literature. Likewise, the proposed AISA outperforms all the 

previously developed meta-heuristics. The developed AISA has successfully been applied to 

a realistic case study from mould and die industry.   
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CHAPTER 1 

ENGINEERING PROBLEM 

 

1.1 Background of production scheduling 

Thirst for increased productivity in the modern business world has spurred manufacturing 

practitioners to seek every single opportunity for cost reduction and profit generation 

(Roshanaei et al. 2012a). Over the last six decades, effective production scheduling 

mechanisms have been recognized to be increasing productivity and machine utilization 

(Roshanaei et al. 2012b). The importance of scheduling as a logical enabler in manufacturing 

systems has increased recently due to the growing consumer demand for variety, reduced 

product life cycles, changing markets with global competition, and rapid development of 

new processes and technologies (Ho, Tay et al. 2007). These economic and market 

pressures stress the need for minimizing inventory while maintaining customer satisfaction 

of production and delivery; Thus, this requires efficient, effective and accurate scheduling. 

Algorithmic and scientific production scheduling came to existence once the first production 

scheduling heuristic technique was proposed by (Johnson 1954). Research in the area of 

production scheduling usually starts with single machine scheduling and is extended to 

scheduling of highly complex shop floors like changeable, reconfigurable, and flexible 

manufacturing systems abbreviated as (CMS), (RMS) and (FMS) respectively.  

The scheduling problem studied in this thesis is a special case of FMS referred to as flexible 

job shop scheduling problem (F-JSSP) which is usually encountered in industries with high 

product variety and medium demand for each product. F-JSSP extends classical job shop 

scheduling problem (JSSP) by assuming that each machine is flexible and able to offer more 

than one particular capability. Therefore, in order to better understand the F-JSSP, 

introductory definitions of JSSP are required.  

  

1.2 Introduction to job shop scheduling problem 

In order to outline the problem studied in this thesis, certain definitions are required. 

Therefore, the main production configuration- Job Shop- is first addressed, and then 

clarified as to how a generalization of the main problem is created and solved. Hence, this 

thesis is commenced with the definition of Job Shop Scheduling Problem (JSSP) and its 

mechanics. 
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In the JSSP, there are n jobs (J1, ......, Jn) with varying sizes and each job needs to be scheduled 

on m (m1,........., mm) machines each job follows a predetermined operational route until all 

the operational requirements of all jobs are fulfilled. In the classical JSSP, the process plan of 

a part consists of the sequence of the machines the part must visit: there is an a priori 

assignment of operations to machines. Therefore, the process plan is fixed and no process 

plan flexibility is associated. 

In order to explain how F-JSSP works, all sources of flexibilities in manufacturing systems 

are reviewed. Eventually, the related flexibility is addressed and the rest of details of F-JSSP 

are given. 

 

1.3 Sources of flexibility in manufacturing systems:  

Review of literature identifies at least ten types of manufacturing systems flexibilities 

(ElMaraghy 2005). They are as follows: 

1. Machine flexibility: Various operations performed without set-up change, 

2. Material handling flexibility: Number of used paths / total number of possible paths 

between all machines, 

3. Operational Flexibility: Number of different processing plans available for part fabrication, 

4. Process Flexibility: Set of part types that can be produced without major set-up changes, 

i.e. part-mix flexibility, 

5. Product Flexibility: Ease (time and cost) of introducing products into an existing product 

mix. It contributes to agility, 

6. Routing Flexibility: Number of feasible routes of all part types/Number of part types, 

7. Volume Flexibility: The ability to vary production volume profitably within production 

capacity, 

8. Expansion Flexibility: Ease (effort and cost) of augmenting capacity and/or capability, 

when needed, through physical changes to the system, 

9. Control Program Flexibility: The ability of a system to run virtually uninterrupted (e.g. 

during the second and third shifts) due to the availability of intelligent machines and system 

control software, 

10. Production Flexibility: Number of all part types that can be produced without adding 

major capital equipment. 

This classification promotes better understanding of various types of flexibility although 

some of them are inter-related. Different sources of flexibilities of manufacturing systems 
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were addressed above. Among previously enumerated sources of flexibility in 

manufacturing systems, machine and routing flexibility are incorporated into classical JSSP. 

Taking into account the before-cited sources of flexibility, the considered problem is 

transformed from classical JSSP to F-JSSP.   

 

1.4 Introduction to flexible job shop scheduling problem 

Flexible Job shop scheduling problem (F-JSSP) is challenging due to expanding machine 

tools capabilities and increased products variety. Full utilization of added capabilities, 

versatilities and increased flexibilities in job shops makes scheduling these resources 

extremely challenging. The growing competition in international markets has generated 

demand for faster and more versatile machine tools, while preserving or improving the final 

product quality. The emergence of multi-purpose machineries provided manufacturers with 

competitive capabilities. However, managing changes in products and markets requires 

adaptation at two levels by developing physical enablers of change such as reconfigurable 

machines and systems and logical enablers including adaptable and re-configurable 

controls, process planning, production planning and scheduling (Wiendahl, ElMaraghy et al. 

2007). Production planning and scheduling (PPS) map the production load of a factory to its 

capabilities and capacities in different time horizons and levels of detail. The two levels of 

PPS are coupled since planning sets the goals, as well as the resource and temporal 

constraints for scheduling (Vancza, Kis et al. 2004). Scheduling is responsible for unfolding a 

plan into detailed resource assignments and sequences. Scheduling the production in real 

industrial environment presents additional challenges of size, which is normally larger than 

the capabilities of most existing algorithms and typical benchmarks in literature.  

 

1.5 Mechanics of F-JSSP  

The manufacturing setting studied in this paper is a generalized variant of the classical job 

shop production systems known as F-JSSP. F-JSSP extends the job shop production systems 

by assuming that each machine is capable of offering more than one operation. According to 

(Kacem, Hammadi et al. 2002), flexibility in job shop, which refers to machine flexibility, 

may be partial or total - referred to as Partially Flexible Job Shop Scheduling Problem (PF-

JSSP) and Totally Flexible Job Shop Scheduling Problem (TF-JSSP) respectively. PF-JSSP is a 

special case of F-JSSP wherein the preferences or feasibility of using some machines for 

certain operations arise. In PF-JSSP, there exist certain numbers of multi-purpose machines 
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distributed throughout the facility, the versatility and flexibility of which are not identical. 

This feature enables a certain part to be processed by at least one machine out of the 

available feasible machines. The routing flexibility of parts permits dynamic re-assignment 

of parts to other available machines in case of facing any dynamic event in the shop floor 

like machine breakdowns, order cancellation or arrival etc. Alternate routing is useful where 

capacity problems arise. In PF-JSSP, there are m machines in the system and n jobs to be 

processed. Each job j requires nj precedence-constrained operations to be performed. Each 

operation Oj,l can be processed on a number of non-identical or identical machines and the 

processing time differs based on the machine characteristics. This addresses the existence of 

multiple routings for some jobs. An alternate routing could be used if one machine tool is 

temporarily overloaded while another feasible one is available. Therefore, based on 

(Brandimarte 1993), in F-JSSP, two distinct decisions have to be made:  

 Assigning Operations to Machines: in this stage, operations are assigned to their 

respective feasible machines. In TF-JPPS, any arbitrary assignment of operations to 

available machines is feasible as all the machines in the shop floor possess the same 

operational capabilities. But, in the PF-JSSP which represents the structure of our 

industrial problem as well, attention should be paid to the feasibility of machine 

assignments as machines do not possess identical tool-magazines.  

 Sequencing of operations: once assignment decisions were made, sequencing 

decision is triggered. It goes without saying that sequencing decision is made for 

those operations whose processing route entails sharing the same machine, i.e., 

those operations that are not assigned to the same machine are not considered for 

sequencing with respect to each other on that particular machine. Therefore, 

sequencing decision is made for those operations sharing the same subset of 

machines. In other words, there is no justification to sequence operations while they 

have not been assigned to the same machine.  

 

1.6 Assumptions for solving F-JSSP 

The following assumptions are used for all mathematical formulations and meta-heuristics 

developed in this thesis: 

 Optimal singular process plan is determined a priori for each part type. i.e., no 

process plan flexibility is considered.  
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  Certain operations can be processed on more than one machine, i.e., there exists 

routing flexibility.  

  Jobs are independent and no priorities are assigned.  

  Pre-emption or cancellation of jobs is not considered.  

  Each machine can only process one job at a time.  

  Each job can be processed by only one machine at a time.  

  Processing times are deterministic and include set-up, operations, transportation 

and inspection (approval).  

  All jobs are inspected a priori i.e., no defective part is considered.  

  The orders volume is known a priori and jobs are simultaneously available at time 

zero because the purchase of raw material is done at the same time.  

  Breakdowns are not considered.  

 

1.7 Representation of F-JSSP using standard triplet  

In order to facilitate the solution, the PF-JSSP is transformed to the TF-JSSP by adding 

“infinite processing times” referred to as big M to the incapable machines. Scheduling 

problems are usually represented by a standard triplet (α | β | γ). According to (Pinedo 

2002), the TF-JSSP can be denoted by FJc|Cmax but the PF-JSSP is represented as follows: 

FJc|Mi |Cmax. The first symbol indicates the type of shop which is F-JSSP, while the second 

symbol indicates machine eligibility issue. Finally the third symbol denotes the objective 

function which is make-span. The problem studied in this paper encompasses both TF-JSSP 

and PF-JSSP.  

 

1.8 Graphical representation of TF-JSSP 

In Figure1.1, as an example of TF-JSSP, the assignment of three jobs to three multi-purpose 

machines is depicted. As can be seen, all jobs have total routing flexibility to be assigned to 

any machine in the shop floor. This total flexibility is made possible if all machines have 

identical operational capabilities. In Figure 1.1, all machines have the same operational 

capabilities represented by different shapes.  
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                               Figure 1.1, schematic representation of TF-JSSP 

 

1.9 Graphical representation of PF-JSSP 

In Figure 1.2, the assignment of three jobs to three multi-purpose machines is illustrated. As 

can be seen in Figure 1.2, functionalities and versatilities of different machines are not 

identical. This simply means that not all jobs have total routing flexibility to be processed by 

any available machine in the shop floor. The difference in operational capabilities among 

machines culminates in a phenomenon known as partial routing flexibility.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2, Schematic representation of PF-JSSP 

 

1.10 Size complexity of F-JSSP  

In TF-JSSP, there exist certain numbers of multi-purpose machines (m) in the shop floor. On 

any of these multi-purpose machines as many feasible schedules as the factorial of number 
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of jobs (n!) can be generated. This is equivalent to the complexity of the single machine 

scheduling. Since there is more than one machine in the shop floor, parts have to be 

considered for sequencing on other flexible machines as well. This issue begets tremendous 

complexity for F-JSSP and makes its complexity rise to (n!)m. The classical JSSP has proven 

to be strongly NP-hard by (Garey, Johnson et al. 1976). Therefore, the F-JSSP is also NP-hard 

in strong sense.  

 

1.11 General approaches to F-JSSP  

Due to the tremendous complexity of the F-JSSP, meta-heuristics are utilized. Two 

established frameworks for meta-heuristics have been proposed (Brandimarte 1993): 

 Hierarchical: the assignments of operations to their respective machines are 

initially made and well after that sequencing procedure starts.  

  Integrated: both assigning and sequencing decisions are made concurrently. 

A hierarchical approach has been adopted in this work. 

 

1.12 Proposed solution methodologies for the F-JSSP  

As was mentioned in the abstract, this paper utilizes two widely known solution 

methodologies to fulfil the scheduling requirements of the industrial problem at hand:  

 Mathematical modelling: four effective mathematical formulations are presented 

in form of Mixed Integer Linear Programming (MILP) for both TF-JSSP and PF-JSSP. 

The MILPs presented in this work follow both the integrated and hierarchical 

approaches to solve the problem at hand. The used approach by each MILP is 

explained in Chapter 3. 

  Hybrid meta-heuristic: a hybrid meta-heuristic algorithm resulted from 

hybridization of Artificial Immune Algorithm (AIA) and Simulated Annealing (SA) 

referred to as AISA is presented.  

 

1.13 Objective function:  

Since the chief purpose of this paper is to solve the F-JSSP, several objective functions were 

examined. Among, all objective functions existent in literature, make-span (Cmax) or 

maximum was chosen. The significance of this objective function in production scheduling 

problems is addressed in chapter 3 where mathematical models are explained. 
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CHAPTER 2 

REVIEW OF PREVIOUS SOLUTION METHODOLOGIES: 

This thesis is aimed at employing two classes of solution methodologies comprising 

mathematical programming and hybrid meta-heuristics for tackling F-JSSP. Therefore, the 

literature survey is divided into two subsections:  

a) Review of mathematical models which have thus far been proposed for F-JSSP and 

other related manufacturing environments.  

b) Review of original and hybrid meta-heuristics in literature which have been 

designed for F-JSSP. 

 

2.1 Review of mathematical programming formulations: 

Mathematical modelling as a solution technique for production scheduling problems 

founded its application after the seminal work of (Wagner 1959). Ever since, researchers 

have employed wide variety of objective functions, assumptions, and solution techniques in 

their studies to formulate and solve production scheduling problems. Ozguven, Yavuz et al. 

(2012) in their lately complied literature survey, have garnered all the relevant 

mathematical models for F-JSSP. Below, the updated version of literature survey compiled 

by (Ozguven, Yavuz et al. 2012) is given. The gap between the first MILP for JSSP and that 

for F-JSSP is because flexible manufacturing systems (FMS) came to existence in early 90s. 

Seven years after the advent of multi-purpose machines, the first MILP was proposed by 

(Jiyin and MacCarthy 1997) for FMSs. They proposed a mixed-integer linear programming 

model (MILP) for FMS scheduling to minimize mean completion times of operations. The 

model took into consideration practical constraints on storage and transportation. The 

complexity of the proposed MILP was also discussed. Two MILP-based heuristic procedures 

were additionally developed. In their work, the development of iterative global heuristics 

based on mathematical programming formulations was advocated for a wide class of FMS 

scheduling problems.  Brandimarte (1999) dealt with the machine loading problem in job 

shop scheduling environment with process and routing flexibility. Two different heuristics 

were proposed: one based on surrogate duality theory, and one based on a genetic descent 

algorithm. Kim and Egbelu (1999) addressed the problem of scheduling multiple jobs with 

each having multiple process plans in a job shop environment. The problem was formulated 
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and tackled using a mathematical approach. Because of the high computational effort 

required to solve the model using an exact solution procedure, they developed two 

algorithms and computed their optimality gap by comparing them with an optimum-finding 

technique. The results of the test problems showed that one of the algorithms, referred to as 

the pre-processing algorithm, found the optimal solution in all problem cases. The second 

algorithm, referred to as the iterative algorithm, was also effective in finding good solutions; 

however, its overall performance was lower than that of the first algorithm. Low and Wu 

(2001) studied an operation scheduling problem with the objective of minimizing total 

tardiness in an FMS with set-up time consideration. The considered problem was first 

formulated as a binary integer programming model, and was then solved optimally. 

Subsequently, a heuristic was proposed to solve the problem in an acceptable running time. 

Computational experiments showed that the proposed SA-based heuristic performed well 

with respect to solution accuracy and efficiency. Thomalla (2001) proposed a Mixed Integer 

Non-Linear Programming (MINLP) for scheduling jobs in a just-in-time environment. The 

non-pre-emptive case where each job consisted of a distinct number of operations to be 

processed in a specified order was considered. The objective function was to minimize the 

sum of the weighted quadratic tardiness of the jobs. A fast near-optimal algorithm with 

guaranteed bounds for the distance to the optimum by using Lagrangian relaxation was 

proposed and also shown that only one relaxation sufficed to solve the problem. Choi and 

Choi (2002) proposed an MILP formulation to solve the F-JSSP with alternative operations 

and sequence-dependent set-up time. They also presented an effective greedy local search 

which was computationally effective. Make-span is optimized as their objective function. 

Gomes, Barbosa-Povoa et al. (2005) presented two new MILP models for F-JSSP. The model 

considered groups of parallel homogeneous machines, limited intermediate buffers and 

negligible set-up effects. The model allowed re-circulation to take place. As their objective 

functions, they minimized costs associated with just-in-time due-dates and in-process 

inventories. Gao, Gen et al. (2006) studied the F-JSSP with machine availability constraints. 

A novel MINLP was proposed to optimize make-span in F-JSSP. They introduced a hybrid GA 

to solve the F-JSSP with non-fixed availability constraints (F-JSSP-nfa). Imanipour and 

Zegordi (2006) addressed the F-JSSP with two types of flexibility in process and sequence 

planning. He also formulated the F-JSSP with sequence-dependent set-up times as an MINLP. 

The objective function was the make-span optimization. To solve the model, an effective 

approach based on Tabu Search (TS) was developed. The effectiveness of the proposed 



10 
 

algorithm was shown via numerical experiments. Low, Yukling et al. (2006) proposed a 

multi-objective framework For solving FMS scheduling problems with consideration of 

three performance measures, namely minimum mean job flow time, mean job tardiness, and 

minimum mean machine idle time. In addition, hybrid heuristics which were combinations 

of two common local search methods, SA and TS, were also developed for solving the 

addressed FMS scheduling problems. The feasibility and adaptability of the proposed 

heuristics were demonstrated through experimental results. Fattahi, Mehrabad et al. (2007) 

developed the first position-based MILP model based on Wagner’s definition of integer 

variables for F-JSSP. They also proposed six heuristic approaches for F-JSSP. Mathematical 

model was used to achieve optimal solutions for small-size instances of the problem. Since 

F-JSSP is an NP-hard problem, two heuristic approaches including integrated and 

hierarchical ones were developed to solve the real-size problems. Six different hybrid 

searching structures were presented. Numerical experiments were used to evaluate the 

performance of the developed algorithms. Saidi-Mehrabad and Fattahi (2007) presented a 

TS algorithm for F-JSSP to minimize the make-span. They presented a model for the F-JSSP 

considering alternative operation sequences and sequence-dependent set-ups. The purpose 

of their paper was to minimize the make-span and find the best sequence of operations and 

the best choice of machine alternatives simultaneously. Then the computational results 

were presented and results showed that the proposed algorithm could produce optimal 

solutions in a reasonable computational time for small-to medium size instances of the 

problem. Moreover, it could be applied easily in real factory conditions and for large-size 

problems. Fattahi, Jolai et al. (2009) considered an F-JSSP with a new approach (overlapping 

in operations). Since this problem is recognized as NP-hard class, a hierarchical approach 

based on SA was developed to solve large problem instances. Moreover, an MILP method 

was presented. To validate the proposed SA algorithm, the results were compared with the 

optimal solution obtained with the traditional optimization technique (Branch and Bound 

method). The computational results validated the efficiency of the proposed algorithm. Also 

the computational results show that the consideration of overlapping operations can 

improve the make-span and machines utilization measures. Ozguven, Ozbakir et al. (2010) 

dealt with two NP-hard optimization problems: 1) F-JSSP that encompassed routing and 

sequencing sub-problems and 2) the F-JSSP with process plan flexibility (FJSP-PPFs). The 

latter additionally included the process plan selection sub-problem. The study was carried 

out in two steps. In the first step, an MILP model based on Manne’s definition of binary 
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variables was developed for F-JSSPs and compared to an alternative model in the literature 

(Fattahi, Mehrabad et al. 2007) in terms of computational efficiency and solution 

effectiveness. In the second step, another MILP model, a modification of the MILP-1, for the 

FJSP-PPFs was presented along with its computational results on hypothetically generated 

test problems. Moradi, Fatemi Ghomi et al. (2011) investigated integrated F-JSSP with 

preventive maintenance (PM) activities under the multi-objective optimization approaches. 

They attempted to simultaneously optimize two objectives: 1) the minimization of the 

make-span for the production part, and 2) the minimization of the system unavailability for 

the maintenance part. Ozguven, Yavuz et al. (2012) studied an advanced form of the F-JSSP 

which also covered process plan flexibility and separable/ non-separable sequence-

dependent set-up times in addition to routing flexibility. Two MILP models were formulated. 

In the first model (Model A) the sequence-dependent set-up times were non-separable. In 

the second one (Model B) they were separable. Model B was constructed based on Model A 

with a minor modification. Finally, computational results were obtained on test problems. 

The updated tabular version of the literature survey carried out by Ozguven, Yavuz et al. 

(2012) is reproduced in Table 2.1. 
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Table2.1. Review of mathematical models for F-JSSP  

Reference Math models Problem addressed Objectives  

(Jiyin and MacCarthy 
1997) MILP 

F-JSSP with SDST*, 
transportation times  
and limited buffers 

Mean completion time, Make-span 
and  Maximum tardiness 

(Brandimarte 1993) 
Bi-Criterion MILP 

 F-JSSP with process plan 
and  routing flexibility 

Machine load Cost 

(Kim and Egbelu 1999) 
MILP 

JSSP with alternative 
process plans 

Make-span 

(Tamaki, Ono et al. 
2001) 

MILP F-JSSP with SIST** Make-span, Total tardiness 

(Low and Wu 2001) MILP F-JSSP with SIST Total tardiness 

(Thomalla 2001) MINLP F-JSSP Weighted quadratic tardiness 

(Choi and Choi 2002) MILP F-JSSP with SDST Make-span 

(Lee, Jeong et al. 2002; 
Low, Yukling et al. 
2006)) 

MINLP 
F-JSSP with due dates 

 and outsourcing 
Make-span 

(Gomes, Barbosa-Povoa 
et al. 2005) Two MILPs 

F-JSSP with and without 
recirculation 

Costs related to just in time  due 
dates, in-process inventories and 
orders  not fully completed 

(Gao, Gen et al. 2006) 
MINLP 

F-JSSP with preventive 
maintenance tasks 

Make-span, Maximal workload  at 
any machine, Total workload overall 
machines 

(Low, Yukling et al. 
2006) 

MILP F-JSSP with SIST 
Mean flow time,  Mean job tardiness, 
Mean machine idle time 

(Fattahi, Mehrabad et al. 
2007) 

MILP F-JSSP Make-span 

(Ozguven, Ozbakir et al. 
2010) 

MILP F-JSSP Make-span 

(Saidi-Mehrabad and 
Fattahi 2007) 

MILP F-JSSP with SDST Make-span 

(Fattahi, Jolai et al. 
2009) 

MILP 
F-JSSP with overlapping 
in operations 

Make-span 

(Ozguven, Yavuz et al. 
2012) MIGP 

F-JSSP with process plan 
and  routing flexibility 
with SDST &SIST 

Make-span & balancing the 
workloads of the machines 

(Moradi, Fatemi Ghomi 
et al. 2011) 

Bi-criterion MILP 
F-JSSP with preventive 
maintenance task 

Make-span & minimization of 
system unavailability 

 

Among proposed the MILPs for different variants of FMS, only the MILPs proposed by 

Fattahi, Mehrabad et al. (2007) and (Ozguven, Ozbakir et al. 2010) are relevant to the 

subject of this thesis. 

http://www.sciencedirect.com/science/article/pii/S0307904X11004173#tblfn2
http://www.sciencedirect.com/science/article/pii/S0307904X11004173#tblfn3
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Regretfully, there are certain technical inaccuracies associated with the MILP proposed by 

(Fattahi, Mehrabad et al. 2007) which are addressed by the proposed MILP-2 model in 

section 3.4.  

MILP model proposed by (Fattahi, Mehrabad et al. 2007) (MILP-1): 

Parameters and decision variables 

  Subscript for parts where       

  Subscript for machines where       

  Subscript for operations of part   where        

       Eligibility parameter that takes value 1 if machine   is able to process operation      and  

0 otherwise. 

   Subscript for  processing positions of machine   where        (             ) 

M A large positive number  

         
Binary decision variable taking value 1 if  l-th operation of part j is processed 
 on the f-th position of machine i 

       Binary decision variable taking value 1 If machine i is selected to process operation (      

      Processing time of operation      after selecting a machine for processing it 

     Continuous decision variable for starting time of operation       

     Continuous decision variable for beginning time of each processing position 

   A decision variable deciding number of assigned operations to machine i  

 

 

 

 

 

 

 

 

 

 

 

 

 

Min Cmax 

 

The MILP-1: 

Min Cmax 

  

             = 1      (2-1) 

                  (2-2) 

                          (2-3) 

                     (2-4) 

                               (2-5) 

                           (2-6) 

                                       (2-7) 

                                   (2-8) 

                                  (2-9) 

           
       

     (2-10) 

                         (2-11) 

                        (2-12) 
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Descriptions of the model: 

Constraint sets (2-1) and (2-2) force each operation can be performed only on one machine 

and at one priority. The values that          take determine assignments of operations to 

machines and sequence assigned operations on all machines. Constraint sets (2-3) and (2-4) 

ensure feasible assignments of operations to machines. Constraint set (2-5) determines the 

processing time of operation Oj,l by selected machine. Constraint set (2-6) enforces each job 

to follow a specified operation sequence. Constraint set (2-7) forces each machine to 

process one operation at a time. Constraint sets (2-8 and 2-9) force each operation Oj,l can be 

start after its assigned machine is idle and previous operation Oj,l−1 is completed. Constraint 

set (8) assigns the operations to a machine and sequence assigned operations on all 

machines. Constraint set (2-10) determines the make-span. Constraint sets (2-11, 2-12) 

show the natures of decision variables used in the MILP-1. 

Technical issues: 

In abovementioned model, there are three technical errors which are addressed in the 

following subsections. 

   (Number of assigned operations to machine i) 

The first error is that the authors have claimed that    is a decision variable the value of 

which is determined by their proposed MILP model. Their claim is invalid since    has been 

used as a parameter inside their mathematical model meaning that the value for    is a priori 

known. Number of operations assigned to each machine, which is equivalent to the 

processing positions in that machine is calculated as such (               ). Therefore, this 

value is known a priori. This invalid claim is present in almost all equations. 

Constraint sets (2-5) and (2-7) 

The second error is even more technically critical from the standpoint of linear 

programming modelling principles. Constraint sets (2-5) and (2-7) in the MILP-1 are 

directly related to each other. If attention is paid to constraint set (5), it is realized that       

is obtained from the following equation                        . Likewise,       is used in 

constraint set (2-7) as the processing time of operation      once machine i is selected as 

eligible machine to process it. Therefore, if the right hand side of the equation in constraint 

set (2-5) which calculates the       , is substituted in constraint set (2-7), the subsequent 

formula is resulted (                                       ). In the combined equation, it is 
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easily noticed that        is being multiplied by         . From the combined equation, it is 

simply understood that two binary decision variables are multiplied to one another which 

turns constraint set (2-7) into non-linear equation. Apart from non-linearity that violates 

the basic principles of MILP models, this issue does not communicate any practical 

interpretation. In other words, even if non-linearity could be solved by different 

optimization software, it would not express any meaning in the context of scheduling.  

Missing constraints 

In F-JSSP, for each available machine in the shop floor as many as               , 

processing positions are considered. Therefore, if   is multiplied by the number of available 

machines in the shop floor, the following number (     is obtained. This number (     

which is equivalent to the number of all available processing positions of all machines in the 

shop floor, far exceeds the number of available operations for all jobs which is shown by  

   . Therefore, some processing positions remain unallocated. This imbalance in F-JSSP has 

to be represented by a constraints set. Otherwise, when the output from the MILP model is 

obtained, a situation happens that the numbers of binary decision variables taking value 1 

exceeds the total number of operations (     and become equal to the total number of 

processing positions (    . In this case, an operation is allocated to more than one 

processing position so that all the processing positions are filled by existing numbers of 

operations. This issue also renders the developed MILP infeasible. 

Therefore, based on foregoing explanations, the mathematical representation of the MILP-1 

is wrong. In chapter 3, existing issues in the MILP-1 is remedied and more efficient 

mathematical models are proposed. 

 

 2.2 Review of meta-heuristics for flexible job shop scheduling 

Brucker and Schlie (1990) are pioneers in presenting a polynomial algorithm for two jobs in 

the generalization of the classical job-shop scheduling problem in which a set of machines 

are associated with each operation of a job. Brandimarte (1993) proposed a hierarchical 

algorithm for the F-JSSP based on TS. He employed a hierarchical strategy to decompose the 

F-JSSP into two levels of decisions: routing and scheduling which was obtained by assigning 

each operation of each job to one among the equivalent machines. Both sub-problems are 

tackled by TS. Hurink, Jurisch et al. (1994) applied new application of TS technique to F-JSSP 
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and show that their newly devised TS could yield excellent results for benchmark problems. 

Dauzere-Peres and Paulli (1997) considered an F-JSSP to minimize the make-span as the 

objective function. He introduced an extended version of the disjunctive graph model that 

was able to take into account the fact that operations had to be assigned to machines. This 

enabled them to present an integrated approach, by defining a neighbourhood structure for 

the problem where there is no distinction between re-assigning or re-sequencing an 

operation. Finally, a TS procedure was proposed and the computational results proved its 

effectiveness. Hussain and Joshi (1998) analyzed JSSP with alternate routing. To attack this 

problem, a two-pass genetic algorithm was used. The first pass picks the alternatives using a 

genetic algorithm; the second pass provides the order and start time of jobs on the selected 

alternatives by solving a non-linear program. A non-linear constraint reduces the 

dimensional complexity of the best known formulation for a job shop problem, and is used 

in the second pass of the algorithm. Preliminary results of this algorithm were encouraging 

and the algorithm solved small test problems to optimality.  Dauzere-Peres, Roux et al. 

(1998) tackled a practical problem in which an operation could have more than one 

predecessor and/or more than one successor on the routing. To minimize the make-span, 

they made use of hierarchical approach to both assign operations to resources and sequence 

operations on the resources. A disjunctive graph representation of this problem is offered 

and a connected neighbourhood structure was proposed. They demonstrated the 

effectiveness of their algorithm by applying it to benchmarks. Brucker and Neyer (1998) 

studied the make-span optimization for a multi-mode JSSP (MMJSSP). For the MMJSSP, a 

novel TS algorithm was presented and its effectiveness was established by certain 

numerical experiments. Chen, Ihlow et al. (1999) presented a new genetic algorithm (GA) to 

solve the F-JSSP with make-span criterion. They encoded their problem by chromosomes 

consisting of two parts: a) the first part defines the routing policy and b) the second part the 

sequence of the operations on each machine. New genetic operators were used to the 

reproduction process of the algorithm. Numerical experiments showed that GA was able to 

find high-quality schedules. Mastrolilli and Gambardella (2000) optimized the make-span 

for F-JSSP. A local search technique along with two neighbourhood functions (Nopt1, Nopt2) 

was presented. Their main contribution was the reduction of the set of possible neighbours 

to a subset for which it always contained the neighbour with the lowest make-span. 

Eventually, an efficient approach (TS) to compute such a subset of feasible neighbours was 

given. They proved that their proposed procedure could outperform previous approaches. 
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Kacem, Hammadi et al. (2002) proposed a Pareto approach based on the hybridization of 

fuzzy logic (FL) and evolutionary algorithms (EAs) to solve the F-JSSP. This hybrid approach 

exploits the knowledge representation capabilities of FL and the adaptive capabilities of 

EAs.  The objectives considered were to minimize the make-span, the total workload of 

machines, and the workload of the most loaded machine. Many examples were presented to 

illustrate some theoretical considerations and to show the efficiency of the suggested 

methodology.  Kacem (2003) presented two new integrated approaches to solve jointly the 

assignment and JSSP (with total and partial flexibility). The first one is the approach by 

localization (AL). It made it possible to solve the problem of resource allocation and built an 

ideal assignment model (assignments schemata). The second one was an evolutionary 

approach controlled by the assignment model. They applied advanced genetic 

manipulations in order to enhance the solution quality. They also explained some of the 

practical and theoretical considerations in the construction of a more robust encoding that 

enabled them to solve the F-JSSP by applying the GAs. Two examples were presented to 

show the efficiency of the two suggested methodologies. Abdallah, Elmaraghy et al. (2002) 

addressed the deadlock-free scheduling problem in Flexible Manufacturing Systems. An 

efficient deadlock-free scheduling algorithm was developed, using timed Petri nets, for a 

class of FMSs called Systems of Sequential Systems with Shared Resources. The algorithm 

generates a partial reachability graph to find the optimal or near-optimal deadlock-free 

schedule. The objective is to minimize the mean flow time. 

Ho and Tay (2004) offered an efficient methodology called GENACE for solving the F-JSSP 

with recirculation. They showed how CDRs could be used to solve the F-JSSP with 

recirculation to provide a bootstrapping mechanism to initialize GENACE. Then, they 

adapted a cultural evolutionary architecture to maintain knowledge of schemata and 

resource allocations learned over each generation. Experimental results showed that 

GENACE could obtain better upper bounds when compared to results of other algorithms in 

the literature. Scrich, Armentano et al. (2004) presented two heuristics based on TS for F-

JSSP to minimize total tardiness. Xia and Wu (2005) developed a hybrid algorithm resulted 

from the synthesis of Particle Swarm Optimization (PSO) and S SA for the multi-objective F-

JSSP. The results obtained from the computational study established that the proposed 

algorithm was a viable and effective approach for the multi-objective F-JSSP, especially for 

large-scale problems. The considered objectives were to minimize make-span, the total 

workload of machines, and the workload of the critical machine. Imanipour and Zegordi 
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(2006) addressed the minimization of Total Weighted Earliness/Tardiness (TWET) of jobs 

in an F-JSSP. They proposed an MILP formulation for their F-JSSP with a TWET criterion. 

Due to the NP-hardness of the F-JSSP, the MILP formulation could not solve the problem in 

large-size instances. Therefore, they proposed an algorithm based on TS. The proposed 

algorithm employed TS to find the best routing of each job. Then they made use of backward 

procedure to find the best operations sequencing. The numerical experiments showed the 

effectiveness of the suggested algorithm to solve F-JSSP in a reasonable CPU time. Gao, Gen 

et al. (2006) considered the F-JSSP with three objectives: min make-span, min maximal 

machine workload and min total workload. They developed a new genetic algorithm 

hybridized with an innovative local search procedure (bottleneck shifting) for the problem. 

The GA used two representation methods to depict solution candidates of the  

F-JSSP. Advanced crossover and mutation operators were proposed to adapt to the special 

chromosome structures and the characteristics of the problem. The bottleneck shifting 

worked over two kinds of effective neighbourhood using interchange of operation 

sequences, and assignment of new machines for operations on the critical path. In order to 

strengthen search ability, the neighbourhood structure was adjusted dynamically in the 

local search procedure. The performance of the proposed method was tested by numerical 

experiments on a large number of representative problems. Ho, Tay et al. (2007) proposed 

architecture for learning and evolving F-JSSP schedules called LEarnable Genetic 

Architecture (LEGA). LEGA provided an effective integration between evolution and 

learning within a random search process. Unlike the canonical evolution algorithm, where 

random elitist selection and mutational genetics were assumed; through LEGA, the diversity 

and quality of offspring were influenced by the knowledge extracted from previous 

generation by its schemata learning module. In addition, the architecture specified a 

population generator module that generated the initial population of schedules and also 

trained the schemata learning module. A large range of benchmark data taken from 

literature and some generated benchmark were used to analyze the efficacy of LEGA. Saidi-

Mehrabad and Fattahi (2007) presented a TS algorithm that could solve the F-JSSP to 

minimize the make-span. They presented a mathematical model for F-JSSP. They also 

presented a TS for the same problem. Randomly generated test problems were used to 

evaluate the performance of the proposed algorithm. Results of the algorithm were 

compared with the optimal solutions using a mathematical model solved by the traditional 

optimization technique (the branch and bound method). Computational results indicated 
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that the proposed algorithm could produce optimal solutions in a short computational time 

for small and medium sized problems. Moreover, it could be applied easily in real factory 

conditions and for large size problems. Rossi and Dini (2007) proposed an ant colony 

optimisation-based (ACO) for solving flexible manufacturing system (FMS) scheduling in a 

job-shop environment with routing flexibility, sequence-dependent set-up, and 

transportation time. In particular, the optimisation problem for a real environment, 

including parallel machines and operation lag times, was approached by means of an 

effective pheromone trail coding and tailored ant colony operators for improving solution 

quality. The method used to tune the system parameters was also described. The algorithm 

was tested by using standard benchmarks and problems, specifically designed for a typical 

FMS layout. The effectiveness of the proposed system was verified in comparison with 

alternative approaches.  A mathematical model and heuristic approaches were proposed by 

(Fattahi, Mehrabad et al. 2007) for F-JSSP. Mathematical model was used to achieve optimal 

solution for small-size problems. Since F-JSSP is an NP-hard problem, two heuristic 

approaches comprised of integrated and hierarchical approaches were developed to solve 

the real-size problems. Six different hybrid searching structures were presented. Numerical 

experiments were used to evaluate the performance of the developed algorithms. Finally, it 

was concluded that, the hierarchical algorithms could outperform integrated algorithms. 

Pezzella, Morganti et al. (2008) designed a GA for the F-JSSP. The GA integrated different 

strategies for generating the initial population, selecting the individuals for reproduction 

and reproducing new individuals. Computational result showed that the integration of more 

strategies in a genetic framework could lead to better results as opposed to other GAs. Gao, 

Sun et al. (2008) addressed the F-JSSP with three objectives: min make-span, min maximal 

machine workload and min total workload. A hybrid genetic algorithm (HGA) was 

developed for the problem. The GA used two vectors to represent solutions. Advanced 

crossover and mutation operators were used to adapt to the special chromosome structure 

and the characteristics of the problem. In order to strengthen the search ability, individuals 

of GA were first improved by a variable neighborhood descent (VND), which involved two 

local search procedures: local search of moving one operation and local search of moving 

two operations. An extensive computational study on benchmark problems showed the 

high-performance of their approach. Liu, Abraham et al. (2009) formulated the scheduling 

problem for the multi-objective F-JSSP and attempted to solve the problem using a Multi 

Particle Swarm Optimization (MPSO) approach. MPSO consisted of multi-swarms of 
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particles, which searched for the operation order update and machine selection. All the 

swarms search the optima synergistically and maintain the balance between diversity of 

particles and search space. They theoretically proved that the multi-swarm synergetic 

optimization algorithm could converge with a probability of one towards the global optima. 

The results indicated that the proposed algorithm was an efficient approach for the multi-

objective F-JSSP, especially for large-scale problems. Girish and Jawahar (2009) proposed a 

particle swarm optimization (PSO) based heuristic for solving the F-JSSP for minimum 

make-span criterion. They, by means of comparative evaluations proved the effectiveness of 

the proposed PSO for solving F-JSSP instances. A PSO algorithm and a TS algorithm were 

combined to solve the multi-objective F-JSSP with several conflicting and incommensurable 

objectives by (Zhang, Shao et al. 2009). Through reasonably hybridizing the two 

optimization algorithms, an effective hybrid approach for the multi-objective FJSP was 

proposed. The computational results proved that the proposed hybrid algorithm was an 

efficient and effective approach to solve the multi-objective F-JSSP, especially for the 

problems on a large-scale. Bagheri, Zandieh et al. (2010) addressed the F-JSSP to minimize 

make-span. To tackle this problem, an artificial immune algorithm (AIA) based on integrated 

approach was proposed. The algorithm used several strategies for generating the initial 

population and selecting the individuals for reproduction. Different mutation operators 

were also utilized for reproducing new individuals. They, finally, showed the effectiveness of 

the proposed method via numerical experiments by applying it to benchmark problems. 

Consequently, the computational results validated the quality of the proposed approach. 

Wang, Gao et al. (2010) considered a special case of F-JSSP in which each machine is subject 

to preventive maintenance during the planning period and the starting times of 

maintenance activities were either flexible in a time window or fixed beforehand. Moreover, 

two cases of maintenance resource constraint were considered: sufficient maintenance 

resource available or only one maintenance resource available. To deal with this variant of 

F-JSSP with maintenance activities, a filtered beam search (FBS) based heuristic algorithm 

was proposed. With a modified branching scheme, the machine availability constraint and 

maintenance resource constraint were easily incorporated into the proposed algorithm. 

Simulation experiments were conducted on some representative problems. The results 

demonstrated that the proposed FBS-based heuristic algorithm was a viable and effective 

approach for the F-JSSP with maintenance activities. De Giovanni and Pezzella (2010) 

proposed an improved GA for make-span optimization in the distributed F-JSSP (DF-JSSP). 
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With respect to the solution representation for non-distributed JSSP, gene encoding is 

extended to include information on job-to-FMU assignment, and a greedy decoding 

procedure exploited flexibility and determined the job routings. Besides traditional 

crossover and mutation operators, a new local search based operator was used to improve 

available solutions by refining the most promising individuals of each generation. The 

proposed approach was compared with other algorithms for distributed scheduling and 

evaluated with satisfactory results on a large set of distributed-and-flexible scheduling 

problems derived from classical job-shop scheduling benchmarks. Ben Hmida, Haouari et al. 

(2010) suggested a variant of the climbing discrepancy search approach for solving F-JSSP. 

They also presented various neighbourhood structures related to assignment and 

sequencing problems. They reported the results of extensive computational experiments 

carried out on well-known benchmarks for F-JSSP. The results demonstrated that the 

proposed approach could outperform the best-known algorithms for the F-JSSP on some 

types of benchmarks. A parallel variable neighbourhood search (PVNS) is utilized by 

Yazdani, Amiri et al. (2010) to tackle the F-JSSP to minimize make-span.  They use the 

concept of multiple independent searches (parallelization procedure) in their algorithm to 

increase the exploration in the search space. The proposed PVNS used various 

neighborhood structures which carried out the responsibility of making changes in 

assignment and sequencing of operations for generating neighbouring solutions. The results 

obtained from the computational study revealed that the proposed algorithm is a viable and 

effective approach for the F-JSSP. Adibi, Zandieh et al. (2010) proposed a VNS algorithm for 

dynamic F-JSSP. A trained artificial neural network (ANN) was utilized to update parameters 

of VNS at any rescheduling points. Additionally, a multi-objective performance measure is 

applied consisting of make-span and tardiness. The proposed method is compared with 

some common dispatching rules that have been widely used in the literature for dynamic F-

JSSP. Results illustrated the remarkable effectiveness and efficiency of the proposed method 

in a variety of shop floor conditions. Bozejko, Uchronski et al. (2010) proposed a parallel 

approach to F-JSSP.  Two double-level parallel meta-heuristic algorithms based on the new 

method of the neighbourhood determination were introduced by them.  The proposed 

algorithms possess two primary modules: the machine selection module refers to executed 

sequentially, and the operation scheduling module executed in parallel. In order to prove 

the efficiency of their algorithm, they conducted a computational experiment using Graphics 

Processing Units (GPU). Moslehi and Mahnam (2011) presented a new approach based on a 
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hybridization of the PSO and local search algorithm to solve the multi-objective F-JSSP. The 

obtained results for their algorithm indicated that the proposed algorithm could 

satisfactorily handle the multi-objective F-JSSP and compete well with similar approaches.  

Zhang, Gao et al. (2011) proposed an effective GA for solving the F-JSSP to minimize make-

span. In the proposed algorithm, Global Selection (GS) and Local Selection (LS) were 

employed to generate high-quality initial population in the initialization stage. An improved 

chromosome representation was introduced to conveniently represent a solution of the F-

JSSP, and different strategies for crossover and mutation operator were adopted. Various 

benchmark data taken from literature were tested. Computational results proved the 

proposed GA effective and efficient for solving the considered problem. Al-Hinai and 

ElMekkawy (2011) developed a hybridized GA architecture for the F-JSSP. The efficiency of 

their GA was augmented by integrating it with an initial population generation algorithm 

and a local search method. The usefulness of the proposed methodology was illustrated with 

the aid of an extensive computational study on 184 benchmark problems with the objective 

of minimizing the make-span. Obtained results highlight the ability of the proposed 

algorithm to first obtain optimal or near-optimal solutions, and second to outperform or 

produce comparable results with those obtained by other best-known approaches in 

literature. Bagheri and Zandieh (2011) considered the F-JSSP with sequence-dependent set-

up times to minimize make-span and mean tardiness. A VNS algorithm based on integrated 

approach was proposed for F-JSSP. In the presented optimization method, the external loop 

controlled the stop condition of algorithm and the internal loop executed the search process. 

To search the solution space, the internal loop used two main search engines, i.e. shake and 

local search procedures. In addition, neighborhood structures related to the sequencing 

problem and the assignment problem are employed to generate neighbouring solutions. 

Consequently, computational results and comparisons validated the quality of the proposed 

approach. Gutierrez and Garcia-Magarino (2011) presented heuristic methods resulted from 

the hybridization of genetic algorithms with repair heuristics. The proposed solution was 

tested in order to analyze its level of constraint satisfaction and its make-span, which were 

two of the main parameters considered. They discussed this experimentation showing the 

improvements over existing methods.  

 

 

 



23 
 

2.3. Gap analysis and contribution to the field 

The literature of F-JSSP contains several proposals of mathematical models with different 

objective functions, assumptions etc. In some papers, new mathematical models for a new 

problem are proposed whereas in many others previously proposed mathematical models 

are optimized. In this thesis, efforts are directed towards proposing and enhancing two 

famous MILP models in literature to minimize make-span for F-JSSP. Attempts are made to 

reduce the number of binary integers and continuous variables and also number of 

constraints to improve the MILPs. The improvements of the proposed MILPs cause the 

newly developed MILPs to be more computationally efficient and capable of solving larger-

size instances of the problem. As can be seen, numerous applications of meta-heuristic 

algorithms have also been proposed for wide variety of F-JSSPs. Several benchmarks for F-

JSSP have also been proposed for measuring the effectiveness of the proposed meta-

heuristics. Fattahi, Mehrabad et al. (2007) generated a benchmark consisting of 20 small-to-

medium size instances of F-JSSP. Ten instances of small problems are shown by (SFJS1 to 

SFJS10) and the other ten   medium-size instances are shown by (MFJS1 to MFJS10). This 

benchmark is known as F-data in literature. It is believed this benchmark is the best 

benchmark in literature for measuring the effectiveness of meta-heuristics. The support for 

the previous statement is the fact that the optimal and near-optimal solutions of this 

benchmark have already been calculated using different MILPs. Therefore, the optimality 

gap of the meta-heuristic proposed in this thesis can be measured using this benchmark. 

Once the proposed meta-heuristic was applied to the F-data set and its optimality gaps were 

measured, it was compared vis-à-vis the six meta-heuristics of (Fattahi, Mehrabad et al. 

2007) and the artificial immune algorithm of (Bagheri, Zandieh et al. 2010).  

In light of the foregoing literature survey and identified gaps in F-JSSP, the research 

reported in this thesis proposes four new mathematical models and a new hybrid meta-

heuristic algorithm capable of producing new optimal and more effective feasible solutions 

for the F-JSSP represented by the F-data. 
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CHAPTER 3 

PROPOSED SOLUTION METHODOLOGIES 

3.1 Mathematical models 

Mathematical models for production scheduling problems came to existence in the late 50s. 

At that period of time, there were few solution techniques to solve different types of 

mathematical models. In spite of recognizing few solution techniques to solve mathematical 

models, there were no viable computing technologies to solve them. The imbalance between 

mathematical models and computing technologies discouraged many practitioners to 

deploy mathematical models as their primary tool through which optimal solutions could be 

obtained. . This issue continued to affect practitioners and academics, as relevant solution 

techniques and computational technologies could not solve large-size instances of the 

problem. Obviously, mathematical programming would be deemed the best tool for 

generating optimal solutions if computational technology could keep up. This notorious 

issue did not discourage academicians from developing mathematical models as part of 

their solution techniques with the hope of reaching the point where solving the 

mathematical models to optimality is possible. But for many researchers, this was just an 

unachievable delusion. So in view of many researchers, this issue could not be resolved until 

expected super-computers with huge processors were introduced in the market. But, for 

few other researchers, mathematical models were conceived possibly solvable to optimality 

for mid-size problems taking advantage of current technology. They thus initiated 

rethinking their modeling approaches so that the mathematical models’ decision variables, 

and constraints to be significantly reduced.       

 

3.2 Classification of production scheduling modelling paradigms: 

Mathematical modelling as a solution technique for production scheduling problems 

founded its application after the seminal work of Wagner (1959). Soon after Wagner 

proposed his first model, (Bowman 1959) propounded an equivalent mathematical model 

for the same problem with a different modelling paradigm. Shortly after the presentation of 

the second mathematical model by Bowman (1959), Manne (1960) presented a completely 

new mathematical modelling paradigm. The production scheduling modelling paradigms 
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proposed by Wagner, Bowman and Manne are generally referred to as position-based, time-

based, and sequence-based respectively. These variants of modelling paradigms have 

separately been extended for regular job shop scheduling problems. No other modelling 

paradigms have been suggested after the foregoing groundbreaking paradigms. Brief 

explanation of each of these modelling paradigms is provided below. 

         if job j is scheduled on the f-th processing position on machine i; 0, otherwise. 

        , if job i is processed by machine i during time-unit t; 0 otherwise. 

        , if job j succeeds job h (not necessarily immediately) on machine i; 0 otherwise. 

The MILPs proposed in this thesis adopt the modelling paradigm of Wagner and Manne 

commonly referred to as position-based and sequence-based respectively. These two 

modeling paradigms have proven to generate fewer numbers of decision variables, and 

constraints. 

3.3 Guideline for formulating production scheduling problems  

It has been witnessed that some researchers do not follow a proper guideline to formulate 

their problems (Fattahi, Mehrabad et al. 2007). The following constraints of the F-JSSP  are 

used. If following constraints are properly defined, the whole model is constructed easier.  

 Constraints for assigning and sequencing of operations to available processing 

positions 

 Constraints for machine capability utilization 

 Machine eligibility constraints 

 Technical / logical precedence constraints among operations of a part 

 Machine non-interference constraints 

 Constraints for relating processing positions to operations 

 Constraints for capturing the value of objective function 

 Constraints demonstrating the nature of decision variables 

In this thesis, four enhanced MILPs for F-JSSP are proposed. One of them is constructed 

based on Wagner’s definition of binary integer variables, and the other three are formulated 

based on Manne’s definition of binary integer variables. In Table 3.1, the differences 

between MILPs are articulated and the contribution of each MILP is elaborated. 
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Table3.1, differences between proposed mathematical models 

Name Modeling Paradigm  Novelty 

MILP-1 Position-based  MILP-1 is the only position-based MILP in literature 
(Fattahi, Mehrabad et al. 2007). 

 
MILP-2 

 
Position-based 

Proposed MILP-2 enhances MILP-1 in all aspects. MILP-2 
uses only one type of binary decision variable as opposed to 
MILP-1 which uses two different types of binary decision 
variables.  This in turn reduces the computational space 
(RAM on a computer) required to solve larger instances of 
the problem and hence allow for better solutions to be 
arrived at. 

MILP-3 Sequence-based MILP-3 is the only sequence-based MILP in literature. 
(Ozguven, Ozbakir et al. 2010) 

 
MILP-4 

 
Sequence-based 

Proposed MILP-4 enhances MILP-3 by reducing its number 
of decision variables and constraints. It also proposes new 
binary decision variables which are hierarchical. This in 
turn reduces the computational space (RAM on a computer) 
required to solve larger instances of the problem and hence 
allow for better solutions to be arrived at.  

 
MILP-5 

 
Sequence-based 

Proposed MILP-5 enhances MILP-3 in terms of number of 
continuous decision variables and proposes new binary 
variable for sequencing and assignment problem. 

MILP-6 Sequence-based Proposed MILP-6 outperforms all other MILPs. 

 

Analogous to the classification suggested for meta-heuristics in section 1.12, mathematical 

models are also classified as either integrated or hierarchical. An MILP is considered 

hierarchical if separate distinct binary variables are used to represent the sequencing and 

routing (assignment) of operations; it is integrated, otherwise.  

3.4 Enhanced position-based MILP (MILP-2):  

The MILP-2 is an enhanced version of the MILP-1 proposed by (Fattahi, Mehrabad et al. 

2007). The MILP-2 utilizes only one type of binary decision variable to handle routing and 

sequencing sub-problems as opposed to the MILP-1 which uses two distinct binary 

variables.    

Parameters and decision variables 

  Subscript for jobs where       

  Subscript for machines where       

  Subscript for operations on job   where        

  ,    -th operation of job   
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       Parameter that takes value 1 if machine   is able to process      and 0 otherwise. 

       Processing time of operation      on machine i 

   Subscript for  processing positions of machine   where        (             ) 

M A large positive number  

         Binary decision variable taking value 1 if  is      is processed on the f-th position  

of machine i 

       Binary decision variable taking value 1 If machine i is selected to process operation (      

  ,  Continuous variable for the completion time of   , . 

     Continuous decision variable for starting time of operation       

     Continuous decision variable for beginning time of each processing position 

 

 

 

Min Cmax 

 

        

   

          
  
   

 
            (3-1) 

 

 

 

          
  

   
 
            (3-2)  

         
  
                   (3-3)  

                              
  
   

 
             

 (3-4)  

                             
  

   
 
            

 (3-5)  

                                   (3-6)  

                                  (3-7)  

          
                    

  
   

 
        (3-8)  

                      (3-9)  

                        (3-10)   

The purpose of the proposed MILP is to find optimal or feasible schedules for F-JSSP. To this 

end, an appropriate objective function has to be employed to suitably fulfill the 

manufacturing strategy. Various objective functions were explored and eventually 

maximum completion times of operations, commonly referred to as make-span (    ) was 

selected as optimization criterion. The rationale behind utilizing make-span as optimization 

criterion is that make-span incorporates machine utilization through reduction of idle time 

on all machines and ensures even workload distribution among work centres (Pan 1997). 

Constraint set (3-1) ensures that each operation is assigned to one and only one position of 

all available machines. Constraint set (3-2) ensures the fact that some capabilities of all 

machines may not be fully utilized. Constraint set (3-3) ensures that each operation is 

processed on the eligible machines that have been determined a priori. Therefore, the first 

three sets of constraints ensure schedule feasibility. Constraint set (3-4) preserves the 
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precedence relationships between the starting times of operations of a job. Constraint set 

(3-5) express the fact that each order-position of a machine can be occupied only if the 

preceding positions have fulfilled the processing requirements (Pj,l,i) of other operations. 

Constraint sets (3-6) and (3-7) ensure that an operation can occupy one position of a 

machine when both the operation and the machine are available. These two constraints are 

Either-Or constraints. For this model,          takes value 1 if l-th operation of job “j” is 

scheduled on machine f-th slot/order of machine “i”. If           takes value 0, both constraint 

sets (3-6) and (3-7) become redundant since      would be less than infinity and greater 

than negative infinity-naturally. On the other hand, if it does have a value,           , then 

     is less than or equal      and at the same time greater than or equal same. Hence, that 

leaves us with only one possibility (          ; i.e., beginning time of slot f on machine i is 

equal to starting time of operation l of job j. Constraint set (3-8) takes care of calculating the 

last completed operation for each job which is the maximum completion time of operations 

on all available machines. Constraint set (3-9) show that the continuous variables 

representing starting times of operations and positions are invariably positive. Constraint 

set (3-10) demonstrates the binary nature of the decision variables. In the proposed MILP, 

certain technical and mathematical representation errors in the MILP-1 are being addressed 

and resolved; see section 2.1 for more account and critique of the model. As a result, the 

binary decision variable (  , , ) is removed from the MILP-1, which substantially increases 

the computational efficiency and solution effectiveness of the proposed MILP. Getting rid of 

this binary decision variable reduces the number of binary decision variables of the 

proposed MILP by (nm2) as compared to the MILP-1.  

 

3.5. Sequence-based MILPs 

In this subsection, all the mathematical models which have been formulated based on 

Manne’s definition of binary integer variables are presented. 

3.5.1. Enhanced Ozguven’s hierarchical MILP (MILP-4) 

The MILP-4 is an enhanced version of the MILP-3 proposed by (Ozguven, Ozbakir et al. 

2010) in that instead of using two continuous decision variables (  , ,  and   , , ) only   , ,  has 

been utilized. Moreover, instead of using only one integrated binary variable, two different 

binary variables: one for assigning, and the other for sequencing has been used. This issue 
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causes the number of continuous decision variables to be significantly reduced. All of the 

constraints in the MILP-3 have been restructured so that the comprehensibility of the 

proposed MILP enhances.  

        

       
 
             (3-11) 

                          (3-12) 

         
 
            

 
                   

 
            

 (3-13) 

                                                                             
 (3-14) 

                                                                            
 (3-15) 

             
 
                     

 
        (3-16) 

          (3-17) 

                        (3-18) 

Constraint set (3-11) make sure that operation Oj,l is assigned to only one machine. If 

operation Oj,l is not assigned to machine i, the constraint set (3-12) set the starting times of 

it on machine i equal to zero. Otherwise, the constraint set (3-13) guarantee that the 

difference between the starting times of operation (Oj,l+1) and the starting times of its 

previous operation (Oj,l) is equal to at the least to the processing time on machine i (  , , ). 

Constraint sets (3-14) and (3-15) simultaneously take care of the requirement that 

operation Oj,l and operation Oh,z cannot be sequenced at the same time on any machine in the 

shop floor. 

Constraint set (3-16) determines the make-span. Constraint sets (3-17) and (3-18) 

demonstrate the nature of the decision variables. 

3.5.2. Novel hierarchical sequence-based MILP (MILP-5). 

        

       
 
            (3-11) 

                     (3-19) 

                   
 
                 (3-20) 

                                                            (3-21) 

                                                             (3-22) 

          
    (3-23) 

            (3-24) 
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                      (3-25) 

where      = 0 (3-26) 

Constraint set (3-11) ensure that all operations are investigated for processing on all 

available machines and eventually are imperatively assigned to one of them. Constraint set 

(3-19) ensures the feasibility of the machine assignments which are investigated for any of 

the operations in constraint set (3-11). Constraint set (3-20) represents the logical/natural 

precedence constraint among the operations of a job. It simply means that so long as the 

previous operation of a job has not been completed on any of the machines in the shop floor 

the succeeding operation is not processed. Constraint sets (3-21) and (3-22) referred to as 

Either-Or constraints simultaneously ensure the following: 1) an operation cannot be at the 

same time both the predecessor and the successor of another operation, and 2) satisfaction 

of non-interference constraints (precedence constraint among operations of different jobs); 

i.e., for operations of different jobs that are eligible to be processed on the same machine. In 

other words, if two operations of two different jobs do not share the same subset of 

machines, consideration of the operational precedence between them is not done and both 

constraints become redundant. Hence, two operations   ,  and   ,  can only be sequenced 

when both their binary integer variables assignment   , ,  and   , ,  take value of 1; 

otherwise, they bear no relationship with one another on machine i . Once machine i was 

established as eligible machine to process   ,  and    ,  (  , ,          , ,    , the 

precedence relationship between these two operations should be decided by the sequencing 

binary decision variable which is   , , , . In any circumstance other than stated above, both 

constraint sets (3-21) and (3-22) become redundant constraints. If   ,  is processed 

after   ,  on machine i, the sequencing binary decision variable takes value 1 and therefore 

constraint set (3-30) become active. Otherwise, this constraint show that   ,  is just greater 

than a large negative number, which is naturally true. The sequencing binary 

variable (   , , , ) takes value 0 if   ,  is not processed after   , . Since two operations in 

sequencing decision have no more than two states with respect to each other (predecessor 

or successor), if   ,  does not succeed   , , it has to precede it, in which case constraint set 

(3-21) become active and constraint set (3-22) become evident inequality equations. 

Constraint set (3-23) keeps track of make-span and compute it. Constraint set (3-24) show 

the non-negativity nature of the MILP’S continuous variables. Constraint set (3-25) 

demonstrates the binary nature of decision variables. 
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3.5.3. New reduced hierarchical sequence-based MILP (MILP-6): 

The MILP-6 is an enhanced and reduced version of the MILP-5. Changes made in the MILP-6 

are explained right after the proposed MILP model. 

        

             
         (3-27) 

                         
              (3-28) 

                                                                       
 (3-29) 

                                                                        
 (3-30) 

          
    (3-23) 

        (3-24) 

                      (3-25) 

where      = 0 (3-26) 

The MILP-6 is an enhanced and reduced version of the MILP-5 which does not have 

constraint sets (3-19) in the MILP-5. For scheduling of operations on different machines, the 

capabilities of machines are recognized and listed and based on that operations are routed 

towards machines capable of processing them. In TF-JSSP, all machines have the capability 

of processing all operations; therefore, machine feasibility is not an applicable issue. But in  

PF-JSSP the issue of feasible assignments of operations to machines arises. Therefore, 

second constraint sets in the MILP-5 are required. In the MILP-5, the first and second 

constraints sets are interrelated. In constraints set (3-11) in MILP-5, all operations are 

investigated on all machines assuming that all the operations can be processed on all 

machines. But in the second constraint sets (3-19) in MILP-5 (   , ,         ), ineligible 

machines are recognized and excluded from assignment considerations. If attention is paid 

to the first constraint sets in the MILP-5, it is realized that the value of the assignment 

variable (  , , ) depends on the value of        which its value is known beforehand. In case of 

TF-JSSP, the value of parameter        is always 1 for all operations; meaning that all 

operations are feasibly executable on all machines. But in case of PF-JSSP, some machines 

are unable to process certain operations; therefore, the value of        is zero for that 

operation. In the MILP-5, all machines are considered for processing all operations and 

hence the number of generated assignment variables for all operations is equivalent to the 

number of machines. In the MILP-6, this issue is treated differently. By eliminating the 
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second constraints in the MILP-5, the MILP-6 becomes more efficient. Let’s assume there 

exist three jobs with five machines in the shop floor as in the Table 3.2. 

 

Table 3.2, operation-machine eligibility 

  M1 M2 M3 M4 M5 

J1 
O11 1 1 1 1 0 
O12 0 1 0 1 1 
O13 0 1 1 1 1 

J2 
O21 0 0 0 1 1 
O22 1 1 1 0 0 
O23 1 0 0 0 0 

J3 
O31 1 0 1 0 1 
O32 0 1 1 1 1 
O33 1 0 0 0 1 

  

Based on the machine eligibility provided in Table 3.2 constraints sets (3-11) and (3-19) 

have been expanded Operation O21 and its assignment to different machines are given as an 

example. 

                                     

         

         

         

         

         

As can be seen, just for one operation (O21), six constraints and five decision variables are 

generated while in the MILP-6 the following constraint and decision variables are 

generated: 

            5  1 

The reason behind this reduction is that for each operation, a set of eligible machines has 

been defined (Rj,l). As can be seen, for assigning O21 to existing machines, only one constraint 

and two decision variables are generated. Thus, elimination of constraints set (3-19) from 
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the MILP-5 leads to the MILP-6 and it generates far fewer number of constraints and 

decision variables. This issue is even more sensed in constraints (3-29) and (3-30) in the 

MILP-6. Having recognized that one operation is not eligible to be processed on certain 

machine; that operation is not considered for sequencing decision as well. The structure of 

constraint sets (3-21) and (3-22) in the MILP-5 causes many redundant constraints to be 

generated. For example, based on Table 3.2, operations O11 can be processed on machine 1 

(Y111=1) while O21 cannot be processed on that machine (Y211=0). So based on the foregoing 

example, the following two redundant constraints are generated: 

           →          

                    

In sequence-based modeling paradigm, all operations are examined for sequencing with 

respect to each other. This issue is quite natural in TF-JSSP but not in PF-JSSP. In PF-JSSP, 

some operations may not be processed on the same machine. The prerequisite for 

operations sequencing in PF-JSSP is that operations should be assigned to the same 

machine. If and only if one of the operations is not assigned to the same machine, those 

Either-Or constraints become redundant constraints. The following redundant constraints 

are generated only when O11 is considered for sequencing, with respect to other operations 

on machine number one.     

           →          

                    

           →          

           →          

           →          

           →          

           →          

           →          

           →          
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           →          

           →          

           →          

In order to prevent these redundant constraints from being generated, certain restrictions 

have to be exerted on the machine assignments of operations. This restriction should ensure 

that operations sequencing should be merely done among those operations being assigned 

to the same machine. To this end, the following restrictions (             ) have been 

applied to constraint sets (3-29) and (3-30) in the MILP-6. This restriction ensures that 

operations sequencing is done only when any two operations are processed on the same 

machine. Applying the foregoing restriction and elimination of the second constraint set in 

the MILP-5 causes the number of binary variables for assigning and sequencing and as a 

consequence the number of constraints to be significantly decreased in the MILP-6.  

In chapter 4, the performances of all the MILPs are investigated and reported. In section, the 

procedure of developing the proposed meta-heuristic is explained. 

 

3.6. Proposed Solution Methodology (A hybrid meta-heuristic) 

The proposed meta-heuristic is a hybrid of the Artificial Immune Algorithm (AIA) and 

Simulated Annealing (SA) and is referred to as AISA. 

3.6.1. Brief introduction to Artificial Immune Algorithm 

AIAs are adaptive computational systems that simulate the behaviour of the immune system 

of natural living organisms where the body recognizes foreign substances known as 

antigens and generates a set of antibodies to exterminate them.  AIAs, by virtue of affinity 

values (inverse of make-span values), discern the antibodies (feasible schedules) that 

demonstrate more potential in exterminating antigens (minimization of F-JSSP) so as to 

further proliferate their respective variations in next generations of antibodies. Therefore, 

the effectiveness of each antibody is measured by its affinity value. Hence, in order for the 

AISA to be better comprehended, a one-by-one correspondence has to be established to 

relate the elements of the F-JSSP and to those of the AISA. The correspondence is as follows: 

 Antigens: antigen is the F-JSSP that is to be solved.  
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 Antibodies: antibodies are feasible schedules. 

 Affinity values: in our case are the inverses of objective function values. The higher 

the affinity value, the lower is the make-span. 

Cloning selection algorithm (CSA) which is specific type of AIAs has proven to be superior to 

other AIAs according to (Zandieh, Fatemi Ghomi et al. 2006). CSA is thus used in this thesis. 

AIAs based on CSA possess two primary operators:  

 Cloning selection  

 Affinity maturation 

 In the former, those schedules that effectively minimize the F-JSSP are proliferated by 

cloning. Affinity maturation encompasses two basic phases: hyper-mutation and receptor 

editing. In the hyper-mutation phase, inferior schedules undergo higher rate of mutation as 

opposed to superior ones. Receptor editing manages the hyper-mutation procedure. Then, 

the population evolves by a set of operators until some stopping criterion is met. Complete 

description of AIAs for production scheduling problems can be found in (Zandieh, Fatemi 

Ghomi et al. 2006). Unlike the original AIAs where only inferior schedules undergo hyper-

mutation, in the proposed AISA, all schedules undergo hyper-mutation by applying a fast and 

effective SA. The proposed hybrid AISA algorithm searches the problem space populated 

with encoded feasible schedules.  

 

3.6.2 Antibody (feasible schedule) representation 

F-JSSP is actually a combination of machine assignment and operations sequencing. A 

hierarchical approach with a novel encoding scheme consisting of two strings is utilized. In 

the sequencing string, all operations of a job are listed with the same symbol (number) and 

interpreted according to its already technically precedence-constrained operations set, and 

then any permutation of these numbers is an operation sequence. Each job j emerges nj 

times to represent its nj ordered operations. By scanning the permutation from left to right, 

the k-th occurrence of a job number indicates the k-th operation in its processing route. The 

following example is provided to demonstrate how a feasible schedule consisting of 

sequencing string and assigning string is constructed for F-JSSP. Table 3.3 shows the 
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processing times of operations on each machine, plus their respective feasible machines to 

execute them. 

Table 3.3, processing times of operations and operation-machine assignment 

Processing times M1 M2 M3 Assignment M1 M2 M3 
O11 30 ∞ 18 O11 1 0 1 
O12 ∞ 40 40 O12 0 1 1 
O13 34 40 ∞ O13 1 1 0 
O21 ∞ 60 65 O21 0 1 1 
O22 66 ∞ 60 O22 1 0 1 
O31 ∞ ∞ 40 O31 0 0 1 
O32 20 32 ∞ O32 1 1 0 
O33 ∞ 30 30 O33 0 1 1 
O41 ∞ 62 40 O41 0 1 1 
O42 50 60 ∞ O42 1 1 0 

 

Considering above Table 3.3, an example of encoded sequencing is provided. Let’s assume 

the initial random sequence is the following string  1,2,1,3,3, ,1, ,3,2 . Decoded sequence is 

as follows:    11, 21, 12, 31, 32,  1, 13,  2, 33, 22 . Consider the following 

three-row representation of the initial feasible sequence. Ten random numbers between [0, 

1] equivalent to the number of operations are generated and each random number is 

assigned to one of the operations. After random numbers were generated, they are sorted in 

a non-decreasing order. Therefore, the sorted string is the initial feasible sequence. This 

operation is done by an operator called SHIFT (single-point) operator. 

Table 3.4, initially generated solution 

Rand no 0.06 0.95 0.12 0.89 0.76 0.32 0.99 0.23 0.47 0.51 
Operations 1 3 2 4 1 3 2 1 3 4 
 

Table 3.5, sorted initial solution 

Rand no 0.06 0.12 0.23 0.32 0.47 0.51 0.76 0.89 0.95 0.99 
Operations 1 2 1 3 3 4 1 4 3 2 
 

In order to generate new sequence out of the sorted initial solution (Table 3.5), one of the 

ten random numbers is randomly selected and the value of which is randomly regenerated 

between [0, 1]. As an example, the random number 0.51 is randomly regenerated as 0.19 

and the whole random numbers are sorted in a non-decreasing order again. As you can see, 
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the first operation of part number fouris relocated from cell 6 to cell 3. Below, the newly 

constructed sequence is shown. 

 

Table 3.6, newly generated sequence via initial solution 

Rand no 0.06 0.12 0.19 0.23 0.32 0.47 0.76 0.89 0.95 0.99 
Operations 1 2 4 1 3 3 1 4 3 2 
 O11 O21 O41 O12 O31 O32 O13 O42 O33 O22 
 

So far, the sequencing step was explained. No machine has yet been assigned to each 

operation. Therefore, the second string shows the machine selected from the eligible 

machines to process each operation. Based on Table 3.6, a subset of machines with 

maximum number of machines per operation is defined. Therefore, for each row in Table 

3.6, a number showing the maximum number of eligible machines is defined. Then, within 

the defined range, a random integer number representing the selected machine is 

generated. In the second string, based on the possible assignments of operations to 

machines, operation O11 is processed by its first eligible machine, M1, operation O21 by 

machine two which is the first eligible machine for it, the operation  O41 is executed on 

machine three which is the second eligible machine for it etc. Table 3.7, completely 

demonstrates how a feasible schedule (antibody) consisting of two strings are generated. 

 

Table 3.7, representation of an antigen (a feasible schedule) 

Rand no 1 2 4 3 1 4 2 3 1 3 Affinity= 
1/170 Operations O11 O21 O41 O31 O12 O42 O22 O32 O13 O33 

Machines 1 1 2 1 1 1 2 1 2 1 Make-pan= 
170 Process time 30 60 40 40 40 50 60 20 40 30 

 

In Figure 3.1, above feasible schedule is unfolded to its equivalent Gantt chart. As you can 

see the objective function value of this feasible schedule is 170. Any regeneration of random 

numbers for two strings generates a new feasible schedule with a new objective function 

value. Each of these feasible schedules represents an antigen in the initial population of the 

AISA. 
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Figure3.1, equivalent Gantt chart of the decoded feasible solution. 

 

The initialization is used for random generation of schedules (pop-size) from the feasible 

region. Once schedules have been made recognizable to the AISA, an affinity value is 

assigned to each schedule according to their performance - The higher the affinity is, the 

more desirable the schedule becomes. Then, the schedules evolve by an effective SA until 

the stopping criterion is met. A typical iteration of AIA generation proceeds as follows: 

according to an author-defined affinity function, the number of the schedule clones 

proliferated by each schedule generator is calculated and added to a mutating pool. A 

selection mechanism chooses the schedules in current mutating pool where schedules with 

lower make-span values (higher affinity values) have more chance of being selected. 

 

3.6.3.  Cloning selection procedure: 

 Schedules with lower make-span values have higher affinity values and are considered to 

be superior for solving PF-JSSP. But since the objective function is the minimization of 

make-span, better schedules are those resulting in lower values of make-span. Therefore, 

the following function is defined to convert the objective function value of each schedule 

into its affinity value: 

Affinity (t) = 1/ Make-span (t)                                        (3-33) 

Hence, higher affinity values lead to lower objective function values. The probability of 

cloning each schedule to transfer into the mutating pool is directly proportional to its 

affinity value. The mutating pool has a fixed number of schedules (population size). The 

best schedule in a generation is copied to the next mutation pool (elite strategy). A selection 

mechanism based on binary tournament is used (popsize-1). The population of schedules 

evolve by a set of SA operators until some stopping criterion (n.m.0.2 second) is met. The 



39 
 

selected clones are hyper-mutated and generate new schedules (offsprings). The new 

population is evaluated and the whole process is repeated. 

 

3.6.4. Affinity maturing procedure via SA  

All schedule clones in the pool undergo an operator called hyper-mutation which makes a 

random change in the schedule clones using a very fast SA. In order for any meta-heuristic 

algorithm to avoid getting trapped in local optima, it should possess two built-in 

capabilities: 

 Exploration or diversification: alludes to the fact that a meta-heuristic is capable of 

visiting diverse promising regions in the search space by its operators. AIAs are 

very well-known for this capability.  

 Exploitation or intensification: alludes to the capability of meta-heuristics to 

completely exploit prospective solutions in newly found regions by diversification 

operators. SAs are well-established techniques for this task. 

Therefore, the combination of the flexible and effective population-based algorithm to search 

for the optimal solution and the convergent characteristics of SA provides the rationale for 

developing the proposed AISA strategy to schedule PF-JSSP while minimizing make-span. 

Figure 3.2, shows the pseudo code of the proposed AISA. The strategy to hybridize AIA with 

SA is as such. After cloning schedules with lower make-span values, the SA is applied to all 

clones in the mutating pool. For both sequencing and assigning phases, SHIFT procedure 

which according (Roshanaei, Seyyed Esfehani et al. 2010) has proven to be superior to 

other schedule generators is applied. First, based on the sequencing string, a new sequence 

of operations is constructed and then again SHIFT procedure is used for operation 

assignment; ten random machine assignments are generated for each sequence and the 

best one is selected.  The newly generated schedule (s) from the incumbent solution (x) is 

accepted if the following equation holds (ΔC = make-span(s) – make-span (x) ≤ 0, otherwise, 

schedule s undergoes another probabilistic acceptance criterion which is exp - (ΔC / ti).  

Parameter t, called the temperature, controls the acceptance rule.  At each temperature (ti), 

the SA algorithm constructs 15 schedules under the exponential annealing scheme (ti =α .ti-1 

where α   (0, 1) is temperature decrement rate) and stops search explorations if no 

improvement is made after seven consecutive temperatures. 
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Figure 3.2, pseudo code of AISA 

 

Initialize the population (N) randomly and set parameters 
Evaluate affinity value of  each schedule 
Use ranking selection method for cloning selection phase 
Apply SA algorithm to all clones for affinity maturing procedure 
Procedure SA 
Initialization (the one clone in the mutating pool) 
counter = 0 
 while counter <= n do 
        for i = m  do 
Generate a new neighbor from current solution (shift operator) 
Acceptance criterion 
Update the best solution so far found 
       endfor 
       if the best solution is improved in this temperature do 
counter = 0 
        else 
             counter = counter + 1 
         endif 
      Temperature reduction through exponential cooling scheme 
Endwhile 
If stopping criterion is met, return the best schedule 

In this chapter, the proposed solution methodologies were completely elaborated. Four 

mathematical models based on position-and-sequence based modeling paradigms were 

proposed and developed for F-JSSP. Along with the MILPs which are usually used to solve 

small-to-medium size instances of the problem, a new meta-heuristic (AISA) which is a 

hybrid of artificial immune algorithm and SA was suggested and implemented. The AISA has 

been designed to both solve larger instances of F-JSSP and solve the real case study in this 

thesis. In chapter four, performance appraisals of the MILPs and the proposed meta-

heuristic are done by applying them to standard benchmark from literature. The results 

obtained from the MILPs are compared with best-performing the MILPs in literature. The 

same procedure is applied to the AISA.   
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CHAPTER 4 

COMPARATIVE EVALUATIONS AND DISCUSSIONS 

In this chapter, numerical and computational analyses are conducted based on the optimal, 

feasible, and lower bound solutions of the enhanced MILPs. Finally, efficiency of each 

solution methodology is quantified.   

4.1. Numerical size complexity measurement of MILPs: 

This section numerically measures the size complexity of each MILP. Extensive 

computational study is carried out on a wide range of randomly generated problem 

instances known as F-data generated by (Fattahi, Mehrabad et al. 2007). Several 

benchmarks for F-JSSP have also been proposed for measuring the effectiveness of the 

proposed meta-heuristics. Fattahi, Mehrabad et al. (2007) generated a benchmark 

consisting of 20 small-to-medium size instances of F-JSSP. 10 instances of small problems 

are shown by (SFJS1 to SFJS10) and the other 10 instances of medium instances are shown 

by (MFJS1 to MFJS10). Bases for comparing the MILPs are as follows: 

1. Number of Binary integer variables (BIVs) 

2. Number of Continuous variables (CVs) 

3. Numbers of constraints (NCs) 

Recently, new measures for appraising the performances of the MILPs have been introduced 

(Stafford Jr, Tseng et al. 2005). Sometimes, certain MILP possesses fewer numbers of BIVs 

while having higher numbers of constraints and other MILPs may have higher number of 

BIVs but fewer numbers of constraints. The aforesaid three performance measures could 

hardly serve as a credible basis to adjudicate whether certain MILP surpasses other MILPs. 

Hence, three other performance measures are used as follows: 

4. Size complexity: The maximum size of the problem that solutions techniques 

applied to one MILP can solve to optimality or feasibility. The larger the size of the 

problem, the better is the MILP. 

5. Computational time: The speed with which a certain instance of the problem is 

solved. This measure is referred to as computational or run time. The lower the 
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computational time, the better is the MILP. This measure depends on the computer 

used and cannot be used to compare other researchers work who use different 

computers and capabilities. 

6.  Quality of schedules generated by each MILP: This measure is computed 

through calculating objective function values. Since the objective functions of 

scheduling problems are principally of minimization nature, the lower this value, 

the better is the MILP. 

 4.2. Measuring numerical size complexity of position-based MILPs: 

As was pointed out, overall performances of position-based MILPs are rigorously 

investigated on afore-cited six performance measures. Relative Performance Deviation 

(RPD) is used as a key comparative performance measure. RPD measures the deviation of 

each MILP with respect to the best performing MILP on all performance measures.  

    
                     

        
                                               (3-43) 

These performance measures consist of BIVs, CVs and NCs, computational times, maximum 

size complexity and quality of generated schedules. At the end of analysis, specific tables 

have been designed to rigorously appraise the performances of MILPs on one of particular 

performance measures indicated above. Subsequently, the best-performing mathematical 

model is recognized, and so is the best modeling paradigm. Once the best-performing MILP 

was identified, the values of best-performing MILP are used as bases for measuring the 

optimality gaps of the proposed meta-heuristic in different instances of the problem. Finally, 

by showing some examples, the practical significance of the obtained results are 

emphasized.     
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 Table 4.1, comparisons of MILP-1 and MILP-2 on schedules quality and computational time  

*: optimal solution, BFI: Best Feasible Integer, LB: Lower bound 

The solutions obtained from CPLEX software shows that the MILP-1 is capable of producing 

feasible integer solutions up to MFJS1 (5 jobs on 6 machines) while the MILP-2 is capable of 

producing feasible integers up to MFJS6 (8 jobs on 7 machines). The quality of feasible 

integer solution generated by the MILP-1 is inferior to the MILP-2 MFJS1. The best feasible 

integer obtained by the MILP-2 (468) dominates the best feasible integer produced by 

MILP-1 (470). Therefore, MILP-2 generates six new enhanced feasible integer solutions for 

F-data. The MILP-1 is capable of solving F-JSSP to (5!)6 while the MILP-1 is capable of 

solving it to (8!)7. The MILP-1 used 37,314 seconds and the MILP-2 used 14775 seconds to 

solve 20 instances of F-data. The MILP-1 used 152.5% more computational time that the 

MILP-1. 

Instance  Size (j,l,i) MILP-1 MILP-2 

  CPU (s) Cmax CPU (s) Cmax 

SFJS1 2.2.2 0.0 66* 0.0 66* 

SFJS2 2.2.2 0.0 107* 0.0 107* 

SFJS3 3.2.2 7 221* 0.20 221* 

SFJS4 3.2.2 11 355* 0.41 355* 

SFJS5 3.2.2 87 119* 7.43 119* 

SFJS6 3.3.2 129 320* 0.33 320* 

SFJS7 3.3.5 135 397* 0.06 397* 

SFJS8 3.3.4 116 253* 4.71 253* 

SFJS9 3.3.3 319 210* 0.08 210* 

SFJS10 4.3.5 510 516* 1.87 516* 

MFJS1 5.3.6 3600 470 BFI 60 468 BFI 

MFJS2 5.3.7 3600 484 BFI 60 446 BFI 

MFJS3 6.3.7 3600 564  BFI 60 466 BFI 

MFJS4 7.3.7 3600 684  BFI 60 565 BFI 

MFJS5 7.3.7 3600 696  BFI 60 514 BFI 

MFJS6 8.3.7 3600 786   BFI 60 616 BFI 

MFJS7 8.4.7 3600 619 LB 3600 764 LB 

MFJS8 9.4.8 3600 619 LB 3600 764 LB 

MFJS9 11.4.8 3600 764 LB 3600 764 LB 

MFJS10 12.4.8 3600 944 LB 3600 944 LB 

Total  37314  14775  
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Table 4.2, comparative evaluation of MILP-1 and MILP-2 based on their constituents 

 

The MILP-1 produced 34075 BIVs for 20 instances of F-data while the MILP-2 produced 

22336 BIVs. The MILP-1 produced 2381 CVs on F-data whereas the MILP-2 generated only 

1173 CVs. The MILP-1 generated 71664 NCs while the MILP-2 produced 50307 NCs. 

Above-cited figures simply demonstrate the outperformance of the MILP-2 with respect to 

the MILP-1. The MILP-1 produced RPDs of 52.5%, 103% and 42.5% for BIVs, CVs, and NCs 

respectively. 

 

 

 

Instance no Size (j,l,i) BIV CV NCs 

  MILP-1 MILP-2 MILP-1 MILP-2 MILP-1 MILP-2 

SFJS1 2.2.2 40 32 26 13 134 106 

SFJS2 2.2.2 32 24 24 11 108 84 

SFJS3 3.2.2 72 60 36 17 234 178 

SFJS4 3.2.2 84 60 38 17 236 178 

SFJS5 3.2.2 84 72 38 19 272 208 

SFJS6 3.3.2 189 135 50 25 497 366 

SFJS7 3.3.5 225 162 55 28 598 445 

SFJS8 3.3.4 216 162 55 28 589 437 

SFJS9 3.3.3 243 162 56 28 584 429 

SFJS10 4.3.5 300 240 66 33 862 631 

MFJS1 5.3.6 720 495 99 49 1829 1218 

MFJS2 5.3.7 840 585 106 55 1986 1430 

MFJS3 6.3.7 1260 846 131 66 2819 2006 

MFJS4 7.3.7 1617 1176 149 78 3789 2723 

MFJS5 7.3.7 1617 1113 149 75 3726 2588 

MFJS6 8.3.7 2184 1512 174 88 4766 3446 

MFJS7 8.4.7 3584 2496 219 111 7883 5539 

MFJS8 9.4.8 4896 3096 256 123 9778 6838 

MFJS9 11.4.8 7040 4532 308 148 14190 9849 

MFJS10 12.4.8 8832 5376 346 161 16784 11608 

Total  34075 22336 2381 1173 71664 50307 

RPD  52.5% 0% 103% 0% 42.5% 0% 
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4.3. Measuring numerical size complexity of sequence-based 

MILPs: 

In this section, detailed performances of the MILPs are quantified and reported. The 

sequence-based MILPs are appraised versus standard performance measures. 

Table 4.3, comparisons of MILP-3 and MILP-4 on quality of schedules and CPU time 

*: optimal solutions, BFI: best feasible integer, LB: Lower Bound 

The MILP-4 which possesses fewer numbers of BIVs, CVs and NCs with respect to the MILP-

3, consumes 8001 second on 20 instances of F-data as opposed to the MILP-3 with 19841 

seconds. The MILP-4 consumes 140% less computational time (RPD) as compared to the 

MILP-3.   

 

Instance no Size (j,l,i) MILP-3 MILP-4 

  CPU (s) Cmax CPU (s) Cmax 

SFJS1 2.2.2 0.02 66* 0.02 66* 

SFJS2 2.2.2 0.00 107* 0.02 107* 

SFJS3 3.2.2 0.02 221* 0.01 221* 

SFJS4 3.2.2 0.00 355* 0.01 355* 

SFJS5 3.2.2 0.06 119* 0.05 119* 

SFJS6 3.3.2 0.03 320* 0.03 320* 

SFJS7 3.3.5 0.02 397* 0.02 397* 

SFJS8 3.3.4 0.02 253* 0.06 253* 

SFJS9 3.3.3 0.03 210* 0.03 210* 

SFJS10 4.3.5 0.02 516* 0.03 516* 

MFJS1 5.3.6 0.44 468* 0.73 468* 

MFJS2 5.3.7 6.49 446* 1.46 446* 

MFJS3 6.3.7 4.14 466* 1.03 466* 

MFJS4 7.3.7 1779 564 245 554* 

MFJS5 7.3.7 50.98 514* 13.12 514* 

MFJS6 8.3.7 3600 635BFI 3600 608* 

MFJS7 8.4.7 3600 935BFI 60 881BFI 

MFJS8 9.4.8 3600 905BFI 180 894BFI 

MFJS9 11.4.8 3600 1192BFI 300 1192BFI 

MFJS10 12.4.8 3600 1276 BFI 3600 1276 BFI 

Total  19841  8001  
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Table 4.4, comparative evaluation of MILP-3 and MILP-4 based on their constituents 

 

Table 4.4 demonstrates the evaluation between the MILP-3 and the MILP-4 based on their 

constituents. The MILP-4 produced 26.6%, 111% and 1.12% fewer numbers of BIVs, CVs 

and NCs respectively versus the MILP-3. The superiority of the MILP-4 is inferred from the 

figures obtained in Table 4.4. The MILP-4 uses hierarchical approach to assign and sequence 

operations on different machines while the MILP-3 uses integrated approach. Utilization of 

hierarchical approach to F-JSSP is deemed to be the main reason for the perceived 

improvement. 

 

no Size (j,l,i) BIV CV NCs 

  MILP-3 MILP-4 MILP-3 MILP-4 MILP-3 MILP-4 

SFJS1 2.2.2 16 12 19 9 42 40 

SFJS2 2.2.2 10 9 15 7 30 28 

SFJS3 3.2.2 26 21 24 11 67 64 

SFJS4 3.2.2 26 22 24 11 67 64 

SFJS5 3.2.2 36 24 28 13 87 84 

SFJS6 3.3.2 39 34 34 16 99 96 

SFJS7 3.3.5 36 35 40 19 93 94 

SFJS8 3.3.4 45 40 40 19 111 108 

SFJS9 3.3.3 55 45 40 19 131 128 

SFJS10 4.3.5 48 46 45 21 124 120 

MFJS1 5.3.6 103 84 72 34 241 236 

MFJS2 5.3.7 128 101 84 40 291 294 

MFJS3 6.3.7 190 141 103 48 422 408 

MFJS4 7.3.7 250 184 120 57 549 542 

MFJS5 7.3.7 243 184 118 54 535 502 

MFJS6 8.3.7 307 240 133 64 670 682 

MFJS7 8.4.7 475 364 165 79 1022 1014 

MFJS8 9.4.8 519 408 182 86 1119 1088 

MFJS9 11.4.8 751 604 218 104 1601 1598 

MFJS10 12.4.8 899 719 237 113 1906 1900 

Total  4202 3317 1741 824 9207 9090 

RPD  26.6% 0% 111% 0% 1.28% 0% 
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Table 4.5, comparisons of MILP-3 and MILP-5 on quality of schedules and CPU time 

*: optimal solutions, BFI: best feasible integer, LB: Lower Bound 

Table 4.5 reports computational time and objective function values of the MILP-3 and the 

MILP-5 on all instances of F-data. As can be seen, solutions obtained by the MILP-3 have 

been outperformed by the MILP-5 on four instances of F-data. The MILP-5 produces two 

optimal solutions for MFJS4 and MFJS6 while the MILP-3 just obtains feasible integer 

solutions for these two instances of the problem. Both the MILP-3 and MILP-5 produce 

feasible integer solutions for MFJS7 and MFJS8. The qualities of schedules generated by the 

MILP-5 outdo those of the MILP-3 on aforementioned two instances of the problem.  

Therefore, in terms of quality of schedules (objective function values), the MILP-5 

outperforms the MILP-3. 

 

Instance no Size (j,l,i) MILP-3 MILP-5 

  CPU (s) Cmax CPU (s) Cmax 

SFJS1 2.2.2 0.02 66* 0.02 66* 

SFJS2 2.2.2 0.00 107* 0.00 107* 

SFJS3 3.2.2 0.02 221* 0.02 221* 

SFJS4 3.2.2 0.00 355* 0.01 355* 

SFJS5 3.2.2 0.06 119* 0.03 119* 

SFJS6 3.3.2 0.03 320* 0.03 320* 

SFJS7 3.3.5 0.02 397* 0.02 397* 

SFJS8 3.3.4 0.02 253* 0.02 253* 

SFJS9 3.3.3 0.03 210* 0.03 210* 

SFJS10 4.3.5 0.02 516* 0.06 516* 

MFJS1 5.3.6 0.44 468* 0.47 468* 

MFJS2 5.3.7 6.49 446* 1.33 446* 

MFJS3 6.3.7 4.14 466* 4.49 466* 

MFJS4 7.3.7 1779 564BFI 960 554* 

MFJS5 7.3.7 50.98 514* 6.80 514* 

MFJS6 8.3.7 3600 635BFI 680.6 608* 

MFJS7 8.4.7 3600 935BFI 1800 881BFI 

MFJS8 9.4.8 3600 905BFI 1800 895BFI 

MFJS9 11.4.8 3600 1192BFI 1800 1192BFI 

MFJS10 12.4.8 3600 1276 BFI 3600 1276 BFI 

Total  19841  10653.93  
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Table 4.6, comparative evaluation of MILP-3 and MILP-5 based on their constituents 

 

Table 4.6 captures the number of BIVs, CVs and NCs that the MILP-3 and the MILP-5 

produce. The MILP-5 is outperformed by the MILP-3 in terms of number of BIVs. The MILP-

5 bears 52% higher number of BIVs versus the MILP-3. The MIL-5 outperforms the MILP-3 

in terms of CVs by producing 269% fewer numbers of CVs. The MILP-3 dominates the MILP-

5 in terms of NCs. The MILP-3 has much fewer numbers of NCs which causes the 

computational time of the MILP to reduce considerably. As can be seen, each of the MILPs 

has their own strengths and weaknesses. The ultimate performance measure for 

determining the best-performing MILP is the quality of generated schedules. As was 

mentioned, MILP-5 dominated MILP-3 in this regard. 

no Size (j,l,i) BIV CV NCs 

  MILP-3 MILP-5 MILP-3 MILP-5 MILP-3 MILP-5 

SFJS1 2.2.2 16 12 19 7 42 40 

SFJS2 2.2.2 10 12 15 7 30 40 

SFJS3 3.2.2 26 24 24 10 67 84 

SFJS4 3.2.2 26 24 24 10 67 84 

SFJS5 3.2.2 36 24 28 10 87 84 

SFJS6 3.3.2 39 54 34 13 99 222 

SFJS7 3.3.5 36 72 40 13 93 348 

SFJS8 3.3.4 45 63 40 13 111 285 

SFJS9 3.3.3 55 54 40 13 131 222 

SFJS10 4.3.5 48 114 45 17 124 644 

MFJS1 5.3.6 103 180 72 21 241 1225 

MFJS2 5.3.7 128 195 84 21 291 1420 

MFJS3 6.3.7 190 261 103 25 422 2082 

MFJS4 7.3.7 250 336 120 26 549 2870 

MFJS5 7.3.7 243 336 118 29 535 2870 

MFJS6 8.3.7 307 420 133 33 670 3748 

MFJS7 8.4.7 475 672 165 41 1022 6608 

MFJS8 9.4.8 519 864 182 46 1119 9630 

MFJS9 11.4.8 751 1232 218 56 1601 14586 

MFJS10 12.4.8 899 1440 237 61 1906 17448 

Total  4202 6389 1741 472 9207 64540 

RPD  0% 52% 269% 0% 0% 600% 
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Table 4.7, comparisons of MILP-3 and MILP-6 on quality of schedules and CPU times 

 

Table 4.7 reports computational time and objective function values of the MILP-3 versus the 

MILP-6 on all instances of F-data. As can be seen, solutions obtained by the MILP-3 have 

been outperformed by the MILP-5 on six instances of F-data. The MILP-6 produces two 

optimal solutions for MFJS4 and MFJS6 while the MILP-3 just obtains feasible integer 

solutions for these two instances of the problem. Both the MILP-3 and MILP-6 produce 

feasible integer solutions for MFJS7 and MFJS8. The qualities of schedules generated by the 

MILP-6 outdo those of the MILP-3 on aforementioned two instances of the problem. 

Moreover, the MILP-6 obtains an enhanced feasible integer solution for MFJS9 (1135) as 

opposed to feasible integer value of the MILP-3 (1192). Therefore, in terms of quality of 

schedules (objective function values), the MILP-6 outperforms the MILP-3. 

 

Instance no Size (j,l,i) MILP-3 MILP-6 

  CPU (s) Cmax CPU (s) Cmax 

SFJS1 2.2.2 0.02 66* 0.02 66* 

SFJS2 2.2.2 0.00 107* 0.02 107* 

SFJS3 3.2.2 0.02 221* 0.03 221* 

SFJS4 3.2.2 0.00 355* 0.03 355* 

SFJS5 3.2.2 0.06 119* 0.03 119* 

SFJS6 3.3.2 0.03 320* 0.03 320* 

SFJS7 3.3.5 0.02 397* 0.02 397* 

SFJS8 3.3.4 0.02 253* 0.03 253* 

SFJS9 3.3.3 0.03 210* 0.05 210* 

SFJS10 4.3.5 0.02 516* 0.05 516* 

MFJS1 5.3.6 0.44 468* 0.39 468* 

MFJS2 5.3.7 6.49 446* 0.34 446* 

MFJS3 6.3.7 4.14 466* 0.64 466* 

MFJS4 7.3.7 1779 564BFI 1578 554* 

MFJS5 7.3.7 50.98 514* 2.83 514* 

MFJS6 8.3.7 3600 635BFI 600.1 608* 

MFJS7 8.4.7 3600 935BFI 600 881IF 

MFJS8 9.4.8 3600 905BFI 600 895IF 

MFJS9 11.4.8 3600 1192BFI 600 1135BFI 

MFJS10 12.4.8 3600 1276 BFI 600 1276 BFI 

Total  19841  4582.61  
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Table 4.8, comparative evaluation of MILP-3 and MILP-6 based on their constituents 

 

Table 4.8 captures the numbers of BIVs, CVs and NCs that the MILP-3 and the MILP-6 

produce. The MILP-6 outperforms the MILP-3 in all aspects. The MILP-6 produces 26.83% 

fewer numbers of BIVs versus the MILP-3. Also, the MILP-6 surpasses the MILP-3 in terms of 

number of CVs. The MILP-6 possesses 266% fewer CVs than the MILP-3. The MILP-6 bears 

No Size (j,l,i) BIV CV NCs 

  MILP-3 MILP-6 MILP-3 MILP-6 MILP-3 MILP-6 

SFJS1 2.2.2 16 12 19 7 42 32 

SFJS2 2.2.2 10 9 15 7 30 24 

SFJS3 3.2.2 26 21 24 10 67 56 

SFJS4 3.2.2 26 22 24 10 67 56 

SFJS5 3.2.2 36 24 28 10 87 72 

SFJS6 3.3.2 39 34 34 13 99 81 

SFJS7 3.3.5 36 35 40 13 93 73 

SFJS8 3.3.4 45 40 40 13 111 87 

SFJS9 3.3.3 55 45 40 13 131 107 

SFJS10 4.3.5 48 46 45 17 124 100 

MFJS1 5.3.6 103 84 72 21 241 195 

MFJS2 5.3.7 128 101 84 21 291 241 

MFJS3 6.3.7 190 141 103 25 422 344 

MFJS4 7.3.7 250 184 120 29 549 465 

MFJS5 7.3.7 243 184 118 29 535 431 

MFJS6 8.3.7 307 240 133 33 670 596 

MFJS7 8.4.7 475 364 165 41 1022 906 

MFJS8 9.4.8 519 408 182 46 1119 972 

MFJS9 11.4.8 751 600 218 56 1601 1108 

MFJS10 12.4.8 899 719 237 61 1906 1222 

Total  4202 3313 1741 475 9207 7168 

RPD  26.83% 0% 266% 0% 28.5% 0% 
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28.5% fewer number of NCs versus the MILP-3. The MILP-6 outperforms the MILP-3 in 

terms of CVs by producing 266% fewer numbers of CVs. As can be seen, the MILP-6 

completely outperforms the MILP-3 in all performance measures. The ultimate performance 

measure for determining the best-performing MILP is the quality of generated schedules. As 

was mentioned, the MILP-6 dominated the MILP-3 in this regard. So far, comparative 

evaluations were made among the MILP-1 and the MILP-2 belonging to position-based 

modeling paradigm and the MILP-3, MILP-4, MILP-5 and MILP-6 belonging to sequence-

based modeling paradigm. In the next section, all the position- and sequence-based MILPs 

are compared with each other. As a result, the best MILP and also the best modeling 

paradigm are recognized. 

 

4.4 Comparative evaluations between position-based and 

sequence-based MILPs 

In this section, performances of all the MILPs on the six performance measures are 

investigated, namely, number of BIVs, number of CVs, number of NCs, computational time, 

size dimensionality, and quality of generated solutions. As a result, conclusive comments 

can be made regarding the performances of the MILPs. Once analyses have been conducted, 

the best-performing MILP is determined, and so is the best modeling paradigm.  In this 

section, detailed accounts of each of the six performance measures are given respectively. 

For BIVs, it can be seen in Table 4.9, the MILP-6, MILP-4, MILP-3, MILP-5, MILP-2 and MILP-

1 produce 3313, 3317, 4202, 6389, 22336, and 34075 numbers of binary integer variables 

respectively. The efficiency of each MILP depends substantially on the number of binary 

integer variables it produces. The branch and cut tree may be as large as 2n nodes, where n 

is the number of binary integer variables. A problem containing only 30 binary variables 

could produce a tree having over 1 billion nodes. From previous example, it can be 

concluded that BIVs have huge impact on the efficiency of MILPs. The lower this number the 

more efficient is the MILP. As can be seen, among proposed MILPs, the sequence-based 

MILPs outperform position-based MILPs. The best-performing sequence-based MILP which 

is MILP-6 produces 3313 BIVs on all instances of F-data as opposed to the best-performing 

position-based MILP (MILP2) with 22336 BIVs. From computing standpoint, this difference 

is astronomical. Therefore, sequence-based MILPs outperform position-based MILPs with 
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respect to number of BIVs. Productions scheduling modelling paradigms are differentiated 

based on their definition of binary variables. Obtained figures in Table 4.9 reveal the fact 

that production scheduling formulations following sequence-based paradigm, structurally 

outperform position-based formulations as they produce fewer number of binary integer 

variables. 

 Table 4.9, comparisons of all MILPs based on their number of binary integer variables 

 

As can be seen, the first four best-performing MILPs belong to the sequence-based modeling 

paradigm. This evaluation shows the strengths of the sequence-based MILPs in terms of 

having fewer numbers of BIVs. For number of CVs, Table 4.10 reports numbers of CVs that 

each MILP produces on each instance of the F-data. The MILP-6, MILP-5, MILP-4, MILP-2, 

Instance no Binary Integer Variable (BIVs) 

 MILP-1 MILP-2 MILP-3 MILP-4 MILP-5 MILP-6 

SFJS1 40 32 16 12 12 12 

SFJS2 32 24 10 9 12 9 

SFJS3 72 60 26 21 24 21 

SFJS4 84 60 26 22 24 22 

SFJS5 84 72 36 24 24 24 

SFJS6 189 135 39 34 54 34 

SFJS7 225 162 36 35 72 35 

SFJS8 216 162 45 40 63 40 

SFJS9 243 162 55 45 54 45 

SFJS10 300 240 48 46 114 46 

MFJS1 720 495 103 84 180 84 

MFJS2 840 585 128 101 195 101 

MFJS3 1260 846 190 141 261 141 

MFJS4 1617 1176 250 184 336 184 

MFJS5 1617 1113 243 184 336 184 

MFJS6 2184 1512 307 240 420 240 

MFJS7 3584 2496 475 364 672 364 

MFJS8 4896 3096 519 408 864 408 

MFJS9 7040 4532 751 604 1232 600 

MFJS10 8832 5376 899 719 1440 719 

Total  34075 22336 4202 3317 6389 3313 
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MILP-3 and MILP-1 produces 472, 472, 824, 1173, 1741 and 2381 continuous decision 

variables respectively.  

 Table 4.10, comparative evaluation of MILPs based on their number continuous variables 

 

Due to the similar structure of the MILP-5 and MILP-6, they produce the same number of 

CVs and they are the most efficient MILPs in this respect. The MILP-4 also dominates the 

MILP-3 which is the best-forming MILP in literature. The MILP-2 which belongs to position-

based modeling paradigm produces fewer numbers of CVs as opposed to the MILP-3 which 

belong to sequence-based modeling paradigm. All in all, the sequence-based modeling 

paradigm is superior to position-based modeling paradigm with respect to generated CVs as 

well.  

Instance no Continuous Variables (CVs) 

 MILP-1 MILP-2 MILP-3 MILP-4 MILP-5 MILP-6 

SFJS1 26 13 19 9 7 7 

SFJS2 24 11 15 7 7 7 

SFJS3 36 17 24 11 10 10 

SFJS4 38 17 24 11 10 10 

SFJS5 38 19 28 13 10 10 

SFJS6 50 25 34 16 13 13 

SFJS7 55 28 40 19 13 13 

SFJS8 55 28 40 19 13 13 

SFJS9 56 28 40 19 13 13 

SFJS10 66 33 45 21 17 17 

MFJS1 99 49 72 34 21 21 

MFJS2 106 55 84 40 21 21 

MFJS3 131 66 103 48 25 25 

MFJS4 149 78 120 57 26 26 

MFJS5 149 75 118 54 29 29 

MFJS6 174 88 133 64 33 33 

MFJS7 219 111 165 79 41 41 

MFJS8 256 123 182 86 46 46 

MFJS9 308 148 218 104 56 56 

MFJS10 346 161 237 113 61 61 

Total  2381 1173 1741 824 472 472 
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Table 4.11 reports the number of NCs that each MILP produces. The MILP-6 is the most 

efficient MILP among others with number of constraints of 8044. The worst-performing 

MILP is the MILP-1 with 71664. 

 Table 4.11, comparative evaluation of MILPs based on their number of constraints 

 

The MILP-4 is ranked third followed by the MILP-3, MILP-2 MILP-5 and MILP-1 with 9090, 

9207, 50307, 64540, and 71664 numbers of constraints respectively. The best-performing 

MILP which is the MILP-6 belongs to sequence-based modeling paradigm. The MILP-6 

produces the least number of constraints on all instances of the problem. Having done an 

analogy between MILPs with respect to their number of constraints, it was realized that 

sequence-based MILPs in most cases are more efficient than position-based MILPs. After 

rigorously analyzing the number of constituents of the proposed MILPs, merits, and 

Instance no Number of Constraints 

 MILP-1 MILP-2 MILP-3 MILP-4 MILP-5 MILP-6 

SFJS1 134 106 42 40 40 32 

SFJS2 108 84 30 28 40 24 

SFJS3 234 178 67 64 84 56 

SFJS4 236 178 67 64 84 56 

SFJS5 272 208 87 84 84 72 

SFJS6 497 366 99 96 222 81 

SFJS7 598 445 93 94 348 73 

SFJS8 589 437 111 108 285 87 

SFJS9 584 429 131 128 222 107 

SFJS10 862 631 124 120 644 100 

MFJS1 1829 1218 241 236 1225 195 

MFJS2 1986 1430 291 294 1420 241 

MFJS3 2819 2006 422 408 2082 344 

MFJS4 3789 2723 549 542 2870 465 

MFJS5 3726 2588 535 502 2870 431 

MFJS6 4766 3446 670 682 3748 596 

MFJS7 7883 5539 1022 1014 6608 906 

MFJS8 9778 6838 1119 1088 9630 972 

MFJS9 14190 9849 1601 1598 14586 1458 

MFJS10 16784 11608 1906 1900 17448 1748 

Total  71664 50307 9207 9090 64540 8044 
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demerits of each of them were recognized and quantified. Excluding the MILP-6 and MILP-4 

which absolutely surpassed all the other MILPs in all aspects, other MILPs showed 

inconsistencies in their performances. Some of them produced fewer numbers of continuous 

variables but higher numbers of constraints and vice versa. Thus, no compelling comment 

can be made on the superiority of the modeling paradigm up to this point. However, 

performances of some of the MILPs are to large extent predictable. Aforesaid performance 

measures paved the ground favorable to estimate the performances of MILPs. But since no 

definitive and assertive judgments could be offered from foregoing performance measures, 

the combined effect of having different numbers of decision variables and constraints is 

investigated on their computational efficiency and quality of generated schedules.  

Ultimate measures for appraising the MILPs performances are the maximum size of the 

problem they can solve and the quality of generated schedules which are measured by their 

objective function value. Table 4.12 reports the computational time for each MILP on all 

instances of F-data. 

 Table 4.12, comparative evaluation of MILPs based on their computational time 

 

Computational time used on F-dataset by each MILP is reported in Table 4.12. The most 

computationally efficient MILP is the MILP-6 followed by the MILP-4, MILP-5, MILP-2, MILP-

Instance no Computational time 

 MILP-1 MILP-2 MILP-3 MILP-4 MILP-5 MILP-6 

SFJS1 0.0 0.0 0.02 0.02 0.02 0.02 

SFJS2 0.0 0.0 0.00 0.02 0.00 0.02 

SFJS3 7 0.20 0.02 0.01 0.02 0.03 

SFJS4 11 0.41 0.00 0.01 0.01 0.03 

SFJS5 87 7.43 0.06 0.05 0.03 0.03 

SFJS6 129 0.33 0.03 0.03 0.03 0.03 

SFJS7 135 0.06 0.02 0.02 0.02 0.02 

SFJS8 116 4.71 0.02 0.06 0.02 0.03 

SFJS9 319 0.08 0.03 0.03 0.03 0.05 

SFJS10 510 1.87 0.02 0.03 0.06 0.05 

MFJS1 3600 60 0.44 0.73 0.47 0.39 

MFJS2 3600 60 6.49 1.46 1.33 0.34 

MFJS3 3600 60 4.14 1.03 4.49 0.64 

MFJS4 3600 60 1779 245 960 1578 

MFJS5 3600 60 50.98 13.12 6.80 2.83 

MFJS6 3600 60 3600 3600 680.6 600.1 

MFJS7 3600 3600 3600 60 1800 600 

MFJS8 3600 3600 3600 180 1800 600 

MFJS9 3600 3600 3600 300 1800 600 

MFJS10 3600 3600 3600 3600 3600 600 

Total  37314 14775 19841 8001 10653.93 4582.61 
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3 and MILP-1 by CPU time of 4582.61, 8001, 1065.93, 14775, 19841 and 37314. The amount 

of time each MILP has spent is in proportion to its constituents. As a rule of thumb, those 

MILPs bearing fewer numbers of BIVs should consume less computational time than those 

bearing higher numbers of BIVs. Table 4.13 shows the strengths of MILPs on schedule 

generations. 

Table 4.13, comparative evaluation of MILPs based on their quality of generated schedules 

 

Finally, MILPs are evaluated based on their quality of solutions. Based on Table 4.13, the 

MILP-6 surpasses all the MILPs in terms of quality of generated schedules. The MILP-1 

obtains ten optimal solutions in the first ten instances of F-data and it produces one feasible 

solution for MFJS1.  The MILP-2 obtains ten optimal solutions up to SFJS10 and it 

additionally produces six new feasible integer solutions up to MFJS6. The MILP-3 produced 

Instance no Quality of generated schedules 

 MILP-1 MILP-2 MILP-3 MILP-4 MILP-5 MILP-6 

SFJS1 66* 66* 66* 66* 66* 66* 

SFJS2 107* 107* 107* 107* 107* 107* 

SFJS3 221* 221* 221* 221* 221* 221* 

SFJS4 355* 355* 355* 355* 355* 355* 

SFJS5 119* 119* 119* 119* 119* 119* 

SFJS6 320* 320* 320* 320* 320* 320* 

SFJS7 397* 397* 397* 397* 397* 397* 

SFJS8 253* 253* 253* 253* 253* 253* 

SFJS9 210* 210* 210* 210* 210* 210* 

SFJS10 516* 516* 516* 516* 516* 516* 

MFJS1 470BFI 468* 468* 468* 468* 468* 

MFJS2 396 LB 446* 446* 446* 446* 446* 

MFJS3 396LB  466* 466* 466* 466* 466* 

MFJS4 496 LB 565* 564* 554 * 554 * 554 * 

MFJS5 414LB 514* 514* 514* 514* 514* 

MFJS6 469 LB 616BFI 635BFI 608* 608* 608* 

MFJS7 619 LB 764LB 935BFI 881 881BFI 881BFI 

MFJS8 619 LB 764LB 905BFI 894 895BFI 894BFI 

MFJS9 764 LB 764LB 1192BFI 1192BFI 1192BFI 1135BFI 

MFJS10 944 LB 944LB 1276 BFI 1276 BFI 1276 BFI 1276 BFI 
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14 optimal solutions out of the existing 20 instances of F-data. Both MILP-5 and MILP-6 

obtained 16 optimal solutions on F-data.  The objective function value of both the MILP-5 

and the MILP-6 are the same on the first 18 instances of the problem up to MFJSP-8 but the 

MILP-6 obtains one better feasible solution on MFJS9. Therefore, in terms of quality of 

schedules, the MILP-6 outperforms the rest of MILPs. 

 

4.5. Performance evaluation of the proposed meta-heuristic (AISA) 

In this section, the AISA is compared vis-a-vis seven best-performing meta-heuristics in 

literature. Fattahi, Mehrabad et al. (2007) proposed six integrated and hierarchical meta-

heuristics and applied them to F-data and showed that their proposed meta-heuristics 

perform well for the F-JSSP. Bagheri, Zandieh et al. (2010) proposed an effective AIA for  

F-JSSP and proved the efficiency of their algorithm by applying it to F-data. Therefore, in this 

thesis, the AISA is compared against seven best-performing meta-heuristics applied to F-

data. The rationale behind selecting F-data for our comparison purposes lies in the fact that  

F-data has been designed for small-to-medium size instances of the problem. Since all the 

proposed mathematical models in literature have been applied to this dataset, optimum, 

feasible, and lower bound values of each of these instances are known a priori. Therefore, 

this dataset is a valuable dataset to measure the optimality gap of the proposed  

meta-heuristics. Having developed new mathematical models in this thesis, several new 

optimal and feasible solutions were obtained for F-data. Table 4.14 measures optimality 

gaps of AISA on F-data. 
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Table 4.14, comparison between AISA and solutions of the MILP-6 

 

Therefore, in order to demonstrate the excellence of the AISA and before the AISA is 

compared against best-performing meta-heuristics in literature, it is compared against the 

solutions obtained from the best-performing mathematical model. As can be seen in Table 

4.14, the objective function values obtained by the MILP-6 are used as a basis for evaluating 

the performance of the AISA. The MILP-6 obtains optimal solutions for the first 16 instances 

of the problem (up to MFJS6), so does the AISA. In the last four instances of the problem 

(MFJS7 to MFJS10), the AISA produces better integer feasible solutions as opposed to the 

MILP-6. Therefore, the optimality gap of the AISA is zero on the first 16 instances of the 

problem. Since the AISA obtains better results even in the last four instances of the problem, 

it produces zero RPD. Therefore, AISA obtains best solutions on all instances of F-data.  

From this comparison, the absolute superiority of the AISA is inferred. The optimality gap of 

the AISA on the F-data is 0%. 

Now that excellence of the AISA was corroborated, it is compared against best-performing 

meta-heuristics in literature.  

 

 

Instance no Size (j,l,i) MILP-6 AISA 

  CPU (s) Cmax CPU (s) Cmax 

SFJS1 2.2.2 0.02 66* 0.8 66* 

SFJS2 2.2.2 0.02 107* 0.8 107* 

SFJS3 3.2.2 0.03 221* 1.2 221* 

SFJS4 3.2.2 0.03 355* 1.2 355* 

SFJS5 3.2.2 0.03 119* 1.2 119* 

SFJS6 3.3.2 0.03 320* 1.2 320* 

SFJS7 3.3.5 0.02 397* 3 397* 

SFJS8 3.3.4 0.03 253* 2.4 253* 

SFJS9 3.3.3 0.05 210* 1.8 210* 

SFJS10 4.3.5 0.05 516* 4 516* 

MFJS1 5.3.6 0.39 468* 6 468 * 

MFJS2 5.3.7 0.34 446* 7 446 * 

MFJS3 6.3.7 0.64 466* 8.4 466 * 

MFJS4 7.3.7 1634 554 * 9.8 554 * 

MFJS5 7.3.7 2.83 514* 9.8 514 * 

MFJS6 8.3.7 1275 608* 11.2 608 * 

MFJS7 8.4.7 60 881BFI 11.2 879  BFI 

MFJS8 9.4.8 60 895 BFI 14.4 894  BFI 

MFJS9 11.4.8 120 1135 BFI 17.6 1088  BFI 

MFJS10 12.4.8 600 1276 BFI 19.2 1196  BFI 
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In this section, the AISA is compared vis-a-vis seven best-performing meta-heuristics in 

literature. Fattahi, Mehrabad et al. (2007) proposed six integrated and hierarchical meta-

heuristics and applied them to F-data and showed that their proposed meta-heuristics 

perform well for the F-JSSP. Bagheri, Zandieh et al. (2010) proposed an effective AIA for  

F-JSSP and proved the efficiency of their algorithm by applying it to F-data. Table 4.15 and 

Table 4.16 have been designed to show this comparison. The customary procedure for 

evaluating the performance of any newly proposed meta-heuristic is to compare it with the 

best results of other existing meta-heuristics in literature on the same benchmark. 

Following the previous procedure does help evaluate the strength of the proposed  

meta-heuristic but it never provides any deviation value from optimal solution (optimality 

gap). In this thesis, thanks to the optimal solutions of MILPs on the first 16 instances of the 

problem, the optimality gap of the AISA can be measured. Table 4.15 measures optimality 

gap of all the meta-heuristics in literature and also the proposed meta-heuristic (AISA) on 

the first 16 instances of F-data. Inasmuch as optimal solutions for the last four instances of 

F-data do not exist, the RPDs of meta-heuristics are calculated by comparing them with the 

results of the best-performing meta-heuristic. 

Table 4.15, comparison with the state-of-the-art integrated approaches on F-data. 

Instance   MILP-6 AISA AIA ISA ITS 

 Cmax RPD Cmax RPD Cmax RPD Cmax RPD Cmax RPD 

SFJS1 66* 0 66* 0 66* 0 66* 0 66* 0 

SFJS2 107* 0 107* 0 107* 0 107* 0 107* 0 

SFJS3 221* 0 221* 0 221* 0 221* 0 221* 0 

SFJS4 355* 0 355* 0 355* 0 355* 0 390 9.86 

SFJS5 119* 0 119* 0 119* 0 119* 0 137 15 

SFJS6 320* 0 320* 0 320* 0 320* 0 320* 0 

SFJS7 397* 0 397* 0 397* 0 397 0 397 0 

SFJS8 253* 0 253* 0 253* 0 253* 0 253* 0 

SFJS9 210* 0 210* 0 210* 0 215* 0 215 BFI 0 

SFJS10 516* 0 516* 0 516* 0 516* 0 617 BFI 19.57 

MFJS1 468* 0 468 * 0 468* 0 488 BFI 4.22 548 BFI 17.1 

MFJS2 446* 0 446 * 0 448 BFI 0.44 478 BFI 6.69 457 BFI 2.46 

MFJS3 466* 0 466 * 0 468 BFI 0.43 599 BFI 0.43 606 BFI 30 

MFJS4 554 * 0 554 * 0 554* 0 703 BFI 26.8 870 BFI 57 

MFJS5 514* 0 514 * 0 527 BFI 2.5 674 BFI 31.1 729 BFI 41.8 

MFJS6 608* 0 608 * 0 635 BFI 4.4 856 BFI 40.7 816 BFI 34.2 

MFJS7 881BFI 0.22 879 BFI 0 879 BFI 0.22 1066 BFI 21.2 1048 BFI 19.2 

MFJS8 895 BFI 1.24 894 BFI 1.13 884 BFI 0 1328 BFI 50.22 1220 BFI 38 

MFJS9 1135 BFI 4.31 1088 BFI 0 1088 BFI 0 1148 BFI 5.5 1124 BFI 3.3 

MFJS10 1276 BFI 6.7 1196 BFI 0 1267 BFI 6.7 1546 BFI 29.3 1737 BFI 45.2 

Total RPD 12.47  1.13  14.7  187  356.9 

Average RPD 0.6235  0.0565  0.735  9.36  17.84 
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Based on Table 4.15, the MILP-6 provides optimal solutions on F-data up to MFJS6 and so 

does the AISA. It means that the optimality gap of AISA is zero on the first 16 instances of the 

problem. This fact shows that the AISA obtains optimal solutions on instances where the 

MILP-6 obtains optimal solutions. In the last four instances of F-data, both the MILP-6 and 

the AISA obtain feasible integer solutions. Interestingly enough, feasible integer solutions 

acquired by AISA dominate those obtained by the MILP-6. Therefore, what can be concluded 

is the fact that even in presence of optimal and near-optimal solutions of the best-

performing MILP (MILP-6), the AISA works better than the MILP-6. Proposed AISA 

dominates other best-performing meta-heuristics in literature as well.  Based on values 

reported in Table 4.15, AISA with average RPD of 0.0565 is the best-performing solution 

technique followed by MILP-6, AIA, ISA and ITS with average RPDs of 0.6235, 0.735, 9.36 

and 17.845 respectively.   

Among best-performing meta-heuristics in literature, the AIA proposed by (Bagheri et al. 

2010) is the best competitor for the AISA. After the extensive evaluations of the MILP-6 and 

other best-performing meta-heuristics, it can be asserted that the AISA is the best solution 

methodology ever presented for the F-JSSP.  

 

Table 4.16, comparison with the state-of-the-art hierarchical approaches on Fdata 

Instance  MILP AISA HSA/SA  HSA/TS HTS/TS HTS/SA 
 Cmax Cmax RPD  Cmax RPD Cmax RPD Cmax RPD Cmax RPD 
SFJS1 66* 66* 0 66* 0* 66* 0* 66* 0* 66* 0* 
SFJS2 107* 107* 0 107* 0* 107* 0* 107* 0* 107* 0* 
SFJS3 221* 221* 0 221* 0* 221* 0* 221* 0* 221* 0* 
SFJS4 355* 355* 0 355* 0* 355* 0* 355* 0* 355* 0* 
SFJS5 119* 119* 0 119* 0* 119* 0* 119* 0* 119* 0* 
SFJS6 320* 320* 0 320* 0* 320* 0* 320* 0* 320* 0* 
SFJS7 397* 397* 0 397* 0* 397* 0* 397* 0* 397* 0* 
SFJS8 253* 253* 0 253* 0* 253* 0* 253* 0* 256BFI 0* 
SFJS9 210* 210* 0 210* 0* 210* 0* 210* 0* 210* 0* 
SFJS10 516* 516* 0 516* 0* 516* 0* 516* 0* 519BFI 0.58 
MFJS1 468* 468* 0 479 BFI 2.35 491BFI 2.5 469 BFI 0.1 469BFI 0.21 
MFJS2 446* 446* 0 495 BFI  10.76 482BFI 8.1 482BFI 8.1 468BFI 4.93 
MFJS3 466* 466* 0 553 BFI 18.67 538BFI 15.5 533BFI 14.38 538BFI 15.4 
MFJS4 554 * 554* 0 656 BFI 18.41 650BFI 17.3 634BFI 14.4 618BFI 11.55 
MFJS5 514* 514* 0 650 BFI 26.45 662 BFI 28.8 625BFI 21.6 625BFI 21.6 
MFJS6 608* 608* 0 762 BFI 25.32 785BFI 29.1 717BFI 17.92 730BFI 20 
MFJS7 88BFI 879BFI 0 1020BFI 16 108BFI 22.9 964BFI 9.67 947BFI 7.7 
MFJS8 895BFI 894BFI 0 1030BFI 15.21 1122BFI 25.5 970BFI 8.5 922BFI 3.1 
MFJS9 1135BFI 1088BFI 0 1180BFI 8.45 1243BFI 14.24 1105BFI 1.56 1105BFI 1.56 
MFJS10 1276BFI 1196BFI 0 1538BFI 28.6 1615BFI 35 1404BFI 17.4 1384BFI 15.7 
Total RPD  0  170.22  199  113.63  102.33 
Average RPD  0  8.51  9.95  5.68  5.11 

 

As can be seen, the AISA with average RPD of zero is the best-performing algorithm. The 

HTS/SA, HTS/TS, HSA/SA and HSA/TS with average RPDs of 5.11, 5.68, 8.51 and 9.95 are 
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ranked second, third, fourth and fifth respectively. Based on Tables 4.15 and 4.16, it can be 

concluded that hierarchical approaches proposed by (Fattahi et al. 2007) outperforms their 

integrated approaches. The same conclusion can be made regarding the performances of the 

AISA with the AIA proposed by (Bagheri et al. 2010) which follows the structure of 

integrated approaches.  

 

4.6. Significance of improved results: 

It might be deemed that the improved results are just some improved figures with no 

practical significance. Previous statement is by no means true. In order to highlight the 

practical importance of newly obtained results, some extreme examples from F-data is 

supplied.  The optimal solution for SFJS10 is 516 hours while (Fattahi, Mehrabad et al. 2007) 

algorithm (ITS) has obtained the value of 617 hours. The best feasible integer solution for 

MFJS10 is 1196 hours while the ITS has obtained the value of 1737 hours. Considering eight 

hours per working shift, the proposed AISA saves 103 and 541 hours on SFJS10 and MFJS10 

instances of the problem which are equivalent to 13 and 68 working shifts respectively. 

Taking into consideration the number of workers per shift and all the related direct and 

indirect costs associated with it, these savings play huge role in the productivity of any 

machine shop.  
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CHAPTER 5 

CASE STUDY 

Despite intensely growing competition in academic society for developing state-of-the-art 

optimization methodologies for wide variety of industrial applications including production 

scheduling environments, most industries are barely familiar with these techniques and 

they use very basic techniques incorporated in commercial software packages to meet their 

short-term and long-term scheduling needs. In this thesis, the developed scheduling 

optimization methodologies are applied to an industrial problem for demonstration and 

testing. Below, detailed activities of a molding job shop are described. The company supplies 

many automotive companies in North America. In this thesis, the used case study is limited 

to the scheduling of mould making machines on the shop floor while mould assembly 

operations after completing the machining operations are not considered. 

The mould and die manufacturing company makes different moulds used to create products 

such as tail lenses or head lamp reflectors for automotive manufacturers. They design and 

build sand production thermo-plastic, thermoset, multi-color and multi-material injection 

moulds using ejectable thermo plastic press, and specialize in moulds for automobiles head 

and tail lights parts.  

The data used in the case study include the following inputs: 

 

Initial Input (static): 

1. Machine type groups and names and number of machines in each group. 

2. Capabilities for each machine in a group including typical/primary usage, alternate 

usage etc.   

3. Work shifts: normal number of shifts/per day, number of hours per shift. This could 

be changed due to use of overtime or unmanned hours.  

4. Mould hierarchy (mould components and their instances and codes for the 

composite mould).  

5. Normal processing times for each operation  

6. Current machine loading status (which machine is working on which 

part/operation). 

7. Approximate set-up and dismantling time: Constant or fraction of each operation 

time which is included in processing times. 
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As an example, a mould (Job) has two main parts: the core side and the cavity side 

(male/female). A typical mould consists of: a) Cavity b) Core c) Slides d) Retractor and e) 

Clamp Plates. The machining processes consist of the following operations: 1) roughing, 2) 

semi-finishing, 3) stress relief, 4) finishing, 5) boring, 6) gun drilling, 7) carbon, 8) electro 

discharge machining (EDM), and finally 9) mould assembly. The scheduling of machining 

operations using 14 CNC machines is considered. All cavities and cores of a typical mould 

require all the above-mentioned operations. Mould slides need only four operations: 

roughing, finishing, carbon and EDM. Retractors require two operations: roughing and 

finishing and clamp plates need only a boring mill operation. Operations naming scheme is 

exemplified as follows: O11 denotes the first operation of cavity#1 which is roughing. O42 

represents the second operation of part number four in retractor#1 which is finishing. 

Therefore, the first index in Oj,l, j indicates the part number and the second index, l, denotes 

the required operation.  

 

Table 5.1, Operational coding and requirement of different parts 
No  No Part names Required operations 

Mould # 1 

Part1 Cavity1 O11, O12, O13, O14, O15, O16, O17, O18 
Part2 Core1 O21, O22, O23, O24, O25, O26, O27, O28 
Part3 Slide1  O31, O32, O33, O34 
Part4 Retractor1 O41, O42 
Part5 Clamp-Plates1 O51 

Mould # 2 

Part6 Cavity2 O61, O62, O63, O64, O65, O66, O67, O68 
Part7 Core2  O71, O72, O73, O74, O75, O76, O77, O78 
Part8 Slide2  O81, O82, O83, O84 
Part9 Retractor2 O91, O92 
Part10 Clamp-Plates2 O101 

Mould # 3 

Part11 Cavity3 O111, O112, O113, O114, O115, O116, O117, O118 
Part12 Core3 O121, O122, O123, O124, O125, O126, O127, O128 
Part13 Slide3  O131, O132, O133, O134 
Part14 Retractor3 O141, O142 
Part15 Clamp-Plates3 O151 

Mould # 4 

Part16 Cavity4 O161, O162, O163, O164, O165, O166, O167, O168 
Part17 Core4  O171, O172, O173, O1744, O175, O176, O177, O178 
Part18 Slide4  O181, O182, O183, O184 
Part19 Retractor4 O191, O192 
Part20 Clamp-Plates4 O201 

 

The company currently uses the following CNC machines for machining the moulds as 

shown in Table 5.1. Table 5.1, illustrates the operational requirements per part. Table 5.2 

shows the names and capabilities of each machine. 
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Table 5.2, List of machine capabilities 
Operations Names of eligible machines 
Roughing  M1(AWEA)-M2(Johnford)-M3(Dynamic)-M4 (Eumach) 
Stress relief M5 (Outsourced)  
Semi-finishing M4(Eumach)-M3(Dynamic) 
Finishing M6(Exceeder 1)-M7 (Exceeder 2) 
Boring Mill M8(Kuraki), M9(Parpas), M10(Takumi) 
Gun-drilling  M11(Outsourced)  
Carbon  M3( Dynamic)-M12(Datic) 
E.D.M M13(Techno)-M14(NX8) 

 

Table 5.2 demonstrates machine capabilities. Based on established policy in the mould and 

die company, certain priorities have been assigned to CNC machines to ensure the best 

quality and even distribution of workloads between machines. Table 5.3, shows the 

coefficients assigned to each machine. Table 5.2 reveals the fact that machines are flexible 

but their flexibilities are not identical. In front of each operation, a number of capable 

machines has been cited. Therefore, this case study follows the principles of PF-JSSP as each 

machine performs certain operations and therefore different parts do not have total routing 

freedom. This means that for each part, certain preferred machines have been designated. 

The algorithm that is used (AISA) to solve this case study has to take care of machine 

assignment flexibility and should choose the best available machine.   

 

Table 5.3, priority coefficient assigned to machines in shop floor 
Operations Names of eligible machines 
Roughing  (1) M1, (1.1) M2, (1.2) M3, (1.3) M4  
Stress relief (1) M5   
Semi-finishing (1) M4), (1.1) M3 
Finishing (1) M6, (1)M7  
Boring Mill         (1) M8, (1.1) M9, (1.2) M10 
Gun-drilling  (1) M11  
Carbon  (1) M3, (1.1) M12 
E.D.M         (1) M13, (1.1) M14 

 

Coefficients shown in Table 5.3 are multiplied by the processing times of operations on each 

machine. The higher the coefficient assigned to a machine, the less desirable it gets for 

processing certain operations. These coefficients are adjusting factors for balancing machine 

workloads. The typical picture of the mould is demonstrated in Figure 5.1.  
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Figure 5.1. Typical complete mould consisting of core and cavity (moulded part is shown in blue) 

http://www.hongsenmould.com/industrial_goods_molds.html 

 

 Therefore, considering above capabilities of machines, the proper assigning and sequencing 

of four moulds (jobs) consisting of 20 parts with 92 operations on 14 CNC machines is an 

application used to verify the scheduling algorithms developed in this thesis. 

 

Table 5.4. Decoded solution of AISA with starting and completing time of each operation 

M1 O11(0-60), O121(60-132), O161(132-187), O31(187-198), O171(198-265), O111(265-325), O141(325-339), 
O91(336-371) 

M2 O21(0-79), O71(79-153), O131(153-169), O61(169-231) 
M3 O16(261-345), O25(345-429), O76(84-513), O176(513-549), O166(549-585), O126(585-669), O66(669-753), 

O116(753-837) 
M4 O13(145-169), O23(169-193), O73(233-281), O163(281-317), O173(335-371), O123(371-461), O113(461-497), 

O63(497-545) 
M5 O12(60-145), O191(145-168), O162(187-263), O172(265-335), O41(-351), O122(351-425) 
M6 O81(0-30), O181(30-53), O22(79-159), O72(159-233), O62(233-318), O112(325-419), O183(419-439), O83(-

464), O177(549-575), O167(585-617), O17(617-649), O67(753-774), O117(837-858) 
M7 O132(169-189), O182(189-210), O32(210-245), O164(317-371), O174(371-431), O92(-467), O192(-505), 

O64(545-597) 
M8 O82(30-50), O14(169-221), O24(221-291), O74(291-351), O42(351-391), O124(461-521), O114(521-573), 

O142(573-589) 
M9 O51(0-36), O15(221-261), O115(573-613), O65(597-642), 
M10 O101(0-45), O165(371-425), O151(425-470), O125(521-580) 
M11 O75(351-416), O175(431-504), O201(504-554), O26 (554-638), 
M12 O133(189-201), O33(245-270), O77(513-553), O27(638-685), O127(685-715), 
M13 O178(575-621), O84(621-641), O18(649-675), O34(675-694), O68(774-800), O118(858-881) 
M14 O134(201-236), O78(553-613), O184(613-652), O128(715-769), O168(769-795), O28(795-855) 
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Figure 5.2, decoded solution of the case study in format of a Gantt chart 

Figure 5.2 depicts the decoded solution of the case study in format of a Gantt chart. The case 

study has 20 jobs (j=20) and 14 CNC (m=14). This is considered a large size instance of F-

JSSP. In Figure 5.2, there are certain numbers and symbols. In following, they are completely 

explained. In each cell, the name of each operation has been included. Below each cell, there 

exist two numbers. The first number is the processing time of that operation on that 

machine and the second number is the completion time of that operation. For example, O13 

on M4 has processing time of 24 and completion time is 169 which is the summation of 

processing times of preceding operations of O13 (O11=60 on M1, O12=85 on M5 and O13=24 on 

M4).  

Having done rigorous assessment of the performance of the proposed AISA through 

comparative analyses, the developed AISA is applied to solve real case study of PF-JSSP with 

20 parts (92 operations) on 14 flexible machining centers.  

The AISA utilized runtime of 56 seconds. This value obtained by multiplying number of 

parts and number of machines with 0.2 seconds (n=20*m=14*0.2 seconds) to solve the case 

study. As the results show, the developed AISA is a fast algorithm capable of finding 

near/sub-optimal solutions for any large size problem. In order to solve the case study, data 

regarding both the processing times of all parts on different machines and also their eligible 

machines were collected. The near-optimum make-span of 881 hours was obtained using 

AISA. This time is equivalent to 110 working shifts. The decoded solution of AISA for the 
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case study is depicted in Figure 5.2. Each part is shown with a unique color so that the 

processing route of each part on different machines can be tracked. In the Gantt chart, each 

operation of a part has two numbers; the first is operation processing time, and the second 

is the summation of processing times a part has received so far. The company used to 

manufacture these 92 operations on its current resources around 960 hours which was 

equivalent to 120 working shifts (two shifts per day including weekdays and weekends). 

The difference between the time typically spent by the company and the time stipulated by 

applying the AISA is 79 hours which is equivalent to nearly ten working shifts saving. 

Considering this production time saving, if the company decides to apply the AISA, it can 

reduce the mould manufacturing time by 8.3%. Considering the wages of workers, inventory 

cost, overhead costs etc, and this machining time reduction would potentially result in a 

significant difference in time, cost, and operational efficiency.   

In this section, an industrial scale case study was solved by the state-of-the-art meta-

heuristic (AISA). The obtained results were unfolded into an equivalent Gantt chart. To solve 

the case study, information regarding machine capabilities, operational requirements per 

part, processing time of each operation of different machines, and preference of machine 

usage were gathered and analyzed. By comparing the results obtained by AISA with those of 

the company, 79 hours were saved which is equivalent to ten working shifts. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE STUDIES 

6.1 Conclusions 

The problem of flexible job shop scheduling problem (F-JSSP) was researched in this thesis. 

Two different types of F-JSSP known as partially and totally flexible job shops were studied 

and solved. Different modeling paradigms, namely position-based and sequence-based were 

utilized to fully demonstrate operations of the shop floor. Proposed mathematical models 

contained both continuous and binary integer variables. Therefore, they are categorized as 

mixed integer linear programming (MILP) models. Rigorous comparative evaluations 

among proposed MILPs and those existing in literature corroborated the computational 

efficiency and solution effectiveness of proposed MILPs. The proposed position-based MILP 

outperformed the MILP proposed by (Fattahi et al. 2007) in all intended performance 

measures. The proposed MILP used substantially fewer binary integer and continuous 

variables and also number of constraints for standard benchmark of (Fattahi et al. 2007). 

The proposed position-based MILP consumed much less computational time and generated 

enhanced feasible solutions for MFJS-1 to MFJS-6. Three other sequence-based MILP models 

were also proposed. All three proposed sequence-based MILPs dominated the best-

performing MILP proposed by (Ozguven, Ozbakir et al. 2010) in literature in terms of 

solution effectiveness.  

Since MILPs are unable to solve industrial scale problems, an enhanced meta-heuristic 

which is a hybrid of AIA and SA (AISA) was proposed and applied to solve flexible job shop 

scheduling problems. In order to ensure that the AISA is effective and suitable for the 

problem at hand, it was compared against seven of best-performing meta-heuristics in 

literature. The obtained results manifestly proved the efficiency and effectiveness of the 

AISA. 

Having done extensive analyses on AISA, it was applied to an industrial case study. The 

obtained result of AISA on industrial dataset was unfolded into a Gantt chart. 

To recapitulate, in this thesis, two classes of solution methodologies were developed: 

mathematical models and meta-heuristics. Superiority of the developed methodologies can 

be attributed to the hierarchical structures of them. In the hierarchical approach, infeasible 

solutions are avoided and the available computational time is utilized to completely explore 

the search space.      



69 
 

 

6.2 Future studies 

The following research topics can be pursued to bridge current gaps in literature.  

I. The industrial problem solved in this thesis encompassed two parts: machining and 

assembly operations. Scheduling of machining operations was considered in this study 

while scheduling of assembly operations was not addressed in our solution methodologies. 

A mathematical model and a new meta-heuristic can be proposed to solve the mixed shop 

consisting of PF-JSSP and Flow-shop scheduling problem.  

II. Dynamic version of the proposed mathematical model can be examined to include 

addition or removal of machines, order cancellations or arrivals, machine breakdown etc 

during the scheduling horizon.  

III. Distributed version of the proposed mathematical model can be offered to include the 

scheduling of more than one production facility according to real-life problems.  

IV. The previous two problems can be combined as a very realistic scheduling problem.  

V. Transportation times among machines in the shop floor and production facilities can be 

included in above models.  

VI. Since the proposed models proved their efficiency, it is recommended that they be 

extended to multi-objective cases by considering additional objectives such as make-span 

and maximum tardiness, minimization of maximal machine workload etc.  

VII. Conducting comparative evaluations of production scheduling modelling paradigms for 

F-JSSP (position-based, time-based, and sequence-based).  

VIII. Integrating process plan flexibility into F-JSSP by using the proposed MILPs  
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