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ABSTRACT

Although there exists several ways of solving tekutar manufacturing problem,
including several ant-based algorithms, many o$eha&gorithms focus on obtaining the
best possible answer instead of efficiency and eapeogramming. These existing ant-
based algorithms which use similarity coefficiedtsnot compare the efficiency of using
different similarity coefficients within the algéhim either. An existing artificial-ant
based algorithm was modified so that it is eassemanipulate. This modification was
necessary to apply the algorithm to cellular macifi@ng. The original algorithm,
AntClass uses Euclidean vectors to measure thelasityi between parts, because
similarity is used to group parts together instedistances, the modified version uses
similarity coefficients. The concept of heapingisters was also introduced to ant
algorithms for cellular manufacturing. Insteadusing Euclidean vectors to measure the
distance to the center of a heap, as is such inAtt€lass algorithm, an average
similarity was introduced to measure the similatigtween a part and a heap. The
algorithm was tested on five common similarity ¢m&nts to determine the similarity

coefficient which gives the better quality solutiaswell as the most efficient process.
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CHAPTER |
INTRODUCTION

General Overview

Globalization and the development of global markatsed technology are
progressively accelerated forcing companies in yeda@ompetitive environment to
change dramatically to satisfy the urgency andabdity of consumer tastes and
demands. To cope with this trend, companies mherxgtlop/adopt novel approaches and
practical strategies to deal with various productgarameters such quantity (smaller
batches), variety (larger diversity) and so onptiroize their production systems. Batch
production is one of the strategies that can be tseneet customer demand of lower
volume and small batches; however, this strategnaiabe easily adopted in the efficient
serial production lines.

On the other hand, low volume/high-variety manufeog parts can be produced
in batches using the flexibility of functionallyranged machines with the additional
expense of some inefficiency. Batch productionoaats for 50 — 75 % of world
manufacturing systems (Zhao and Wu 2000). Thefioricy stemming from the
inherent functionally arranged production systemslude high set-up/operation time
ratios, excessive non-value added material handicityities, greater work in process,
long lead times, waiting periods and throughputjcwhHeads to lower manufacturing
productivity. To overcome productivity and ineféocy concerns, the concept of
manufacturing cells has been considered as an taftepsolution that compromises

between the efficiency of production lines andftaribility of batch production systems.



Cellular Manufacturing Systems (CMS) is considessdan application of Group
Technology (GT) concept to factory reconfigurateord shop floor layout design (Irani et
al. 1999). Although both terms CMS and GT are siwlly used interchangeably, GT
is an area of study devoted to parts clusteringnaachine cells formation and considered
as the starting point of cell design. Furtherm@a, Silveira (1999) puts the grouping
process of parts and machines in a central postiddMS implementation techniques.
The grouping process of classifying similar partacilitates both design and
manufacturing; where part shape similarity is hdlph design but process similarity is
important in the arrangement of machines and matwiag g facilities.

In most cases, parts with similar shapes shareah® process requirements such
as rotational parts and prismatic parts. Howeseme parts with dissimilar shape may
share the same set of machining requirements tupsothem and vice versa. Burbridge
(1992) indicated that routing information alonesisficient to design manufacturing cell.
The relationship between parts and their procegginrEments in terms of machines are
arranged in a 0/1 binary structured format of tvilnehsional matrix, known as part-
machine incidence matrix. Most of the grouping ahustering approaches use this data
structure as a starting point to form part famikesl machine cells.

During the past few decades many approaches hae fm@posed for solving
part families and machine cells formation that banclassified into several techniques;
(1) classification and coding techniques; (2) afpaged techniques; (3) similarity
coefficient techniques; (4) graph theoretic teches] (5) mathematical programming

techniques; and (6) artificial intelligence techreg.



Classification and coding techniques ranges frosicbaisual classification of
part geometry to sophisticated computer coding rtiegles. Array-based technique
makes use of the binary information to form partnifees and machine cells
simultaneously by sorting both the rows and columhpart-machine incident matrix
alternatively to form cluster blocks around the mxatliagonal (King 1980). Similarity
coefficient techniques in GT is pioneered by Mc &ul1972), which makes use of a
similarity index to determine the similarity coeffnts either between parts or machines
then use this information in a clustering algorithonform part families and machine
cells.

Graph theoretic technique makes use of the partimacincident matrix to
develop a graph whose vertices correspond to trehimes and whose edges represents
the relationship created machines and parts ubem.t Rajagopalan and Batra used this
technique to partition the machine-machine grapio i@ number of sub-graphs by
removing edges with weak relationships to form nraleells and allocating parts to part
families.

In mathematical programming techniques a numbgadffamilies/machine cells
formation models have been developed using intggegramming, mixed integer
programming and goal programming. Kusiak (1987midated the machine cell
formation problem into a 0/1 integer programming delo with the objective of
maximizing the sum of similarities while considegyirdifferent system constraints.
Although, different design objectives and systemsti@ints can be incorporated into a

mathematical program, grouping is a NP-completeblpra, heuristic methods and



artificial intelligence (Al) techniques are widelysed to solve this problem in a
reasonable time.

Finally, a number of artificial intelligence teclyoes have been used to solve part
families and machine cells formation during thetpa#o decades. Some of these
techniques include artificial neural networks, genalgorithms and knowledge-base
systems. Chow and Hawaleshka (1993) used knowdedged systems to form machine
cells. Moon (1990), Chu (1993), Kaparthi et aB43), and Venugopal and Narendran
(1994) employed artificial neural net works to fopart families and machine cells.
Venugopal and Narendran (1992) and Islier (1998pugenetic algorithms to form part
families and machine cells. Recently, swarm iigefice techniques also known as Ant
search algorithms have been used to form part iesrénd machine cells. Islier (2005),
Kao and Fu (2006), Kao and Li (2008) and Zhao e(2008) used this techniques to
form part families and machine cells.

Since efficient and optimal grouping are the priynsteps to a successful CMS
implementation, research in this field will contento develop novel grouping techniques.
The proposed research topic is devoted to the dernent of an efficient algorithm ant
based swarm intelligent technique. Various sintijlaneasures used to determine the
association between parts and machines will bgiated into the ant clustering model.
Also, the impact of the similarity measures on mjli grouping will be compared and

evaluated.



Objectives of the Research

The objectives of the research are as follows:

To select and manipulate a multistage ant-basedrnswiatelligent
algorithm that can be used to solve part familied enachine cells formation
problem.

To evaluate the impact of different similarity meges on both the
efficiency of the manipulated ant-based swarm ligeht algorithm and to

evaluate the quality of the developed solutions

Organization of the Research

The research in this thesis proposal is organizddlbws:

Chapter 1: Introduction

Chapter 2: Literature review on various aspectpat family and machine
cell formation within the context of CMS and GT.

Chapter 3: Development of the Ant-Based Swarm ligesit Algorithmic
Model.

Chapter 4: Analysis of various similarity measusesl the assessments of
their impact on the model efficiency and optimalouping
solutions.

Chapter 5: Numerical examples to test the modelisrapplication.

Chapter 6: Conclusions and recommendations fordéuesearch.



CHAPTER Il
REVIEW OF LITERATURE

Group technology is the first step stone for thsigie of manufacturing cells.
During the past few decades several approaches s proposed for solving part
families and machine cells formation. These apgrea can be divided into the
following:

» Classification and coding techniques

* Array-based techniques

» Similarity coefficient techniques

» Graph theoretic techniques

* Mathematical programming techniques

» Artificial intelligent techniques

Review of literature based on the above classifinas describes in the following

sections.

Classification and coding technigues

Classification and coding (CC) systems can be aseadol for GT by providing a
structure for the classification of parts into grgeibased on selected part attributes and by
assigning specific code to each part (Groover angnérs 1984, Hyer and Wemmerlov
1984, 1985). Some of the earliest coding systerdside “Optiz Sytem”, developed in
the 1960’'s in Germany and perhaps is the most wiklegbwn and used coding system at
that time in Europe (Optiz 1970, and Optiz and W& 1971). It has been used for
both machined and non-machined parts.

Another CC system developed during the 1960’s mwknas the “Bisch Birn”.

Basically, it is a coding shell customized to atipatar firm’'s needs (Gombinski 1969,



Hyde 1981, Hyer et al. 1989). More recent comna¢imding systems take advantage of
advanced computing technology databases (TatikandaVemmerlov 1992). Examples
of these systems include Decision and Classifinatkystem (DCLASS), Computer
Aided Process Planning (CAPP) systems, Manufagutmformation Classification
System (MICLASS) and several other commercial systéhat integrate both design and

manufacturing information in various databases.

Array-Based Technigues

In array based clustering techniques a machineipdex matrix is constructed.
This matrix consists of 0, 1 entries where an edtriyn the (i, j) position means that
machine i is used to process part j, and an enimne@ns that machine i is not used to
process part j. Algorithms are developed thatsfi@mn the original matrix into a more
structured form, and consequently, result in thenfdgion of part families (Al-Sultan,
1997). Some examples of matrix formulation methadssimilarity coefficient methods,
the bond energy algorithm, the cluster identifisatalgorithm and the extended cluster
identification algorithm.

El-Essawy and Torrance (1972) proposed a metholkdcalomponent flow
analysis (CFA). In some respects, the methodolof§yCFA differs from the of
Burbridge’s PFA procedure in the sense that CFst fiartitions the problem, where PFA
does not.

McCormick et al. (1972) developed a method calleiBond Energy Algorithm.
This algorithm involves the evaluation of so callbdnd energy” in the part machine
matrix. A bond is said to exist between a pairadfacent row elements or column

elements if the pair of elements both have non-xataes. The value of the bond is

7



equal to the product of the two adjacent elemeifitse total bond energy of the matrix is
equal to summation of the product of any two adjacelements. The algorithm

manipulates the columns and rows of the part-machiatrix and tries to find a matrix

containing the highest total bond energy. Thi@algm can identify part families and

machine cells simultaneously but still needs extensnanipulation of the final part-

machine matrix to form cells of the required size.

King (1980) developed the Rank Order Clustering @Qlgorithm which
rearranges the rows and columns of the initial nmecincidence matrix in decreasing
binary values to obtain a block diagonal form. Heer, the applicability of the
algorithm was restricted by the strong dependendtieeoresults on the initial order of the
machine-part matrix and existence of storage problereated by the usage of binary
value used for reallocation.

Chan and Milner (1982) developed the Direct ClusteAlgorithm (DCA) to
solve the part family and machine grouping probléonellular manufacturing systems.
The Direct clustering Algorithm has four stages:

1. Count the number of positive entries in each roa eslumn of the part-machine
matrix

2. Starting from the first column, transfer the rowghwpositive entries in that
column to the top portion of the matrix

3. Starting from the first column, transfer the rowghwpositive entries in that
column to the top portion of the matrix

4. lterate between steps (2) and (3) until no furthemsfer is required.

This procedure allows user interaction to deal witie problems of the

bottlenecks and exceptional elements when theyroccu



Chandrasekharan and Rajagopalan (1986) proposie@arseed non-hierarchical
clustering algorithm which involves three primatgges. In the first stage, the problem
is formulated as a bi-partite graph which consi$ta machine sub-graph and a part sub-
graph. The k-means algorithm is then used to cecisk parts and k machines by
grouping vectors which are close together. Ingbeond stage, a performance measure
called group efficiency is used to compare differgrouping alternatives. In the third
stage, parts and machines are rearranged to thestlimaginary groups’ in an attempt
to improve the initial assignment.

Chow and Hawaleshka (1993) developed an algoritbnsdlve the machine
grouping problem that minimizes the intercellulaowvaments with allocating a new
machine. It is observed that the total numberxakptional parts generated by the (n+1)
total number of machine cells is always greaten tha@se generated by n total number of
machine cells.

Abdule-Wahab et al. (2006) presented a new hybgdrigthm for data clustering,
based off of the scatter search algorithm. Scattarch operates on a small set of
solutions and makes only a limited use of randotiumafor diversification when
searching for globally optimal solutions. The noettproposed automatically discovers
cluster number and cluster centers without prioovdedge of a possible number of
classes, and without any initial partition. Thigaithm was used by Rabbani et al.

(2007) to solve the dynamic cell formation problem.

Similarity Coefficient Methods

Several researchers have developed techniquesrro tfte part families and

machine cells based on similarity coefficients. eT$imilarity measures are generally
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based on sequence of operations, the processingreewnts of parts, the tooling
requirements of parts and availability of the tools the machines etc. The first
similarity coefficient was developed by McAuley @ was the first to apply the
Jaccard similarity coefficient (Jaccard, 1908)He machine cell formation problem and
is the most widely used in the literature (Yin & Stala, 2006). Most of the
similarity/dissimilarity coefficients based on bigadata that can be found in literature
(Baulieu, 1989). However, only a handful of theseasures has been suggested and
investigated within the context of GT/CMS for therpose of cell formation and machine
groupings.

De Witte (1980) proposed three similarity measuwdsch can be used in
production flow analysis. Since two of these coefhts showing the absolute relations
and mutual interdependence, they were consideraalyrfar cell formation. Threshold
values for these three similarity coefficients warbitrary selected. In addition, the
approach requires classification of machines asngmy, secondary and tertiary.
Similarly, Waghhodekar and Sahu (1984) proposedute of one of three similarity
coefficients for Machine-components CeEll formatiddACE). Similarity coefficient
machine pairs can be either (i) additive type;gidduct type or (iii) based on total flow
of common components.

Selvam and Balasubramanian (1985) developed ardiasty measure based on
operation sequence of manufacturing components.e dissimilarity matrix input
considered the total number of components and psatg sequence of each one as well
as the production volume per period and handlirgf per move between consecutive

work centers. Other research work that used diksity measures in GT include; Dutta
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et al. (1986) who suggested a dissimilarity coedfit using operation sequences and
Kamrani and Parsaei (1993) who proposed a weigtigsimilarity index based on a
disagreement measure of both design and manufagtatiributes between pairs of parts.

Choobineh (1988) developed a similarity measureichvibased on the most
relevant attributes of manufacturing parts. Thesibutes include manufacturing
operations and their processing sequence thateaadily determined from their process
plans. Subsequently, the measure is used to farh families and machine cells.
Information obtained from manufacturing processplavere also utilized by Guiasingh
and Lashkari (1986) to develop a similarity meastivat expressed the capability
between two machines in processing a set of pagsining both machines. Machine
capability is defined in terms of the tools avaiéabnd tooling requirements to process
the parts. Similarly, Tam (1990) suggested ano#heilarity measure based on the
operation sequence of manufacturing parts to foart families and machine cell
groupings.

Gupta and Seifoddini (1990) proposed a new sinylandex which took into
consideration relevant production data that shdealdncluded in the early stages of the
machine-component grouping process. The importandbduction parameters
incorporated in the computation of similarity coei#nt were pair-wise routing sequence,
part-wise average production volume, and unit dpmratime for each operation
performed. It was indicated that by incorporatimgortant production that the proposed
measure has advantages and disadvantages. Sothe aflvantages included higher
coefficient values that were indirectly assignegirs of machines which process parts

with larger workload and responds to large diffeemnin demand among parts. Gupta
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(1993) suggested a new similarity coefficient whadsigned pair-wise similarity among
machines with usage factors of all alternativeirgs.

Kusiak and Cho (1992) proposed two similarity measuthe first one is based
on binary information where a block diagonal stauetis impeded into the machine-part
matrix and took into consideration basic and aliéve process plans. Basically, it is a
binary measure that indicated weather one’s pariogess plan is a subset of another
part's process plan. The second one is a modifezdion that generalizes the first
similarity measure. The modified version can bedutr parts or machines when the
value of the first similarity measure would haveheero.

Moussa and Kamel (1996) proposed a new similarigasare based on the
information provided in process plans. The infdiorataken into consideration included
manufacturing processing sequence of parts and freicessing times during the
assignment process. Jeon et al. (1998) extenageds of manufacturing attributes to
include machine failure. Jeon and Leep (2006) @sed a new similarity measure,
which took into consideration the number of avddallternative process routes when
available during machine failure. It was indicatkdt the measure draws on the number
of alternative routes during machine failure whéeraative routes are available instead
of drawings on other production attributes inclgliroperations, sequence, machine
capabilities, production volume, processing requéets or operational times.

Islam and Sarker (2000) proposed a new similarggfficient that is able to
reflect the extent of true similarity of pairs ofaohines or parts in an incident matrix.
The new measure of similarity is called relativeteching coefficient. Unlike other

similarity measures, the proposed similarity caédiit has the capability of conforming
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to commonly known similarity properties definedliterature such as (i) No mismatch,
(i) Minimum match, (iii) No match, (iv) Completeatch, and (v) Maximum match. The
new similarity coefficient is used as an intermggli@ol to form cohesive manufacturing

cells.

Comparative Studies of Similarity Coefficients

One of the earliest studies conducted to compaee etffiectives of various
similarity measures or coefficients was reportedvnsier (1989). The study applied a
mixture model experimental approach to comparerssuailarity coefficients and four
clustering algorithms. The similarity coefficieriteat were examined are given in Table
2.1.

The four well-known algorithms used in this studse,a(i) Single Linkage
(SLINK); (ii) Complete Linkage (CLINK); (iii) Cenwid (CENT); and Ward’'s Method
(WARD) by using Monte Carlo simulation to generd problems with 100 parts and
100 machines. Four performance measures were tasedaluate the goodness of
generated solutions including; 9i) Simple matchimgasure; (ii) Generalized matching

measure; (iii) Product moment measure; and (ieraallular transfer measure.

Table 2.1 List of Similarity Coefficients Examined(Mosier, 1989)

Similarity Coefficient Name Reference
McAuley’s (Jaquard format) McAuley (1972)
Multiple Weighted Similarity Coefficient Mosier dnfube 1985
Additive Weighted Similarity Coefficient Mosier affdibe 1985
Modified Multiplicative Weighted Similarity Moiser (1985)
Coefficient
Modified Yule Coefficient Bishop et al. (1975)
Modified Humann Coefficient Holly and Guilford (195
Modified Baroni-Urbani abd Buser Coefficient Romesburg (1984)
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The results of this study indicated that McAulegimilarity coefficient and the
modified multiplicative weighted similarity coeffent are preferable compared with
other similarity coefficients. However, Shafer dagers (1993) pointed out some of the
limitations including that three of four perform@anmeasures are for measuring how
closely the solution generated by the cell formatgrocedures matched the original
machine-part matrix. In addition, the original chane-part matrix may not necessarily
be the best or even a good configuration. Onlyititercellular transfer measure of
performance is considering specific objectives essed with machine cell formation
problem. Further research recommendations to examlustering efficacy and other
measures were also sighted.

Shafer and Roger (1993) compared 16 similarity faments in conjunction with
four clustering algorithms using 11 small exampdadbased binary machine-part data
sets mostly from the literature. Part family andcimne cell grouping results were
evaluated using four performance measures. Thefusmall well structured data set
with some of the performance measures may not geothe discriminatory power
needed to separate superior, from good and goawl ifnéerior techniques. In addition,
the use of well structured small data set may p@viesults with a little general
reliability due to strong dependency on the oribimput data. (Anderberg, 1973;
Milligan and Cooper 1987; Vakharia and Wemmerl®99).

Seifoddinin and Hsu (1994) studied three differesimilarity coefficients
(Jaccard’s similarity coefficient, weighted simitgrcoefficient, and commonality score)
30 machine-component grouping problems. Sever&meance measures were used to

evaluate the clustering results including groupéfiiciency, grouping efficacy and the
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grouping capability index. Results showed that Wreighted similarity coefficient
generates better solutions based on the numbeteptonal parts. On the hand, it was
observed that grouping efficiency, grouping efficand the grouping capability index
were not consistent performance measures.

Vakharia and Wemmerlov (1995) conducted a studgvaluate the impact of
dissimilarity measures and clustering algorithnhtegues on the quality of solution with
respect to part family formation and machine celbupings. Eight dissimilarity
measures were studied in conjunction with sevesteting algorithms using 24 binary
data sets. Results of this study revealed that mtgernal cell cohesiveness and low
levels of machine duplication were shown to be kairig goals. The study also
revealed that performance is sensitive to manyofaciotably the underlying data and
the stopping parameters. It was indicated thatemesearch work is needed to link data
structures to choice of clustering technique arssidiilarity measure. Also, more work
is needed to find measures and methods under wtetthsystem solutions can be
compared at the aggregate level while considendiyidual cell properties.

Yin and Yasuda (2005 & 2006) conducted a studywtluate the performance of
20 similarity coefficients shown in Table 2. Indittbn, a total of 94 data sets obtained
literature and another 120 generated deliberatelyewsed in this study in conjunction
with three clustering algorithms (Single linkagaustering, SLC; complete linkage
clustering, CLC; and average linkage clusteringCAlwere used in this study. Nine
performance measures were used to evaluate th@iggosolutions. The performance
measures are the following:

* Number of exceptional elements (EE),
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Grouping efficiency,

Group efficacy,

Machine utilization index (grouping measure, GM),

Clustering measure (CM),
Grouping index (Gl),
Bond energy measure (BEM),

Grouping capability index (GCI), and

» Alternative routing grouping efficiency (ARG effemcy)

Table 2.2 Similarity Coefficients Compared (Yin andYasuda, 2006)

Similarity Coefficien Range Definition
1 Jaccar Oto] al/(atb+c
2 Hamani -1to] [(a+d)-(b+c))/[(a+d)+(b+c)
3 Yule -1to] (ac-bc)/(ad+bc
4 Simple Matchin Otol (at+d)/(at+b+c+c
5 Sonenso Oto1] 2a/(2a+b+c
6 Rogers and Tanimc Oto] (a+d)/[2(a+d)+b+c
7 Sokal and Snea Oto] 2(a+d)/[2(a+d)+b+c
8 Russel and R Oto] a/(at+b+c+d
9 Baron-Urbani and Bust 0to] [a+(ad™]/[a+b+c+(ad™
10 Phi -1to ] (ac-be)/[(a+b)(a+c)(b+d)(c+(]
11 Ochia 0to] a/[(a+b)(a+c’]
12 PSC 0to] &/[(b+a)(c+a)
13 Dot-Produc Otol al/(2a+b+c
14 Kulezynsk Oto1l 1/2[a/(a+b) + a/(a+c
15 Sokal and Sneatfr Oto1 a/[a+2(b+c)
16 Sokal and Sneatt Oto] 1/4[a/(a+b) + a/(a+c) + d/(b+d) +d/(c+
17 Relative Matchin 0to] [a+ (ad™?]/[[a+b+c+d+(ad”]
18 | Chandrasekharan and Rajagop | Oto ] a/Min[(a+b), (a+c)
19 MaxSc Oto] Max[a/(a+b), a/(a+c
20 Baker and Maropoult Oto] a/Max|[(a+b),(a+c
Where:

ais the number of machines which produce both coraptsi andj

b is the number of machines which produce only camepti

c is the number of machines which produce only camepg
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dis the number of machines which produce neitherpmmantd orj

Study results revealed that three similarity coggfits are more efficient and four
similarity coefficients are inefficient for solvirtpe cell formation problem. In addition,
it was found that Jaccard similarity coefficientl& most stable similarity coefficient. It
was indicated that further research is needed rigider some production factors such as
production volume, sequences of parts and so on.

Based on the above review of similarity measutesan be revealed that most of
these measures assume that the demand for eacltpdoding the planning period
remains constant. The demand and processing imesssumed to be known with
certainty. This may not be true in many productorironments, hence there is a
potential for discrepancy in the design solutiohsaddition, none of these measures
takes into consideration production lot size farteproduct and production scheduling

constraints.

Graph Theoretic Technigues

Graph theoretic methods convert a machine pariimagrix into a hypothetical
graph where the vertices represent machines apats and the edges stand for the
similarity coefficients between machines. MatulB9g9, 1970) was the first to
demonstrate the applicability of high connectivitysimilarity graphs to cluster analysis.
Matula’s approach is based on the cohesivenessidanc This function is defined for
every vertex and edge of a gra@hto be the maximum edge-connectivity of any sub-
graph containing that element. Hartuv and Sha#fli0Q) adopted the same technique to
develop a clustering algorithm, where similaritytades used to form a similarity graph.
Vertices are corresponding to elements with simylaralues above the threshold and
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clusters are highly connected sub-graphs whose edgeectivity exceeds half the
numbers of vertices.

Rajagopalan and Batra (1975) used graph partitipapproach to solve grouping
problem of machine cells. Input data derived frdma toute cards of the components in
analyzed and used to derive a graph whose verticegspond to the machines and
whose edges represents the relationship createcedetmachines by the components
using them. Once machine cells are formed by usiagyraph partitioning approach, the
parts are allocated to the machine cells and tha&eu of machines of a particular type in
each cell is determined. One of the limitationshi$ technique is that machine cells and
part families are not formed concurrently.

Kumar et al. (1986) used the graph theoretic tephlmiand solved a graph
partitioning problem to determine machine cells pad families for a fixed number of
groups with machine cell size boundaries. Subsgtyevannelli and Kumar (1986)
extend the work and developed graph theoretic nsadetietermine machines that need
duplication in order to obtain a perfect block diagl structure. In addition, Kumar and
Vanelli (1987) used similar techniques for deteringrparts to be subcontracted to obtain
a perfect block diagonal structure. Solutions oigtéh from these methods are found to
depend on the choice of initial pivot elements.

Askin and Chiu (1990) developed a heuristic grapitifponing procedure to
solve machine assignment and cell formation problentirst, a mathematical
programming model is developed to incorporate cosfs inventory, machine
depreciation, machine setup, and material handliftge formulation is then divided into

two phase/sub-problems; first sub-problem assigr@dponents to specific machines,
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then the second sub-problem grouped machine ints. cd@hen the sub-problems are
solved using a heuristic graph partitioning proceduFinally, an approach to determine
the economic batch size is also included.

Vohraet al. (1990) proposed a network-based algorithm to mizenthe amount
of machining times performed outside the part primzells. A non-heuristic network
approach is used to form manufacturing cells withimum intercellular interactions.
The machine-part matrix containing machining tinseepresented as a network which is
subsequently partitioned by using a modified Gortduyalgorithm to find a minimum
intercellular interaction.

Sinh and Mohanty (1991) developed a method forcsalg an efficient path in
fuzzy multi-objective networks to solve the routipgpblem in the manufacturing cell.
An application of the methodology was also illustthas the process plan selection
problem. Askinet al. (1991) proposed a formulation for machine and gaouping
problem, so called Hamiltonian Path approach. pae-matrix incidence matrix was
used to represent the problem. The jaccard’s aiityil measure was used to form a
distance measure for each machine pair and part pai

Wu and Salvendy (1993) developed a network (anraogid graph) model to
partition the machine graph into cells by considgrioperation sequences. Two
algorithms are used in this model. The first athon partitions the network by finding
the minimum cut sets in the network so that theiltast interaction between cells is
minimal. The second algorithm is a simplified wvensof the first algorithm by selecting

seed nodes in partitioning the network to furtheduce the amount of computation.
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However, the solution from this method is not gaggad optimal (minimum intercellular
movements).

Kandiller (1998) presented a cell formation techmeiqusing the hyper graph
representation of the manufacturing systems. Tilpgsed method approximates the
hypergraph model by graphs so that the cuts asedffscted by the approximation. A
Gomory-Hu cut tree of the graph approximation tican be obtained. The minimum
cuts between all pairs of vertices are calculatsile by the means of means of this tree,
and a partition tree is produced. An algorithnalso presented to cut the partition tree.
This algorithm is subjected to an experimentatibmandomly generated manufacturing
situations.

Recently, Zhao et al. (2008) developed a mathealatiodel of part clustering of
product family based on weighted directed graplhrggie. The model is extended to
incorporate swarm intelligent algorithm to devesmanufacturing model, which can be
used to solve the part family formations and maelueall groupings in e-manufacturing
environment for mass customization. It was indidathat the system can be used as a
support technology for mass customization, whickiesy important to develop optimal
formation of manufacturing cells and could be meffécient in e-manufacturing mode

than in traditional manufacturing mode.

Mathematical Programming Technigues

In mathematical programming techniques a numbgadffamilies/machine cells
formation models have been developed using intggegramming, mixed integer
programming and goal programming. The objectivecfions of such models include,

maximizing specific similarity measures. Otherdtions may in the form of minimizing
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the intercellular movements of parts, or machinekioad deviations. Most of these
models incorporate some kind of system constranotdh as available capacity and/or
machine cell size

Kusiak (1987) developed two different models tha¢ dased on p-median
clustering techniques. The problems are formulate@/1 integer program to form part
families and machine cells with the objective ofimazing the sum of similarities while
considering different system constraints. In saases, the models have difficulties in
assigning the initial p-value. Ben-Arieh and Ch&hg94) modified the p-median model
by introducing p, the number of machine cells itht® objective function to overcome the
difficulty of assigning an initial p value; thus pmoving the optimization process to form
part families and machine cells. Won (2000), anahVend Lee (2004) modified the p-
median models to include new measures of simildréween machine pairs to solve
machine grouping problem and deal with disadvarstaggrevious models such as large
number of binary variables and constraints.

Co and Araar (1988) proposed a three-stage proedduirom machine cells to
process specific sets of jobs. A mathematical anogis formulated in the first stage to
assign operations to machines with the objectivenmiimizing the deviations between
workload assigned to machines and the availablaagp System constraints were
based the available machining times. A directdeatgorithm is implemented to define
the composition of manufacturing cells.

Askin and Chiu (1990) proposed a mathematical madel solution procedure
for the group technology configuration problem. thms model, costs of inventory,

machine depreciation, machine set up and matesiadiling are first incorporated into a
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mathematical programming formulation. The formiokatis then divided into two sub-
problems in order to find a solution. A heuristiagh partitioning procedure is then
proposed for each sub-problem. The first sub grobassigns components to specific
machines. The second sub-problem groups machitesells.

Rajamani et al. (1990) developed three mathemapoagramming models to
simultaneously form part families and machine gimge to analyze the effects of
alternative process plans on the utilization ofoueses. The first model assigns
machines to parts while minimizing the total invesht cost subject to machine capacity
and available budget. The second model assuméspéna families are known and
selects a process plan for each part, required imadbr each operation and the number
of machines in different cells. The objective Imstcase is to minimize the total
investment cost subject to the same system contsrdescribed in the first model. The
third model determines both part families and maelgroupings simultaneously subject
to the same set of limitations. Comparisons ot ¢asctions for the three models are
also provided.

Demodaran et al. (1992), Liang and Taboun (199Rpf& et al. (1992) and
Rajamani et al. (1992) developed mathematical narogiing models that
simultaneously form part families and machine gmge which minimizes the
intercellular movement of parts and their assodiatests. System limitations such as
machine capacities, exceptional elements and peacedrelationships of parts are some
of those constraints considered for different medel

Dahel and smith (1993) proposed two mathematicanamming models to

group parts and machines into predefined numbecetié simultaneously. The first

22



model takes into consideration available machinpacidly and cell size as system

constraint while minimizing intercellular movemera$ parts. The second model is

formulated as a multi-objective mathematical pragrta from machine cells which are

flexible and have minimum interactions. Bothe nmisdge analyzed and examined under
the inter-cell routing flexibility criteria.

Logendran (1993) proposed a 0/1 quadratic matheatatprogram to
simultaneously form part-machine grouping and eat&luthe effectiveness of this
grouping techniques in CMS. The objective funciwonsidered in this model consists of
maximizing unified measure of effectiveness evadahs the weighted sum of total
moves and cell utilization subject to certain ogeral constraints. The constraints in
processing times, sequence of operations, availaidehining capacities and non-
consecutive operations scheduled on the same neachihe model is extended to take
into consideration multiple routings for each part.

Adil et al. (1993) proposed a mathematical modelictvhwould take into
consideration investment and operational costsdute cellular manufacturing design
process. The majority of the cell formation modilditerature consider grouping of
parts and machines, based on clustering techniuees performance of manufacturing
cells formed therefore indicates that the cellslgwtems perform more poorly in terms of
work-in-process inventory, average job waiting tiamel job flow time than the improved
job shops. These cells, on the other hand, hgvergsu performance in terms of average
move times and setup. The mixed integer model Idped by Adil et al. (1993)

illustrates the trade-off relationships betweenrapenal and investment costs.
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Moon and Gen (1999) and Sofianopoulou (1999) foatea a 0-1 integer
mathematical programming models which consider botachine duplication and
alternative process plans to form machine cellsevefal manufacturing parameters
including production volume levels, machining capes, processing times, and the size
of machine cells are taken into account as systenstraints. Different optimization
techniques are used to solve each model includemnetgs and simulated annealing
algorithms.

Baykas@lu et al. (2001) proposed an integer multi-objetnon-linear model to
solve part family and machine grouping problem diameously. The model uses
generic capability units which are termed as resowlements to define processing
capabilities of machine tools. Also, it takes istmsideration important objectives such
as minimization of part dissimilarity associatedthwiproduction requirements and
processing sequence of parts, minimization of nmectuell workload imbalance and
minimization of extra capacity requirements forl éetmation.

Slompet al. (2005) considered a new type of virtual cellulanmfacturing (CM)
system is considered, and proposed a multi-objectesign procedure for designing such
cells in real time. Retaining the functional layouwittual cells are addressed as temporary
groupings of machines, jobs and workers to redheebenefits of CM. The virtual cells
are created periodically, for instance every weekwery month, depending on changes
in demand volumes and mix, as new jobs accumulatengl a planning period. The
proposed procedure includes labor grouping conaiers in addition to part-machine
grouping and is based on interactive goal progrargmiethods. Factors such as capacity

constraints, cell size restrictions, minimizatiddaad imbalances, minimization of inter-
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cell movements of parts and provision of flexilyilare considered. In labor grouping, the
functionally specialized labor pools are partitidnand regrouped into virtual cells.
Factors such as ensuring balanced loads for wgqrkeisimization of inter-cell
movements of workers and providing adequate leoklabor flexibility are considered
in a pragmatic manner.

Dafersha and Chen (2006) proposed a comprehensitleematical model for the
design of CMS based on tooling requirements ofpthes and tooling available on the
machines. The model incorporates dynamic celligardtion, alternative routings, lot
splitting, and sequence of operations, multipletauraf identical machines, machine
capacity, and workload balancing among cells, dmeraost, and cost of subcontracting
part processing, tool consumption cost, setup cefitsize limits, and machine adjacency
constraints. Computational experience on small lprob showed that a significant
amount of cost savings can be achieved by consglesystem reconfigurations, lot
splitting and system flexibility; and that theree agignificant differences on workload
distribution among the cells, if workload balanciaghot attempted.

Satoglu and Suresh (2009) proposed a goal-prograghmodel for the design of
hybrid cellular manufacturing (HCM) systems, in aiall resource constrained
environment, considering many real-world applicatissues. The procedure consists of
three phases. The initial phase involves a Paraadysis of demand volumes and
volatility. In the second phase, a machine-grogpphase is conducted to form
manufacturing cells, and a residual functional laydn this phase, over-assignment of
parts to the cells, machine purchasing cost, assl & functional synergies are attempted

to be minimized. Following the formation of celladathe functional layout, a labor
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allocation phase (the third phase) is carried gutdnsidering worker capabilities and
capacities. The total costs of cross-trainingnigirifiring and over-assignment of workers
to more than one cell are sought to be minimized.

Arikan and Gungor (2009) proposed a new multi-dijecfuzzy mathematical
model for the cellular manufacturing system (CM8&83idn and its solution methodology.
The goal of their m model is to handle two impotgarmoblems of CMS design called cell
formation and exceptional elements simultaneousliuzzy environment. The objective
functions of the model are minimization of the cobexceptional element elimination,
minimization of the number of outer cell operaticensd maximization of the utilized
machine capacity. The fuzziness stems from modelnpeters which are part demand,
machine capacity and the exceptional elementsiration costs. To illustrate the model,
an example problem with fuzzy extension is adogteth literature and computational
results are obtained by using the two-phased solyirocedure proposed in their study.
The approach is performed to reach simultaneousnaptsolutions for all objective
functions. The model solutions are investigated usng well-known performance
measures and also three problem-specific perforenaneasures are proposed. The
model is capable of expressing vagueness of allsyils¢em parameters and gives the

decision-maker (DM) alternative decision plansdidferent grades of precision.

Atrtificial Intelligence Techniques

An artificial neural network is a mathematical mbdecomputational model that
tries to simulate the structure and/or functiorgpexts of the brain. It consists of an
interconnected group of artificial neurons and itbgesses information using a

connectionist approach. Artificial neural networks adaptive forms of artificial
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intelligence and are capable of learning. Du (2018 outlined several neural network
clustering algorithms, including C-means clusteriogmpetitive learning, and mountain
and subtractive clustering..

The most well-known data clustering technique s $fatistical C-means, also
known as the k-means (Du, 2010). The C-means #hgorapproximates the maximum
likelihood (ML) solution for determining the locati of the means of a mixture density
of component densities (Moody & Darken, 1989). Theneans can be implemented in
either the batch mode (Linde, Buzo, & Gray, 198modly & Darken, 1989) or the
incremental mode (MacQueen, 1967). The batch C snflande et al. 1980), is applied
when the whole training set is available. The inwatal C-means is suitable for a
training set that is obtained on-line. In the baftChmeans, the initial partition is
arbitrarily defined by placing each input pattemtoia randomly selected cluster, and the
prototypes are defined to be the average of theenpatin the individual clusters (Du,
2010). When the C-means is performed, at eachtlséepatterns keep changing from one
cluster to the closest cluster ck according tontbarest-neighbor rule and the prototypes
are then recalculated as the mean of the sampthe iclusters (Du, 2010).

Competitive learning can be implemented using alayer neural network. The
input and output layers are fully connected. Thguoulayer is called the competition
layer, wherein lateral connections are used tooperflateral inhibition. Based on the
mathematical statistics problem calleldster analysis, competitive learning is usually
derived by minimizing the mean squared error fuorc{iTsypkin, 1973).

The mountain clustering is a simple and effectivethrad for estimating the

number of clusters and the initial locations of thester centers (Yager & Filev, 1994).
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The method grids the data space and computes atiabtelue for each grid point based
on its distance to the actual data points. Eadh gpint is a potential cluster center. The
potential for each grid is calculated based ondiesity of the surrounding data points.
The grid with the highest potential is selectedttss first cluster center and then the
potential values of all the other grids are reduaecbrding to their distances to the first
cluster center. The next cluster center is locaedhe grid point with the highest

remaining potential. This process is repeated uihélremaining potential values of all

the grids fall below a threshold. However, the gstducture causes the complexity to
grow exponentially with the dimension of the prableThe subtractive clustering (Chiu,

1994a), as a modified mountain clustering, usethelldata points to replace all the grid
points as potential cluster centers. This effetiveduces the number of grid pointsMo

(Chiu, 1994a).

Genetic Algorithms

Genetic Algorithms (GA) have been developed by &al (1975) at the
University of Michigan. Holland’s research had twomary goals. The first was to
abstract and rigorously explain the adaptive preee®of natural systems. The second
was to design artificial system software that retghe important mechanisms of natural
systems. This approach has led to important deges in both natural and artificial
systems science. Genetic algorithms start witmaiali set of random solutions called the
population. Each individual in the population @lled a chromosome, representing a
solution to the problem at hand. A chromosome s¢riag of symbols, and is usually a
binary string. There are two kinds of operationsaceintered in genetic algorithms. The

first is Genetic operations (crossover and mutadioand the second is evolution
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operation (selection or reproduction). Some o€ tBA applications include
optimization, group technology and manufacturindgl dermation. The following
literature describes some recent developments inw®Ain the context of GT and
machine cell formation.

Gorgalves and Resende (2004) proposed a new approaditimning machine

cells and product families. This approach combiaekcal search heuristic with a
genetic algorithm. The genetic algorithm uses mdoan keys alphabet, an elitist
selection strategy, and a parameterized uniforrssoneer.  Computational experiences
performed on 34 different group technology problestew that the algorithm performs
remarkably well when compared other algoritms.

Jeon and Leep (2006) developed a methodology wbéch be used to form
manufacturing cells using both a new similarity fioceent based on t he number of
alternative routes during machine failure and deinaranges for multiple periods. The
methodology is divided into two phases. The fipbiase suggests a new similarity
coefficient, and the second phase uses a gengtcithim for cell formation. This GA
considers the scheduling and operational aspeatslirdesign under demand changes.
Finally, machines are assigned to part familieagisnixed integer programming.

Tariq et al. (2008) developed a hybrid genetic algorithm forchae-part
grouping. This algorithm is an approach that corabia local search heuristic (LSH)
with genetic algorithms (GA). The GA uses integ@oe representation, multipoint
crossover and roulette wheel selection procedurbee computational experience done
show that the algorithm converges to the best ispiun the initial generations but also

produces solutions that are as accurate as anit reported in literature. They also
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observed that the proposed algorithm was more si@mgiin terms of accuracy with
respect to the problem size, when compared to afigerithms.

Venugopal and Narendran (1992) proposed a genlgficithm approach to the
machine-component grouping problem with multiplgecbves. The algorithm is bi-
criteria mathematical model with a solution proaedbased on the genetic algorithm.
This study is a first of its kind in group techngyo literature, and a successful
demonstration of the application of genetic aldont to the machine-component
grouping problem. The algorithm is found to be efifee in offering a collection of
satisfactory solutions, which is essential in ativalbjective environment, to enable the
decision maker to choose the best alternatives lindependent of the nature of the
objective functions. It is inherently parallel arsdcapable of super linear speed-up in
multi-processor systems. With the availability @frglel computers, this algorithm will
be particularly useful in solving part-family prelbhs in complex, large scale FMS
environments.

Hsu and Su (1998) proposed a genetic algorithmdopsecedure to solve the
cellular manufacturing grouping problem. More speally, they aimed to minimize (i)
total cost, which includes inter-cell and intratqert transportation costs and machines
investment cots; (ii) intra-cell machine loadingbatance; and (iii) inter-cell machine
loading imbalance under many realistic considenstid he procedure they proposed is
extremely adaptive, flexible, and efficient; anchda used to solve real manufacturing
grouping problem problems in factories by providingust manufacturing cell formation

in a short execution time.
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Zhao and Wu (2000) proposed a genetic algorithnragmh to the machine-
component grouping problem with multiple objectives These objectives were
minimizing the costs due to intercell and intraget movements; minimizing the total
within cell load variation and minimizing exceptadrelements. They developed specific
genetic operators in order to make problem sohegagier. During the cell formation
process, the routing sequence of parts, productadoame, workload balance and the
constraints of cell number and cell-size are cdlsefoonsidered. They argue that
although taking alternative routes does increagetithe consumption of the genetic
algorithm, the calculation time is still very lired. The method developed by them is
feasible for medium sized tasks.

Cauxet al. (2000) addressed the problem of manufacturing foethation with
alternative process plans and machine capacitytreonts. Given routings, capacities of
machines and quantities of parts to produce, tbbl@m consisted of grouping machines
into manufacturing cells and in selecting one pssgaan for each part. The objective of
their research was to minimize the inter-cell iaffrespecting machine capacity
constraints. A new approach combining the simulatadealing method for the cell
formation and a branch-and-bound method for théngwselection was proposed. This
method permits the simultaneously solving of thi fmemation problem and the part-
routing assignment problem whereas other methodsbased on two heuristics or
algorithms: one of the two problems is then solfredh the solutions of the second one.
Although exact methods, like the branch and braamth bound method often lead to
large computational times, the method they propgeedides solutions very quickly.

This feature makes the method more robust to vanstof production. Although
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acceleration processes have been introduced ibrémeh-and-bound, the method can be
limited with large-sized problems or unconstraipeoblems due to calculation time.

Onwubolu and Mutingi (2001) proposed a genetic rdigm (GA) meta-heuristic-
based cell formation procedure to solve the celinfdion problem. The cell formation
problem solved by them is to simultaneously growgzinmes and part-families into cells,
so that intercellular movements are minimized. Atgduded is an option for considering
the minimization of cell load variation is includeghd another, which combines
minimization of intercellular movements and celadbvariation, exists. The algorithm
solves this problem through improving a cell coofggion using the GA meta-heuristic.
The number of cells required and lower and uppenbs on cell size are allowed to be
specified. This makes the GA scheme flexible fdwiag the cell formation problems.
The solution procedure was found to perform welltested large-scale problems and
published data sets.

Uddin and Shanker (2002) addressed generalizecpigmyproblem where each
part has more than one process routes. The prolofersimultaneously assigning
machines and process routes (parts) to cells wasufated as an integer-programming
problem. The objective of minimization of interdcehovements is achieved by
minimizing the number of visits to various cellsqueged by a process route for
processing the corresponding part. The proposedaegure based on genetic algorithm
which was quite effective in finding the global impal solution to the grouping problem
within a reasonable time, since the GAs are inhbrguarallel and is capable of super

linear speed-up in multiprocessor systems. Withawailability of parallel computers,
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two sub-problems can be solved simultaneously hisdalgorithm is particularly useful

in solving large size grouping problem.

Simulated Annealing

The simulated annealing methodology draws its @yalloom the ‘annealing’
process used in the metallurgical industry. Theeess of annealing is a way metals are
slowly cooled to produce low energy-state crystaBmulated annealing is a heuristic
search procedure for combinatorial optimization {iideolis et al, 1953).

Sofianopoulou (1997) addressed the cell formatimblem by modeling it as a
linear integer programming problem with the objeetiof minimizing the number of
intercellular moves subject to cell-size constaiand taking into account the machine
operation sequence of each part. An interestinfeaf the proposed formulation is that
there is no need of specifying (before hand) thelmer of cells to be used, which is
automatically adjusted within the solution proceduA very efficient random search
heuristic algorithm, based on the simulated anngatnethod, was adopted for its
solution. The heuristic is tested on a number afbf@ms and its performance was
evaluated.

Saha and Bandyopadhyay (2009) proposed a multctvsgeclustering technique
which optimizes simultaneously two objectives, oaiecting the total “quality” present
in the data set in terms of total compactness @fcthsters, and the other reflecting the
total symmetry present in the clusters of the da&ta The algorithm uses a simulated
annealing based multi-objective optimization methaxl the underlying optimization

criterion and center based encoding is used. ThHé-ahbjective clustering technique is

33



able to suitably evolve Assignment of points tdfetént clusters is done based on the
newly developed point symmetry based these clussters in such a way so that the
two objectives are optimized ‘simultaneously’ digta rather than the Euclidean
distance. Results on eight artificial and six fdal-data sets show that the proposed
technique was well suited to detect true partitignirom data sets with clusters having
either the hyper-spherical shape or point symmetiacture. Results were compared
with those obtained by five existing clusteringheigues, one multi-objective clustering
technigue, MOCK, average linkage clustering alfponit expectation maximization
clustering algorithm, well-known genetic algoritirased K-means clustering technique
(GAK-means) and a newly developed genetic algorithith point symmetry based
clustering technique (GAPS).

Lin et al. (2010) proposed a simulated annealing based metashe for solving
the part-machine cell formation problem. The effemtess of the proposed approach was
compared to conventional algorithms across a spadfmachine cell formation problem
s available in literature. The experimental reswbtained indicate that the proposed
approach is a state-of-the-art algorithm for paaizhine cell formation problems, as seen
through a comparison of the obtained results whth best-known solutions of the 13
conventional algorithms with respect to four typégerformance measures. Given the
difficulty in solving part-machine cell formationrgblems, the results obtained by the
proposed simulated annealing based meta-heuristjcencourage practitioners to apply

it to real world problems.
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Swarm Intelligence

Swarms consist of many simple agents that have lotaractions, including
interacting with the environment. The emergenceavhplex, or macroscopic, behaviors
and the ability to achieve optimal solutions agant result from combining simple, or
microscopic, behaviors (Hinchest al, 2007). Beni and Wang (1989) introduced the
term swarm intelligenceSwarm intelligence techniques are population batechastic
methods used in combinatorial optimization problém&hich the collective behavior of
relatively simple individuals arises from their &anteractions with their environment to
produce functional global patterns. Swarm intelige represents a meta-heuristic
approach to solve a variety of problems.

Ant algorithms were first proposed by Dorigo et @991) as a multi-agent
approach to difficult combinatorial optimizationgtems such as the travelling salesman
problem and the quadratic assignment problem (Dori®99). Ant algorithms were
inspired by the observation of real ant coloniesnts are social insects, they live in
colonies and their behaviour is directed more ® shrvival of the whole colony as
opposed to the survival of a single ant. An imaottbehaviour of the ant colonies is
their foraging behaviour, specifically, how ants1dmd the shortest paths between food
sources and their nest (Dorigo, 1999). This behavhas been a core foundation of
recent research work and development of optimafaehation.

Labroche et al. (2003) proposed an ant clusterysgesn called AntClust. This
algorithm is inspired from the chemical recognitisgstem of ants. In the system
proposed by Labroche et al (2003), the continuoteractions between the nest mates

generate a “Gestalt” colonial odour. The Gestéliéce refers to the form-forming
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capability of our senses, particularly with respcthe visual recognition of figures and
whole forms instead of just a collection of simfitees and curves (Hothersall, 2004).
Similarly, this clustering algorithm associatesdject of the data set to the odour of an
ant and then simulates meetings between antsificltants that share a similar odour
are grouped in the same nest, which provides theat&d partition.

Runkler (2005), simplified the original ant systém create a generalized ant
colony optimization system, which could be usedstdve a wide variety of discrete
optimization problems. This literature shows holyjeative function based clustering
models such as hard and fuzzy c-means can be aptinuising particular extensions of
this simplified ant optimization algorithm. Expeemts with artificial and real datasets
show that ant clustering produces better resu#ts #iternating optimization because it is
less sensitive to local extrema.

Islier (2005) proposed a method for solving thdutat manufacturing problem,
by using an ant system algorithm in the group tetdgy formulation. The method
presented a technique where the grouping problemfingt represented as an artificial
ant system. The ants rearrange constantly obtaaimetter grouping every cycle. These
ants are semi-blind and use a communication-supgoandom search process. The data
structure used by this ant system is the pherommateix. This matrix starts out empty,
and is gradually formed by the experiences of tiigvidual ants. The ant system uses
this matrix to determine if the new grouping istbethan the previous state.

Kao and Fu (2006) proposed a part clustering algorithat used the concept of
ant-based clustering in order to resolve machirlefeemation problems. This three-

phase algorithm mainly utilizes distributed agemtsch mimic the way real ants collect
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similar objects to form meaningful piles. In thesfiphase of this algorithm, an ant-based
clustering model is adopted to form the initialtgamilies. Kao and Fu part modified a
part similarity coefficient and used it in the dianity density function of the model for
the purpose of clustering. In the second phase{theeans method is employed in order
to achieve a better grouping result. In the thihndge, artificial ants are used again to
merge the small, refined part families into largart families in a hierarchical manner.
Kao and Fu (2006) argued that that this algorithouled increase the flexibility of
determining the number of final part families fbetfactory layout designer.

Peterson et al (2008) introduced two improvememds ¢an be incorporated into
any ant clustering algorithm. These improvemeetadl function similarity weights and
a similarity memory model replacement scheme. Adefunction assigns a weight to
each object within an ant’s neighborhood accordmthe object distance and provides
an alternate interpretation of the similarity ofestts in an ant’s neighborhood. In this ant
clustering system, ants can hill-climb the kermeldients as they look for a suitable place
to drop a carried object. The similarity memory mloequips ants with a small memory
consisting of a sampling of the current clustersgace. These improvements were
compared to a basic ant clustering algorithm, ameas shown that kernel functions and
the similarity memory model increase clusteringespand cluster quality, especially for
datasets with an unbalanced class distributiorh) asametwork intrusion.

Kao and Li (2008) proposed an ant colony recogmiigstem for part clustering
problems. This algorithm mimics the random meetiofyreal ants to build up the ability
of object recognition and then to form many inifert clusters with high similarities.

These initial part clusters are further merged latger and larger clusters in a collective
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way until the designated number of part familiesraached. The characteristics of
artificial ants (such as randomization and collextoehaviour) allow the algorithm to re-

cluster wrongly grouped parts into the proper drsst It is argued that this system can
eliminate the chaining effects resulting from theerference of abnormal parts during the

clustering process.

Motivation of The Research

In the literature, we have seen that there arerakways in which to solve the
cellular manufacturing problem. Many of these &g methods however, are not as
flexible as the swarm intelligence methods. Evesugh there are existing ant algorithm
models, there has been limited comparison of thegwses within the ant algorithm, with
other replaceable processes. For example, theiegifiy ant algorithms which use
similarity coefficients have only been measuredhgshat one similarity coefficient.
Therefore there exists a need to investigate tleetsfthat different similarity coefficients
have on ant-based algorithm optimization techniques

Most of the ant algorithm models in literature fe@n developing part families to
be as optimal as possible, rather than focusintherefficiency of the algorithm itself.
Many of the ant algorithm optimization techniquasliterature are also developed into
software, which are used by practitioners in thadugtry. The operational requirements
of these ant algorithm software are very demandifigus, there exists a need for an
efficient, easy to program ant algorithm that woudeate the optimal cellular
manufacturing problem solution, and in doing so ldouse minimum resources.

Therefore, it would be beneficial to this studydvelop an ant algorithm that is efficient
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as well as easy to program, in order to compareefifiects of different similarity

coefficients on it.
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CHAPTER III
DESIGN AND METHODOLOGY

There are several ways in which to solve the aalluhanufacturing problem,
however recent research has shown that optimizatinartificial intelligence methods
are more efficient for optimization. One of thevadtages of swarm intelligence
methods is that they are very flexible and effitietn order to compare the effect of
similarity coefficients on an ant algorithm, a miteti version of Monmarché’s AntClust
has been created. The algorithm starts by creatingrtificial environment for the ants

to operate in.

The Environment: A Two Dimensional Chessboard

In order to have the artificial ants interact witie environment, an artificial
environment must be created. The simplest waytthis is to create a grid on which the
ants will move, pick up parts and drop parts. Adionmarchéet al’s (1999) AntClass
Algorithm, this is a two dimensional mati@&with a size ofnx m.

The number of cells on this chessboard has to éatgrthan the number of ants
added with the number of parts, in order for th#ieial ants to move the parts and create
families. If the chessboard is too large, therk g a lot of time wasted when the ants
travel and relocate parts. Monmarché et al (1928e determined that the size of the
two dimensional chessboard has to be a functioth@fnumber of objects in order to
scale automatically to the problem size, and haeeldped a formula to calculate the

size of the two dimensional chessboard:
Equation 1 Calculating the size of the 2 dimensionahessboard

m? =n, x40Rm = /n, X 4
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Wherem is the length and width of the two dimensionalss®ard, and,, is the
number of parts. For example, a problem with foants would need a chessboard of size

3 x 3 (Kao and Fu, 2006).

P1 P4

P3

=
LA

Figure 3. 1 Two Dimensional Chessboard

Along with a number of cells on the two-dimensiocakssboard, there are a
number of ants to be randomly spread with the paftke number of parts has to be
calculated so that there are not too many pamsgalith enough parts to ensure that the

algorithm will be completed quickly. The numberaoits can be calculated as:

Equation 2 Calculating the number of artificial ants

np
Ngnts = E

Collection of Parts into Heaps

Unlike the algorithm proposed by Kao and Fu in 200 artificial ant in this
algorithm will be able to collect parts into heagsd also build or destroy these heaps. A

heap of partsH) is a collection of two or more parts, and is ledaon a single cell on
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the two dimensional chessboard. A major advantddgeang the ants collect parts into
heaps is that a heap type cluster can easily baifiée, while non-heaped special
patterns of parts, such as that used by Kao an@@®6), may touch each other on the
two dimensional chessboard. When spatial clugtarsh each other, identification of
clusters becomes difficult. Another advantage sihg heaps is that more accurate
heuristics for dropping or removing parts from thdseaps are able to be defined
(Monmarché et al., 1999). Ants will be able to oethe least similar part from a heap,

or add a part to a heap if it is similar to thetpan the heap.

&7

Figure 3. 2 Non-Heaped Cluster(s)

From the above image, it is difficult to tell whettthis is one large cluster of five

parts, or if it is a small cluster of three padsdhing a small cluster of two parts.

.

Figure 3. 3 Two clusters or distinct heaps

The image above shows a heap of parts. It islgléaentified as one large

cluster of five parts.
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Phase 1: Creating Part Families

The colony of artificial ants, or the artificial @nacross the two dimensional
chessboard, consists of p amount of ants. Thécatiants are labeled anant...anp
and each atrtificial ant, gnts located on one cell of the board. Initiatlye artificial ants
are spread out randomly. Each ant then moves @iogoto the process outlined in
Figure 3.4. The motion of each artificial ant ist completely random. Initially each
artificial ant moves, and could possibly pick updrop a part depending on its status.
Each ant has a probabiliBgirecion to further continue in its direction when movingxn
Each ant also has a speed parameter which téllswitmany steps it will move in the
selected direction before stopping. Once an asniaved, it may pick up or drop a part,
and this is repeated for a predefined number gbssteThe ants will perform this
algorithm until they reached the predefined numtfecycles which is the number of
parts multiplied by 500. After the ants have fir@d all of these steps, the algorithm then

moves to Phase 2.

Ant is unloaded: Picking up a Part

When an ant is unloaded, it looks for a possibke f@apick up by considering the
eight (or six if it is on an edge) cells arounddtsrent position. As soon as one part or a
heap of parts is discovered then the artificial\aifitreact based on whether there is one
part, a heap of two parts, or a heap larger thanpavrts. If there is one part on the cell,
the artificial ant will calculate the similarity dsity function f(Py) and the pickup
probability Ppici(P). After this, the artificial ant will compare tipeckup probability to a
randomly produced probabilitl,. If Pyic(Px) > Py, the artificial ant will pick up the

encountered part and its status will become loadéthere is a heap consisting of two
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parts in the cell, then the artificial ant will gizp a random part. In this case, three
random probabilities will be generated;,AP, and Reswoy P1 Will be associated with
one part and [P to the other. Then the artificial ant will compaR; and R, to the
random probability Rswoy The part which has a random probability closeRitsiroywill

be treated as if it was the only part in the cel possibly pick it up. Finally, if there are
more than two parts in the heap then the ant Wwitlose the least similar part out of the
heap (provided that the part is beyond a predefthegshold) to pick up. It will then
choose the least similar part from the heap anéngém and random probablilty. PIf Pr

is greater than the threshold valugsRy the artificial ant will then treat the least Siani

part as if it is the only part in the cell.

Equation 3: Similarity density function to measurethe similarity of a part Py with its surroundings

s (P,, P,
%S (P l),Pz
n

€ n?
Py

f(Pk)=

Equation 4: Probability transfer function for an ar tificial ant to pick up a part

_ kp :
Ppick(Py) = (m)

Where:

f(Py) similarity density function to measure the simthaof a partPy with
its surroundings
Pxis the part held or encountered by an artificidl an
P, is the part located in one of the 3-8 surroundagdls on the 2-
dimensional chessboard
S(R, P) is the similarity between parB andP,
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n2 is the surrounding area that is recognizable ncawificial ant (3-8
cells)

Puick(Pi) is the probability transfer function for an axiél ant to pick up
the partPy

ko, constant value with their range between <l

Ant is Loaded: Dropping a Part

When an ant is carrying a part, it will look at thight surrounding cells. Then
will act based on three conditions. The fist ctindi is encountered when the cell is
empty. If this is the case, the artificial antiveibmputef(Py) andPgon(Py). The artificial
and will then compar@gro(Pi) to a randomly generated probability Rf Pyrop(P) > R,
then the artificial ant will drop the part. Othése, the artificial ant will keep its status as
loaded and continue. If there is a part in thé @lekady, the artificial ant will check to
see if the similarity coefficient of the two parssbeyond the similarity threshold. If it is,
the ant will drop the part and create a heap ofspain the third case, the ant will
compare the parts similarity to the heap. If thet ;s more similar to the heap than the

least similar ant in the heap, then the ant widl Htk part to the heap.

Equation 5: Probability transfer function for an ar tificial ant to drop a part

_ (2f (P if f(P) <k
Parop(Pi) _{ 1 ) othekrwised

Where:

f(Py) similarity density function to measure the simthaof a partPy with

its surroundings
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Parop(Pk) probability transfer function for an artificial ato lay aside the
PartPy

kg is a constant value with a range of 8;< 1

Phase 2: Refining Part Families

Because the method in phase 1 uses random digtribuit tends to create many
small homogenous part families. In order to imgrtve quality of the clustering, we use
the K-means algorithm as done by Kao and Fu (2@@86)by Monmarchét al (1999).
This is an important phase because the randonedingtperformed in phase 1 may have
parts “inappropriately distributed to wrong pantifies” (Kao and Fu, 2006).

To perform the K-means algorithm the following stepust be taken. First, make
the number of initial part families obtained in tfiest phase act as the number of K-
means group, and then calculate the center veotoaerage similarity) of each part
family. If there are single parts (parts not irapg), compute the average similarity to
each of the closest heaps and add it to the mogiasiheap. Once there are no single
parts left, assign each of the heaps a numbert \&ith the first heap, and find the least
similar part in the heap (as was done in phaseCgmpute its average similarity with
each of the other heaps. Select the heap withitfeest similarity. If the part is more
similar to the heap than the least similar parth@ heap, move the part to this heap.
Calculate the new center vectors for each heapttemrepeat for the second heap. Do

this until no parts can be moved.

Equation 6: Average similarity between a part and eheap

h

- S(P 'P)
(P ) :anhk+l1

=1
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Where:

H; is the current heap

nPy, is the number of parts it

h is the number of parts in thg

5(P,, H;) is the average similarity between a part and @ hea

s(Pyg, P;) Is the similarity between paktand part

Phase 3: Combining Part Families

In the first phase, many small homogenous partli@asnare formed because of
the random nature of the clustering. This rand@sngenerally creates more part
families than sought out. For the third phasephfthe refined part families are treated as
single objects and scattered randomly across tbalimensional chessboard. Then, new
artificial ants with part family merging “thoughtqresses” are randomly dropped on the
two dimensional chessboard. These ants re-cltrstefiamilies until a predefined number
of part groups are reached.

When the objects (families) and ants are randonalgttsred over the two
dimensional chessboard, the family merging prode=gins. When an artificial ant
comes across a family on the chessboard, it wileggte a random probabilit?,§ and
compatre it to a predefined probability called tleenity Pick up probability Ry). If the
random probability is less than the family pick ppobability, then the artificial ant will
pick up the object and become loaded. If the ramigagenerated probability is not less
than the family pick up probability, than the anliwove randomly past the part.

If a loaded ant comes across a part family, it détermine the distance between
the two object centers (the total average simyljp@ind the maximum distance between

the parts (the two least similar parts). The maximdistance is then divided by the
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average similarity and compared to a predefinedlaiity threshold. If the ratio is
smaller than the threshold value then the two faamilies will be merged into one, and
the ant will not be loaded with the new family.

These steps are repeated until the number of giniti€s which were predefined
by the facility designer are reached, or a pre@efinumber of maximum steps have been
reached. The reason that there are a maximum mushiséeps is included in this phase

is to avoid infinite looping.

Performing the ant algorithm

Performing the ant algorithm by hand can proved@tong and tedious process,
as it greatly depends on numbers stored in chéotsyawith keeping track of many
random numbers simultaneously. Therefore, tlgerghm was performed using a small
program made in Borland C++. An example of thers®wode for this program, using

on similarity coefficient can be found in Appendbx
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Figure 3. 4 Core Artificial Ant-Based Algorithm
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Phase 4: Comparing Different Similarity Coeffidien

In this phase, a number of similarity coefficiemt$i be used in the algorithm to
study the algorithm created, in order to determvhéch similarity coefficient works best
with this method. In order to determine the besilarity coefficients, the best similarity
coefficients from literature were selected to benpared. These similarity coefficients
are the Jaccard coefficient, Russel and Rao’s &iityilCoefficient, the Simple Matching
Similarity Coefficient, the Relative Matching Similty Coefficient and the Baroni-

Urbani and Buser Similarity Coefficient. These ikmity coefficients are defined below.

Equation 7: Jaccard Similarity Coefficient

a
o=—+
a+b+c

Equation 8: Russel and Rao’s Similarity Coefficient

a
c=———
a+b+c+d

Equation 9: Simple Matching Coefficient

_ a+d
T d+btc+d

Equation 10: Relative Matching Coefficient

_ a+ Vvad
a4+b+c+d+ad

o

Equation 11: Baroni-Urbani and Buser Similarity Coefficient

_ a+m
a+b+c+d+ad

o

Where:

ais the number of machines which produce both coraptsi andj

b is the number of machines which produce only camepti
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c is the number of machines which produce only camepg

d is the number of machines which produce neitherpmrants or |

The similarity coefficients will be tested on thrneblems: One of small size, a
medium sized problem and a large sized probleme rElason for testing problems of
three different sizes is to determine how the sinty coefficient affects the behavior of
the artificial ants in different sized environmentsThe first problem is cellular
manufacturing problem with 11 parts manufacturecdbanachines. This small problem
was presented by Chow and Howaleshka (1992). ‘€kensl problem is a cellular
manufacturing problem with 20 parts being produged machines. This medium sized
problem was introduced by Chandrasekharan and &agéan in 1986. The third and
last problem is a cellular manufacturing problemoiring 40 parts being manufactured
on 24 machines. This problem was introduced byn@resekharan and Rajagopalan in
1989. These problems will be outlined in detaitha next chapter.

The similarity coefficients will be tested usingveeal performance measures.
The first performance measure will be the numbeexafeptional elements (EE ey).
The number of exceptional elements is the sourctef-cellular movement between
cells (Yin and Yasuda, 2006). Since one of thedijes of cellular manufacturing is to
reduce the material handling costs, a reductiotinénnumber of exceptional elements is
directly related to the cellular manufacturing desb.

The second performance measure to be used to redhsuguality of the solution

is the grouping efficiencyn). Grouping efficiency was developed by Chandrhaekn

53



and Rajagopalan (1986). Grouping efficiengy i6é defined as the weighted average of
two efficienciesy; andns.
Equation 12: Grouping Efficiency for a Machine-Part Matrix
n=wn+ ({1 -w)n,
N1 andnzcan be defined as:

Equation 13: Left side partial grouping efficiency

€c

L=y a—
r=1 MT‘NT
Equation 14: Right Side grouping efficiency

€o
k
MmNy — 27«:1 M, Ny

=1~

Where:

kis the number of diagonal blocks on the machineépatrix

N is the number of components in the rth family

M is the number of machines in tH&cell

Nm is the number of machines

np is the number of parts

o is the number of operations in the machine pattirna

v is the number of voids in the solution

e:is the number of non-exceptional elements

€. is the number of exceptional elements

w is a constant relating the importance of interdatlmovement (equal to
0.5 in the study)

The similarity coefficients will be compared accogl to several aspects. The
first comparison will be made to the number of stégken to complete the algorithm.
The second comparison will be made to as the nuoiieart families made at the end of

Phase one.
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CHAPTER IV

ANALYSIS OF SAMPLE PROBLEMS

The differences in the similarity coefficients wile seen at the end of the first

phase. The differences will be corrected by tleoiseé phase, or the K- means refining.

Therefore, in this section, the first phase will dene for each of the similarity

coefficients. The solution of the first phase wiien be tested for grouping efficiency.

After the first phase, the algorithm will be contéd as it normally does and then tested

for overall efficiency.

Small Problem (Chow and Howaleshka, 1992)

This example is a cellular manufacturing problernthvilil parts manufactured on

5 machines. For the small example, the artifiai@ts will perform initial clustering with

500(11)(5) cycles.

Table 4. 1 Initial Machine-Part Matrix for the Small Example

Parts
1| 2| 3| 4| 5| 6 10
ol 1| 1] 1 1| 1 1
=121 1] 1
S| 3 1 1 1
= [y 1 1
5 1 1 1

The number of cells on the two-dimensional chessboan be defined as:

m=Vnx4=V11x4=66=7
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The number of artificial ants on the two dimensiochessboard can be defined as:

_ Nparts _ 11 ~1
Nants = T

10 10

Therefore there is 1 artificial ant and 11 partttsred randomly on the two dimensional

chessboard, as can be seen in figure 4.1.

<A £
P10 P8
7 A
P7 P2
A

PS5

pa P3 P9

m 3

P&

P11l

Figure 4. 1 Initial Machine-Part Matrix for Small E xample
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Small Problem: Jaccard Similarity Coefficient

Solving the small example’s first phase with thecdad Similarity Coefficient the
machine part matrix seen in Table 4.2, and thedimtensional chessboards layout seen

in Figure 4.2 are obtained.

Table 4. 2 Machine Part Matrix for the first Phaseof the Small Example using the Jaccard Similarity

Coefficient
Parts
9 11| 4| 1| 5| 7| 2| 6| 10 8§ 3
o 2| 1] 1] 1] 1| 1
= 41| 1] 1 1] 1
8 | 1 10 12| 1| 1| 1| 1| 1
= [ 5 1 1] 1 1
3 1 1] 1] 1
ra—
g pa
(s || | =% =

Figure 4. 2 Layout of the 2-Dimensional chessboarfdllowing the first phase for the small example,

using the Jaccard Similarity Coefficient
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From the machine part matrix, it can be seen tiatetare 2 part families with 3
exceptional elements. Therefore, the variablesbeaset as:

Ny=5
n=11
M;=3
Mo=2
N,=7
N.=4
e=20
=3
k=2

Both left and right side “partial-grouping” efficieies can be obtained:

€4 22

M=—o———= — = 0.759
f:l MT‘NT‘ 29
and
=1 %o =1 3 _ 0.885
2= e, — Y M,N| 26

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + (1 —-w)n,=0821
Therefore, the Jaccard Similarity Coefficient giaegrouping efficiency of 87.3%

at the end of phase 1.
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Small Problem: Russel and Rao’s Similarity Coeffitti

Solving the small example’s first phase with thesgal and Rao’s Similarity

Coefficient, the machine part matrix seen in TabBis obtained.

Table 4. 3 Machine-Part Matrix for Phase 1 of a smhexample using Russel and Rao’s Similarity

Coefficient
Parts
9 | 11| 4| 7| 2| 1| 5| 6| 8 10 3
ol 2] 1] 1] 1 1] 1
Sl 41 1] 1] 1] 1
g | 1 10 1| 2| 1] 1| 1| 1
= 3 1| 1] 1] 1
5 1] 1] 1] 1

The two-dimensional chessboard’s layout for thelsmemple can be seen in

figure 4.3 is obtained from the first phase of thugg.

P3

Pl

P2

P7

P4

P3 P11

P10 3 s

P8

P6

Figure 4. 3 2-D Chessboard’s Layout for Phase 1 tifie small example using R and R Similarity

Coefficient
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From the machine part matrix, it can be seen tinatetare 2 part families with 3
exceptional elements. Therefore, the variablesbeaset as:

Ny=5
n=11
M;=3
Mo=2
N,=7
N.=4
e=20
=3
k=2

Both left and right side “partial-grouping” efficieies can be obtained:

. _ 22 _ (usg
7’1 = = — = .
¢=1 MTNT 29
and
=1 %o =1 3 _ 0.885
2= e, — X M,N,| 26

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + (1 —-w)n,=0821
Therefore, Russel and Rao’s Similarity Coefficigivies a grouping efficiency of

82.1% at the end of phase 1.
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Small Problem: Simple Matching Similarity Coeffinie

Solving the small example’s first phase with then8e Matching Similarity

Coefficient, the machine part matrix seen in Tableis obtained.

Table 4. 4 Machine-Part matrix for Phase one of ai8all problem solved using Simple Matching

Similarity Coefficient

Parts
9 | 11| 4| 1| 5| 7| 2| 6| 8 10 3
a1l a| 1] 1] 1 1| 1
Sl 21| 1] 1] 1] 1
8| 1 1] 1| 2| 1] 1| 1| 1
=3 1 1] 1] 1
5 11| 1| 1

The two-dimensional chessboard’s layout for thelsmemple can be seen in
figure 4.5 is obtained from the first phase of tdusg with the Simple Matching

Similarity Coefficient.

P7

P2

P5

P1

P4

P2 P11

P10 3 -

3

PG

Figure 4. 4 2-D Chessboard’s Layout for Phase ond a Small problem solved using Simple Matching

Similarity Coefficient
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From the machine part matrix, it can be seen tiaetare 2 part families with 3
exceptional elements. Therefore, the variablesbeaset as:

Ny=5
n=11
M;=3
Mo=2
N,=7
N.=4
e=20
=3
k=2

Both left and right side “partial-grouping” efficieies can be obtained:

€4 22

M=—o———= — = 0.759
f:l MT‘NT‘ 29
and
=1 %o =1 3 _ 0.885
2= e, — Y M,N| 26

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + (1 —-w)n,=0821
Therefore, the simple matching Similarity Coeffitigives a grouping efficiency

of 82.1% at the end of phase 1.
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Small Problem: Relative Matching Similarity Coeifint

Solving the small example’s first phase with thdaiee Matching Similarity

Coefficient, the machine part matrix seen in Tabkeis obtained.

Table 4. 5 Machine-Part matrix for Phase one of ar8all problem solved using Relative Matching

Similarity Coefficient

Parts
9 |11 4| 1| 5| 2| 7| 6/ 10 8§ 3
ol 4| 1] 1] 1 1| 1
Sl 21 1] 1] 1] 1
g | 1 10 1| 2| 1] 1| 1| 1
= 3 1| 1] 1] 1
5 11| 1] 12

The two-dimensional chessboard’s layout for thelsmemple can be seen in

figure 4.5 is obtained from the first phase of tduisig.

L

L4

ps

Pl

P4

|

P3

Figure 4. 5 2-D Chessboard’s Layout for Phase ond a Small problem solved using Relative

Matching Similarity Coefficient
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From the machine part matrix, it can be seen tiatetare 2 part families with 3
exceptional elements. Therefore, the variablesbeaset as:

Ny=5
n=11
M;=3
Mo=2
N,=7
N.=4
e=20
=3
k=2

Both left and right side “partial-grouping” efficieies can be obtained:

. _ 22 459
7”1 = = —_— = .
¢=1 MT‘NT 29
and
=1 %o =1 3 _ 0.885
2= o, — Y M,N,| 26

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + (1 —-w)n,=0821
Therefore, the Relative Matching Similarity Coeifist gives a grouping

efficiency of 82.1% at the end of phase 1.
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Small Problem: Baroni-Urbani and Buser Similarityefficient

Solving the small example’s first phase with thdaiee Matching Similarity

Coefficient, the machine part matrix seen in Tabkis obtained.

Table 4. 6 Machine-Part matrix for Phase one of &mall problem solved using Baroni-Urbani and

Buser Matching Similarity Coefficient

Parts
11 9| 4| 1| 5| 2| 7| 6/ 10 3 8
ol 2] 1] 1] 1] 1] 1
S 141 1] 1 1] 1
g | 1 1] 1| 2| 1] 1| 1 1
=N 1| 1] 1] 1
3 11| 1] 12

The two-dimensional chessboard’s layout for thelsmemple can be seen in

Figure 4.6 is obtained from the first phase of idting.

P7

P2 | —

’. P5

P& P1

P3 P4

P10 P3

P& P11

Figure 4. 6 2-D Chessboard’s Layout for Phase ond a Small problem solved using Relative

Matching Similarity Coefficient
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From the machine part matrix, it can be seen tiatetare 2 part families with 3
exceptional elements. Therefore, the variablesbeaset as:

Ny=5
n=11
M;=3
Mo=2
N,=7
N.=4
e=20
=3
k=2

Both left and right side “partial-grouping” efficieies can be obtained:

. _ 22 _ (usg
7’1 = = — = .
¢=1 MTNT 29
and
=1 %o =1 3 _ 0.885
2= e, — X M,N,| 26

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + (1 —-w)n,=0821
Therefore, the Baroni-Urbani and Buser Similaritye@icient gives a grouping

efficiency of 82.1% at the end of phase 1.
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Refining the Part Families for a Small Example

Refining the part families using K-means refiniriige layout in Figure 4.7 is

obtained:

)

=1 ]
al 3

P1

.

pA

P2 P11

Kl

Figure 4. 7 2-D Chessboard for the solution to themall example (End of Phase 2)

It should be noted that this is the same layoutiobt at the end of phase 1.
Therefore the machine-part matrix can be seen bieT47 and the maximum grouping
efficiency which can be obtained is 82.1% . Ihat necessary to perform the 3rd phase

of the ant-based algorithm due to the size of tieblpm, and the nature of the testing.

Table 4. 7 Machine-Part Matrix for the solution tothe small example (End of Phase 2)

Parts
9 |11 4] 1| 5| 7| 2| 6 10 g 3
ol 2 1] 1] 1] 1] 1
Sl14 1| 1|1 1] 1
S| 1 10 1| 2| 1] 1| 1| 1
= |5 11| 1] 1
3 11| 1] 1
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Medium Problem

This example is a cellular manufacturing problenthvid0 parts manufactured on

8 machines. For the small example, the artifiaigls will perform initial clustering with
10, 000 cycles. The machine-part matrix can ba setable 4.8

Table 4. 8 Initial Medium Machine Part Matrix

Parts
1/2[3]4/5|6|7(8[9]10|11(12]13|14|15[16|17|18)|19]|20
1] 1)1 1)1 1 1)1 1)1 1
o L2 1]1] [1]1 1 1 1
213 |1 1)1 1 1 101]1]1
S |4 1)1 1)1 1 1
S [5]1 1)1 1 1 1 1
6|1 1 1)1 1 1 1
7 1]1] J1]1 1)1 1 1 1
8 1]1] J1]1 1 1

The number of cells and artificial ants on the tlumensional chess board can be

calculated as:

n 20
m=vVnx4=v20x4=~9 Nants = pfgmzmzz

Therefore there are 2 ants and 20 parts randorstgitalited on a 2-dimensional

Chessboard of 9 x 9 size.

P1 ¥, PE PiS P14
P10
P7 P2 L:[_/
e 2

P18 w
Pig
P12 P11 P19 Pa

]
P17 P13

Figure 4. 8 Initial Random Layout for the medium sie problem
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Medium Problem: Jaccard Similarity Coefficient

Solving the medium example’s first phase with thecard Similarity Coefficient,

the machine part matrix seen in Table 4.9 is obthin

Table 4. 9Phase 1 of the medium example solved witte Jaccard Coefficient

Parts
2|8|13|12|16|19|11|17|4|7|18|20|10|14|9|3|6|1]15]|5
1|1|1|1 11| 1|1 1111

o l2l1]1]1 11| 1|1 1 101

2|3 1l1]1]1 1 1)1

S |4 1(1|1 1 1|1

§5 1 1 1 1(1]1]1
6 1 1 11|11 1|1 1
7 11|11 1|1
8 1 1|1 1 111

The two-dimensional chessboard’s layout for thelsmemple can be seen in
figure 4.9 is obtained from the first phase of tdusg with the Jaccard Similarity

Coefficient.

P19 Pal—

P17 H

P16
Fly
P11 F3
P12

P13

P8

P14

P10

Figure 4. 9 Medium Layout for Phase 1 using the Jaard Similarity Coefficient
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From the machine part matrix, it can be seen thexetare 3 part families with 20
exceptional elements. Therefore, the variablesbeaset as:

N—8
np=20
M;=2
M2=5
Ms=1
N;=8
No=7
N3=5
e=42
=20
k=3

Both left and right side “partial-grouping” efficieies can be obtained:

ba M 07097
771 T —— T e— .
¢=1 MT‘NT‘ 62
and
=1 %o =1 18—08163
= e, — X MN| 98

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn +@—-w)n,=0.763
Therefore, the Jaccard Similarity Coefficient giaegrouping efficiency of 76.3%

at the end of phase 1.
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Medium Problem: Russel and Rao’s Similarity Co&ffit

Solving the medium example’s first phase with Russed Rao’s Similarity

Coefficient, the machine part matrix seen in TablE is obtained.

Table 4. 10 Phase 1 of the medium example solvedhivihe R and R Similarity Coefficient

Parts
2|8|13|18(16|3|11|17|10|14|6|7|4|20|12|9|19|1|15|5
1|1|1|1 1|11 1 1 1|1

o l3l1]111]11]1 1|1 1 1|1

2|2 1 1 1]1)1(1]1

S |4 1 101 1|11

§5 1|1 1 1 111
7 1 1|1 1(1|11|1 1
8 1 1 1(1]1|1
6 1 1111 111

The two-dimensional chessboard’s layout for thelsmemple can be seen in
figure 4.10 is obtained from the first phase osttuing with Russel and Rao’s Similarity

Coefficient.

P12
— PS5
P20
P17 — P13
Pl

E— P11 — ]
(St

P13

2]

] P3

Fla

P10

Figure 4. 10 Medium Layout for Phase 1 using the Rnd R Similarity Coefficient
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From the machine part matrix, it can be seen thexetare 3 part families with 20
exceptional elements. Therefore, the variablesbeaset as:

N—8
np=20
M;=2
Mo=5
M3=8
N,=7
No=5
N3=3
e=42
=20
k=3

Both left and right side “partial-grouping” efficieies can be obtained:

. _*_ 4075
n = =z — UL
’7f=1 MrNr 56
and
=1 %o =1 20 _ 0.808
7= e, — X, M,N,| 104

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn +@—-w)n,=0.779
Therefore, Russel and Rao’s Similarity Coefficigives a grouping efficiency of

77.9% at the end of phase 1.
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Medium Problem: Simple Matching Similarity Coeféait

Solving the medium example’s first phase with the@e Matching Similarity

Coefficient, the machine part matrix seen in TablEl is obtained.

Table 4. 11Phase 1 of the medium example solved withe Simple Matching Similarity Coefficient

Parts
8|13|18|17|10|14|6|5|20|2|12|9|19|3|16|1|15|11|4|7
31111 1 1 1|1 1 1

o l1l1]1 1 1 1 1|1 (1|1 1
212 1 11 1 1 1]1
S |7 1 1 1 1 1 1(1]11
§8 1 1 1 1 1|1
4 1|1 1 1 1|1
5 1|1 1|1 1 1|1
6 1 1|1 1|1 1|1

The two-dimensional chessboard’s layout for thelsmemple can be seen in
figure 4.11 is obtained from the first phase ofstduing with the Simple Matching

Similarity Coefficient.

¥ " P19
*,
P20 f
L P12
O )
P17 ¢ r
P7
P18 I —
P4 —
P13 P16
P11
re q 3
Ps P15
¥ Fe Pl
2
P14
P10

Figure 4. 11 Medium Layout for Phase 1 using the 8iple Matching Similarity Coefficient
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From the machine part matrix, it can be seen thexetare 3 part families with 34
exceptional elements. Therefore, the variablesbeaset as:

N—8
np=20
M;=2
Mo=5
Ms=1
N;=6
N,=8
N3=6
=28
=34
k=3

Both left and right side “partial-grouping” efficieies can be obtained:

ba 28 0483
771 T —— T e— .
¢=1 MTNT 58
and
=1 %o =1 3t _ 0.667
7= e, — X, M,N,| 102

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + (1 —w)n, =0.575
Therefore, the Simple Matching Coefficient givegrauping efficiency of 57.5%

at the end of phase 1.
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Medium Problem: Relative Matching Similarity Coegnt

Solving the medium example’s first phase with treda®ve Matching Similarity

Coefficient, the machine part matrix seen in TablE is obtained.

Table 4. 12 Phase 1 of the medium example solvedhvihe Relative Matching Similarity Coefficient

Parts

12(15(8|9|20|16|11|17|6|5|7|3|18|4|13|19|1|10|2|14

1 1|1 1111 1 1|1 1|1
o L3 1|1 1111 1 1|1 1|1
2l5/1]1 1011 111
S|6]1]1 1|1 1 1|1
§711 1 1 1 1(1|1|1

2 1 1 1(1|1 |1 1

8 1 1 1(1|1|1

4 11 1)1 1 1

The two-dimensional chessboard’s layout for thelsmemple can be seen in
figure 4.12 is obtained from the first phase ofstdming with the Relative Matching

Similarity Coefficient.

|

P2

Fla

F7

F12 /ﬁ

N7 PS5

11 P& P13

P16

P20 F10

PS8 F1

PE P P13
I_EI 2

Figure 4. 12 Layout for Phase 1 using the Relativdatching Similarity Coefficient
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From the machine part matrix, it can be seen thexetare 3 part families with 29
exceptional elements. Therefore, the variablesbeaset as:

N—8
np=20
M;=2
Mo=2
Ms=4
N;=8
N,=6
N3=6
=33
=29
k=3

Both left and right side “partial-grouping” efficieies can be obtained:

ba 33 0635
7’1 =V = — = .
¢=1 MTNT 52
and
=1 %o =1 29 _ 0.731
7= e, — X, M,N,| 108

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + (1 —w)n, =0.683
Therefore, the Relative Matching Similarity Coeiffist gives a grouping

efficiency of 68.3% at the end of phase 1.
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Medium Problem: Baroni-Urbani and Buser Similafitgefficient

Solving the medium example’s first phase with tharddi-Urbani and Buser

Similarity Coefficient, the machine part matrix see Table 4.13 is obtained.

Table 4. 13 Phase 1 of the medium example solvedhvihe Baroni-Urbani and Buser Similarity

Coefficient
Parts
3|/18(4|8|13|20|17|11|16|2|19|1|15|5|7|6|10|12|9] 14
21111 1 1|1 1
o 1411 1 1 1|11
Sl7]1]1]1 1 1 1 1)1 1
S18|1| 11 1 1|1
c2511 1|1 11| 1|11 1|1
3 1 1|1 11| 1|11 1|1
6 1 1|11 1111
5 1 1|11 (1 1111

The two-dimensional chessboard’s layout for thelsmeample can be seen in
figure 4.13 is obtained from the first phase ofstdning with the Baroni-Urbani and

Buser Similarity Coefficient.

P14

P9

P2

P16

P&
P11

P17

1 F18
P20 F15

P13 F1

P8

F13

Figure 4. 13 Layout for Phase 1 using the Baroni-Urani and Buser Similarity Coefficient
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From the machine part matrix, it can be seen thexetare 3 part families with 25
exceptional elements. Therefore, the variablesbeaset as:

N—8
np=20
M;=4
Mo=2
Ms=2
N;=3
N,=8
N3=9
e=37
=25
k=3

Both left and right side “partial-grouping” efficieies can be obtained:

. _37 _ (804
7’1 = = — = .
¢=1 MTNT 46
and
=1 %o =1 25 _ 0.781
2= o, — X M,N,| 46

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn + 1 —-wn, =0.792
Therefore, the the Baroni-Urbani and Buser SintjarCoefficient gives a

grouping efficiency of 79.2% at the end of phase 1.
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Refining Part Families for Phase 2

Refining the part families using K-means refinilge machine part matrix in

table 4.14 below is obtained.

Table 4. 14 Medium Problems Result of K-Means Clusting: Machine-Part Matrix

Parts
4|7]18|20]10|12|11|17|1|5[15|/2(8|9[13|14|16/19[3]|6
21|11 ]1 1 1)1

o L4l1]1 1 1 1)1

2l7]1(1]1]1 111 1 1)1

S |8|1[1]1]1 1)1

21 1)1 1)2f1/1{1|[1]1]1
3 1 1)1 1)1/ 1]1]1]1
5 1)1 101)2]1 1
6 1 1 1011 1

Figure 4.14 below shows the layout of the two disie@mal chessboard at the end of

phase 2.

Pi3

P17 P7

Pis

Pi1 P4
rla PE ] P35

Fa R12 L5

P2 P10 E S

Figure 4. 14 Medium Problems Result of K-Means Clusring: 2-D Chessboard
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Combining heaps into Part Families

Since the first phase is based on random clustettiere is a possibility that the
first phase will produce too many part familieshisTexcess in families will therefore
result a high number of exceptional elements. phise is done at the discretion of the
facility designer. After performing the third pleasf combining the heaps, the following
machine part matrix is obtained:

Table 4. 15 Final machine part matrix for the medium sized example

Parts
3(a|6|7]18|20|2|8|9|13|14|16|17|19|11|1|5]|10|12]15
201f1]1]1]1]1 1
o lal1]1]1]1 1 1
_271111 1 1|1
Sl/8|1]1]1]1
©
s [1]1

3 1

5 1

6 1 1

The layout of the two dimensional chessboard isvshioelow:

Figure 4. 15 Final layout of the medium sized prolgm
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From the machine part matrix shown in table 4.1%an be seen that the last
phase gives 3 distinct part families with 11 exueyl elements. The total number of
operations is 62 operations done by 8 machinese@® parts. Therefore, the variables
can be set as:

N—8
n,=20
Mi=4
Mo=2
M3=2
N;=6
N,=9
Ns=5
e=51
e=11
k=3

Both left and right side “partial-grouping” efficieies can be obtained:

i 51 0.981
7” T — | — .
! 1If=1 MrNr 52
and
1 %o 1 11 0.898
77 = —_ = —_——_—= .
2 NNy — Yk | M.N, 52

Having bothy; andsy,, the grouping efficiencyyj can be calculated as:
n =wn; + (1 —w)n,0.940
Therefore, after refining the part heaps using Kangerefining, and combining

the excess part families, the grouping efficiercymproved to 94.0%.
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Large Problem

This problem is a cellular manufacturing problemthwi40 parts being
manufactured on 24 machines. For the initial maeht part matrix please refer to

Appendix B.1.

Large Problem: Jaccard Similarity Coefficient

From the results generated by the ant based digarithe Jaccard similarity

coefficient gives a solution which generated tHeofaing variables:

n—=24 N>=5
n,=40 Na=3
Mi=4 Ns=7
M,=4 Ns=5
M3=2 Ne=3
M4=4 N7=3
Ms=4 e=112
Me=2 e=19
M,=2 =7
N.=7

The sum of machines multiplied by parts in a heap i

k
ZMrNr =132
r=1

Both left and right side “partial-grouping” efficieies can be obtained:

e 112

o= =-5; =0848
K M,N, 132

m =

and
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1
=1- =1-—==0977
2 Nty — YE_ M.N, 828

Having bothy, andy,, the grouping efficiency;j can be calculated as:
n=wn +1—-w)n,=0913
Therefore, the Jaccard Similarity Coefficient gigegrouping efficiency of 91.3%

at the end of phase 1.

Large Problem: Russel and Rao’s Similarity Coeffiti

From the results generated by the ant based diguriRussel and Rao’s

similarity coefficient gives a solution which geatd the following variables:

Np=24 N=2
np=40 N3=5
M;=4 Ns=11
Mo=2 Ns=3
M3=3 Ne=8
M4=2 N7=7
Ms=8 e;~66
Me=2 €=65
M;=3 =7
N;=4

The sum of machines multiplied by parts in a haap i

k

Z M,.N, = 118

r=1
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Both left and right side “partial-grouping” efficieies can be obtained:

__f . _5 559
"= 1If=1 MrNr - 118 -
and
=1 %o =1 65 _ 0.922
1= ey, — SF_ M,N,| B4z

Having bothy; andsy,, the grouping efficiencyyj can be calculated as:
n=wn + (1 —-w)n, =0.741
Therefore, Russel and Rao’s Coefficient gives aigirg efficiency of 74.1% at

the end of phase 1.

Large Problem: Simple Matching Similarity Coeffiaie

From the results generated by the ant based digarithe Simple Matching

similarity coefficient gives a solution which geatxd the following variables:

Np=24 N=4
n,=40 N3=5
M;=2 Ns=4
Mo=2 Ns=8
M3=2 Ne=8
My=1 N=7
Ms=5 e;=68
Me=7 €=63
M.=7 =7
N,=4

The sum of machines multiplied by parts in a haap i
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k
Z M, N, = 159
r=1

Both left and right side “partial-grouping” efficieies can be obtained:

ba 08 _ 0428
771 = = = .
5:1 MT‘NT‘ 159
and
=1 %o =1 63 _ 0.921
2= MMy — ZIrC=1 M;-N, - 801

Having bothy;, ands,, the grouping efficiency;j can be calculated as:
n=wn + @ —-w)n, =0.675
Therefore, the Simple Matching Similarity Coefficiegives a grouping efficiency
of 67.5% at the end of phase 1.

Large Problem: Relative Matching Similarity Coeitfict

From the results generated by the ant based diguorithe Relative Matching

similarity coefficient gives a solution which geatd the following variables:

Nm=24 No=3
np=40 N3=3
My=2 N;=6
M,=2 Ns=3
Ms=3 Ne=3
M4=2 N7=13
Ms=2 €=77
Me=5 €=54
M-=8 k=7
N:=3

The sum of machines multiplied by parts in a haap i
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k
Z M,N, = 167
r=1

Both left and right side “partial-grouping” efficieies can be obtained:

. _77 _ o461
= 1If=1 MrNr - 167 -
and
=1 %o =1 4 _ 0.932
M2 = MmNy — Z$=1 M, Ny - 793 -

Having bothy; andsy,, the grouping efficiencyyj can be calculated as:
n=wn,+ (1 —w)n, =0.696
Therefore, the Relative Matching similarity coeiifict gives a grouping

efficiency of 69.6% at the end of phase 1.

Large Problem: Baroni-Urbani and Buser Matchingifirity Coefficient

From the results generated by the ant based digarithe Baroni-Urbani and

Buser similarity coefficient gives a solution whiganerated the following variables:

N,=24 No=5
n,=40 N3=5
M;=5 Ns=3
M»=3 Ns=7
Ms=4 Ne=8
Ms=4 N7=6
Ms=2 e=112
Me=2 €=19
M7=4 k=7
N;=6

The sum of machines multiplied by parts in a haap i
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k
ZMrNr =131
r=1

Both left and right side “partial-grouping” efficieies can be obtained:

e 112

5:1 MTNT 131
and
=1 %o =1 19 _ 0.977
2= MMy — ZIrC=1 M,-N, - 829

Having bothy;, andy,, the grouping efficiency;j can be calculated as:
n=wn+A—-w)n, =0916
Therefore, the Baroni-Urbani and Buser similaribgfficient gives a grouping efficiency

of 91.6% at the end of phase 1.

Refining the Part Families in the large example

Performing the k means refining on the solutionsegated in phase 1, the
machine component matrix in Appendix B, Table Bs2generated. As there are no
exceptional elements in this solution, the heapsameed to be combined to form part
families. The lack of exceptional elements in g@ution also yields a grouping
efficiency of 100%. Therefore the solution presenn table B.2 is the optimum solution

for the problem presented in table B.1.
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CHAPTER V
COMPARING THE RESULTS OF THE TESTS

Results of the solution qualities yielded from diffnt similarity coefficients

The results in the small example all yielded theesarouping efficiency. This
may have occurred due to the size of the probleththe low number of part families.
The compared grouping efficiencies and exceptioslements for the small sized

example can be seen in Figure 4.16 and figure edectively.

Small Sized Example: Grouping
Efficiency

90 82.1 82.1

Grouping Efficiency (%)
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Figure 5. 1 Small Sized Example: Grouping Efficieng
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Figure 5. 2 Small Sized Example: Exceptional Elemés

The compared grouping efficiencies and exceptiefeahents for the medium

sized example can be seen in Figure 4.18 and fjd&respectively.

Medium Problem: Grouping
Efficiency
< 188 262 77-9 79.2 >
£ 20 22 ' 68.3
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Figure 5. 3 Medium Problem: Grouping Efficiency
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Medium Problem: Exceptional
Elements
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Figure 5. 4 Medium Problem: Exceptional Elements
The compared grouping efficiencies and exceptieteahents for the large sized

example can be seen in Figure 4.20 and figure #dectively.

Large Example: Grouping Efficiency
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Figure 5. 5 Large Example: Grouping Efficiency
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Large Example: Exceptional Elements
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Figure 5. 6 Large Example: Exceptional Elements

In most cases, the lower number of exceptional etgsnresults in a higher
grouping efficiency. Although the exact relatioipsbetween the exceptional elements
and the grouping efficiency is unknown, they seerbé inversely proportionate. In all
cases the Baroni-Urbani and Buser Similarity getesréghe highest quality of solutions
from the first phase, followed by the Jaccard s@nty coefficient. This results in a

faster phase 2.
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Comparison of algorithm efficiency between diffedremilarity coefficients

As previously mentioned there is a relationshipmMeein the grouping efficiency
in the solution produced from the first phase @& #rtificial ant-based algorithm. It is
important to note that all processes in this ingasion were conducted under identical
conditions. The computer that produced these isolitis a Hewlett-Packard company
model p6152f desktop model, with an AMD Phenom™@BZ%&ple Core processor. It is
a 64-bit operating system with 4.00 GB of ram. stiould be noted that one of the
processors on this system was dedicated to rurthengnt based algorithm, and all other
windows idle processes with done on the remainioggssors. This was done so that
the idle processes that the Windows Vista geneasot interfere with the process of
timing the duration of the artificial ant-basedaithm.

In Figures 4.22-4.26, on the following pages, therage length of the 3 examples
for each similarity coefficient is shown. Each exde was run ten times per similarity

coefficient under identical conditions.
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Jaccard Similarity Coefficient Running

Time
Large Problem 45.659
Medium Problem 24.257
Small Problem 10.285

0.000 10.000 20.000 30.000 40.000 50.000

Time (seconds)

Figure 5. 7 Jaccard Similarity Coefficient RunningTime

Russel and Rao's Similarity Coefficient

Running Time
Large Problem 92.856
Medium Problem 29.568
Small Problem 16.589

0.000 20.000 40.000 60.000 80.000 100.000

Time (seconds)

Figure 5. 8 Russel and Rao's Similarity CoefficienRunning Time
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Simple Matching Similarity Coefficient
Running Time

Large Problem 52.356

Medium Problem

Small Problem

T T

0.000 10.000 20.000 30.000 40.000 50.000 60.000

Time (seconds)

Figure 5. 9 Simple Matching Similarity CoefficientRunning Time

Relative Matching Similarity
Coefficient Running Time

Medium Problem _ 34.565

Small Problem 19.250

0.000 20.000 40.000 60.000 80.000 100.000 120.000

Time (Seconds)

Figure 5. 10 Relative Matching Similarity Coefficient Running Time
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Baroni-Urbani and Buser Similarity
Coefficient Running Time

Large Problem 49.563
Medium Problem 2[7.236

Small Problem 12.356

0.000 10.000 20.000 30.000 40.000 50.000 60.000

Time (Seconds)

Figure 5. 11 Baroni-Urbani and Buser Similarity Codficient Running Time

Examing the process run times shown in Figures 4022.26, the similarity
coefficient which reaches the solution as quickdy possible is the Jaccard similarity
coefficient. This could be because the Jaccardasityg coefficient, unlike the others,
does not include dissimilarity factors (ak values) in their calculations. This is
advantageous because the artificial ants in tlgerélhm cannot process dissimilarity
coefficients, and some similarity coefficients suah Russel and Rao’s Siimilarity
coefficient and the relative matching similarityetficient include dissimilarity factors in
similarity coefficients (different from similaritgissimilarity coefficients) without
rationalizing them. Not rationalizing the dissiarity factors can cause the process to

become unstable, and this instability is likely tda@ise of longer process run times.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

Concluding Remarks

Most of the ant algorithm models in literature fe@n developing part families to
be as optimal as possible, rather than focusingherefficiency of the algorithm itself.
Many of the ant algorithm optimization techniquasliterature are also developed into
software, which are used by practitioners in thadugtry. The operational requirements
of these ant algorithm software are very demandifigus, there exists a need for an
efficient, easy to program ant algorithm that woudeate the optimal cellular
manufacturing problem solution, and in doing so ldouse minimum resources. In
order to satisfy the need for an artificial antdxhslgorithm that is efficient as well as
easy to program, an existing ant algorithm was fremtiso that it could be used to solve
the cellular manufacturing problem. The originddagithm, AntClass uses Euclidean
vectors to measure the similarity between partdhe Todified version used in this
research, due to the fact that similarity is usedgtoup parts together instead of
distances, the modified version uses similarityffidents. The concept of heaping
clusters was also introduced to ant algorithmsceltular manufacturing. Instead of
using Euclidean vectors to measure the distantieetcenter of a heap, as is such in the
AntClass algorithm, an average similarity was idtrced to measure the similarity
between a part and a heap, therefore allowing a&isg eebuilding of clusters in order to
compare the effects of different similarity coeiificts on the ant-based algorithm.

In the literature, we have seen that there arerakways in which to solve the

cellular manufacturing problem. Many of these &g methods however, are not as
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flexible as the swarm intelligence methods. Evewugh there are existing ant algorithm
models, there has been limited comparison of tbegases within the ant algorithm, with
other replaceable processes. In order to determisieilarity coefficient, 5 similarity
coefficients were selected. Of the five comparadilarity coefficients, two of the
similarity coefficients worked well with the algttm. The Jaccard similarity coefficient
produces slightly lower quality results in a slighthorter time than the Baroni-Urbani
and Buser similarity coefficient. The Simple Matafy Relative Matching and Russel
and Rao’s Similarity coefficient are not recommeshder this algorithm. The simple
matching similarity coefficient does not producegthiquality solutions in phase 1,
therefore leading to longer than necessary remgipitases. The Relative Matching and
Russel and Rao’s Similarity coefficients are noggasted because they seem to be
unstable with this type of algorithm, therefore siag process lockups, and longer
process run times. Similarity/Dissimilarity Coefénts, which differ from similarity
coefficients because they have a range of -1 tstead of 0 to 1, will not work with this

algorithm, because the artificial ant’s logic does$ consider negative values.

Recommendations for future research

With the modifications and comparisons within tarsficial ant-based clustering
algorithm for cellular manufacturing, several wimgoof opportunity for new research
open up. The relationship between exceptional etsnand grouping efficiency can
now be formally investigated. The algorithm can duiglitionally modified so that it
considers negative values and therefore some sityfthssimilarity coefficients can be

used, or tested on this algorithm. There are aldditional factors that can now be
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considered. Product volume and demand can be tfakemccount in the artificial ant-
based algorithm. Other factors, such as operatosiderations and setup times, or idle

time for machine repairs can also be taken into@aat
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APPENDIX A

Layout Presentation and Similarity Coefficient Gédtions

Output for two dimensional chessboards

The algorithm does not output pictures; it outuset of coordinates for the parts
and the ants. If two or more parts have the sanedinates, they are considered heaped
together. An example of a layout for the mediurediproblem is:

Ants' initial positions:

Ant[0]: (0, 0)

Ant[1]: (2, 5)

Parts' initial positions:

Part[ 0]: (0, 0) Part[10]: (5, 3)
Part[1]: (2, 5) Part[11]: (5, 0)
Part[ 2]: (3, 7) Part[12]: (7, 5)
Part[ 3]: (5, 8) Part[13]: (0, 4)
Part[ 4]: (8, 6) Part[14]: (0, 3)
Part[5]: (0, 2) Part[15]: (4, 0)
Part[6]: (2, 2) Part[16]: (7, 4)
Part[ 7]: (6, 4) Part[17]: (3, 2)
Part[ 8]: (8, 3) Part[18]: (5, 7)
Part[9]: (1, 1) Part[19]: (8, 5)
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Similarity Coefficient Calculations

The similarity coefficients are calculated accogdto their corresponding formulas and then stored iable, such as the one

for the Medium sized Problem using the Baroni-Urlzard Buser Similarity coefficient shown in tablelA

Table A. 1 Similarity Coefficient Calculation and Sorage

Parts
1 2 3 4 5 6 7 8 9 10 11 12 18 14 15 16 7 18 19 20
0.48| 0.00| 0.00| 0.00| 0.48| 0.26| 0.00| 0.00| 0.30| 0.46| 0.00| 0.46| 0.00| 0.00| 0.48| 0.00| 0.28| 0.00| 0.00| 0.28
0.00| 0.48| 0.26| 0.00| 0.00| 0.00| 0.00| 0.48| 0.46| 0.00| 0.46| 0.00| 0.48| 0.46| 0.00| 0.48| 0.45| 0.28| 0.48]| 0.00
0.00| 0.26| 0.75] 0.65| 0.00| 0.63| 0.65| 0.26| 0.22| 0.22| 0.40| 0.22| 0.26| 0.40| 0.00| 0.26| 0.36| 0.52| 0.26| 0.52
0.00| 0.00| 0.46| 0.67| 0.00| 0.65| 0.67| 0.00| 0.00| 0.26| 0.26| 0.26| 0.00| 0.26| 0.00| 0.00| 0.22]| 0.55| 0.00| 0.55
0.48| 0.00| 0.00| 0.00| 0.48| 0.26| 0.00| 0.00| 0.30| 0.46| 0.00| 0.46| 0.00| 0.00| 0.48| 0.00| 0.28| 0.00| 0.00]| 0.28
0.26| 0.00| 0.63| 0.65| 0.26| 0.75| 0.65| 0.00| 0.00| 0.40| 0.22| 0.40| 0.00| 0.22] 0.26| 0.00| 0.36| 0.52| 0.00| 0.52
0.00| 0.00| 0.65| 0.67| 0.00| 0.65| 0.67| 0.00| 0.00| 0.26| 0.26| 0.26| 0.00| 0.26| 0.00| 0.00| 0.22]| 0.55| 0.00| 0.55
0.00| 0.48| 0.26| 0.00| 0.00| 0.00| 0.00| 0.48| 0.46| 0.00| 0.46| 0.00| 0.48| 0.46| 0.00| 0.48| 0.45| 0.28| 0.48]| 0.00
0.30| 0.46| 0.22] 0.00| 0.30| 0.00| 0.00| 0.46| 0.48| 0.28| 0.45| 0.28| 0.46| 0.45| 0.30| 0.46| 0.43| 0.26| 0.46| 0.26
0.46| 0.00| 0.22] 0.26| 0.46| 0.40| 0.26| 0.00| 0.28| 0.58| 0.00| 0.45| 0.00| 0.00| 0.46| 0.00| 0.43| 0.00| 0.00| 0.26
0.00| 0.46| 0.40| 0.26| 0.00| 0.22]| 0.26| 0.46| 0.00| 0.00| 0.58| 0.28| 0.46| 0.45| 0.00| 0.46| 0.43| 0.43| 0.46| 0.26
0.46| 0.00| 0.22] 0.26| 0.46| 0.40| 0.26| 0.00| 0.45| 0.45| 0.28| 0.58| 0.00| 0.00| 0.46| 0.00| 0.26| 0.26| 0.00| 0.43
0.00| 0.48| 0.26| 0.00| 0.00| 0.00| 0.00| 0.48| 0.00| 0.00| 0.46| 0.00| 0.48| 0.46| 0.00| 0.48| 0.45| 0.28| 0.48]| 0.00
0.00| 0.46| 0.40| 0.26| 0.00| 0.22| 0.26| 0.46| 0.00| 0.00| 0.45| 0.00| 0.46| 0.58| 0.00| 0.46| 0.43| 0.43| 0.46| 0.26
0.48| 0.00| 0.00| 0.00| 0.48| 0.26| 0.00| 0.00| 0.46| 0.46| 0.00| 0.46| 0.00| 0.00| 0.48| 0.00| 0.28| 0.00| 0.00]| 0.28
0.00| 0.48| 0.26| 0.00| 0.00| 0.00| 0.00| 0.48| 0.00| 0.00| 0.46| 0.00| 0.48| 0.46| 0.00| 0.48| 0.45| 0.28| 0.48]| 0.00
0.28] 0.45| 0.36| 0.22| 0.28| 0.36| 0.22| 0.45| 0.43| 0.43| 0.43| 0.26| 0.45| 0.43| 0.28| 0.45| 0.67| 0.22| 0.45] 0.00
0.00| 0.28| 0.52| 0.55| 0.00| 0.52| 0.55| 0.28| 0.00| 0.00| 0.43| 0.26| 0.28| 0.43| 0.00| 0.28| 0.22]| 0.67| 0.28]| 0.55
0.00| 0.48| 0.26| 0.00| 0.00| 0.00| 0.00| 0.48| 0.00| 0.00| 0.46| 0.00| 0.48| 0.46| 0.00| 0.48| 0.45| 0.28| 0.48]| 0.00
0.28| 0.00| 0.52| 0.55| 0.28| 0.52| 0.55| 0.00| 0.26| 0.26| 0.26| 0.43| 0.00| 0.26| 0.28| 0.00| 0.00| 0.55| 0.00| 0.67
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APPENDIX B: Data from Large Example

Table B. 1 Initial Machine-Part Matrix
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Table B. 2 Machine Part Matrix For the Large Problem with a 100% grouping efficiency
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APPENDIX C

Equations and Variables

List of Equations

Equation 15: Calculating the size of the 2 dimemaiachessboard
m? =n, x40Rm = /n, x 4

Equation 16: Calculating the number of artificiata

np
Nants = E

Equation 17: Similarity density function to meastine similarity of a parPy with its
surroundings

25 (P, P)

,P, € n?
nPl L

f(Pk)=

Equation 18: Probability transfer function for atifecial ant to pick up a part

— kp :
Ppick(Pk) - (kp +f(Pk)>

Equation 19: Probability transfer function for atifecial ant to drop a part

_ (2f(Po) if f(P) <k
Parop(Pr) —{ 1 ) othekrwised

Equation 20: Average similarity between a part arbap

h
_ S (Px, P))
(P Hy) = Z Py, + 1
i=1

Equation 21: Jaccard Similarity Coefficient

a
o =————
a+b+c
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Equation 22:

Equation 23:

Equation 24:

Equation 25:

Equation 26:

Equation 27:

Equation 28:

Russel and Rao’s Similarity Coeffitien

a
c=———
a+b+c+d

Simple Matching Coefficient

_ a+d
T d+tbtc+d

Relative Matching Coefficient

_ a+ﬁﬁ
a+b+c+d++Vad

o

Baroni-Urbani and Buser Similarity Giogent

a+vVad
o=
a+b+c+d++Vad

Grouping Efficiency for a Machine-Pdetrix

n=wn+ 1 —-wn,

Left side partial grouping efficiency
eC
L/ =y a—
' 1If=1 M, N;.

Right Side grouping efficiency
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List and definition of Variables

n, is the number of parts

H; is the current heap

nPy, is the number of parts it

5(P,, H;) is the average similarity between a part and @ hea
ais the number of machines which produce both coraptsi andj
b is the number of machines which produce only camepti

c is the number of machines which produce only camepg

d is the number of machines which produce neitherpmrmantd orj

© © N o g bk~ w0 D

e:is the number of non-exceptional elements

10.e.is the number of exceptional elements

11.f(Py) similarity density function to measure the simthaof a partPy with its
surroundings

12.h is the number of parts in tig

13.kis the number of diagonal blocks on the machin¢patrix

14.kqis a constant value with a range of < 1

15.k, constant value with their range between K<l

16.mis the length and width of the two dimensionalsstmard,

17.M; is the number of machines in tHecell

18.n2 is the surrounding area that is recognizablentartficial ant (3-8 cells)

19. ny, is the number of machines

20.n, is the number of parts

21.N; is the number of components in the rth family

22.is the number of operations in the machine partirat

23. Parop(Px) probability transfer function for an artificial @to lay aside the Palfk

24.Pyis the part held or encountered by an artificidl an

25.P, is the part located in one of the 3-8 surroundicglls on the 2-
dimensional chessboard

26. Ppick(Py) is the probability transfer function for an axiéil ant to pick up the

partPy
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27.S(R, P) is the similarity between parB andP,

28.v is the number of voids in the solution

29.w is a constant relating the importance of interd¢atlmovement (equal to 0.5 in
the study)

30.5(Py, P;) is the similarity between paktand part
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APPENDIX D

Source Code

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#define PARTS 20

#define MACHINES 8

#define ANTS 2

#define MEM 8

#define TRUE 1

#define FALSE O

#define SUCCESS 0

#define FAIL 1

int CM[MACHINES][PARTS];

double SM[PARTS][PARTS];

int C = ceil(sqrt((double) PARTS * 4.0)); // Dynanthessboard dimension

// gncomponents matrix

/I teenilarity matrix
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int InRange(int x, int y)
{
if(x>=0 && x<C && y>=0 && y<C) return TRUE;

return FALSE;

#include "T_position.hpp"
#include "T_que.hpp"

#include "T_part.hpp"

Il S —

TPart PartListfPARTS];

void InitiatePartLocations(void)

{

for(int i=0; i<PARTS; i++)
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PartList[i].Setld(i); PartList[i]. TakeALocatig);

int PartsAtXY(int x, int y, int *found_parts)

{

int found=0;

for(int i=0; i<PARTS; i++)
if(PartList[i].AreYouAt(X, y) == TRUE)
found_parts[found++] = PartList[i].Getld();

return found;

int HeapPart(int *FoundParts, int Prts)

{
double Similarity(TPart, TPart); // just a protpé

double Sum=0, *sum = new double[Prts];
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for(int i=0; i<Prts; i++) sum[i]=0; // resettingums

int count = 0;
for(int i=0; i<Prts-1; i++)
for(int j=i+1; j<Prts; j++)
{
++count;
Sum += Similarity(PartList[FoundParts|il], #izst[FoundParts[j]);

}

Sum /= count;

for(int i=0; i<Prts; i++)
{
for(int j=0; j<Prts; j++)
if(i==j) continue;
else
sum(i] += Similarity(PartList{FoundPartg[iPartList{FoundParts[j]]);

sum(i] /= (Prts-1);

double MaxValue, Value; int BestPart;
for(int i=0; i<Prts; i++)

{
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Value = fabs(Sum-sum([i]);
if(i==0)
{

MaxValue = Value; BestPart = i;

}

else

if(Value > MaxValue)

{

MaxValue = Value; BestPart=i;

delete[] sum;

return BestPart;

I S

#include "T_ant.hpp"

TANt AntList[ANTS];
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void InitiateAntLocations(void)
{
int occupied;
for(int i=0; i<ANTS; i++)
{
AntList[i].Setld(i);
do
{
occupied = FALSE;
AntList[i]. TakeALocation();
for(int j=0; j<i; j++)

If(AntList[j].AreYouAt(AntList[i]. GetXLocaton(), AntList[i].GetYLocation()) ==

TRUE)
{
occupied = TRUE; break;
}
} while(occupied == TRUE);
}
}
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double Similarity(TPart p1, TPart p2)

{
int a, b, c, d, k=0;

a=b=c=d=0;

for(int i=0; i<KMACHINES; i++)

if(CM[i][p1.Getld()] == 1 && CM[i][p2.Getld()] == 1)

++a;

else

if(CM[i][p1.Getld()] == 1 && CMI[i][p2.Getld(] == 0)

++b;

else

if(CMIi][p1.Getld()] == 0 && CM{[i][p2.Getld)] == 1)

++C:

else

if(CM[i][p1.Getld()] == 0 && CMIi][p2.Getd()] == 0)

++d;

double Num = (a-k) + sqgrt((a-k)*d);
double Den =Num +b + ¢ + d;

return Num/Den;
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void ComputeSimilarityMatrix(void)
{
for(int i=0; i<PARTS; i++)
for(int j=0; [<PARTS; j++)

SMIi][j] = Similarity(PartList[i], PartList[]);

int LoadComponentMatrix(char *file_name)
{
FILE *f = fopen(file_name, "r");
if('f) return FALSE;
for(int i=0; i<KMACHINES; i++)
for(int j=0; [<PARTS; j++)
fscanf(f, "%d", &CMIi][i]);

fclose(f);

ComputeSimilarityMatrix();
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return TRUE;

void PrintParts(char *f_name)

{

FILE *f = fopen(f_name, "a");

fprintf(f, "Parts:\n======\n");
for(int i=0; i<PARTS; i++)
fprintf(f, "P%d -> (%d,
PartList[i].GetYLocation());
fprintf(f, "\n\n");

fclose(f);

%d)\n",

PartList[iGetXLocation(),

void PrintAnts(char *f_name)

{

FILE *f = fopen(f_name, "a");
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fprintf(f, "Ants:\n=====\n");
for(int i=0; i<ANTS; i++)
{

fprintf(f, "Ant%d --> (%d, %d) --> [%d parts]:i, AntList[i]. GetXLocation(),

AntList[i].GetYLocation(), #List[i]. GetParts());
for(int j=0; j<AntList[i]. GetParts(); j++)
fprintf(f, "%d, ", AntList[i].GetPart()));

fprintf(f, "\n");
}
fprintf(f, "\n\n");

fclose(f);

int main(int argc, char* argvl])

{
randomize();
InitiatePartLocations(); PrintParts("d:\Ant\&utput.txt");
InitiateAntLocations(); PrintAnts("d:\Ant\AntQput.txt");

LoadComponentMatrix("d:\Ant\CMO1.txt"); // toes compute similarities as well
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for(int i=0; i<ANTS; i++)

{

AntList[i].Move(); PrintAnts("d:\Ant\AntOutpt.txt");

}

return O;
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