Spin-forbidden radiative decay rates from the \(3',3P \) \(1,2 \) and \(3',1P \) \(1 \) states of helium

D. C. Morton

Gordon W. F. Drake

University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/physicspub

Part of the [Physics Commons](http://scholar.uwindsor.ca/physicspub)

Recommended Citation

http://scholar.uwindsor.ca/physicspub/169

This Article is brought to you for free and open access by the Department of Physics at Scholarship at UWindsor. It has been accepted for inclusion in Physics Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Spin-forbidden radiative decay rates from the \(^3 P_{1,2} \) and \(^1 P_1 \) states of helium

Donald C. Morton\(^1\) and G. W. F. Drake\(^2\)

\(^1\)Herzberg Institute of Astrophysics, National Research Council, Victoria, British Columbia, Canada V9E 2E7
\(^2\)Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 17 February 2011; published 6 April 2011)

We have calculated atomic helium spontaneous decay rates and absorption oscillator strengths for the spin-forbidden transitions from \(^3 P_{1,2} \) and \(^1 P_1 \) to all lower \(^1 S_0 \) and \(^3 S_0 \) states. In particular we found \(A_{10} = 44.33(4) \text{s}^{-1} \) for the \(E1 \) transition \(^3 P_{1} - ^1 S_0 \) and \(0.1147(1) \text{s}^{-1} \) for the \(M2 \) transition \(^3 P_{2} - ^1 S_0 \).

DOI: 10.1103/PhysRevA.83.042503

PACS number(s): 32.70.Cs, 12.20.Ds

I. INTRODUCTION

The study of spin-forbidden transitions in helium and the heliumlike ions has a long history as a fundamental testing ground for the interactions between radiation and matter. In the limit of LS coupling, electric dipole \((E1)\) transitions between singlet and triplet states are strictly forbidden in the lowest order due to spin orthogonality because the leading terms in the electric dipole transition operator are just \(-\epsilon(r_1 + r_2)\), which is not spin dependent. However, relativistic spin-dependent corrections to the wave functions and retardation corrections to the transition operator both contribute nonvanishing terms of relative order \((\alpha Z)^2\), where Ze is the nuclear charge and \(\alpha\) is the fine-structure constant.

The best-studied example is the astrophysically important \(1s2p^3P_1-1s^21S_0\) transition of helium and the heliumlike ions, where the subscript is the eigenvalue of the total angular momentum operator \(J = L + S\). For this case, the mixing of the \(1s2p^3P_1\) and \(1s2p^1P_1\) states is the dominant effect, but the contribution from all the higher-lying \(1snp^3P_1\) states and final \(1s^21S_0\) state perturbations due to mixing with doubly-excited \(P\) states of the form \(nnp^3P\) are also significant. Following the earlier work by Elton \([1]\) and Drake and Dalgarno \([2]\), Drake \([3]\) performed a complete calculation, which included spin-dependent perturbations to both the initial and final states. This work also demonstrated the disturbance of the length and velocity forms of the transition operator, provided that the extra spin-dependent term is added to the velocity form of the transition operator, as further discussed in the present work. Also, the spin-dependent part of the magnetic quadrupole \((M2)\) operator directly enables \(1s2p^3P_2-1s^21S_0\) \([4]\).

A general derivation of relativistic corrections to allowed and spin-forbidden electric dipole transitions was carried out from basic QED by Drake \([5]\), including the effects of the electron-electron interaction and negative energy states. It was proven there that the nonrelativistic Pauli form of the Breit interaction remains valid for off-diagonal matrix elements in the presence of radiation emission, and that a semiclassical representation of the radiation field remains valid up to terms of relative order \(\alpha^2Z^2\). The former point is important because the Breit interaction is normally taken to be correct only as a first-order perturbation correction to the nonrelativistic energy \([6]\). These theoretical results were recently confirmed by Lach and Pachucki \([7]\), and much more accurate numerical values for matrix elements were obtained by them, as well as by Morton, Moffatt, and Drake \([8]\).

The purpose of the present work is to extend the results of Ref. \([8]\) on the calculation of \(\text{He}\) spin-forbidden \(A\) and \(f\) values for the electric dipole \((E1)\) decays \(3^3P_{1} - n^1S_{0}\) and \(3^1P_{1} - n^3S_{1}\), as well as the magnetic quadrupole \((M2)\) decays \(3^3P_{2} - n^1S_{0}\) and \(3^1P_{1} - n^3S_{1}\). Since Baldwin and his colleagues \([9,10]\) are considering measuring \(3^3P_{1} - 1^1S_{0}\) and \(3^3P_{2} - 1^1S_{0}\), this theoretical study is timely. In emission, the spin-forbidden transitions are dominated by ordinary allowed \(E1\) transitions to lower states, but in absorption, the spin-forbidden transitions can readily be observed.

II. CALCULATIONS

As outlined in the Introduction, if spin-orbit coupling is weak, spin-forbidden transitions can be calculated to order \((\alpha Z)^2\) relative to allowed \(E1\) transitions from the perturbation of the nonrelativistic wave function \(\vert n PSLJ \rangle\) by the Breit spin-orbit (SO) and spin-other-orbit (SOO) operators. The spin-spin operator does not contribute to \(S = 1\) to \(S = 0\) transitions because it is a scalar formed by coupling irreducible tensors of rank 2. The perturbed wave function can be expanded in terms of a complete set of virtual intermediate states. The spin-changing transitions come from the virtual states with opposite spin but the same parity \(P\) and angular momentum \(J\). As described in \([8]\), we approximate these intermediate states, including the continuum, by the complete set of \(N\) nonrelativistic pseudostates derived from the variational solution of the energy eigenvalue equations for a basis set with \(N\) terms.

Specifically, for the spin-changing transition \(3^3P_{1} - 1^1S_{0}\), we computed the sums

\[
\langle 1^1S_0 \mid H_1 \mid 3^3P_1 \rangle = \sum_{m} \langle 1^1S_0 \mid H_1 \mid m^1P_1 \rangle \langle m^1P_1 \mid B \mid 3^3P_1 \rangle / \epsilon(3^3P_1) - \epsilon(m^1P_1)
\]

\[
+ \sum_{n} \langle 1^1S_0 \mid B \mid n^3P_{0c} \rangle \langle n^3P_{0c} \mid H_1 \mid 3^3P_1 \rangle / \epsilon(1^1S_0) - \epsilon(n^3P_{0c})
\]

where \(H_1 = z_1 + z_2\) is the interaction operator, \(B\) is the sum of the SO and SOO operators, and all the wave functions on the right are nonrelativistic. In the atomic units used here, lengths \(r\) and energies \(\epsilon\) are related to laboratory values by \(R = a_0 r\) and \(E = a_0^2\alpha^2c^2\epsilon\), where \(a_0\), \(\alpha\), \(m_e\), and \(c\) are the usual atomic constants. The only states affecting \(1^1S_0\) are the doubly-excited ones beginning with \(2p^2\) above the first ionization of helium. Similarly for \(2^3S_1\), the intermediate
The superscripts 1 and 0 outside the angle brackets denote the perturbation order of the adjacent wave functions.

TABLE I. Matrix Elements M and f- and A-values for $3^3P_{1,2}^{-1}S_0$, 2^1S_0, and 3^1S_0. The error on each entry indicates the numerical uncertainty in the convergence as the size of the basis sets is increased and does not include any estimate for the theoretical approximations.

<table>
<thead>
<tr>
<th>$E1$ Transition</th>
<th>$3^3P_{1}^{-1}S_0$</th>
<th>$3^3P_{1}^{-2}S_0$</th>
<th>$3^3P_{1}^{-3}S_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δe_{c} (a.u.) theory</td>
<td>0.845 643 292 8</td>
<td>0.087 892 961 78</td>
<td>3.190 905 466 $\times 10^{-3}$</td>
</tr>
<tr>
<td>Δe (a.u.) actual</td>
<td>0.845 494 46</td>
<td>0.087 878 693 0</td>
<td>3.188 316 $\times 10^{-3}$</td>
</tr>
<tr>
<td>λ (nm) actual</td>
<td>53.889 594</td>
<td>518.489 09</td>
<td>14 290.72</td>
</tr>
<tr>
<td>Length calculationa</td>
<td>![Length calculation equation]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1^0/n^1S_0</td>
<td>z_1 + z_2</td>
<td>3^3P_1^0$</td>
<td>$-0.008 24(1) \times 10^{-4}$</td>
</tr>
<tr>
<td>$0^0/n^1S_0</td>
<td>z_1 + z_2</td>
<td>3^3P_1^1$</td>
<td>$1.021 445(3) \times 10^{-4}$</td>
</tr>
<tr>
<td>Total M_L</td>
<td>$1.013 20(1) \times 10^{-4}$</td>
<td>$5.486 823(4) \times 10^{-4}$</td>
<td>$3.100 296(1) \times 10^{-3}$</td>
</tr>
<tr>
<td>Velocity calculationa</td>
<td>![Velocity calculation equation]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1^0/n^1S_0</td>
<td>z_1 + z_2</td>
<td>3^3P_1^0/\Delta e_{\infty}$</td>
<td>$0.021 72(1) \times 10^{-4}$</td>
</tr>
<tr>
<td>$0^0/n^1S_0</td>
<td>z_1 + z_2</td>
<td>3^3P_1^1/\Delta e_{\infty}$</td>
<td>$1.140 782(9) \times 10^{-4}$</td>
</tr>
<tr>
<td>Correction $C/\Delta e_{\infty}$</td>
<td>$-0.149 283 75(1) \times 10^{-4}$</td>
<td>$-0.033 312 00(5) \times 10^{-4}$</td>
<td>$-0.194 178 64(3) \times 10^{-3}$</td>
</tr>
<tr>
<td>Total $M_{e_{\infty}}/\Delta e_{\infty}$</td>
<td>$1.013 22(1) \times 10^{-4}$</td>
<td>$5.486 86(4) \times 10^{-4}$</td>
<td>$3.100 20(9) \times 10^{-3}$</td>
</tr>
<tr>
<td>$E1$ f_{01}</td>
<td>$5.787 6(2) \times 10^{-9}$</td>
<td>$1.764 025(3) \times 10^{-8}$</td>
<td>$2.044 697(1) \times 10^{-8}$</td>
</tr>
<tr>
<td>$E1$ $A_{10} (s^{-1})$</td>
<td>$44.32(6)$</td>
<td>$1.459 495(2)$</td>
<td>$2.229 700(1) \times 10^{-3}$</td>
</tr>
</tbody>
</table>

TABLE II. Matrix Elements M and f- and A-values for $3^1P_{1}^{-2}S_1$, $3^1P_{1}^{-3}S_1$, and 3^1S_1. The error on each entry indicates the numerical uncertainty in the convergence as the size of the basis sets is increased and does not include any estimate for the theoretical approximations.

<table>
<thead>
<tr>
<th>$E1$ Transition</th>
<th>$3^1P_{2}^{-1}S_0$</th>
<th>$3^1P_{2}^{-2}S_0$</th>
<th>$3^1P_{2}^{-3}S_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δe_{c} (a.u.) theory</td>
<td>0.845 643 292 8</td>
<td>0.087 892 961 78</td>
<td>3.190 905 466 $\times 10^{-3}$</td>
</tr>
<tr>
<td>Δe (a.u.) actual</td>
<td>0.845 494 46</td>
<td>0.087 878 693 0</td>
<td>3.188 316 $\times 10^{-3}$</td>
</tr>
<tr>
<td>λ (nm) actual</td>
<td>53.889 594</td>
<td>518.489 09</td>
<td>14 290.72</td>
</tr>
<tr>
<td>Length calculationa</td>
<td>![Length calculation equation]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1^0/n^1S_0</td>
<td>z_1 + z_2</td>
<td>3^3P_2^0$</td>
<td>$0.417 847 2(2)$</td>
</tr>
<tr>
<td>$0^0/n^1S_0</td>
<td>z_1 + z_2</td>
<td>3^3P_2^1$</td>
<td>$1.213 415 8(1) \times 10^{-4}$</td>
</tr>
<tr>
<td>$M2$ f_{02}</td>
<td>$2.495 035(3) \times 10^{-11}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M2$ $A_{20} (s^{-1})$</td>
<td>$0.114 654 7(1)$</td>
<td>$3.655 827(4) \times 10^{-5}$</td>
<td>$7.249 719 30(6) \times 10^{-11}$</td>
</tr>
</tbody>
</table>

aThe superscripts 1 and 0 outside the angle brackets denote the perturbation order of the adjacent wave functions.

bJacobs et al. [13] had calculated 0.115 s$^{-1}$ and Kundu et al. [14] 0.120 63(1) s$^{-1}$ for $3^3P_{2}^{-1}S_0$.

states begin with $2p^3p^1P_1^1$, while for $1s^2p^1P_1$, they are the odd states $1s^2p^3P_1$ and higher. For these calculations we have accurate nonrelativistic energies and wave functions for infinite nuclear mass with successively larger basis sets up to 1000 terms to assess convergence. As a test of this perturbation procedure in Ref. [8], we obtained $A_{10} = 177.578 s^{-1}$ for

aThe superscripts 1 and 0 outside the angle brackets denote the perturbation order of the adjacent wave functions.

042503-2
the correction of Eq. (2) with division by $\Delta \epsilon_\infty$ to match the length forms. In all cases, the dominant contribution for the spin-forbidden $E1$ transitions comes from the perturbed 3^1P_1 or 3^1P_3 state because of the small $\epsilon(3^3P_1) - \epsilon(3^1P_1)$ term in the denominator of Eq. (1). In fact, this one term dominates the sum over intermediate states. This dominance of the $m = 3$ term in the summation becomes even more pronounced with increasing Z because the singlet-triplet energy difference increases only in proportion to Z.

The comparison of the L and V forms of the transition operator is particularly interesting. Even though the individual contributions are very different, they sum to the same final matrix element to within 3 parts in 10^5 or better, and they agree to within the estimated convergence accuracy. This provides a very useful check on the accuracy of the results, analogous to the corresponding comparison of L and V for ordinary allowed transitions.

Even though both the spin-forbidden $E1$ and $M2$ decay rates are of the same nominal order $a^6 \epsilon / a_0$, in every case the $M2$ decay rate is very much smaller.

The final uncertainties must also include the finite nuclear mass and other higher-order relativistic corrections. These could be as large as 0.1%, so realistic estimates are $A_{10} = 44.33(4) \text{ s}^{-1}$ and $A_{20} = 0.1147(1) \text{ s}^{-1}$ for $E1$ and $M2$, respectively, of $3^3P_{1,2} \rightarrow 1^1S_0$, and likewise for all the other results in the tables. Since these final uncertainties are likely to be much less than the corresponding experimental ones in the planned experiments [9,10], the comparison will provide an accurate benchmark to test experimental procedures to determine atomic lifetimes in this regime of strongly forbidden transitions.

ACKNOWLEDGMENTS

Research support by the Natural Sciences and Engineering Research Council of Canada and by SHARCNET are gratefully acknowledged.