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ABSTRACT 

Mg matrix composites AM60-x% (Al2O3)f (x=9,11,26) were fabricated by Al2O3 

fibre preform preparation and squeeze casting technique. Sliding wear behaviour of these 

composites were studied by conducting boundary lubricated pin-on-disk tests under ultra-

mild wear conditions at 25 ºC and 100 ºC against AISI 52100 steel balls. The damage in 

AM60-9% (Al2O3)f at 25 ºC occurred as follows: Al2O3  fibre fracture and fragmentation, 

sinking in of the fragmented fibres leading to decrease in fibre elevation, and damage to 

Mg matrix. The fibre fracture and fragmentation process, leading towards damage to the 

Mg matrix, was attributed to: i) high applied contact pressure, ii) matrix hardening and, 

iii) high fibre length. 

Increasing the Al2O3 fibre volume content delayed the transition to higher rate of 

material loss but inflicted greater damage to the counterface. At 100 °C, the formation of 

an oil residue layer on the worn surfaces delayed the wear transition. 



 

 

v 

 

 

DEDICATION 

 

 

 

To my parents, 

 

Srikumar and Anulekha Banerjee 

 

for their love, encouragement and support throughout. 



 

vi 

 

ACKNOWLEDGEMENTS 

My sincerest thanks and gratitude to Dr. A. T. Alpas for his supervision, valuable 

suggestions and support that guided me throughout this research for my M.A.Sc. at the 

University of Windsor, and to Dr. H.Hu for his valuable advice, constant help and 

encouragement during the course of this research.  

Sincere thanks to my committee members, Dr. A.R.Riahi, and Dr. D.Ting, for 

their helpful suggestions. Dr. X. Meng-Burany's contribution to discussions on TEM 

analyses is greatly appreciated. Sincere thanks to Dr. M. Chen for solving the 

Greenwood-Tripp contact stress equations. Technical help from Mr. A. Jenner and help 

in casting from Mr.Xuezhi Zhang are greatly acknowledged. 

I appreciate all researchers of the NSERC/General Motors of Canada/University 

of Windsor Industrial Research Chair in Tribology of Lightweight Materials, for their 

help, cooperation, constant support and encouragement. 

Sincere thanks to the Natural Sciences and Engineering Research Council of 

Canada (NSERC) and General Motors of Canada Ltd. for their financial support. 



 

vii 

 

Table of Contents 

DECLARATION OF ORIGINALITY .......................................................................... iii 

ABSTRACT ...................................................................................................................... iv 

DEDICATION....................................................................................................................v 

ACKNOWLEDGEMENTS ............................................................................................ vi 

LIST OF FIGURES ......................................................................................................... ix 

LIST OF TABLES ...........................................................................................................xv 

Chapter 1: Introduction ....................................................................................................1 

1.1.Background of this work 1 

1.2.Objectives of current research 2 

1.3. Scope of this work 3 

1.4. Organization of this Thesis 3 

Chapter 2: Literature Survey ...........................................................................................6 

2.1. Introduction to this survey 6 

2.2. Wear stabilization under dry sliding conditions 6 

2.2.1. Wear of Al-Si and Mg-Al alloys                                                                       6 

2.2.2. Al and Mg metal matrix composites                                                                     19 

2.2.2.1. Strengthening mechanisms in metal matrix composites                                       19 

2.2.2.2. Wear of Al and Mg matrix composites                                                                 31 

2.3. Wear stabilization under lubricated sliding conditions 39 

2.4. Summary 58 

Chapter 3: Experimental Methodology .........................................................................59 

3.1. Introduction 59 

3.2. Description and fabrication of Mg matrix composites 59 

3.3. Sliding wear tests 68 

3.4. Observation of worn surfaces 69 

Chapter 4: Results............................................................................................................76 



 

viii 

 

4.1. Introduction 76 

4.2. Wear of unreinforced alloy AM60 76 

4.3. Comparison of wear of AM60-(9% (Al2O3)f + 4% (Al2O3)p) and AM60-9% (Al2O3)f

 83 

4.4. Wear of Mg composites reinforced with different volume percentages of Al2O3 fibres

 89 

4.5. Wear of composite; AM60-9% (Al2O3)f  at 25 °C and 100 °C 94 

4.5.1. Decrease in height of Al2O3 fibres at at 25 °C and 100 °C                                 94 

4.5.2. Comparison of damage features of AM60-9% (Al2O3)f  at 25 °C and 100 °C         94 

4.6. Damage to the counterface AISI 52100 110 

Chapter 5: Discussion ....................................................................................................115 

5.1. Introduction 115 

5.2. Contact pressure analysis 116 

5.3. Effect of matrix hardness 126 

5.4. Effect of Al2O3 fibre morphology 129 

5.4.1 Critical fibre length under normal force                                                       129 

5.4.2. Critical fibre aspect ratio during shear force                                                       135 

5.5. Damage events 139 

5.6. Comparison with Al-Si alloys and role of oil residue layer 144 

Chapter 6: Summary and Conclusions ........................................................................151 

6.1 Summary 151 

6.2 Conclusions 153 

6.3 Future work 156 

REFERENCES ...............................................................................................................157 

VITA AUCTORIS .........................................................................................................164 

 



 

ix 

 

List of Figures 

Fig.2.1. Wear mechanism map for 6061 Al alloy [21]. .....................................................12 

Fig.2.2. Variation of friction and wear rate with humidity content in air [22]. .................13 

Fig.2.3. Plot of variation of wear rate vs. load for A390 in air and argon and against AISI 

52100 and DLC [23]. .........................................................................................................14 

Fig.2.4. Plot of wear rate as a function of load. At low loads (≤20 N) wear rate decreased 

with increasing Si percentage whereas at higher loads (≥25 N) the Al-20 Si showed 

superior wear resistance [26]. ............................................................................................15 

Fig.2.5. Wear rates of A390, 383 and Al-25 Si showing the presence of two subregimes 

of mild wear-MW-1 AND MW-2 [27]. .............................................................................16 

Fig.2.6. Schematic representation of processes leading to the formation of metallic 

aluminum layer (for A390) within tribolayers in MW-2. (a) Tribolayer supporting the 

load; (b) Removal of tribolayer exposing Al to counterface; (c) Extrusion of Al 

accompanied by metal transfer and back transfer processes [28]. .....................................17 

Fig.2.7. (a) Wear rate map for AZ91 in dry sliding wear. Each point on the map 

represents a wear rate measurement made at a given set of load and sliding speed. The 

continuous line represents the boundary between the mild and severe wear. The 

transitions between the sub-regimes are marked by dashed lines; (b) wear transition map 

for AZ91 showing the region of dominance of wear mechanisms and the transition 

boundaries between them: BB: mild wear to severe wear transition; AA [29]. ................18 

Fig. 2.8. Schematic diagram showing the particle-matrix interaction in the AZ91/SiC 

composite [33]. ..................................................................................................................26 

Fig. 2.9. Optical micrographs of (a) unreinforced AZ91 alloy and (b) AZ91/SiC 

composite [33]. ..................................................................................................................27 

Fig.2.10. Average grain size for unreinforced AZ91 and AZ91/SiC composite [33]. ......28 

Fig.2.11. Stress-strain curves for (a) Mg-8Li (f) composites and (b) Mg-8Li (p) 

composites at various temperatures [39]............................................................................29 

Fig.2.12. Variation of stress along a fibre in a fibre reinforced composite [38] ................30 

Fig.2.13. (a) Backscattered SEM image of cross-section of  A356 Al-10% SiC-4% Gr 

worn at 159 N and 2.0 m/s; (b) Schematic representation of constituents of tribolayer in 

graphitic metal matrix composite [46]. ..............................................................................36 

Fig.2.14. Secondary SEM micrographs showing the subsurface microstructures of A390 

at 10 N in: (a) air and (b) argon indicating the difference in the composition of the 

tribolayer formed under different experimental medium [23]. ..........................................37 



 

x 

 

Fig.2.15. Diagram illustrating the conditions and approximate boundaries of dominance 

of the five wear mechanisms identified in the present study [54]. ....................................38 

Fig.2.16. Cross-sectional TEM micrograph obtained from: (a) worn subsurface of Al-

11% Si tested under laboratory conditions [11] and (b) worn Al-11% Si cylinder bore 

[64]. It is to be noted that both the microstructures show similar features and the presence 

of protective oil residue layer. ...........................................................................................47 

Fig.2.17. (a) and (b) represents SEM and optical profilometry images of Al-18.5% Si 

indicating scratches on Si particles with no damage to the matrix; (c) and (d) represents 

SEM and optical profilometry images of Al-11% Si showing matrix damage [60]. .........48 

Fig.2.18.Volumetric wear loss of Al–18.5% Si at 5.0 N load. The wear loss is measurable 

after 5×10
4
 sliding cycles [63]. ..........................................................................................49 

Fig.2.19. Cross-sectional TEM image of the microstructure of the material under the wear 

track showing ultra-fine aluminum grains around the silicon particle and the oil residue 

layer [11]. ...........................................................................................................................50 

Fig.2.20. Variation of volumetric wear with sliding cycles in Al–11% Si in comparison 

with Al–25% Si indicating the three stages of UMW [11]. ...............................................51 

Fig.2.21. Schematic representation of deformation microstructures and grain subdivision 

process. (a) Small to medium strain deformation showing long microbands and dense 

dislocation walls surrounding groups of cells in cell blocks; (b) at large strain 

deformation, with lamellar boundaries parallel to the deformation direction, sandwiching 

in narrow slabs of cells or equiaxed subgrains [65]. ..........................................................52 

Fig.2.22. The Stribeck curve showing three lubricated regimes: boundary lubrication, 

mixed lubricated and hydrodynamic lubrication. Z=lubricant viscosity; N=sliding speed; 

P=applied load [77]. ...........................................................................................................53 

Fig.2.23 Structure of zinc dithiophosphate. The ‘R’ group indicates whether it’s an alkyl 

or an aromatic dithiophosphate [78]. .................................................................................54 

Fig.2.24. Infrared spectra for (a) tribologically derived ZDDP antiwear film; (b) a 

simulated spectrum of tribochemical film; (c) amorphous calcium pyrophosphate and (d) 

amorphous magnesium orthophosphate [79]. ....................................................................55 

Fig.2.25. P L-edge spectra ofZDDP films generated under different rubbing times 

measured using (a) TEY and (b) FY modes. Differences in the polyphosphate chain-

length can be observed between the surface (TEY) and the bulk (FY) of the film by 

comparing the a/c peak heights [72]. .................................................................................56 

Fig.2.26. XANES spectra of model compounds and antiwear films formed on different 

Al-Si and steel couples. (a) P L-edge XANES spectra; (b) P K-edge XANES spectra [78].57 

Fig.3.1. Al2O3 fibre preform after compression and drying. .............................................62 



 

xi 

 

Fig.3.2.(a) The squeeze casting machine and (b) the furnace. The dies are closed by 

raising the lower die against the upper one by the hydraulic press. The magnesium alloy 

AM60 was melt at 750 ºC in the furnace (b), and poured into the die. .............................63 

Fig.3.3. Flow diagram of the squeeze casting technique. ..................................................64 

Fig.3.4. Secondary scanning electron micrograph showing the initial microstructures of 

(a) AM60-9% (Al2O3)f; (b) AM60-11% (Al2O3)f ; (c) AM60-26% (Al2O3)f. ...................65 

Fig.3.5. Al2O3 fibre length and width distribution in AM60-9% (Al2O3)f. .......................67 

Fig.3.6. Pin-on-disk tribometer used to conduct lubricated sliding wear tests on Mg 

composites..........................................................................................................................71 

Fig.3.7. (a) Optical profilometry image used to calculate the worn area. (b) 2D-profile 

plot obtained from the marked X-X’ region of image (a). .................................................73 

Fig.3.8. Histogram representing the decrease in the Al2O3 fibre height from the initial 

surface after 2×10
5
 sliding cycles. The horizontal distance between the two peaks is the   

Al2O3 fibre elevation. .........................................................................................................75 

Fig.4.1. SEM micrographs (secondary electron mode) of worn AM60 alloy tested at 

1.0 N load. (a) wear grooves observed at 7.5×10
4
 sliding cycles; (b) worn surface 

oxidation at 4.0×10
5
 sliding cycles; (c) MgO debris particles. ..........................................78 

Fig.4.2. SEM micrograph of counterface AISI 52100 worn against AM60 matrix alloy, at 

1.0 N load and for 4×10
5
 cycles, indicating the presence of MgO debris particles 

transferred from the worn composite surface and carbon (C) from the lubricating oil. This 

serves as evidence that at higher sliding cycles (≥2×10
5
 cycles) oxidation and adhesion 

type wear occurred. ............................................................................................................79 

Fig.4.3. Volumetric wear loss vs. sliding cycles plot for AM60 alloy at 1.0 N load 

indicating presence of two wear regimes: wear by surface plastic deformation and wear 

by oxidation and adhesion. ................................................................................................80 

Fig.4.4. SEM micrographs showing the difference in the width of wear tracks of (a) 

AM60 alloy at 1.0 N and 2.5×10
4
 cycles and (b) AM60-9% (Al2O3)f  at 2.0 N and 6×10

5 

cycles indicating the wear resistance of the ceramic reinforced composite is higher than 

the alloy. .............................................................................................................................81 

Fig.4.5. Volumetric wear loss vs. sliding cycles plot for AM60 alloy and AM60-9% 

(Al2O3)f  .The wear loss of the composite is 10
2
 times lower than that of the matrix alloy. 

Note the wear of the composite was shown at 5.0 N and the matrix at 1.0 N load in order 

to emphasize the higher wear resistance of the composite AM60-9% (Al2O3)f compared 

to AM60 alloy. ...................................................................................................................82 

Fig.4.6. a) SEM micrograph at 500X magnification showing the morphology of worn 

surface AM60-9% (Al2O3)f  after 1.0×10
5
cycles indicating presence of wear grooves; b) 



 

xii 

 

SEM micrograph at 1000X magnification showing morphology of worn surface of 

AM60-(9% (Al2O3)f + 4% (Al2O3)p) after 1.0×10
5
cycles indicating no damage to Mg 

matrix. ................................................................................................................................85 

Fig.4.7. (a) and (b) represent histogram plot for AM60-(9% (Al2O3)f + 4% (Al2O3)p) and 

AM60-9% (Al2O3)f respectively under etched conditions with an initial elevation of  

Al2O3 by 2.8±0.20 μm, obtained from optical profilometry measurements. It is shown 

that after 1.0×10
5
 sliding cycles the Al2O3 fibres+particles (f+p) were exposed by 

1.8±0.22 μm for AM60-(9% (Al2O3)f + 4% (Al2O3)p) while the Al2O3 fibres  were at the 

same elevation as that of the Mg matrix for AM60-9% (Al2O3)f. (c) is the plot of fibre 

height decrease against number of sliding cycles at 5.0 N load. .......................................87 

Fig.4.8. Plot of volumetric wear of AM60-9% (Al2O3)f and AM60-(9% (Al2O3)f + 4% 

(Al2O3)p) with increasing siding cycles. In case of AM60-9% (Al2O3)f it is evident that at 

2.0 N load the transition to higher volumetric wear loss occurs at 2.0×10
5
 sliding cycles 

while at 5.0 N load it occurs after 1.0×10
5
 cycles. However, for AM60-(9% (Al2O3)f + 

4% (Al2O3)p) zero volumetric wear loss is observed after 1.0×10
5
 cycles at 1.0 N load 

indicating higher wear resistance compared to AM60-9% (Al2O3)f. .................................88 

Fig.4.9. SEM micrographs in secondary electron mode illustrating the worn surfaces at 

2.0 N and after 1×10
6
 cycles of (a) AM60-9% (Al2O3)f indicating fibre fracture and 

extensive plastic deformation of Mg matrix; (b) AM60-11% (Al2O3)f indicating damage 

in the form of wear grooves; (c) AM60-26% (Al2O3)f showing almost no damage to 

matrix. ................................................................................................................................91 

Fig. 4.10. Volumetric material loss vs. sliding cycles at 2.0 N load indicating the effect of 

Al2O3 fibre volume percentage on the transition to higher rate of material removal of the 

composite. It is to be noted that the transition to higher volumetric wear loss was delayed 

to 1×10
6
 cycles for AM60-26% (Al2O3)f as opposed to 6×10

5
 cycles for AM60-9% 

(Al2O3)f and AM60-11% (Al2O3)f. ....................................................................................92 

Fig.4.11. Plot of variation of Al2O3 fibre height with sliding cycles at 1.0 N, 2.0 N and 5.0 

N for AM60-9% (Al2O3)f  composite at 25 °C. The fiber height reduction was delayed 

with decreasing load. .........................................................................................................98 

Fig.4.12. Plot of variation of Al2O3 fibre height with sliding cycles at 25 ºC and 100 ºC 

under 2.0 N load for AM60-9% (Al2O3)f  composite. The fiber height reduction is less in 

case of elevated temperature tests. .....................................................................................99 

Fig.4.13. SEM micrographs of AM60-9% (Al2O3)f  at room temperature and at 1.0 N, 

2.0 N and 5.0 N. (a) No damage to matrix after 8.0×10
5
 cycles under 1.0 N load; (b) High 

magnification image at 1.0 N load and 8.0×10
5
 cycles indicating: i) fibre fracture and 

fragmentation ii) sinking in of the fragmented fibres iii) pile up of the adjacent Mg matrix 

without any damage to matrix; (c) Damage to the matrix in the form of wear grooves 

along with deformation of the Mg matrix at 2.0 N and after 8.0×10
5
 cycles; (d) Damage 

to Mg matrix in the form of wear grooves as early as 1×10
5
 cycles at 5.0 N load. .........101 



 

xiii 

 

Fig.4.14. Volumetric wear loss vs. sliding cycles plot of AM60-9% (Al2O3)f  at 1.0 N, 

2.0 N and 5.0 N load at 25 °C. The transition to higher volumetric wear loss was delayed 

as the applied load was reduced- at 5.0 N the transition occurred at 1×10
5
 cycles, at 2.0 N 

the transition occurred at 6×10
5
 cycles while at 1.0 N zero volumetric wear continued for 

the highest sliding cycles tested 1×10
6
 cycles. In the initial cycles fiber fracture preceded 

sinking in with no damage to the matrix. At higher sliding cycles damage to the Mg 

matrix by the counterface was observed. .........................................................................102 

Fig.4.15. SEM micrographs (secondary electron mode) of worn surface of AM60-9% 

(Al2O3)f  at 2.0 N load. (a) and (b) represents worn surfaces after 2×10
5
 cycles showing 

damage features including fibre fragmentation, sink in and Mg matrix pile up- without 

damage to matrix. (c) represents worn surface after 6×10
5
 cycles indicating damage to the 

matrix in form of plastic deformation. .............................................................................104 

Fig.4.16. Plot of fibre height decrease and volumetric wear loss at 2.0 N load with 

increasing sliding cycles. After 6×10
5
 cycles, the Al2O3 fibre height decreased to 

0.50±0.02 µm which corresponds to the increase in volumetric wear loss from 0.00-0.38 

(×10
-3

) mm
3
. Thus damage to Mg matrix can be predicted by quantifying the fibre height 

decrease. ...........................................................................................................................105 

Fig.4.17. Back-scattered SEM micrographs of worn AM60-9% (Al2O3)f  at 100 ºC. (a) 

Tribofilm formation on top of Al2O3 fibre at 1.0 N load after 1.0×10
6
 cycles; (b) EDS 

analysis revealed that the tribofilm consisted of Zn, S, Ca and P; (c) Formation of 

tribofilm on top of Al2O3 fibre and on the Mg matrix at 2.0 N load after 1.0×10
6
 cycles.107 

Fig.4.18. Comparison of volumetric wear loss vs. sliding cycles plot of AM60-9% 

(Al2O3)f  at 100 ºC and at 25 ºC under 2.0 N load. The plot indicates that under the same 

conditions the wear rate was lower in case of tests conducted at 100 ºC than at 25 ºC. The 

transition to higher volumetric wear loss occurred after 6×10
5
 cycles at 25 ºC while at 

100 ºC the transition is postponed till after 8×10
5
 cycles. ...............................................108 

Fig.4.19. Back-scattered SEM micrographs of worn AM60-9% (Al2O3)f  and 2.0 N load at 

(a) 100 ºC and (b) 25 ºC. For tests conducted at 2.0 N load and 100 ºC formation of the 

oil residue layer could be detected whereas at 25 ºC the oil residue layer was not found.109 

Fig.4.20. SEM image of the wear track on the counterface worn against AM60-9% 

(Al2O3)f at 25 °C, after  1×10
6
 cycles, showing damage in the form of wear grooves. ...111 

Fig.4.21. Plot of volumetric wear loss from the counterface against AM60-9% (Al2O3)f 

and Al-18.5% Si alloy at 5.0 N load. AM60-9% (Al2O3)f causes greater damage to the 

counterface than Al-18.5% Si alloy. ................................................................................112 

Fig.4.22. SEM micrograph and EDS result of the wear track on the counterface worn 

against AM60-9% (Al2O3)f at 100 °C and after 1×10
6
 cycles. Presence of Zn, P, S and Ca 

on the worn counterface surface indicates formation of an oil residue layer on the 

counterface. ......................................................................................................................113 



 

xiv 

 

Fig.5.1. Histogram of the initial surface of AM60-9% (Al2O3)f  under unetched 

conditions with 3 other curves fitted to the Mg peak, Al2O3 fibre peak and summation of 

all the curve fittings respectively. ....................................................................................119 

Fig.5.2. (a) The calculated G-T contact pressure distribution on the Al2O3 fibres for 

AM60-9% (Al2O3)f  at 5.0 N and 1.0 N load. The Hertzian pressure distribution is also 

shown. (b) Plot of G-T stress with increasing load and (c) Optical profilometry image, at 

5.0 N load and after 1×10
6
 cycles, indicating maximum damage at the centre of the wear 

track and the width of wear track (260±15.5 μm) approximately equal to the width of 

wear track predicted by plot (a). ......................................................................................126 

Fig.5.3. Representative fibre orientations (a) parallel and (b) perpendicular to the 

direction of applied normal load in the Mg composites. The model developed in section 

5.4.1 considers only (a) where the fibre is parallel to the direction of loading. ..............132 

Fig.5.4. Correlation plot between number of fragments observed for an initial length L 

obtained from experimental observations and the values predicted from Eqn.5.25. .......134 

Fig.5.5. SEM micrographs indicating difference in damage features after single pass 

sliding contact tests performed at constant loads of (a) 0.05 N and (b) 0.07 N. ..............137 

Fig.5.6. Plot of matrix hardness and volumetric wear loss after 6×10
5
 cycles at 2.0 N load 

for AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% (Al2O3)f. The extent of 

wear resistance expected due to the high matrix hardness of AM60-26% (Al2O3)f is not 

observed. ..........................................................................................................................141 

Fig.5.7. Plot of matrix hardness, volumetric wear loss (after 6×10
5
 cycles) and change in 

aspect ratio for AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% (Al2O3)f after 

6×105 cycles at 2.0 N load. The low wear resistance of AM60-26% (Al2O3)f might be 

explained by highest change in aspect ratio due to fracture and fragmentation. .............142 

Fig.5.8. Plot of decrease of Al2O3 fibre length and fibre height with sliding cycles for 

AM60-9% (Al2O3)f at 2.0 N load indicating the predominance of fracture and 

fragmentation in the initial sliding cycles; sinking in of the fragmented fibres is observed 

at higher sliding cycles; ‘h’ represents the Al2O3 fibre elevation. ...................................143 

Fig.5.9. Comparison of Greenwood-Tripp plot for AM60-9% (Al2O3)f and Al-18.5% Si at 

5.0 N load (25 °C) indicating the considerably higher applied contact pressure for the Mg 

composite compared AM60-9% (Al2O3)f to Al-18.5% Si under the same conditions. ...146 

Fig.5.10. Comparison of the maximum G-T contact pressure and the corresponding 

volumetric wear loss at 5.0 N load and 2×10
5
 sliding cycles. AM60-9% (Al2O3)f shows a 

higher rate of material loss due to the higher maximum contact pressure on it compared 

to the Al-18.5% Si alloy...................................................................................................147 

Fig.5.11. Comparison of the volumetric wear loss vs. sliding cycles (at 25 °C) plot for 

eutectic and hypereutectic Al-Si alloys with the Mg composites. It is to be noted that 



 

xv 

 

wear stabilization is observed in the case of Al-11% Si alloy due to the formation of the 

oil residue layer. ...............................................................................................................148 

Fig.5.12. Cross-sectional TEM image of the microstructure of the subsurface material 

under the wear track, tested at 1.0 N load and 100 °C, showing formation of oil residue 

layer on top of Al2O3 fibres. Corresponding EDS analysis of the oil residue layer show 

the constituent elements of the oil residue layer to be Zn, P, S, Ca and C. .....................149 

Fig.5.13. Cross-sectional TEM micrograph of the subsurface material under the wear 

track, tested at 100 °C and 2.0 N load, showing formation of continuous oil residue layer 

on the worn Mg matrix. Immediately below the layer presence of Mg nano-grains were 

detected. ...........................................................................................................................150 

Fig.6.1. Plot of variation of volumetric wear loss with change in Al2O3 fibre volume 

percentage and operating temperature. Increasing the fibre volume percentage from 9% 

(AM60-9% (Al2O3)f )to 26% (AM60-26% (Al2O3)f ) decreased the volumetric wear loss 

(0.379×10
-3 

mm
3
-0.14×10

-3 
mm

3
) but increased the damage to the counterface. At 100 °C 

AM60-9% (Al2O3)f showed comparable wear resistance to that of AM60-26% (Al2O3)f 

proving to be the optimum operating condition. ..............................................................155 

 

List of Tables 

Table 2-1. Tensile properties of AZ91 alloy and AZ91/SiC composite. [33,36] ..............25 

Table 3-1: Determination of preform volume percentage. ................................................62 

Table 3-2: Indentation hardness values AM60 alloy and fibre reinforced Mg composites.66 

Table 3-3: Parameters for calculation of lubrication conditions. .......................................72 

Table 3-4: The average volumetric wear loss calculated from the individual worn area 

loss calculated from different portions of the wear track. .................................................74 

Table 4-1: Al2O3 fibre elevation over the Mg matrix for the composites after 6×10
5
 

sliding cycles. .....................................................................................................................93 

Table 4-2: Volume of material lost from AISI 52100 counterface and Mg matrix 

composites after 1×10
6
 sliding cycles. .............................................................................114 

Table 5-1. Parameters used to calculate the composite elastic modulus E*. ...................117 

Table 5-2. Parameters used to calculate the Hertzian pressure distribution. ...................118 

Table 5-3. Parameters used to calculate the Greenwood-Tripp contact pressure on Al2O3 

fibres. ...............................................................................................................................124 



 

xvi 

 

Table 5-4. Parameters used to calculate the increase in dislocation density in Mg 

composites AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% (Al2O3)f. ..........128 

Table 5-5. Comparison of calculated values of hardness with experimentally measured 

microindentation hardness results. ...................................................................................129 

Table 5-6. Calculation of average critical length of fragmented fibre. ............................133 

Table 5-7. Calculation of critical fibre aspect ratio. Fibres are expected to fracture when 

(t/l) < (t/l)c. .......................................................................................................................138 

 

 



 

1 

 

Chapter 1: Introduction 

1.1. Background of this work 

 

Ever-increasing fuel prices and concern about pollution from automobile 

emissions have increased attention to automotive fuel economy and ways to mitigate its 

effect on climatic changes, air pollution and related health hazards [1,2]. Technologies 

geared toward improving fuel economy and reducing emissions require research on 

strategies for manufacturing lighter-weight vehicles. Among the various mass-reduction 

modes adopted by the automotive industries, replacement of the materials used in the 

construction for powertrain components with materials possessing low strength-to-weight 

ratio promises to be the most effective.  

Frictional interaction between the cylinder block, the piston skirt and the piston 

ring forms a major part (48%) of the total engine friction [3,4]. Cylinder blocks have 

traditionally been made of gray cast iron. However, the need for increased fuel economy, 

combined with environmental regulations, has resulted in the use of cast aluminum as an 

alternative. One of the earliest cast aluminum alloys possessing sufficient wear resistance 

was Al-18.5% Si (A390), which has been used for monolithic cylinder blocks [5]. The 

surface of the alloy was etched before use in order to expose the second phase Si 

particles, which acted as load-bearing elements. However, the high Si content also posed 

problems during machining of the alloy. Thus it is importat to study the wear behaviour 

of lightweight materials intended for use as engine components. 

The motivation to further reduce mass in automobiles has led to extensive study 

of Magnesium (Mg) alloys and composites, as they possess better strength-to-weight 

ratios than Aluminum (Al) or Iron (Fe). Magnesium, the eighth most common element, is 
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produced through either the metallothermic reduction of magnesium oxide with silicon or 

the electrolysis of magnesium chloride melts from seawater. Each cubic metre of 

seawater contains approximately 1.3 kg (0.3%) magnesium. Mg Studies [2,6] have shown 

that use of a Mg engine block in place of cast iron or Al alloy helps achieve 40% and 

19% weight reduction, respectively. Apart from being lighter than Al, other factors that 

make the use of Mg lucrative are its good castability and machinability. Mg composites 

[7,8] in particular possess superior mechanical properties, such as bulk hardness and yield 

stress, compared to the Mg alloy.  

1.2. Objectives of Current Research 

Engine block-piston ring applications require the constituent materials to provide 

high sustainability over long periods of sliding interactions. The sliding components 

usually operate under boundary lubrication conditions, in which asperities in metals are 

in contact with each other [9]. The presence of very thin films derived from the additives 

used in the lubricants is extremely important for reducing wear on the interacting 

components. The amount of material removed during the engine-piston sliding 

interaction is less than that observed in mild or severe wear [10]. The micromechanisms 

of wear operating in this regime, known as ultra mild wear (UMW), also differ from 

traditional mild and severe wear [11]. In this study, the lubricated sliding wear of Mg 

composites against a steel counterface has been investigated.  

Thus the objectives of the present research are: 

i) to investigate boundary lubricated sliding wear behaviour of Mg composites and the 

matrix alloy. 
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ii) to study and compare the wear mechanisms of the Mg composites and the matrix 

alloy. 

iii) to correlate the microstructural features to the wear behaviour of both the tested 

composite and the matrix alloy. 

1.3. Scope of this work 

The scope of this work includes the fabrication of Mg (AM60 alloy) matrix 

composites with a specific range (7-25 vol%) of reinforcement (Al2O3 fibre) by using 

preform and squeeze casting techniques; pin-on-disk sliding testing of Mg composites 

under lubricated conditions; the observation of the worn surfaces and their cross-sections 

with optical/electron microscopes as well as optical profilometry. 

In summary, this research elucidates the prevalent micromechanisms causing 

damage during the sliding interaction between the Mg matrix composite and a steel 

counterface. The understanding of wear mechanisms will help in further development of 

composites suitable for engine bore applications. 

1.4. Organization of this Thesis 

This thesis consists of five chapters. The contents of this chapter are described 

below: 

Chapter 1 is the introductory section, starting with the background and followed by the 

scope and objective of this research, and includes this current section.  

Chapter 2 reviews earlier studies conducted on wear of Al-Si and Mg alloys/composites 

under dry and lubricated conditions. The first half of the chapter is a discussion of the 

effects of load, sliding velocity, contact temperature, humidity, and atmosphere on dry 

sliding behaviour of Al and Mg alloys and composites. The various strengthening 
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mechanisms of metal matrix composites are also described. In the second half, the 

chapter subsequently deals with the lubricated sliding wear behaviour of Al-Si alloys, 

elaborating on the prevalent wear mechanisms, followed by a discussion of the 

observation techniques of tribolayer formation from ZDDP degradation and the 

associated mechanisms. Finally, there is a short summary indicating the main findings of 

the literature survey. 

Chapter 3 describes the squeeze casting method employed to fabricate the Mg 

composites. Then it describes the various parameters used to perform pin-on-disk sliding 

wear tests and the corresponding lubrication regime. This chapter also describes the 

different methods used to observe and quantify the damage process in the Mg 

composites. 

Chapter 4 discusses the results of the wear tests conducted on the Mg composites. There 

is a comparison between the wear of the matrix alloy and composite, the particle and 

fibre reinforced composite, composites with different volume percentages of Al2O3 fibre 

and finally the improvement in high-temperature wear test resistance. 

Chapter 5 is the discussion and explanation of the wear mechanisms by quantifying the 

applied contact pressure on the Al2O3 fibres. This was followed by a discussion on the 

strengthening of Mg composites due to the addition of reinforcement. Subsequently, the 

effect of Al2O3 fibre morphology on wear behaviour was discussed and a critical fibre 

length was calculated based on which fibre fracture could be predicted. Finally, the 

chapter ends with a brief discussion on subsurface microstructure and composition, with 

special attention to the role of the oil residue layer on the wear of Mg composites. 
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Chapter 6 is a summary of the entire research project and presents the conclusions of 

this work, including future prospects in this field of study. 
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Chapter 2: Literature Survey 

2.1. Introduction to this survey 

This chapter is divided into two sections summarizing relevant studies conducted 

on the dry and lubricated wear properties. The first section is a survey of the work done 

on dry sliding wear and the effects of various factors on the transition between mild to 

severe wear and the role of tribolayer formation in the wear stabilization process. This is 

followed by a description of the strengthening mechanisms in a composite with ceramic 

reinforcement and the dry sliding wear of Al and Mg composites. The second half of the 

chapter presents a brief review on the ultra-mild wear mechanisms of eutectic and 

hypereutectic Al-Si alloys and the wear stabilization in this regime due to formation of a 

protective oil residue layer. The degradation mechanisms of ZDDP are also discussed.  

2.2. Wear stabilization under dry sliding conditions 

2.2.1. Wear of Al-Si and Mg-Al alloys 

Wear is defined [ASTM G40] as “damage to a solid surface, generally involving 

progressive loss of material due to relative motion between the surfaces and a contacting 

substance or substances.” When two surfaces in contact slide over one another, one or 

both of the surfaces will suffer wear. An empirical rule, assuming asperity (high spots) 

contact only, was given by Archard [12]: 

H

KW
Q                                                                                                                         (2.1) 

where Q=volume worn per unit distance; W=normal load; K=coefficient of wear, a 

dimensionless quantity; H=hardness of the softer surface. The value of K, wear 

coefficient, is of great importance as it allows the comparison of severity of different 

wear processes. It must be noted that this equation, though one of the fundamental 
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equations of wear, predicts a linear relationship between the volume worn away to the 

applied load, which might not be the case in many instances. Extensive studies have been 

conducted on dry sliding wear of Fe [13-17] and Al/Al-Si [18-20] alloys wherein the 

wear mechanisms can be well demarcated into mild and severe wear. In the mild wear 

regime, the wear rates are low (10
-4

-10
-3 

mm
3
/m) and the contact surface, characterized 

by presence of tribolayers, exhibits less damage as compared to the severe wear regime. 

The transition from mild to severe wear, characterized by higher wear rates (  10
-2 

mm
3
/m), occurs during conditions of increased load, velocity and temperature, and 

features massive surface damage and material transfer to the counterface [21].  

Zhang and Alpas [21] have investigated mild and severe wear transitions for Al-

Mg-Si alloy (6061 Al) by conducting dry block-on-ring tests against SAE 52100 bearing 

steel rings at the load range of 1-450 N and sliding velocity 0.1-5.0 m s
-1

. Mild to severe 

wear transition was found to depend on a combination of load, velocity and surface 

temperature (induced by sliding distance). The transition load of 230 N at 0.4 m/s 

reduced to 9.0 N when the sliding speed was increased to 5.0 m/s. The role of contact 

surface temperature in wear was studied by carefully positioning thermocouple probes on 

the sliding specimens. It was observed that mild to severe wear transition occurred when 

the bulk surface temperature (Tb) exceeded the critical temperature (Tc) of 123°C for this 

system. This observation enables the prediction of wear transition for Al-alloys sliding 

against steel from a single bulk temperature measurement. SEM revealed the presence of 

two types of wear debris, suggesting two different types of wear mechanisms represented 

in the form of a wear map (Fig.2.1): i) The first wear mechanism is spalling of 

mechanically mixed layers, where aluminum oxide forms at contact points due to 
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oxidation of Al, acting as an abrasive. Fe particles transferred from the counterface led to 

the formation of dark discontinuous compacted layers of mechanically mixed wear 

particles on the contact surfaces allowing mild wear to continue at a steady state. The 

wear debris comprised of this mechanically mixed layer. ii) The second wear mechanism 

is delamination wear: the wear debris at higher loads and velocity, having plate-like 

morphology, consists of Al (observed by Electron Dispersive X-Ray Spectroscopy 

(EDS)) detached from the bulk of 6061 Al. The suggested mechanism is delamination 

wear, where a subsurface crack develops and propagates until a wear fragment becomes 

detached.  

Other factors like humidity, atmosphere and the counterface also affect 

tribological properties of materials. Yen et al. [22] conducted unlubricated sliding wear 

tests with a eutectic Al-Si alloy against a cast iron counterface at relative humidity (RH) 

range 1-95%.  It was observed that up to 70% RH mild wear was characterized by the 

formation of an iron-rich compacted surface layer, while from 70%-95% RH the wear 

rate decreased two fold due to the formation of an iron oxide-rich surface film, which was 

facilitated by an increase in moisture content (Fig.2.2). The effects of atmosphere and 

counterface on this phenomenon were studied by Elmadagli and Alpas [23]. The authors 

investigated unlubricated wear of an A390 (Al-18.5 wt% Si) alloy against SAE 52100 

bearing steel in dry air and an argon atmosphere. It was observed that wear rates in an 

argon atmosphere were always less than those in dry air (5% RH). EDS results show that 

worn surfaces in dry air were covered with oxidized tribolayers, whereas no peak for 

oxygen was identified in the EDS spectrum of tribolayers formed in an argon atmosphere. 

The authors also performed sliding wear tests with A390 samples in air (5% RH) against 
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graphitic diamond-like carbon (DLC) coatings over the steel counterface. This coating 

prevented direct contact between the sample and the counterface, resulting in lower wear 

rates than those observed in the argon atmosphere (Fig.2.3).  

The wear behavior of Al alloys also depends on the alloy hardness, along with 

weight percent, size, and aspect ratio of second phase particles. Bai and Biswas [24] 

found that in the range of Al 4-24 wt% Si, although wear resistance improved with 

addition of Si, no systematic trends in wear resistance of the Al-Si alloy could be 

formulated with respect to Si content. These findings were contradicted in a study by 

Clarke and Sarkar [25], where it was reported that up to near eutectic compositions the 

wear resistance of Al-Si alloys improved with Si content. Furthermore it was indicated 

that seizure resistance improved as a result of Si addition. Wang et al. [26] investigated 

the effect of Si content on pin-on-disk dry sliding wear behavior of spray-deposited Al-Si 

alloys containing 12, 20 and 25% Si against T8 tool steel. The authors observed that at 

the low load of 8.9 N, wear rates of the alloys decreased with increase in Si percentage, 

and that oxidative wear prevailed (Fig.2.4). At higher loads, the delamination wear 

mechanism was dominant and the dependence of wear resistance with silicon percentage 

was not linear. Thus contradictory views exist regarding the effect of Si content on the 

wear of Al-Si alloys. A definitive study on the effect of Si particle content on wear 

resistance was performed by Elmadagli and Alpas [27], who conducted unlubricated 

block-on-ring tests with as cast 383 (with 9.5 wt.% Si), A390 (with 18.5 wt.% Si), and 

Al-25Si (with 25 wt.% Si) against SAE 52100 steel. The mild wear regime showed two 

subregimes: the first mild wear subregime (MW-1) and the second mild wear subregime 
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(MW-2) (Fig.2.5). The steady state of mild wear regime and the relationship of wear rate 

(W) to load (L) are represented by the relation: 

nCLW                                                                                                                        (2.2) 

where C=wear coefficients comprising of C1 for MW-1 and C2 for MW-2 were sensitive 

to microstructure, while n=wear exponent was independent of it. Pair-wise comparison 

was made on the basis of the role of each microstructure in wear on the three alloys by 

keeping the other factors constant. The following information was obtained: i) An 

increase in Si wt% from 9.5 to 25 wt.% increased transition load by 140%, but had only a 

minor effect on C; ii) An increase in alloy hardness from 31.6 to 53.5 HRB greatly 

increased transition load by 400%, but had only a minor effect on C; iii) A 47% decrease 

in the Si particle aspect ratio reduced wear coefficients C1 by 27% and C2 by 31%, with 

minor increase in transition load; iv) A 93% decrease in Si Particle size reduced C1 by 

35% and C2 by 58%, while L1 and L2 were increased by 71% and 33% respectively, 

where C is the wear coefficient. These subregimes were also observed in another study 

[28] as a function of applied loads for wear tests conducted on A390 blocks against 

52100 steel rings in dry air (RH 5%). It was observed that the wear rate in MW-2 is 

greater than that MW-1. Although tribolayer formation, generated by mixing and transfer 

of material from the counterface to the Al-Si contact surface, was detected in both the 

subregimes, the transition from MW-1 to MW-2 coincided with an increase in the amount 

of material transferred to the counterface. The high wear rate observed in MW-2 suggests 

that the aluminum matrix came in contact with the counterface through the fractured 

portions of the tribolayer in MW-2. The presence of Al layers on the tribolayer was 

observed in the MW-2. Both Spallation of the thick tribolayers formed in MW-2, which 
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cause transfer and back-transfer of the aluminum from the counterface (Fig.2.6), along 

with the extrusion of the exposed aluminum surface over the tribolayers caused the 

increased wear rate in MW-2 as compared to MW-1. 

Similar studies of dry sliding wear were conducted on Mg-Al alloys. Chen and 

Alpas [29] conducted unlubricated block-on-ring tests on a Mg-9Al-0.9Zn (AZ91) alloy 

and presented a wear map where the volumetric wear rates were plotted as a function of 

load and sliding velocity. The authors classified sliding wear of an AZ91 alloy into two 

main wear regimes, mild wear and severe wear. In the mild wear regime, wear progressed 

under steady-state wear rate conditions with the two predominant wear mechanisms 

being oxidational wear, which is characterized by MgO debris formation, and 

delamination wear, characterized by material transfer from the alloy to the steel 

counterface. In the severe wear regime, wear rates increased continuously with the sliding 

distance. The severe wear regime was also subdivided into two wear regimes: plastic 

deformation-induced wear and melt wear. The wear mechanisms were summarised in a 

wear mechanism map (Fig.2.7), which helps predict the load and sliding velocity marking 

the wear transitions. Aung et al. [30] studied the dry sliding wear of AZ91 alloy at 

constant load of 10 N and varying sliding distances. The authors reported similar wear 

mechanisms of oxidational and delamination wear. An et al. [31] reported studies of dry 

sliding wear tests conducted on as-cast magnesium alloys Mg97Zn1Y2 and AZ91 using a 

pin-on-disc configuration, where the authors detected five prevalent wear mechanisms: 

abrasion, oxidation, delamination, thermal softening and melting.  
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Fig.2.1. Wear mechanism map for 6061 Al alloy [21]. 
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Fig.2.2. Variation of friction and wear rate with humidity content in air [22]. 
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Fig.2.3. Plot of variation of wear rate vs. load for A390 in air and argon and against AISI 

52100 and DLC [23].  
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Fig.2.4. Plot of wear rate as a function of load. At low loads (≤20 N) wear rate decreased 

with increasing Si percentage whereas at higher loads (≥25 N) the Al-20 Si showed 

superior wear resistance [26]. 
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Fig.2.5. Wear rates of A390, 383 and Al-25 Si showing the presence of two subregimes 

of mild wear-MW-1 AND MW-2 [27]. 
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Fig.2.6. Schematic representation of processes leading to the formation of metallic 

aluminum layer (for A390) within tribolayers in MW-2. (a) Tribolayer supporting the 

load; (b) Removal of tribolayer exposing Al to counterface; (c) Extrusion of Al 

accompanied by metal transfer and back transfer processes [28]. 
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Fig.2.7. (a) Wear rate map for AZ91 in dry sliding wear. Each point on the map 

represents a wear rate measurement made at a given set of load and sliding speed. The 

continuous line represents the boundary between the mild and severe wear. The 

transitions between the sub-regimes are marked by dashed lines; (b) wear transition map 

for AZ91 showing the region of dominance of wear mechanisms and the transition 

boundaries between them: BB: mild wear to severe wear transition; AA [29]. 
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2.2.2. Al and Mg metal matrix composites 

2.2.2.1. Strengthening mechanisms in metal matrix composites 

 Strengthening mechanisms in metal matrix composites A composite is an 

artificially made multiphase material where the constituent phases are chemically 

dissimilar and are separated by a distinct interface [32]. Luo [33] fabricated Mg matrix 

composites by adding preheated SiC particulate (10 vol%) to molten commercially pure 

AZ91 (Mg- 9% Al-1% Zn) alloy. Mechanical properties like elastic modulus (EM), 

ultimate tensile strength (UTS), yield strength (YS) and elongation to failure (Ef) were 

determined by tensile testing, and the fracture surfaces were analyzed using a scanning 

electron microscope (SEM). Table 2-1 summarizes the improvement noted in the 

mechanical properties of the unreinforced alloy (AZ91) and the composite (AZ91-SiCp), 

consisting of a significant increase (56%) in the yield strength and a slight increase (5%) 

of the elastic modulus of the composite over the unreinforced magnesium alloy, although 

the UTS of the composite decreases. The strengthening of the AZ91/SiC composite is 

explained by comparing its strain hardening behavior with that of the unreinforced alloy. 

The as-cast microstructure of the composite is characterized by Mg-grains, grain 

boundary eutectic phase (Mg17Al12) and the reinforcing hard SiC particles. During plastic 

deformation the slip behavior of the Mg-grain is highly constrained by the intragranular 

and intergranular SiC particles, which are too strong to be deformed (elastic modulus of 

and fracture strength of SiC are 440 GPa and 2000 MPa respectively as compared to 

42.7 GPa and 203 MPa of the AZ91 matrix). The significantly high strain hardening rate 

and yield strength of the composite might be attributed to the strong internal stress that 

develops between the SiC particles and the matrix, thus resisting slip in the Mg-matrix. 

This is schematically represented in Fig.2.8 where it is shown that the SiC particles and 
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the eutectic β phase Mg17Al12 act as barriers to the slip line causing strengthening of the 

composite. A similar observation was made in the study of the solidification process of 

AM60 matrix alloy in the presence of Al2O3 fibre reinforcement [34], where the grain 

refinement process consisted of heterogeneous nucleation of the eutectic phase on the 

reinforcement fibres. In another study on SiC reinforced Al (A356) matrix composite 

[35] it was pointed out that depending on the particle distribution, particle size, matrix 

grain size, and relative strength of the particle to the metal matrix, the distribution of the 

internal stress is complicated and usually creates triaxiality of the real stress state in the 

composite material. This model suggests that internal stress and stress triaxiality are 

responsible for a higher strain-hardening rate of the composite. Localized damage as a 

result of particle cracking, matrix cracking and interface debonding occurs when local 

superposition of internal and applied stress becomes sufficiently high and results in 

relaxing of the internal stress around the SiC particles to give the decreased strain 

hardening rate (at higher strain levels) approaching the strain hardening rate of the matrix 

alloy. Finally, the coalescence of these localized damages at even higher strain levels 

leads to fracture of the composite material. 

Fig.2.10 [33] shows the grain refinement in the unreinforced AZ91 and the 

composite with the reduction in grain size by a factor of 3. The mechanism of grain 

refinement is illustrated in a study of solidification of Mg (AZ91)/SiCp composite [36]. 

Heterogeneous growth of primary magnesium on SiC particles is attributed to the major 

grain refinement mechanism. This was suggested on the basis of the significant numbers 

of SiC particles that are located within the primary magnesium grains, suggesting 

heterogeneous nucleation mechanism. The grain refinement effect was also attributed to 
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the reduced growth rate of the primary phase as a result of the presence of SiC particles 

around growing magnesium crystals, creating diffusion barriers to growth. This restricted 

growth provides sufficient time for the melt to generate more nuclei, leading to smaller 

grain size in the finally solidified microstructure. Thus, this reduction in grain size 

contributes to the strengthening of the composite material by the grain boundary 

strengthening mechanism. The relationship between yield stress and grain size is 

illustrated by the Hall-Petch relationship [37,38] : 

1/2kD
i

σ
0

σ                                                                                                           (2.3) 

where σo =yield stress; σi =friction stress; k= locking parameter; D=grain diameter. 

Trojanová et al. [39] studied the strengthening of Mg-xLi (x=4,8,12) composites 

reinforced by short, discontinuous δ-alumina (Al2O3) fibres by gas-pressure infiltration of 

evacuated fibrous preform (10 vol %) with metallic melt in the autoclave. The mean fibre 

length and diameter were 100 μm and 3 μm respectively. Compression tests were carried 

out on the Mg-composites (both particle- and fibre-reinforced) at temperatures ranging 

from room temperature to 300 °C using an INSTRON testing machine. The stress-strain 

curves for the fibre- and particle-reinforced composites at different strains and 

temperatures are shown in Fig.2.11. The various possible strengthening mechanisms 

include i) load transfer mechanism; ii) matrix strengthening due to grain size reduction,;  

iii) Orowan mechanism and iv) increase in dislocation density due to geometrical and 

thermal mismatch. 

The shear lag model (Fig. 2.12) [38,40,41] assumes that load transfer occurs 

between the reinforcement and the matrix via shear stress at the reinforcement-matrix 

interface. The fibre acting as the reinforcement carries part of the applied load. This 
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model assumes uniform matrix deformation. The flow stress σLT necessary for composite 

deformation due to load transfer is calculated by Eqn.2.4.  The strengthening component 

depends on the reinforcement volume fraction in the following way: 

f
0.5mσLT

Δσ                                                                                                            (2.4) 

When the metal matrix composite is cooled from a higher processing temperature, 

mismatch in strains occur as a result of differential thermal contraction at the interface. 

The strain thus induced may be higher than the yield stress of the matrix, leading to the 

generation of new dislocation at the interface. Thus, after cooling, the dislocation density 

of the system increases. The new dislocation density and corresponding strengthening 

may be calculated using Eqn.2.5.  

t'

1

f)b(1

BfΔfΔα
T

ρ                                                                                                             (2.5) 

where t is the minimum size of the reinforcing phase particles, b is the magnitude of the 

Burgers vector of the newly created dislocations, B is a geometrical constant, Δα is the 

difference between the two thermal expansion coefficients and ΔT is the temperature 

variation. 

Similarly, the addition of the reinforcement phase induces the generation of 

geometrically necessary dislocations (GND) to accommodate the mismatch in plastic 

deformation of the matrix. The density of geometrically necessary dislocation may be 

calculated by: 

bt

pf8ε

gρ                                                                                                                      (2.6) 

where εp is plastic strain. The introduction of the reinforcement phase not only induces 

the generation of thermally formed and geometrically necessary dislocations, but also the 
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dislocations stored in the reinforcement phase. The resulting total dislocation density is 

given by Eqn.2.7. 

)
a

ρ
S

(ρ
G

ρ
t

ρ
total

ρ                                                                                        (2.7) 

where ρs is the statistically stored dislocation density in an unreinforced matrix and ρa is 

the diminished part of the statistically stored dislocations due to the addition of a 

reinforcing phase. The strengthening, calculated by the Taylor relation, is attributed to the 

deformation resistance induced by the reinforcement phase:  

ψGb
1
α

D
Δσ                                                                                                               (2.8) 

where α1 is a constant, ψ is the Taylor factor and G is the shear modulus of the matrix. 

Closely-spaced hard alumina fibres and dislocation pile-ups in the vicinity of 

fibres provide resistance to dislocation motion. The strengthening as a result of this 

mechanism may be calculated as follows: 

)pGfε
2π

5

Λ

Gb
(

OR
Δσ                                                                                              (2.9) 

where Λ is the distance between fibres and εp is plastic deformation. It is generally 

accepted that Orowan strengthening [42] is not a significant strengthening mechanism for 

composites since particles are coarse and interfibre spacing is large. 

At higher temperatures, stresses can attain yield stress and the composite 

undergoes plastic deformation owing only to temperature cycling. The thermal stress in 

the fibre-matrix interphase may be calculated by: 

ΔTfΔ
f))(1mEf

f
(E

m
E

f
E

TS
Δσ α                                                                              (2.10) 
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where Ef and EM are Young’s moduli of the reinforcing phase (fibres or particles) and the 

matrix, respectively. The thermal stress decreases with distance from the fibre (or 

particle). Volume-averaged residual stresses in the matrix reach their maximum value 

(<σm> max): 

f1

f
)

f

1
ln(

y
σ

3

2

maxm
σ                                                                                        (2.11) 

where σy is the yield stress of the matrix.  

The variation of flow stresses with temperature may be due to the cross slip 

recovery process, which is more facile in bcc (β) structure as the screw dislocation 

segments are easily mobile at elevated temperatures. Also, at elevated temperatures, the 

probability of dislocation climb increases, affecting the flow stress of the composite. At 

elevated temperatures the dislocation motion as a result of cross-slip and dislocation 

climb results in softening of the composite.  

In summary, it has been described that the flow stresses of the composites are 

substantially higher than those of the unreinforced alloy. Load transfer from matrix to 

reinforcement phase due to shear stresses at the fibre-matrix interface were of greatest 

importance in the fibre reinforced composite, whereas in the particle-reinforced 

composites small grain size plays a predominant role. The increase in dislocation density 

as a result of thermal and geometrical mismatch is also important while considering 

strengthening of the matrix. 
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Table 2-1. Tensile properties of AZ91 alloy and AZ91/SiC composite. [33,36] 

Material Elastic Modulus 

(GPa) 

0.2% Yield 

Strength (MPa) 

Ultimate Tensile 

Strength (MPa) 

Elongation % 

AZ91 42.6 86.7 203 7.1 

AZ91/SiC 44.7 135 152 0.8 
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Fig. 2.8. Schematic diagram showing the particle-matrix interaction in the AZ91/SiC 

composite [33]. 
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Fig. 2.9. Optical micrographs of (a) unreinforced AZ91 alloy and (b) AZ91/SiC 

composite [33]. 
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Fig.2.10. Average grain size for unreinforced AZ91 and AZ91/SiC composite [33]. 
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Fig.2.11. Stress-strain curves for (a) Mg-8Li (f) composites and (b) Mg-8Li (p) 

composites at various temperatures [39] 
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Fig.2.12. Variation of stress along a fibre in a fibre reinforced composite [38] 
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2.2.2.2. Wear of Al and Mg matrix composites  

Aluminum matrix composites have been developed for potential applications in 

automotive engines, in particular for cylinder liners where scuffing resistance during 

lubrication starvation conditions is very significant. Development of Al-Si composites 

reinforced with SiC particles and graphite flakes or particles have delayed the transition 

to seizure under dry and boundary-lubricated conditions. This can be attributed to the 

formation of tribolayer or mechanically mixed layers, which protects the worn surfaces, 

resulting in lower wear rates. The extent to which these films (oxide, adsorbed boundary 

lubricant, etc.) prevent intermetallic contact influences the relationship between the wear 

rate and the applied load. The transition between mild to severe wear regimes is 

associated with the breakdown of this protecting surface film [18]. The tribolayer is 

usually formed on the wear tracks, exhibiting different chemical composition and 

structural morphology compared to the bulk material, as a result of plastic deformation, 

transfer, interactions with the environment and mechanical mixing [43].  

Characterization of the tribolayer (also termed the mechanically mixed layer 

(MML)) formed on the worn surface during dry block-on-ring wear tests performed on 

Al-Si casting alloy (A356) reinforced with 20% SiC particles against tempered M2 tool 

steel has been done using electron microscopy along with EDS, XRD and Mossbauer 

spectroscopy [44,45]. It was observed that the wear debris had microstructural features 

similar to that of the MML. The MML was comprised of α-Al solid solution and α-Fe 

from the counterface at low loads. At increased load, nanocrystalline structure of Fe-Al 

(Si) intermetallic compound and oxides of iron and aluminum formed due to oxidation 

and alloying caused by plastic deformation associated with frictional heating. Formation 
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of sandwich layers (either Fe rich or Al rich) provided evidence for material 

replenishment by material transfer and mixing during sliding wear.  

SEM observations of worn surfaces of A356 Al-10% SiC-4% Gr and A356 Al-

5% Al2O3-3% Gr [46] during dry block-on-ring wear tests against AISI 52100 steel show 

that a protective tribolayer was formed at nearly all sliding speeds and loads in the mild 

wear regime for both graphitic cast aluminum composites. The top surface of the 

tribolayer was comprised of iron oxide layers which were much more compact and hard 

(800 kg/mm
2
) in comparison with the bulk material while the rest of the tribolayer 

consists of fractured SiC, Al3Ni and Si particles (Fig.2.13) mixed with aluminum as 

indicated by EDS results. Lamellar graphite films were detected within the tribolayer, 

indicating the demarcation between the highly deformed tribolayer and the relatively 

undeformed bulk material. The fractured particles and thin graphite films, elongated in 

the sliding direction, contributed to the formation of a thicker and more stable tribolayer, 

delaying the mild-severe wear transition as compared to the A356 aluminum alloy and 

the non-graphitic aluminum matrix composites. It was also observed, however, that the 

steel counterface was subjected to scuffing or local material transfer from the composite 

as a result of abrasive action of the hard SiC carbide particles in the tribolayer and the 

friction heating-induced softening of aluminum. The authors concluded that such 

graphitic composites are well suited for use in the cylinder liners of an IC engine where 

scuffing resistance is significant. 

Dry block-on-ring wear tests performed on A390 (Al-18.5% Si) in dry air as well 

as in an argon environment at different test loads against an AISI 52100 steel counterface 

show that wear rates were always lower in an argon atmosphere compared to dry air (5% 
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relative humidity) [23]. Cross-sectional SEM observations (Fig.2.14) revealed that 

tribolayer formation occurred on the worn surfaces under various testing conditions. The 

authors observed that in an argon atmosphere the initiation of sliding wear transfer of 

iron-rich layers occurred from the counterface to the exposed Si-particles, while as 

sliding progressed the composition of tribolayer changed to an Al-rich layer. Moreover, 

material detached from the tribolayers was also transferred to the counterface at a high 

rate.  In air, the A390 surface was covered with iron-rich oxidized tribolayers at sliding 

distances over 50 m. Thus it can be concluded that the tribolayer composition and the 

depth of the damaged zone below it varies with testing conditions; the depth of the 

damaged zone and the magnitude of the subsurface plastic strains is lower compared to 

the results obtained in air.  

In the past decade, an increasing number of studies on wear of Mg matrix 

composites have been conducted as a result of growing interest in Mg due to its potential 

applications as a lightweight alloy. Alahelisten et al. [47] examined Al2O3-fibre-

reinforced Mg–9Al–1Zn (AZ91) composites during dry sliding, abrasion and erosion 

tests where the wear resistance was the highest for an optimum Al2O3 fibre content of 10 

vol%. For two-body abrasion, with increasing fibre content the abrasion resistance 

improved. Sharma et al. [48] studied unlubricated sliding wear behaviour of AZ91 

composites reinforced with feldspar particles, with sizes ranging between 30.0-50.0 μm. 

It was reported that the wear resistance of the composites was better than the 

unreinforced alloy and the wear rate decreased with increasing feldspar content. Also, the 

transition from mild to severe wear with increasing load was delayed due to the presence 

of feldspar particles. Franco et al. [49] studied dry sliding wear of AZ91 alloy reinforced 
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with TiC particles fabricated using pressureless infiltration techniques. It was concluded 

that the addition of TiC particles to the AZ91 alloy did not improve the wear resistance as 

the observed wear rate for the AZ91 alloy was approximately two times lower than the 

AZ91/TiCp composite. This result contradicts the general observation for Al [50-52] and 

Mg composites, both of which possess enhanced wear resistance over the corresponding 

alloys under dry sliding conditions. The authors reasoned that the failure of the interfacial 

bond between the matrix and the reinforcing TiC particles resulted in TiC particulate 

depletion during sliding wear. However, using ball-on-flat type dry sliding reciprocating 

wear tests at load range of 1.0-8.0 N and velocity range of 1.0-15.0 cm/s, Hu et al. [53] 

showed that wear rate of GW103K-based Mg matrix composites reinforced with saffil 

fibres show considerably lower wear rate compared to the matrix alloy. The dominant 

wear mechanisms were abrasion, plastic deformation and delamination wear. Lim et al. 

[54] studied the unlubricated wear characteristics of a Mg-9Al alloy and its 8 vol% SiCp 

reinforced composite under the load and sliding speed ranging between 10.0-30.0 N and 

0.2-5.0 m/s, respectively, and reported five different dominant wear regimes: abrasion, 

oxidation, delamination, adhesion, and thermal softening and melting represented in the 

wear map (Fig.2.15). The authors suggested that the higher hardness of the composites, 

as compared to the alloy, improved their load bearing capacity and thus enhanced the 

resistance to adhesive and abrasive wear. However, the SiCp reinforced composite does 

not help in reducing wear rates for the thermally activated wear processes. Dry sliding 

wear characteristics of the hybrid Mg matrix composite were also evaluated by Jo et al. 

[55] where AZ91 alloy reinforced with short saffil fibres and SiC particles of size 1, 7 

and 20 μm were worn against tool steel S45C using a ball-on-disk type tribometer under 
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load range of 5-30 N and sliding speeds of 0.1 and 0.2 m/s. The dominant wear 

mechanisms at low loads were abrasive/adhesive whereas at higher loads and higher 

sliding velocity the predominant wear mechanisms were severe abrasive wear and 

delamination wear. The authors reported that in the case of severe abrasive wear, an 

increase in the size of SiC particles decreased the material loss by serving as load bearing 

elements. 

Thus, previous studies on the wear behaviour of Mg composites consisted of 

unlubricated wear test results where the wear resistance of the composite improved over 

that of the matrix alloy and the dominant wear mechanisms were reported to be abrasion, 

adhesion and delamination. 
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Fig.2.13. (a) Backscattered SEM image of cross-section of  A356 Al-10% SiC-4% Gr 

worn at 159 N and 2.0 m/s; (b) Schematic representation of constituents of tribolayer in 

graphitic metal matrix composite [46]. 
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Fig.2.14. Secondary SEM micrographs showing the subsurface microstructures of A390 

at 10 N in: (a) air and (b) argon indicating the difference in the composition of the 

tribolayer formed under different experimental medium [23]. 
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Fig.2.15. Diagram illustrating the conditions and approximate boundaries of dominance 

of the five wear mechanisms identified in the present study [54]. 
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2.3. Wear stabilization under lubricated sliding conditions 

Previous studies on the wear behaviour of Mg composites consisted of 

unlubricated wear tests, which corresponded to wear regimes where the volume loss was 

significantly higher than that observed in lubricated engine running conditions, thus more 

closely emulating cold engine scuffing conditions [56,57]. However, piston cylinder bore 

assemblies running under lubricated conditions result in very low material removal, with 

the wear rate not exceeding a few nanometers per hour [10]. This feature qualifies engine 

wear to be classified as ultra-mild wear (UMW), since the rate of wear is a few orders 

lower than mild and severe wear. In addition, the micromechanisms of UMW are 

different from the traditionally observed mechanisms of mild and severe wear. 

Due to negligible measurable weight loss during UMW, wear rate calculations 

cannot be performed by conventional mass loss techniques. Scherge et al. [10] developed 

a radionuclide technique (RNT) for wear measurement of mechanical systems showing 

low wear rates. Dienwiebel et al. [58] concluded from engine dynamometer tests that the 

Al matrix was modified due to running conditions and foreign particles were introduced 

as a result of wear. Studies regarding the UMW of Al-Si alloys have been reported in the 

literature [11, 58-64]. In these studies, pin-on-disk sliding wear tests were conducted on 

etched an Al-Si alloy at a load range between 0.5-5.0 N. These test parameters were 

chosen carefully as they are found to replicate the microstructure detected from actual 

engine running conditions (Fig.2.16a, b) [64]. Fig.2.16a and b represent the cross 

sectional TEM microstructures obtained from a worn eutectic Al-Si alloy (Al-11% Si) 

engine block and from an Al-11% Si sample tested under laboratory conditions, 

respectively. Both the micrographs show the presence of an oil residue layer (ORL), 
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supported by ultrafine Al grains, protecting the underlying Al matrix from further 

damage thereby stabilizing wear.  

Chen and Alpas [60] and Dey et al. [63] studied the micromechanisms of UMW 

in Al–18.5% Si alloy in lubricated low-load sliding conditions. For the Al-18.5% Si alloy 

with large primary Si particles and high matrix hardness (85±8.3 HV), the surface 

damage was limited to scratch marks on the tops of Si particles, with the alloy retaining 

its original microstructure (Fig. 2.17a) when tested at very low load of 0.5 N, whereas Al-

11% Si suffered damage due to the counterface after 6×10
5
 cycles (Fig. 2.17b). When the 

load was increased to 5.0 N, Si particle fracture and fragmentation was observed at longer 

sliding cycles (>10
4
 sliding cycles) for Al–18.5% Si alloy and eventually led to surface 

damage and a corresponding transition from UMW to mild wear (Fig.2.18). The wear 

mechanisms therein comprised of i) fracture and fragmentation of Si particles, ii) sinking 

in of fragmented particles and iii) onset of mild wear when the Si particles were unable to 

protect the Al matrix by carrying the load. The authors, however, reported that after 

prolonged sliding the mild wear stabilized due to the oil residue layer formation.  

The UMW in eutectic Al-Si alloys [11, 61] is characterized by sinking of the Si 

particles, which acted as load bearing elements, into the matrix. The Si particles with 

large aspect ratios underwent fracture followed by sinking in (UMW-I). Once the Al 

matrix and the Si particles reached the same height, the matrix suffered damage (UMW-

II) by the counterface. This stage continued until a protective oil-residue layer formed 

(UMW-III) comprising of fractured Si particles comminuted to nano-sized fragments and 

organic components (Fig.2.19). Once this layer is formed the matrix was protected from 

further wear, indicated by a decreased wear rate (Fig. 2.20), and UMW regime prevailed 
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as long as the layer remained intact. It is to be noted that at the UMW-III stage, i.e. after 

the formation of a protective layer, the wear rates of Al-11% Si and Al-25% Si became 

comparable thus indicating that a high concentration of Si particles is not necessary for 

wear stabilization. 

An investigation [62] of UMW damage mechanisms of Al-12.6% Si alloy 

investigated at 100 ºC and compared with the results at room temperature showed that the 

three stages of UMW could be predicted depending on the value of α and the ratio of 

aluminum matrix pile-up height to Si particle height. Also, at 100 ºC an island-like 

tribofilm was observed on top of Si particles which acted as a load-bearing layer and led 

to lesser fracture and fragmentation of Si particles and delayed the transition from UMW-

II to UMW-III. 

The understanding of the unique process of microstructural evolution during 

sliding wear that leads to the formation of the ORL supported by nano-sized Al grains is 

the key to understanding wear stabilization during UMW in Al-Si alloys. Al nano-grain 

formation is similar to the processes observed in heavily cold-worked metals undergoing 

grain subdivision [65-68]. The process of grain refinement is qualitatively summarized as 

follows: Under low to medium strains (ε=0.06-0.8) the boundaries formed within a 

heavily cold-worked metal not only originate from the grain boundaries of the 

undeformed metal but also from the dislocation walls developed within the grains during 

plastic deformation. These walls later form subgrains (smaller than the original grain 

size) or cell blocks and are characteristically high angle grain boundaries (angles ≥ 15°). 

The characteristics and orientation of these dislocation walls depend on the orientation of 

the grain with respect to loading. Under very high strains (ε ≥ 10) the cell blocks tend to 
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reorient into a lamellar structure (Fig. 2.21), where lamellar boundaries sandwich thin 

layers of cell while the subgrains are oriented in the direction of material flow.  

A lubricant is a chemical reagent (often a liquid) introduced between two moving 

surfaces to reduce the friction between them. An automotive engine lubricant commonly 

contains base oil and a mixture of various additives, incorporated for the purpose of 

minimizing wear, improving efficiency and consequently prolonging engine life. Most of 

the sliding surfaces in engines operate in a lubricated environment. Lubrication is 

characterized as hydrodynamic, mixed, or boundary lubricated according to the Stribeck 

curve (Fig.2.22). Z represents the lubricant viscosity, while N is the measure of sliding 

speed between surfaces, P being the applied load. In hydrodynamic lubrication, the 

surfaces are separated by a fluid film, which is thick in comparison to the asperity heights 

on the bearing surfaces. Hydrodynamic lubrication in an automotive engine is achieved 

by the movement of the oil, and dynamic viscosity is its most important property. As 

ZN/P decreases fluid film between the two solid surfaces become thinner and at low 

values the two bodies begin to interact.  The region where the load is shared between the 

lubricant film and solid surfaces is known as mixed lubrication and is characterized by a 

sharp increase in the COF as ZN/P decreases. At a sufficiently low value of ZN/P, COF 

value rises to a maximum, marking the boundary lubricated condition. In the boundary 

lubrication condition the oil film thickness is too small to provide a film separation 

between the surfaces [69]. Tribologists continue to strive for developing new and more 

environmentally friendly oil additives to meet the tighter economic and ecological 

criteria. 
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The most effective class of antiwear, antioxidant and anticorrosive additive used 

in engine oil is zincdialkyldithiophosphate (ZDDP). A simple representation (Fig.2.23) of 

the structural formula of ZDDP is as shown below though molecular nature of ZDDP is 

more complex. Established surface analysis techniques like X-ray photoelectron 

spectroscopy (XPS), infrared spectroscopy (IR) as shown in Fig.2.24, and X-Ray 

absorption near edge (XANES) etc. have revealed the chemical composition of the 

surface films formed between the contact surfaces. Study of the chemical composition of 

the layer derived from ZDDP is the key to understanding the anitwear, anticorrosive 

properties of ZDDP. 

Bancroft et al. [70] have found that ZDDP tribofilms, 5 μm across and 100 nm 

thick [71] formed on steel surfaces are chemically and mechanically stable. These films 

were composed of a mixture of long and short chains of polyphosphates, which were 

inter-grown with the metal oxide surface. This intergrowth provides strong attachment 

with the metal surface. It was further determined [72] that the layered short chain 

polyphosphates are present in the bulk whereas the layered longer-chain polyphosphates 

were present at the surface. The tribologically derived ZDDP antiwear film differs from 

its thermally derived counterparts in comprising a layered structure whereas the thermally 

derived ZDDP antiwear film lacks a layered structure but has the same chemical 

composition. 

The chain length and composition of tribofilms derived from ZDDP are generally 

studied using XANES analysis. Fig.2.25 a,b indicates the P-L edge spectra of ZDDP 

films generated at different rubbing times. The P-L edge spectrum represents the spectral 

lines for phosphorus with electrons reflected from the L sub-shell. XANES analysis 
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permits two modes of analysis: total electron yield (TEY) and fluorescence yield (FY). 

Thus spectra obtained in the TEY mode, with ~5 nm of depth sensitivity, provide 

information regarding the surface features. The fluorescence yield (FY) mode has a 

sensitivity of ~ 60 nm and provides information regarding the bulk properties. The 

XANES spectra consists mainly of three humps marked a, b and c. The polyphosphate 

chain length is determined by the ratio of peak height of a/c. A higher ratio of a:c 

indicates larger chain length. From Fig.2.25 it can be concluded that the surface of the 

film consists of long-chain length polyphosphates while the shorter chain lengths are 

found towards the bulk. 

Various mechanisms have been proposed regarding the ZDDP antiwear and 

antioxidant film formation on the steel surface. In solution ZDDP might undergo 

following reactions: 

(i) Ligand exchange [73]: Labile dithiophosphate ligands can exchange the central metal 

cation (Zn in this case) with another divalent metal ion like Fe in the following way: 

((RO)2 PSS)2Zn + M
2+

 = ((RO2)PSS)2M + Zn
2+

                                                           (12) 

Thus ligand (LI) exchange plays an important role in the antiwear property of ZDDP. 

(ii) Reaction with peroxides and hydroperoxides: Yin et al. [72] developed a five-step 

pathway for the decomposition of ZDDP on a steel surface: 

a. ZDDP is adsorbed onto the metal surface. 

b. ZDDP (in solution) is converted to LI (in solution). 

c. LI (in solution) is adsorbed to the metal surface. 

d. Thermal-oxidation of adsorbed LI and ZDDP occurs by either O
2
 or ROOH to form 

long-chain polyphosphates Zn(PO3)2. 
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e. With continued rubbing, in the presence of water from the base oil, hydrolysis of 

polyphosphates occurs, creating short-chain polyphosphates. 

(iii) Thermal degradation of ZDDP: In the absence of hydroperoxides/peroxy-radicals, 

ligand exchange ZDDP reacts in a different way at high temperature (130-230 ºC). The 

mechanism of thermal degradation is described as the exchange of alkyl groups between 

O and S in the ZDDP molecule finally leading to the formation of polyphosphates 

according to the following reactions [73]: 

 

 

 

For a steel surface, the formation of protective and sacrificial glassy-

polyphosphate film as a result of the breakdown of ZDDP, limits the contact between the 

two rubbing surfaces. However, the exact mechanism resulting in formation of 

polyphosphates from degradation of ZDDP is yet to be determined. Some in situ 

analytical techniques along with vibrational and raman spectroscopy might be useful in 

this regard. 

Literature studies have been conducted on the action of ZDDP as an antiwear 

agent in lubricated wear of Al-Si alloys. Wan et al. [74] performed ball-on-block 
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experiments on A2024 against AISI 52100 as the counterface under lubricated conditions 

at room temperature. The authors observed that the COF do not change with increasing 

concentration of base oil. Moreover it was reported that although ZDDP reduces adhesive 

wear it produces chemical wear. Hence the authors concluded that the addition of ZDDP 

in base stock is not beneficial in reducing wear and damage of aluminum alloys. They 

authors reasoned that the surface film produced by ZDDP is fragile and gets easily 

detached from the substrate, resulting in low concentrations of phosphorus, sulphur and 

zinc is observed in the surface film. However, there was no evidence to substantiate this 

observation. On the other hand, Fuller et al. [75] performed boundary lubricated tests on 

Al alloys 6061 and A-390 with ZDDP oil blend as the lubricant at 60 °C and 100 °C and 

concluded that addition of ZDDP to the base stock results in improvement of wear 

performance. The authors reported that ZDDP tribofilms formed on the worn surfaces of 

the Al alloys consist of polyphosphate structure identical to those formed on steel. This 

protective film formation occurred only after an extended period of rubbing. At 100 °C 

severe wear occurs, resulting in metal loss with insufficient tile for tribofilm formation. 

Nicholls et al. [76] reported similar results of tribofilm formation with identical 

composition to that of steel using XANES spectroscopy (Fig.2.26). Of the two Al-Si 

alloys studied, A-6061 and A-319, the latter showed increased efficiency of beneficial 

surface formation probably because of the increased Si content providing a platform for 

the surface film formation. Further in situ observations regarding the mechanism of 

formation of ZDDP at high temperatures for Al-Si alloys and its dependence on the 

percentage of Si content can inform future research. 
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Fig.2.16. Cross-sectional TEM micrograph obtained from: (a) worn subsurface of Al-

11% Si tested under laboratory conditions [11] and (b) worn Al-11% Si cylinder bore 

[64]. It is to be noted that both the microstructures show similar features and the presence 

of protective oil residue layer.  
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Fig.2.17. (a) and (b) represents SEM and optical profilometry images of Al-18.5% Si 

indicating scratches on Si particles with no damage to the matrix; (c) and (d) represents 

SEM and optical profilometry images of Al-11% Si showing matrix damage [60]. 
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Fig.2.18.Volumetric wear loss of Al–18.5% Si at 5.0 N load. The wear loss is measurable 

after 5×10
4
 sliding cycles [63]. 
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Fig.2.19. Cross-sectional TEM image of the microstructure of the material under the wear 

track showing ultra-fine aluminum grains around the silicon particle and the oil residue 

layer [11]. 
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Fig.2.20. Variation of volumetric wear with sliding cycles in Al–11% Si in comparison 

with Al–25% Si indicating the three stages of UMW [11]. 
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Fig.2.21. Schematic representation of deformation microstructures and grain subdivision 

process. (a) Small to medium strain deformation showing long microbands and dense 

dislocation walls surrounding groups of cells in cell blocks; (b) at large strain 

deformation, with lamellar boundaries parallel to the deformation direction, sandwiching 

in narrow slabs of cells or equiaxed subgrains [65]. 
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Fig.2.22. The Stribeck curve showing three lubricated regimes: boundary lubrication, 

mixed lubricated and hydrodynamic lubrication. Z=lubricant viscosity; N=sliding speed; 

P=applied load [77]. 
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Fig.2.23 Structure of zinc dithiophosphate. The ‘R’ group indicates whether it’s an alkyl 

or an aromatic dithiophosphate [78]. 

 

 

 

 

 

 

 

 



 

55 

 

 

Fig.2.24. Infrared spectra for (a) tribologically derived ZDDP antiwear film; (b) a 

simulated spectrum of tribochemical film; (c) amorphous calcium pyrophosphate and (d) 

amorphous magnesium orthophosphate [79]. 
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Fig.2.25. P L-edge spectra ofZDDP films generated under different rubbing times 

measured using (a) TEY and (b) FY modes. Differences in the polyphosphate chain-

length can be observed between the surface (TEY) and the bulk (FY) of the film by 

comparing the a/c peak heights [72]. 
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Fig.2.26. XANES spectra of model compounds and antiwear films formed on different 

Al-Si and steel couples. (a) P L-edge XANES spectra; (b) P K-edge XANES spectra [78]. 
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2.4. Summary  

Extensive studies have been conducted on the dry sliding wear of Al/Mg alloys 

and composites in which the dominant wear mechanisms and the factors affecting wear 

transition regimes have been discussed in detail. Comparatively fewer studies are found 

on the lubricated wear characteristics of lightweight metal-based alloys/composites. The 

understanding of ultra-mild wear of Al-Si alloys was a stepping stone towards the 

understanding of wear stabilization and the role of the tribolayer in the lubricated wear 

regime.  

However, studies on the lubricated wear of Mg matrix composites are scanty in 

the literature. The understanding of ZDDP degradation in the Mg composites as a result 

of applied contact pressure and temperature during sliding wear is useful for the engine 

block-piston ring applications for which the current research is intended. Therefore the 

next few chapters outlining the current research will discuss: 

i) A squeeze casting technique for Mg composite and corresponding lubricated sliding 

wear test parameters, 

ii) A comparison of wear mechanisms of the matrix alloy and the Mg composite and the 

role of counterface, 

iii) The wear mechanisms and a description of the sequence of damage events, 

iv) Analyses and modeling the role of fibres and matrix on wear mechanisms.   
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Chapter 3: Experimental Methodology 

3.1. Introduction 

 This chapter describes the experimental methodology used to fabricate 

composites and the experimental parameters employed to conduct sliding wear tests. The 

chapter starts with a description of the squeeze casting technique used to fabricate the Mg 

composites. This is followed by a section describing the parameters of pin-on-disk sliding 

wear tests. Finally, the different observation and quantification techniques used in this 

research have been described. 

3.2. Description and Fabrication of Mg Matrix Composites 

The matrix alloy used for this study was squeeze cast AM60 with a composition 

(wt. %) Al: 5-6%, Zn: 0.2%, Mn: 0.4%, Si: 0.1%, Cu: 0.01% and balance Mg. Al2O3 

fibres and particles of varying volume percentages were incorporated in the alloy to 

prepare the composites. The reinforcement used was saffil fibres (97% Al2O3, 3% SiO2), 

obtained from Saffil Inc. and Thermal Ceramics Incorporation. These were prepared by 

collection of the as-spun gel fibre and passing it through a series of heat treatment stages 

to develop the crystalline microstructure. The presence of a small amount of silica (3 to 4 

%) is effective in controlling crystal growth, allowing the gradual removal of porosity to 

optimize thermal mechanical properties.  

The composites were prepared by a preform fabrication and squeeze casting 

method. The preform fabrication process consisted of converting the Al2O3 

fibres/particles into a powder form and flocculating this powder with a solution of 

polyacrylamide in water. The solution was stirred thoroughly overnight in water to break 
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down the fibre/particle clusters. The ceramic reinforcement was then dried and squeezed 

into a circular mold by application of load to prepare the preform (Fig.3.1). The preform 

volume percentage was determined by the following relation: 

3
O

2
Al

ρ

preform
ρ

%
f

)
3

O
2

(Al                                                                                               (3.1) 

where, ρpreform and ρfibre are the densities of preform and the Al2O3 fibres/particles 

constituting the preform respectively. The density of preform may be calculated by 

measuring the weight and volume of the preform. The dimensions of the preform were 

kept constant at 10 cm diameter (in sync with the lower die diameter) and 2.5 cm 

thickness. Increasing the Al2O3 fibre content increased the weight of the preform and 

correspondingly a higher fibre volume percentage was obtained. Table 3-1 indicates the 

weights of preform corresponding to the different fibre volume percentages. 

The fabricated preform was then dried and sintered at 300 ºC to improve the 

compressive strength. Both the upper and the lower dies of the squeeze casting machine 

were preheated to 350 ºC. The preform and the Mg alloy were heated to 450 ºC and 

750 ºC respectively before pouring them into the lower die (Fig.3.2). The applied 

pressure in squeeze casting is an important variable that changes the microstructure and 

the mechanical properties of casting [80]. The solidification temperature of an alloy 

depends on the amount of pressure applied as determined by the Eqn.3.1, also known as 

the Claussius-Clapeyron equation [81], which relates the rate of change of melting point 

of a solid under pressure (dT/dP) with its latent heat of fusion. 

f
L

)
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where, Tf is the equilibrium solidification temperature, Vs and Vl are specific volumes of 

solid and liquid and Lf is the latent heat of solidification. The dT/dP of pure Mg has been 

calculated to be 0.0647 ºC/MPa [81]. In this case, once the molten Mg was added to the 

die containing the Al2O3 preform, the dies were closed by raising the lower die and fitting 

into the upper one. A constant pressure of 90 MPa was applied by the plunger into the die 

cavity to facilitate the infiltration of liquid Mg alloy in the gaps between the Al2O3 

preform. The applied pressure was maintained until the solidification of the casting was 

complete [34]. The resulting alumina reinforced fibre and fibre+particle reinforced 

composites were designated as AM60-x% (Al2O3)f and  AM60-(x% (Al2O3)f + y% 

(Al2O3)p) where x and y are the volume of Al2O3 fibre and particle added respectively. A 

schematic representation of the squeeze casting process is shown in Fig.3.3. The 

composites used to conduct sliding wear tests were AM60-9% (Al2O3)f, AM60-11% 

(Al2O3)f and AM60-26% (Al2O3)f (Fig.3.4a-c).  The alloy hardness was 48.9±3.2 HV or 

479.6±31.4 MPa (1 HV=9.8 MPa) and the matrix hardness of the composites is reported 

in Table 3-2. In the composites, the Al2O3 fibres in the composite had an average length 

of 13.92±9.91 μm and a mean width of 3.72±0.75 μm (Fig.3.5). The aspect ratio was 

calculated as 3.55. 
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Fig.3.1. Al2O3 fibre preform after compression and drying. 

 

 

Table 3-1: Determination of preform volume percentage. 

Weight of 

perform (g) 

Volume of 

preform (cm
3
) 

ρpreform 

(g/cm
3
) 

ρAl2O3 [82] 

(g/cm
3
) 

Al2O3 fibre % 

70.72 196.25 0.36 3.96 9.13 

85.21         196.25 0.43 3.96 10.95 

200.55         196.25 1.02 3.96 25.94 
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Fig.3.2.(a) The squeeze casting machine and (b) the furnace. The dies are closed by 

raising the lower die against the upper one by the hydraulic press. The magnesium alloy 

AM60 was melt at 750 ºC in the furnace (b), and poured into the die. 
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Fig.3.3. Flow diagram of the squeeze casting technique. 
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Fig.3.4. Secondary scanning electron micrograph showing the initial microstructures of 

(a) AM60-9% (Al2O3)f; (b) AM60-11% (Al2O3)f ; (c) AM60-26% (Al2O3)f. 
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Table 3-2: Indentation hardness values AM60 alloy and fibre reinforced Mg composites. 

 AM60 AM60-9% (Al2O3)f AM60-11% (Al2O3)f AM60-26% (Al2O3)f 

Hardness 

(MPa) 

503±63 890± 47 1006±28 1390±53 
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Fig.3.5. Al2O3 fibre length and width distribution in AM60-9% (Al2O3)f. 
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3.3. Sliding Wear Tests 

A pin-on-disk type tribometer (Fig. 3.5) was used to perform lubricated sliding 

wear tests on AM60-x% (Al2O3)f (where x=9%, 11%, 26%) and  AM60-(9% (Al2O3)f + 

4% (Al2O3)p) against 6 mm diameter AISI 52100 grade steel balls (700 HV) under 1.0-

5.0 N loads, between 2.5×10
4
-1.0×10

6 
sliding cycles and at a constant sliding velocity of 

0.05 m/s. Wear tests were performed on the Mg composite AM60-9% (Al2O3)f  at 25 °C 

and at 100 °C for comparison. The contact surfaces of all the specimens subjected to 

sliding wear tests were prepared using conventional grinding and mechanical polishing 

procedures to a final polish of 1 μm using a diamond suspension. The initial Al2O3 fiber 

height protrusion above the Mg matrix was found to be 1.8±0.2 μm using an optical 

surface profilometer (WYKO NT-1100).   

All wear tests were conducted under boundary lubricated conditions using 

synthetic oil SAE 5W-30. The lubrication regime was evaluated by calculating the ratio 

(λ) of minimum lubrication thickness (hmin) and the r.m.s. roughness (r*) of the surfaces 

in contact [69] using Eqn.3.3 and the parameters listed in Table 3-3. 

0.07P0.12(E*)0.68U
0.68

0
η0.49α0.471.79R

min
h                                            (3.3) 

where, R=radius of the counterface (ball); U=sliding velocity; P=normal load; 

E*=composite elastic modulus of the Mg-composites (discussed in section 5.2); α,η0= 

viscosity constants of the lubricating oil. The r.m.s roughness (r*) of the two surfaces in 

contact is given by Eqn.3.3. 

ball

2r
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where, rMg-Al2O3 and rball are the r.m.s roughness of the Al2O3 fibres and particles and the 

counterface steel ball determined by optical profilometry measurements. Thus the value 

of λ was calculated to be 0.25, 0.24 and 0.22 at 1.0 N, 2.0 N and 5.0 N loads respectively. 

The value of λ was calculated to be 0.058 under 2.0 N load at 100 °C. As λ<1 for all 

experimental conditions, the sliding wear tests satisfied the boundary lubrication regime.  

3.4. Observation of worn surfaces 

The wear features were quantified using an optical surface profilometer (WYKO 

NT-1100). Wear of composites occurred in the UMW regime where wear losses were 

less than that could be measured by a balance with sensitivity of 10
-5

 g. Hence, optical 

profilometry calculations were employed to determine the material removal rates in the 

composites according to the reference [11]. The amount of material removal associated 

with the groove formations along the wear track were detected in this way. The amount 

of material removed was obtained from an area, A, by calculating the cross-sectional area 

that fell below a reference position with respect to unworn Mg matrix. The worn area was 

calculated using optial profilometry observations, with four readings from each image 

(Fig.3.7a, b)- where the area beneath the reference line, marked by dotted line in Fig.3.7b 

was calculated to be the worn area. An average of 24 readings (from six different regions 

of the wear track) was taken as the worn area Aij and was multiplied by the perimeter of 

the wear track, which gives the volumetric wear loss W (Table 3-4) according to the 

Eqn.3.4 [11]: 

]
n

1i

k

1j ij
AπRw[

n

2
W                                                                                                  (3.5) 
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where, k is the number of grooves per section and n=24: the number of different sections 

along the wear track from which measurements were made.  

The Al2O3 fibre height decrease was quantified using the histogram (Fig.3.8) 

obtained from the optical profilometry image. In Fig.3.8, the first peak represents the Mg 

matrix with a higher height distribution frequency whereas the second peak represents the 

Al2O3 fibres. The horizontal distance between the two peaks, 1.8 µm, was the fibre 

elevation over the Mg matrix in the initial surface. At 5.0 N load and after 2×10
5
 cycles, 

it is noticeable that the second peak merged with the Mg peak indicating that the Al2O3 

fibres and the Mg matrix are at the same elevation.  

   The worn surfaces were observed using a scanning electron microscope (SEM), 

JEOL 6400, equipped with an energy dispersive spectrometer (EDS) using both the 

secondary electron and the backscattered modes. Cross-sectional samples were prepared 

by cutting two narrow trenches, parallel to each other and to the wear track, on either side 

of the area of interest using focused ion beam (FIB) milling (Zeiss NVision 40), and  a 

lift out technique. The Ga
+
 ion beam during the milling process was operated at 30 kV. 

The thin membrane between the two trenches was then removed using a lift-out device 

with an end effector and cleaned with a 5 kV followed by a 1 kV beam to reduce 

amorphization. The TEM samples thus prepared using FIB lift out technique were then 

examined using the Philips CM12 and JEOL 2010 transmission electron microscope 

operated at 200 kV.  
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Fig.3.6. Pin-on-disk tribometer used to conduct lubricated sliding wear tests on Mg 

composites. 
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Table 3-3: Parameters for calculation of lubrication conditions. 

R (m) η0 (PaS) α U (m/s) E* (GPa) W (N) hmin (μm) r* (μm) λ 

0.003 0.052 2.25×10
-08

 0.05 42.11 5.0 0.0173 0.0758 0.22 
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Fig.3.7. (a) Optical profilometry image used to calculate the worn area. (b) 2D-profile 

plot obtained from the marked X-X’ region of image (a). 
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Table 3-4: The average volumetric wear loss calculated from the individual worn area 

loss calculated from different portions of the wear track. 

Area (μm
2
) Volume (×10

-3 
mm

3
) 

44.30 0.56 

48.68 0.61 

29.11 0.37 

48.00 0.60 

63.03 0.79 

52.59 0.66 

46.02 0.58 

40.92 0.51 

48.93 0.61 

41.77 0.52 

46.53 0.58 

43.91 0.55 

51.75 0.65 

43.62 0.54 

43.21 0.54 

44.50 0.55 

41.90 0.52 

46.05 0.58 

41.00 0.51 

48.95 0.61 

43.18 0.54 

41.25 0.52 

40.32 
0.51 



 

75 

 

 

 

 

 

Fig.3.8. Histogram representing the decrease in the Al2O3 fibre height from the initial 

surface after 2×10
5
 sliding cycles. The horizontal distance between the two peaks is the   

Al2O3 fibre elevation. 
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Chapter 4: Results 

4.1. Introduction 

 This chapter presents the results obtained from the wear tests conducted on Mg 

composites, describing the wear mechanisms in each case. The chapter starts with the 

description of the wear results of the matrix alloy AM60 along with a comparison with 

the composite.  This is followed by the description of the results and wear mechanisms of 

the particle and fibre reinforced composite AM60-(9% (Al2O3)f+4% (Al2O3)p) and 

AM60-9% (Al2O3)f. The factors affecting the delay in the Mg matrix damage process are 

presented by describing the wear results of composites reinforced with different volume 

percentages of Al2O3 fibre and also by comparing the wear results of AM60-9% (Al2O3)f 

at room temperature and at elevated temperature.  

4.2. Wear of Unreinforced Alloy AM60 

Scanning electron micrographs (in the secondary electron mode) of the worn 

surfaces of the AM60 alloy (Fig. 4.1a), tested at 1.0 N load, indicate the prevalent wear 

features at low sliding cycles (i.e., for <1.0×10
5
 cycles). The damage was observed in the 

form of wear grooves parallel to the sliding direction due to plastic deformation of the 

contact surface. Fig. 4.1b indicates that at higher sliding cycles, evidence for oxidative 

wear was found in addition to the matrix surface deformation. Presence of MgO was 

detected in the form of wear debris (Fig. 4.1c) on the wear track and also in the material 

transferred to the counterface (Fig.4.2). Therefore at higher sliding cycles the wear 

mechanisms consisted of oxidative type wear (Fig.4.2) along with transfer of material to 

the counterface. 
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The two different damage mechanisms detected at initial and longer sliding cycles 

is summarized in Fig. 4.3 which shows the wear losses of the AM60 alloy under 1.0 N 

load plotted as a function of sliding cycles. The plot showed a transition from 4.05×10
-

4
 mm

3
/m to 6.15×10

-4
 mm

3
/m at ≥ 3×10

5
 cycles, the predominant wear mechanism being 

oxidative type wear and transfer of material to the counterface. However, within these 

two subregimes, the volume loss due to sliding wear increased linearly with the sliding 

distance, indicating that wear progressed under the steady state (i.e. constant wear rate) 

conditions.  

Fig. 4.4a shows the SEM micrograph of wear track of the AM60 alloy at 1.0 N for 

2.5×10
4 

sliding cycles and Fig. 4.4b shows the wear track of AM60-9% (Al2O3)f at 2.0 N 

for 6.0×10
5 

sliding cycles. The greater extent of wear (width of wear track: 0.73±0.08 

mm) for the AM60 alloy at 1.0 N in comparison to the composite AM60-9% (Al2O3)f 

(width of wear track: 0.35±0.02 mm) is evident despite being worn at a higher load and 

for longer sliding cycles. This is further reflected in the comparison of the volumetric 

wear loss plot (Fig.4.5) between the alloy and the composite whereby the volumetric 

wear loss from the surface of AM60 alloy was 10
2
 times higher than that of AM60-9% 

(Al2O3)f  despite the fact that the wear losses for the composite reported in this plot were 

measured at 5.0 N load.  
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Fig.4.1. SEM micrographs (secondary electron mode) of worn AM60 alloy tested at 

1.0 N load. (a) wear grooves observed at 7.5×10
4
 sliding cycles; (b) worn surface 

oxidation at 4.0×10
5
 sliding cycles; (c) MgO debris particles. 

 

 



 

79 

 

 

 

 

 

 

Fig.4.2. SEM micrograph of counterface AISI 52100 worn against AM60 matrix alloy, at 

1.0 N load and for 4×10
5
 cycles, indicating the presence of MgO debris particles 

transferred from the worn composite surface and carbon (C) from the lubricating oil. This 

serves as evidence that at higher sliding cycles (≥2×10
5
 cycles) oxidation and adhesion 

type wear occurred. 
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Fig.4.3. Volumetric wear loss vs. sliding cycles plot for AM60 alloy at 1.0 N load 

indicating presence of two wear regimes: wear by surface plastic deformation and wear 

by oxidation and adhesion. 
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Fig.4.4. SEM micrographs showing the difference in the width of wear tracks of (a) 

AM60 alloy at 1.0 N and 2.5×10
4
 cycles and (b) AM60-9% (Al2O3)f  at 2.0 N and 6×10

5 

cycles indicating the wear resistance of the ceramic reinforced composite is higher than 

the alloy. 
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Fig.4.5. Volumetric wear loss vs. sliding cycles plot for AM60 alloy and AM60-9% 

(Al2O3)f  .The wear loss of the composite is 10
2
 times lower than that of the matrix alloy. 

Note the wear of the composite was shown at 5.0 N and the matrix at 1.0 N load in order 

to emphasize the higher wear resistance of the composite AM60-9% (Al2O3)f compared 

to AM60 alloy. 
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4.3. Comparison of Wear of AM60-(9% (Al2O3)f + 4% (Al2O3)p) and AM60-9% 

(Al2O3)f 

Prior to the wear tests, contact surfaces of AM60-(9% (Al2O3)f + 4% (Al2O3)p) 

and AM60-9% (Al2O3)f were chemically etched (2% nital solution for 60 s) to expose the 

Al2O3 fibres (2.79±0.12 μm) above the Mg matrix. Sliding wear on AM60-(9% (Al2O3)f + 

4% (Al2O3)p) and AM60-9% (Al2O3)f at 1.0 N revealed no damage to the contact surfaces 

as the Mg matrix was protected by the exposed Al2O3 fibres. At 2.0 N load and upto 

1.0×10
5
 sliding cycles, no volumetric wear loss (by optical profilometry measurements) 

could be detected from the AM60-(9% (Al2O3)f + 4% (Al2O3)p) or AM60-9% (Al2O3)f  as 

the counterface made no contact with the Mg matrix. Effects of wear could be identified 

only in the form of scratches on the tops of Al2O3 particles and fibres. 

At 5.0 N load both AM60-(9% (Al2O3)f + 4% (Al2O3)p) and AM60-9% (Al2O3)f 

showed zero volumetric loss up to 5.0×10
4
 cycles. Surface damage occurred in the 

following ways: i) Al2O3 fibres underwent fracture and fragmentation while still attached 

to the matrix and ii) reduction in height of alumina particles and fibres with increasing 

sliding cycles due to Al2O3 sinking in. The applied load was carried by the Al2O3 

particles and fragmented fibres, thus protecting the Mg-matrix from damage. However, 

after 1.0×10
5
 sliding cycles and 5.0 N load, the  AM60-9% (Al2O3)f exhibited damage to 

the Mg-matrix in the form of wear grooves (Fig.4.6a) whereas AM60-(9% (Al2O3)f + 4% 

(Al2O3)p) showed no damage to the matrix under the same conditions (Fig.4.6b). 

At 5.0 N and after 1.0×10
5
 sliding cycles, AM60-9% (Al2O3)f  showed an 

increased amount of the volumetric loss (2.75×10
-4

 mm
3
). Fig. 4.7 represents the method 

by which Al2O3 elevation was determined. Fig.4.7a and b represent histograms, obtained 
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from optical profilometry measurements, indicating the reduction in Al2O3 fibre and 

particle heights for wear of AM60-(9% (Al2O3)f + 4% (Al2O3)p) and AM60-9% (Al2O3)f. 

From Fig.4.7 it is observed that after 1.0×10
5
 cycles, the Al2O3 elevation over the Mg 

matrix is by 1.8±0.22 μm for AM60-(9% (Al2O3)f + 4% (Al2O3)p) whereas the fibre and 

matrix elevation are the same for AM60-9% (Al2O3)f.  Fig.4.7c is the plot of the Al2O3 

height decrease with sliding cycles. The Al2O3 fibre height diminished from 2.8±0.20 μm 

to 2.40±0.08 μm at the end of 5.0×10
4
 cycles and became the same as the Mg matrix 

height at the end of 1.0×10
5
 cycles (Fig.4.7) due to sinking in of the fragmented fibres. 

Once the fibre and the matrix were at the same elevation, the latter was exposed to 

damage by the counterface and wear occurred on both fibres and matrix resulting in a 

sudden increase in volumetric wear loss (Fig.4.8). On the other hand, AM60-(9% 

(Al2O3)f + 4% (Al2O3)p) showed no damage to the matrix even after 1.0×10
5
 sliding 

cycles as the Al2O3 fibres+particles, exposed by 1.8±0.22 μm at the end of 1.0×10
5
 cycles 

(Fig.4.7), effectively protected the matrix from damage by counterface. The decrease in 

the height of the Al2O3 fibres and particles with increasing sliding cycles and applied load 

leading to changes in the damage features is summarized by the plot of volumetric wear 

loss vs. sliding cycles (Fig.4.8). No matrix damage (zero volumetric loss) occurred as 

long as the fibre/fibre+ particle were elevated over the Mg-matrix.  

In summary, wear at 1.0 N and 2.0 N, for both composites AM60-(9% (Al2O3)f + 

4% (Al2O3)p) and AM60-9% (Al2O3)f exhibited zero volumetric wear loss for all the test 

cycles (≤ 2×10
5
 cycles). At 5.0 N load AM60-(9% (Al2O3)f + 4% (Al2O3)p) corresponded 

to zero volumetric wear loss whereas AM60-9% (Al2O3)f resulted in an increased 

volumetric wear after 1.0×10
5
 sliding cycles. The damage features of these fibre 
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reinforced composites studied at longer sliding cycles and also at elevated temperature 

are presented in the following sections. 

 

 

 

Fig.4.6. a) SEM micrograph at 500X magnification showing the morphology of worn 

surface AM60-9% (Al2O3)f  after 1.0×10
5
cycles indicating presence of wear grooves; b) 

SEM micrograph at 1000X magnification showing morphology of worn surface of 

AM60-(9% (Al2O3)f + 4% (Al2O3)p) after 1.0×10
5
cycles indicating no damage to Mg 

matrix. 
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Fig.4.7. (a) and (b) represent histogram plot for AM60-(9% (Al2O3)f + 4% (Al2O3)p) and 

AM60-9% (Al2O3)f respectively under etched conditions with an initial elevation of  

Al2O3 by 2.8±0.20 μm, obtained from optical profilometry measurements. It is shown 

that after 1.0×10
5
 sliding cycles the Al2O3 fibres+particles (f+p) were exposed by 

1.8±0.22 μm for AM60-(9% (Al2O3)f + 4% (Al2O3)p) while the Al2O3 fibres  were at the 

same elevation as that of the Mg matrix for AM60-9% (Al2O3)f. (c) is the plot of fibre 

height decrease against number of sliding cycles at 5.0 N load. 
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Fig.4.8. Plot of volumetric wear of AM60-9% (Al2O3)f and AM60-(9% (Al2O3)f + 4% 

(Al2O3)p) with increasing siding cycles. In case of AM60-9% (Al2O3)f it is evident that at 

2.0 N load the transition to higher volumetric wear loss occurs at 2.0×10
5
 sliding cycles 

while at 5.0 N load it occurs after 1.0×10
5
 cycles. However, for AM60-(9% (Al2O3)f + 

4% (Al2O3)p) zero volumetric wear loss is observed after 1.0×10
5
 cycles at 1.0 N load 

indicating higher wear resistance compared to AM60-9% (Al2O3)f. 
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4.4. Wear of Mg composites reinforced with different volume percentages of Al2O3 

fibres 

In order to further the understanding of wear mechanisms of fibre reinforced Mg 

composites, pin-on-disk wear tests were performed on Mg composites reinforced with 9 

vol%, 11 vol% and 26 vol% Al2O3 fibres.  

The wear of AM60-9% (Al2O3)f was limited to the tops of the Al2O3 fibres 

without any damage to the matrix for up to 6×10
5
 sliding cycles. For sliding cycles ≥ 

6×10
5
, the damage to the Mg matrix was observed in the form of surface plastic 

deformation and formation of wear grooves (Fig.4.9a). For AM60-11% (Al2O3)f ,wear 

was observed in the form of damage to the matrix by wear groove formation (Fig.4.9b). 

However, damage to the Mg matrix and subsequent material loss in AM60-11% (Al2O3)f 

was approximately 2.8 times less when compared with the damage observed in the case 

of AM60-9% (Al2O3)f after 6×10
5
 sliding cycles. For AM60-26% (Al2O3)f almost no 

damage to the Mg matrix was detected after testing for 6×10
5
 sliding cycles. Damage 

features consisted of Al2O3 fibre fracture, fibre height decrease due to the wear of the tops 

of fibres and magnesium pile up formation adjacent to the fibres. An increase in the 

volumetric wear loss of AM60-26% (Al2O3)f from 0 to 2.3×10
-4

 mm
3 

was observed 

(Fig.4.10) after 1×10
6
 sliding cycles due to damage of the Mg matrix and wear groove 

formation (Fig.4.9c). 

Fig.4.10 shows that the transition to a high rate of material loss was deferred from 

6.0×10
5
 cycles to ≥8.0×10

5
 cycles and ≥1.0×10

6
 cycles as the fibre volume percentage 

was increased from 9% to 11% and 26% respectively. This might be attributed to the 

smaller average reduction in Al2O3 fibre height, with increasing the fibre volume fraction 



 

90 

 

as indicated in Table 4-1. The Al2O3 fibres, initially protruded over the Mg matrix by 

1.80±0.18 μm, and acted as load bearing elements, protecting the Mg matrix from 

damage. As the fibre height decreased with increasing sliding cycles (Table 4-1) the 

damage to the Mg matrix and the subsequent rate of material loss increased (Fig.4.10). 

The decrease in Al2O3 fibre elevation was delayed for AM60-26% (Al2O3)f as compared 

to AM60-9% (Al2O3)f and AM60-11% (Al2O3)f, as indicated in Table 4-1 resulting in 

reduced volumetric wear loss (Fig.4.10). The reduced rate of material of material loss in 

case of AM60-11% (Al2O3)f as compared to AM60-9% (Al2O3)f after 6×10
5
 sliding cycle 

could be attributed to the higher matrix hardness of the former (102.60 ± 2.9 HV) than 

the latter (90.8 ± 4.8 HV). The higher hardness of AM60-11% (Al2O3)f over AM60-9% 

(Al2O3)f might be due to the greater amount of matrix hardening as a result of greater 

amount of Al2O3 fibre reinforcement. This led to an increase in the dislocation density 

due to a geometrical and thermal mismatch between the matrix and reinforcement along 

with reduced grain size resulting in strengthening the Mg matrix. 
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Fig.4.9. SEM micrographs in secondary electron mode illustrating the worn surfaces at 

2.0 N and after 1×10
6
 cycles of (a) AM60-9% (Al2O3)f indicating fibre fracture and 

extensive plastic deformation of Mg matrix; (b) AM60-11% (Al2O3)f indicating damage 

in the form of wear grooves; (c) AM60-26% (Al2O3)f showing almost no damage to 

matrix. 
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Fig. 4.10. Volumetric material loss vs. sliding cycles at 2.0 N load indicating the effect of 

Al2O3 fibre volume percentage on the transition to higher rate of material removal of the 

composite. It is to be noted that the transition to higher volumetric wear loss was delayed 

to 1×10
6
 cycles for AM60-26% (Al2O3)f as opposed to 6×10

5
 cycles for AM60-9% 

(Al2O3)f and AM60-11% (Al2O3)f. 
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Table 4-1: Al2O3 fibre elevation over the Mg matrix for the composites after 6×10
5
 

sliding cycles. 

 AM60-9% (Al2O3)f AM60-11% (Al2O3)f AM60-26% (Al2O3)f 

Average fibre 

elevation (μm) 

0.48±0.08 0.58±0.12 0.70±0.02 
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4.5. Wear of Composite: AM60-9% (Al2O3)f  at 25 °C and 100 °C 

4.5.1 Decrease in height of Al2O3 fibres at 25 °C and 100 °C 

The fibre height decrease was determined using optical profilometry 

measurements caused by sinking in of the comminuted fibres. The fibre height decrease 

data are summarized in Fig.4.11. It is evident that fibre height decreases with increasing 

sliding cycles from the intial 1.80±0.18 μm to 0.8±0.1 μm at 1.0 N load and after 1×10
6
 

sliding cycles. The fibre height reduction was delayed at a lower load of 2.0 N compared 

to 5.0 N where the Al2O3 fibre reached the same height as that of the Mg matrix at as 

early as 1×10
5
 sliding cycles.   

A comparative plot (Fig.4.12) of the Al2O3 fibre height decrease at 2.0 N and at 

25 °C and 100 °C shows that, after sliding for 8×10
5
 cycles, the Al2O3 fibres elevation 

was 0.6±0.2 μm at 100 °C whereas at 25 °C it reached the same elevation as that of the 

Mg matrix. Thus at elevated temperature Al2O3 fibres height decrease was delayed to 

longer sliding cycles.  

4.5.2. Comparison of damage features of AM60-9% (Al2O3)f  at 25 °C and 100 °C  

 In the engine running conditions, the operating temperature is 100 °C; it is at this 

temperature that the viscosity of premium Mobil oil is also determined. Thus it would be 

useful to evaluate the wear behaviour of the Mg composite AM60-9% (Al2O3)f at 100 °C  

and compare it with that of the room temperature results.  

At 1.0 N load and at 25 °C, the Al2O3 fibres protruded over the Mg matrix by 

0.8 μm after 1×10
6
 sliding cycles as indicated in Fig.4.11. The wear was limited to the 

tops of the Al2O3 fibres (Fig.4.13a) without any damage to the matrix. The Al2O3 fibres 

thus protected the Mg matrix from damage by the counterface for up to the longest 



 

95 

 

sliding cycle (1×10
6
). Hence, under 1.0 N load the material removal from the Mg matrix 

was essentially nil for all sliding cycles which was reflected as zero wear rate in the 

volumetric wear loss plot (Fig. 4.14). A high magnification image of the worn surfaces at 

1.0 N load indicates the fibre sinking in and corresponding Mg matrix pile up. Similar 

features were observed at 2.0 N load for upto 2×10
5 

sliding cycles. For cycles  ≥6×10
5
, 

wear damage to the matrix surface was observed in the form of wear grooves (Fig.4.13c).  

Consequently, at this point the wear rate increased from 0 to 1.35×10
-7 

mm
3
/m

 
as shown 

in Fig. 4.12. At 5.0 N load the Mg matrix damage incurred as early as 1×10
5 

sliding 

cycles. Fig.4.13d shows fibre fracture and decohesion from the matrix on the Mg matrix 

by the counterface after 1×10
5 

sliding cycles and 5.0 N load. Fig. 4.15 indicates the 

damage features observed during wear of AM60-9% (Al2O3)f  at 25°C and under 2.0 N 

load. Fig. 4.15a and b indicates worn surface of AM60-9% (Al2O3)f  after 2×10
5 

sliding 

cycles at 2.0 N load. In Fig. 4.15a the damage features comprise of fragmented Al2O3 

fibres, sunk in fibres and corresponding pile up of the Mg matrix; the fibre elevation 

being 1.50±0.08 µm. Fig. 4.15b represents the worn surface after 6×10
5 

sliding cycles 

where, in addition to fibre fragmentation and sink in, surface plastic deformation is also 

observed- the fibre elevation being 0.50±0.02 µm. 

The plot of volumetric wear loss against the sliding cycles at three different loads 

(Fig. 4.14) helped explain the material removal rates and the damage features at each load 

when examined together with the SEM images (Fig.4.13) of worn contact surfaces and 

the Al2O3 fibres height decrease plot (Fig.4.11). At higher loads and sliding cycles, the 

material removal rate was considerably high and the wear rate was found to increase 

cumulatively. At 2.0 N load the fibre height decreased from 1.8 to 0.5 μm after 6×10
5 
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sliding cycles, causing wear of the Mg matrix which matched the increased rate of 

material removal indicated in Fig.4.14. Thus Fig.4.11 provides a way of predicting the 

onset of damage to the Mg matrix for the composite AM60-9% (Al2O3)f as represented in 

Fig.4.16. In Fig.4.16 it can be seen that the decrease in fibre height after 6×10
5
 cycles 

corresponds to the increase in volumetric wear loss. Once damage to the Mg matrix was 

initiated the counterface abraded the relatively softer Mg matrix causing plastic 

deformation of the surface.  

In the case of wear tests performed at 100 °C, at 1.0 N load there was no damage 

to matrix after 1×10
6
 sliding cycles akin to the results obtained for the room temperature 

tests. However, the decrease in fibre height was less compared to that at room 

temperature after 1×10
6
 sliding cycles; at 100 °C and 1.0 N load the fibre height 

decreased from the initial 1.8 μm to 1.0±0.2 μm after 1×10
6
 sliding cycles. Electron 

microscopic analyses of the worn surfaces indicated the formation of a tribofilm on top of 

the worn Al2O3 fibres (Fig.4.17a). This tribofilm consisted of Zn, S, P and Ca (Fig.4.17b) 

all of which originated from the additives present in the lubricating oil used. The 

formation of similar tribofilm has been previously reported in study of UMW of Al-Si 

alloys at elevated temperature [62].  At 2.0 N load, damage to the matrix occurred not 

before 8.0×10
5
 cycles where the Al2O3 fibre elevation was 0.6 μm over the Mg matrix. 

However, at 25 °C as the cycles extended to 8.0×10
5
, the Al2O3 fibre elevation decreased 

to the same level.  

For the tests conducted at 2.0 N load and at 100 °C, the formation of the 

protective tribofilm, also termed as the Oil Residue layer (ORL) [11], was not restricted 

to tops of worn fibres. At this load, the tribolayer formation was detected throughout the 
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wear track (Fig.4.17c). Fig.4.18 compared the volumetric wear loss from AM60-9% 

(Al2O3)f  under 2.0 N load at 25 °C and 100 °C. The plot showed that the rate of material 

loss from AM60-9% (Al2O3)f  at high temperature was lower than that at room 

temperature which might be attributed to the formation of a tribolayer initially on the tops 

of fibres and eventually on the worn Mg matrix. The backscattered SEM images 

(Fig.4.19) indicated that the ORL formation was only detected at high temperature while 

no such layer could be observed on the worn surfaces of composites tested at room 

temperature. The ORL formation is thus responsible for reducing and postponing the 

damage to the Mg matrix for the composites tested at 100 °C as compared to those tested 

at 25 °C. Note that the ORL formed on the worn surfaces is derived from the additives 

present in the lubricant Mobil Oil 5W-30 and is thus specific to the lubricant that is being 

used. If the test lubricant was to be changed to base oil (without additives), the wear 

results are expected to change. 
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Fig.4.11. Plot of variation of Al2O3 fibre height with sliding cycles at 1.0 N, 2.0 N and 5.0 

N for AM60-9% (Al2O3)f  composite at 25 °C. The fiber height reduction was delayed 

with decreasing load. 
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Fig.4.12. Plot of variation of Al2O3 fibre height with sliding cycles at 25 ºC and 100 ºC 

under 2.0 N load for AM60-9% (Al2O3)f  composite. The fiber height reduction is less in 

case of elevated temperature tests. 
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Fig.4.13. SEM micrographs of AM60-9% (Al2O3)f  at room temperature and at 1.0 N, 

2.0 N and 5.0 N. (a) No damage to matrix after 8.0×10
5
 cycles under 1.0 N load; (b) High 

magnification image at 1.0 N load and 8.0×10
5
 cycles indicating: i) fibre fracture and 

fragmentation ii) sinking in of the fragmented fibres iii) pile up of the adjacent Mg matrix 

without any damage to matrix; (c) Damage to the matrix in the form of wear grooves 

along with deformation of the Mg matrix at 2.0 N and after 8.0×10
5
 cycles; (d) Damage 

to Mg matrix in the form of wear grooves as early as 1×10
5
 cycles at 5.0 N load. 
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Fig.4.14. Volumetric wear loss vs. sliding cycles plot of AM60-9% (Al2O3)f  at 1.0 N, 

2.0 N and 5.0 N load at 25 °C. The transition to higher volumetric wear loss was delayed 

as the applied load was reduced- at 5.0 N the transition occurred at 1×10
5
 cycles, at 2.0 N 

the transition occurred at 6×10
5
 cycles while at 1.0 N zero volumetric wear continued for 

the highest sliding cycles tested 1×10
6
 cycles. In the initial cycles fiber fracture preceded 

sinking in with no damage to the matrix. At higher sliding cycles damage to the Mg 

matrix by the counterface was observed. 



 

103 

 

 

 



 

104 

 

 

Fig.4.15. SEM micrographs (secondary electron mode) of worn surface of AM60-9% 

(Al2O3)f  at 2.0 N load. (a) and (b) represents worn surfaces after 2×10
5
 cycles showing 

damage features including fibre fragmentation, sink in and Mg matrix pile up- without 

damage to matrix. (c) represents worn surface after 6×10
5
 cycles indicating damage to the 

matrix in form of plastic deformation. 
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Fig.4.16. Plot of fibre height decrease and volumetric wear loss at 2.0 N load with 

increasing sliding cycles. After 6×10
5
 cycles, the Al2O3 fibre height decreased to 

0.50±0.02 µm which corresponds to the increase in volumetric wear loss from 0.00-0.38 

(×10
-3

) mm
3
. Thus damage to Mg matrix can be predicted by quantifying the fibre height 

decrease.  
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Fig.4.17. Back-scattered SEM micrographs of worn AM60-9% (Al2O3)f  at 100 ºC. (a) 

Tribofilm formation on top of Al2O3 fibre at 1.0 N load after 1.0×10
6
 cycles; (b) EDS 

analysis revealed that the tribofilm consisted of Zn, S, Ca and P; (c) Formation of 

tribofilm on top of Al2O3 fibre and on the Mg matrix at 2.0 N load after 1.0×10
6
 cycles. 
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Fig.4.18. Comparison of volumetric wear loss vs. sliding cycles plot of AM60-9% 

(Al2O3)f  at 100 ºC and at 25 ºC under 2.0 N load. The plot indicates that under the same 

conditions the wear rate was lower in case of tests conducted at 100 ºC than at 25 ºC. The 

transition to higher volumetric wear loss occurred after 6×10
5
 cycles at 25 ºC while at 

100 ºC the transition is postponed till after 8×10
5
 cycles. 
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Fig.4.19. Back-scattered SEM micrographs of worn AM60-9% (Al2O3)f  and 2.0 N load at 

(a) 100 ºC and (b) 25 ºC. For tests conducted at 2.0 N load and 100 ºC formation of the 

oil residue layer could be detected whereas at 25 ºC the oil residue layer was not found. 
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4.6. Damage to the counterface: AISI 52100 ball 

 The abrasion of hard Al2O3 reinforcement phase against the relatively softer AISI 

52100 steel balls led to severe damage to the counterface observed in the form of wear 

grooves (Fig.4.20). The material removal was quantified using a spherical cap volume 

loss model whereby the diameter of the wear track on the counterface material was used 

to calculate the amount of material removed. 

At 25 ºC sliding wear of AM60-9% (Al2O3)f against AISI 52100 led to the 

transfer of Fe particles from the counterface  onto the worn surface of the Mg composite. 

However, EDS analysis of the counterface indicated no material transfer between the 

composite and the counterface. Thus at 25 ºC, the presence of Al2O3 fibres in AM60-9% 

(Al2O3)f composite proved to be detrimental for the wear of the counterface AISI 52100. 

Comparison of volumetric wear loss from the counterface surface against AM60-9% 

(Al2O3)f and Al-18.5% Si is shown in Fig.4.21. It is evident from the plot that Al2O3 

fibres in AM60-9% (Al2O3)f composite cause more damage to the counterface than 

caused by the Si particles in Al-18.5% Si alloy. 

The volume loss from the counterface at 25 ºC and after 1×10
6
 sliding cycles was 

calculated to be 10.4×10
-4

 mm
3
 whereas at 100 ºC the volume loss was 7.1×10

-4
 mm

3 

indicating that the damage to the counterface was less for the sliding wear tests conducted 

at 100 ºC. The reduced damage to the counterface might be attributed to the formation of 

the ORL on the worn surface of the counterface as indicated by EDS observations 

(Fig.4.22). Thus elevated temperature wear tests provided a way to reduce damage to the 

counterface as well. The average surface roughness of the counterface increased from the 

initial Ra=20.6 nm to Ra=845.25 nm at 100 ºC after 1×10
6
 sliding cycles.  
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The effect of the increase of the Al2O3 fibre volume fraction on the amount of 

material removal from the counterface was quantified. The calculation of the volume of 

material lost from AISI 52100 steel balls run against the Mg composites after 1×10
6
 

sliding cycles indicated that an increase in the volume percentage of Al2O3 fibres led to 

an increase in the counterface damage although the volumetric material loss from the 

composites decreased (Table 4-2). This observation indicates that the wear of both the 

mating surfaces should be considered during the design of sliding components made of 

these composites. Also, the damage induced on the counterface due to sliding against 

Al2O3 fibres necessitates the study of alternate counterface material. 

 

 

 

Fig.4.20. SEM image of the wear track on the counterface worn against AM60-9% 

(Al2O3)f at 25 °C, after  1×10
6
 cycles, showing damage in the form of wear grooves. 
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Fig.4.21. Plot of volumetric wear loss from the counterface against AM60-9% (Al2O3)f 

and Al-18.5% Si alloy at 5.0 N load. AM60-9% (Al2O3)f causes greater damage to the 

counterface than Al-18.5% Si alloy. 
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Fig.4.22. SEM micrograph and EDS result of the wear track on the counterface worn 

against AM60-9% (Al2O3)f at 100 °C and after 1×10
6
 cycles. Presence of Zn, P, S and Ca 

on the worn counterface surface indicates formation of an oil residue layer on the 

counterface. 
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Table 4-2: Volume of material lost from AISI 52100 counterface and Mg matrix 

composites after 1×10
6
 sliding cycles. 

 AM60-9% (Al2O3)f AM60-11% (Al2O3)f AM60-26% (Al2O3)f 

Volume of material 

lost from counterface 

(mm
3
) 

10.4×10
-4

 13.3×10
-4

 32.5×10
-4

 

Volume of material 

lost from composites 

(mm
3
) 

6.0×10
-4

 3.2×10
-4

 2.3×10
-4
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Chapter 5: Discussion 

5.1. Introduction 

The previous chapter described the damage features observed during sliding wear 

of the Mg composites AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% 

(Al2O3)f. The damage to the Mg matrix could be predicted by way of measuring the 

Al2O3 fibre height decrease with increasing sliding cycles. Under all loading conditions 

fibre fracture and fragmentation was detected. Increasing the fibre volume percentage 

from 9% to 26% decreased the volumetric wear loss by 63%, but increased the damage to 

the counterface twice as much. 

This chapter discusses the various factors which help to rationalize the damage 

features observed during the wear tests. A contact pressure analysis, adapted from the 

Greenwood-Tripp analysis [86], is implemented to estimate the amount of pressure 

exerted on the Al2O3 fibres. This is followed by two sections discussing first 

strengthening of the Mg matrix due to mismatch of coefficient of thermal expansion 

between the Mg matrix and the Al2O3 fibre followed by the effect of Al2O3 fibre 

morphology on the fracture behaviour and corresponding wear mechanisms. A schematic 

representation of the sequence of damage events is presented. The chapter ends with a 

discussion of the role of the oil residue layer in delaying the wear of Mg composite at 

elevated temperature. 
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5.2. Contact Pressure Analysis 

The original analysis of deformation and pressure at the contact between two 

elastic solids was performed by Hertz [83, 84]. In the Hertzian stress analysis, the 

following assumptions are considered: i) surfaces are continuous, smooth and non-

conforming; ii) strains are small; iii) surfaces are frictionless. 

The Hertzian pressure distribution is given by: 

1/2}2)
a

r
({1

0
pp(r)                                                                                                   (5.1) 

where, p0 is the maximum contact pressure given by: 

1/3)
2R3π

2*6WE
(

22ππ

3W
0

p                                                                                           (5.2) 

where, W is the normal load and E* is the composite elastic modulus given by: 

2
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2
2

υ1

1
E

2
1
υ1

*E

1
                                                                                                (5.3) 

where, υ and E are the Poisson’s ratio and Young’s modulus respectively; subscript 1 and 

2 refers to the two bodies. In this case υ1 and E1 refers to the Poisson’s ratio and Young’s 

modulus for AM60-9% (Al2O3)f while υ2 and E2 refers to the Poisson’s ratio and Young’s 

modulus for steel counterface. Using these values (Table 5-1), the E* was calculated to 

be 51.7 GPa. 

The contact radius a is given by: 

1/3)
*4E

3WR
(a                                                                                                                 

(5.4) 



 

 

117 

 

where, R is the effective composite curvature and is given by: 

2
R

1

1
R

1

R

1
                                                                                                               (5.5) 

In this case, R1=3 mm (radius of the counterface) while R2 is assumed to be flat. Using 

the values listed in Table 5-2 the maximum contact pressure p0 was calculated to be 620.9 

MPa and correspondingly the Hertzian pressure distribution p(r) was determined 

(Fig.5.2a). From Fig.5.2a it is evident that the calculated maximum apparent contact 

pressure applied on the Al2O3 fibres was lower than the matrix hardness (converted from 

HV to MPa according to the relation mentioned in section 3.2). Thus it was necessary to 

calculate the real contact pressure on a surface with asperities. 

 

 

 

Table 5-1. Parameters used to calculate the composite elastic modulus E*. 

Elastic modulus of 

AM60-9% (Al2O3)f 

(E1, GPa)  

Elastic modulus of 

AISI 52100 (E2,GPa) 

[85] 

Poisson’s ratio 

of AM60, ν1 

[85] 

Poisson’s ratio of 

AISI 52100 ν2 

[85] 

52.20 210.00 0.35 0.3 
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Table 5-2. Parameters used to calculate the Hertzian pressure distribution. 

Composite elastic modulus 

of AM60-9% (Al2O3)f  and 

52100 steel; (E*,GPa) 

Normal load; 

(W,N) 

Effective composite 

curvature; (R, m) 

Contact radius 

(a, μm) 

47.2 5.0 0.003 60.1 

 

 

 

 

The Hertzian analysis assumes the contact surfaces to be smooth and thus 

excludes applicability to all real solids. Real solid surfaces are rough, comprising of 

asperities or high spots where contact is made at isolated points only. An estimation of 

the contact stresses exerted on rough surfaces is achievable using Greenwood-Tripp (G-

T) contact model [86]. The G-T model is an extension of the Hertzian model for the case 

where one of the mating surfaces was assumed to consist of spherical asperities (peaks) 

following a Gaussian height distribution. In this work, the G-T model was employed to 

calculate the contact pressure distribution on the Al2O3 fibres of length Rf, considered as 

asperities against the steel counterface, protruding above the Mg matrix by 1.8±0.2 μm. 

These Al2O3 fibres, considered as asperities, were fitted to two Gaussian profiles (Fig.5.1) 

where the first peak, representing the Mg matrix, was adjusted to the zero position on the 

x-axis, while the second peak represented the Al2O3 fibre elevation. From the nature of 
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the Gaussian curve fittings the contact stress on Al2O3 fibres were calculated using the G-

T model. 
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Fig.5.1. Histogram of the initial surface of AM60-9% (Al2O3)f  under unetched 

conditions with 3 other curves fitted to the Mg peak, Al2O3 fibre peak and summation of 

all the curve fittings respectively. 

 

According to the G-T model, if the separation between the nominal surfaces at the 

position of a particular Al2O3 fibre is considered to be ‘u’ then contact ensued under the 

condition of asperity height z>u. Thus probability of contact is thus:  

u
φ(z)dzu)  (z prob                                                                                                    (5.6) 
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where ϕ(z) is the probability density function of the Al2O3 fibre height distribution. 

Considering η as the density of Al2O3 fibres (asperities) and a surface element dψ, the 

expected number of contacts dN and real area of contact dAr are given by equations (5.7) 

and (5.8) respectively. 

u
φ(z)dzηdψdN                                                                                                           (5.7) 

dz
u

 φ(z) u)-(zdψ
f

πηR
r

dA                                                                                      (5.8) 

where Rf is the Al2O3 fibre length. The magnitude of contact pressure, Pr, on the 

asperities is determined by the following equation: 

dz φ(z)3/2u)(z1/2
f

R*E
3

4

r
P                                                                                 

(5.9) 

The applied load dP is given by: 

u
φ(z)dz3/2u)(zdψ

1/2
R*ηE

3

4
dP f                                                                      (5.10) 

It is convenient to introduce standardized variables and describe the asperity 

heights in terms of σ, the standard deviation of asperity height distribution. The standard 

deviation of asperity height σ was determined from the curve fitting of the peak for Al2O3 

fibres as shown in Fig.5.1. The two peaks of the histogram in Fig.5.1 represent the peak 

for Mg matrix (peak with higher frequency) and Al2O3 fibre. These were assumed to 

follow a Gaussian distribution, represented by Eqn.5.11. 

)
2

1
)/c

1
bx(( Aexpf(x)                                                                                         (5.11) 
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where, A is the height of the peak of the curves, b1 is the position of the centre of the 

peak and c1 represents width of the bell. Eqn. 5.11 was used to calculate the curve fittings 

for the individual peaks for the Mg matrix and Al2O3 fibre and finally the summation 

curve for both the peaks. Eqn. 5.11 was compared to the general relation for Gaussian 

distribution given by: 

)2/2σ2a)(xexp(
22ππ

1
f(x)                                                                              (5.12) 

Therefore, the value was σ was determined from the curve fitting for Al2O3 fibre as 

follows: 

2

1
c

σ                                                                                                                          (5.13) 

Thus equations (5.7), (5.8) and (5.10) can be rewritten in the following ways: 

(h)
o

ηdψFdN                                                                                                             (5.14) 
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where, h=u/σ ; for Gaussian distribution of fibre heights: 

u
)ds2s

2

1
exp(nh)(s]

1/2(2π2

1
[(h)nF                                                                  (5.17) 

where s is the dimensionless asperity height that corresponds to Al2O3 fiber height of the 

polished surface in the Mg composite. 

The term η(Rfσ) was assumed to represent the area density of the Al2O3 fibres 

measured using quantitative metallography (using ImageJ software), while standard 
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deviation of fibre heights (σ) was obtained by Gaussian curve fitting the fibre height 

distribution frequency in the histogram of represented in Fig.5.1.  Considering the applied 

load dP on the surface area dψ equivalent to a uniform pressure p(r) as follows 

(h)
3/2

F σ1/2σ)
f

η(R*E
dψ

dP
p(r)                                                                            (5.18) 

The maximum real contact pressure occurs at the center of the contact area, at r=0: 
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4
(

r
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dP
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p                                                                   (5.19) 

Using the parameters enlisted in Table 5-3 the contact pressure distribution and 

the maximum contact pressure on the Al2O3 fibres was calculated by solving Eqn.5.18 

and 5.19 respectively and plotted against radial distance (Fig.5.2a). The calculated 

contact pressure at the centre of the wear track was as high as 2.825 GPa at 1.0 N which 

increased to 3.124 GPa at 5.0 N. The calculated Hertzian pressure under 5.0 N load was 

found to be approximately 81% less than the real contact pressure.  

             It is established [87, 88] that indentation on a rigid plastic material induces plain 

strain plastic deformation. Tabor [88] derived from a plot of mean indentation pressure 

vs. d/D, where d is the diameter of the spherical indentation and D is the diameter of the 

indenter ball, the value of constraint factor C=2.89 in the equation P=CY, which was the 

ratio between the mean contact pressure P and the uniaxial yield stress (Y). The sinking-

in of the Al2O3 fibres may be compared to the plain strain deformation of the Mg matrix. 

Thus the yield pressure required for indentation of the Mg matrix with Al2O3 fibres may 

be considered to be approximately equal to the Mg matrix hardness 90.8±4.7 HV or 

892 MPa. The calculated contact stress (3.12 GPa at 5.0 N load) peaked at the centre of 
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the wear track and exceeded the Mg matrix hardness. The contact pressure at both 1.0 N 

and 5.0 N load were comparable to the compressive strength of Al2O3 fibre (=3GPa [89]). 

The important implications of the estimated contact pressure represented in Fig.5.2a are i) 

Al2O3 fibre fracture and ii) surface plastic deformation of the Mg matrix under all loading 

conditions-both of which were experimentally verified. The G-T contact pressure was 

maximum at radial distance r=0 indicating occurrence of maximum damage at the centre 

of the wear track which was in good agreement with the experimental findings (Fig.5.2c). 

The radial distance at which the real contact stresses became zero was approximately 

equal to the width of the wear track (260±15.5 μm) confirming the agreement of 

theoretically calculated values of real contact stress with the experimental findings. 

 It is to be noted that the modified G-T model adapted to calculate the contact 

pressure on Al2O3 fibres has several shortcomings worth considering. The original 

Greenwood-Tripp model was proposed for asperities of monolithic materials whereas 

here a composite surface with Al2O3 fibres has been considered. The G-T model assumed 

spherical particles which were distributed according to the Gaussian relation-however, in 

the present composite the needle shaped cylindrical fibres and the Mg matrix showed a 

bimodal height distribution. Also the contact stress calculated using the G-T model only 

estimates the applied stress on the Al2O3 fibres at the very beginning of the sliding 

process. The change in fibre length Rf, due to fibre fragmentation, would increase the G-

T stress. Further, the damage to the counterface caused by the Al2O3 fibres results in an 

increase in the average surface roughness of counetrface AISI 52100 from the initial 

Ra=20.6 nm to Ra=616.52 nm at 25 ºC after 1×10
6
 sliding cycles. Thus with increasing 

sliding cycles the G-T contact pressure would change. Despite these discrepancies, the 
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adapted static contact stress model explains the fibre fracture and Mg deformation even at 

low applied load of 1.0 N. 

 

 

Table 5-3. Parameters used to calculate the Greenwood-Tripp contact pressure on Al2O3 

fibres. 

Composite elastic modulus 

of AM60-9% (Al2O3)f  and 

52100 steel; (E*,GPa) 

Al2O3 fibre 

length;  

(Rf, µm) 

Standard deviation 

of Al2O3 fibre 

height; (σ, µm) 

Area fraction of 

fibres; 

47.2 15.78 0.28 0.09 
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Fig.5.2. (a) The calculated G-T contact pressure distribution on the Al2O3 fibres for 

AM60-9% (Al2O3)f  at 5.0 N and 1.0 N load. The Hertzian pressure distribution is also 

shown. (b) Plot of G-T stress with increasing load and (c) Optical profilometry image, at 

5.0 N load and after 1×10
6
 cycles, indicating maximum damage at the centre of the wear 

track and the width of wear track (260±15.5 μm) approximately equal to the width of 

wear track predicted by plot (a). 

 

 

 

5.3. Effect of matrix hardness 

The normal force applied during the sliding wear process was estimated using G-

T and Hertz contact stress calculations outlined in the previous section. It will now be 

useful to discuss the force counterbalancing this normal force. As discussed in section 

2.2.2.1, the phenomenon of strengthening in metal matrix composites reinforced with 

fibres can mainly be attributed to the load transfer from matrix to reinforcement and an 

increase in dislocation density due to thermal mismatch between the matrix and the 

reinforcement [39]. 

The increase in dislocation density due to the mismatch in coefficient of thermal 

expansion between Al2O3 fibres may be calculated using the equation 5.20.  
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)bDpV(1

ΔT
T

Δαp12V

T
ρ                                                                                                      (5.20) 

where, Vp is the volume fraction of Al2O3 fibre, ∆α is the difference in the coefficient of 

thermal expansion of the fibre and the Mg matrix, ∆T is the temperature difference 

between the molten Mg and the perform (750-650=100 K
-1

), b is the dislocation density 

for Mg and D is the fibre width. Using the parameters enlisted in Table 5-4, the increase 

in dislocation density for three composites AM60-9% (Al2O3)f, AM60-11% (Al2O3)f  and 

AM60-26% (Al2O3)f were calculated to be 1.6×10
13

, 2.0×10
13 

and 5.6×10
13

. Using a 

composite sphere model Ramakrishnan [90] combined the two factors of load transfer 

and the generation of new dislocations into Eqn. 5.13 to calculate the enhanced 

(compressive) strength (σe) of the composite.  

)
l

f)(1
d

f(1yσeσ                                                                                                (5.21) 

where, σy is the yield strength of the matrix alloy, fl (=0.50 [38]) is the improvement 

factor due to the load bearing effect of the matrix and fd associated with dislocation 

strengthening can be represented as following:  

yσ

ρbmkG

d
f                                                                                                             (5.22) 

where k is a constant whose value is taken as 1.25 [90], Gm (=17.0 GPa [91]) is the shear 

modulus of the matrix, ρ is the dislocation density. 

Eqn.5.21 was used to calculate the increase in yield strength due to addition of 

fibres in Mg composites and was further compared (Table 5-4) with the matrix hardness 

(three times the yield strength [88]).  When Vp=0 (for the AM60 alloy), the value of ρT, fd 
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and fl is 0 indicating σe=σy (according to Eqn.5.21), i.e. the yield strength of AM60 alloy. 

It is evident from Table 5-5 that for AM60-9% (Al2O3)f and AM60-11% (Al2O3)f the 

theoretically calculated values correlated well with the experimentally measured matrix 

indentation hardness. The mismatch in the theoretical and the experimental values in case 

of AM60-26% (Al2O3)f can be attributed to the higher probability of the indenter hitting a 

subusrface Al2O3 fibre during the micro-indentation experiments.  

  

 

 

Table 5-4. Parameters used to calculate the increase in dislocation density in Mg 

composites AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% (Al2O3)f.  

Vp ∆α (K
-1

)[91] ∆T (K) b (m) [92] D (m) ρT 

0.09 3.9×10
-5

 100 0.28×10
-10

 3.72×10
-6

 3.54×10
12

 

0.11 3.9×10
-5

 100 0.28×10
-10 

3.72×10
-6 

4.42×10
12

 

0.26 3.9×10
-5

 100 0.28×10
-10 

3.72×10
-6 

1.25×10
13
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Table 5-5. Comparison of calculated values of hardness with experimentally measured 

microindentation hardness results. 

 H=3×σe  

(MPa) 

Measured indentation hardness 

(MPa) 

AM60 393 503±63 

AM60-9% (Al2O3)f 874 890±47 

AM60-11% (Al2O3)f 900 1006±28 

AM60-26% (Al2O3)f 951 1390±53 

 

 

5.4. Effect of Al2O3 fibre morphology 

Sliding wear comprises predominantly of two forces-a predominant normal force 

and lesser effective shear force. This section examines the effect of both normal and 

shear forces on Al2O3 fibres and a critical length and aspect ratio has been determined for 

both the cases below in which fracture of fibres can be prevented. 

 

 

5.4.1 Critical fibre length under normal force 

It is useful to consider the fibre orientations in the Mg composite with respect to 

the normal loading condition. Assuming the fibres to be cylindrical in shape, we consider 

two representative fibre orientations: fibre length parallel to the direction of loading 
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(Fig.5.3a) and fibre length normal to the direction of loading (Fig.5.3b). It should be 

noted that the developed model pertains to the orientation represented in Fig.5.3a and 

therefore has limited implications. Further development in the model in the future will 

subsequently include the other orientation thus completing the fibre fracture analysis. 

The normal load applied on the fibres, acting as load bearing elements, is 

supported by the matrix beneath it (Fig.5.3a) with the load transfer agent being the 

matrix-fibre bond. Under the condition that the matrix supports the fibre without yielding 

and without fibre fracture the following forces can be considered to be in equilibrium: 

k

L
πwmH

4

2πw

f
σ                                                                                                    (5.23) 

The left hand side of the equation represents the normal force exerted on the fibre cross-

section while the right hand side indicates the total force applied on the surface of the 

cylinder. Thus the critical fibre length Lc, below which fibre fracture will not occur may 

be determined by 

m4H

wσ

k

L
cL f                                                                                                           (5.24) 

where, σf is the compressive strength of Al2O3 fibres (=3000 MPa [89]), w is the width of 

the fibres, Hm is the matrix hardness of the composites AM60-9% (Al2O3)f, AM60-11% 

(Al2O3)f and AM60-26% (Al2O3)f including the matrix strengthening effect caused by the 

increase in dislocation density and k is the number of fragments. Table 5-6 shows the 

critical fibre length for AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% 

(Al2O3)f. From Table 5-6 it can thus be concluded that under the load range the fibre, of 

an average initial length of 13.92±9.91 μm will form fragments of size ≥ 2.93 μm. The 
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propensity for fracture and fragmentation is found to increase (Table 5-6) with increase in 

matrix hardness caused by the addition of Al2O3 fibre. 

 Rearranging Eqn.5.24 and making k, number of fragments, the subject of the 

equation, Eqn.5.25 is obtained. Eqn.5.25 can thus be used to predict the number of 

fragments that might be expected due to fracture of a fibre of initial length L. Fig.5.4 

indicates the correlation between the experimentally measured number of fragments 

obtained from a particular initial fibre length with the number of fragments predicted 

from Eqn.5.25 from the same initial fibre length. It is evident that the predicted values 

from Eqn.5.25 are in good agreement with the experimental findings. The value of k=1 

was set as a lower bound to the fibre fragmentation process. Any fibre of initial length L 

that produces a value of k<1(from Eqn.5.25) will not undergo fibre fracture (Fig.5.4). 

w
f

σ

Lm4H
k                                                                                                                   (5.25) 

It is useful to discuss the implications of Eqn.5.25. As the Al2O3 fibre volume fraction is 

increased from 9% to 26% the matrix hardness (Hm) increases due to increase in 

dislocation density as discussed in section 5.3. Thus from Eqn.5.25 it can be seen that 

increasing the fibre volume content leads to greater degree of fragmentation. Based on 

Eqn.5.25 it can be predicted that larger the fibre length greater would be the fracture and 

fragmentation process indicating that future designing of fibre reinforced composites 

should consider use of short fibres. 
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Fig.5.3. Representative fibre orientations (a) parallel and (b) perpendicular to the 

direction of applied normal load in the Mg composites. The model developed in section 

5.4.1 considers only (a) where the fibre is parallel to the direction of loading.  
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Table 5-6. Calculation of average critical length of fragmented fibre.  

Composite 

Compressive strength 

of Al2O3 fibres ,σf, 

MPa 

Matrix hardness, 

Hm, MPa 

Average fibre 

width,w, µm 

Critical 

Length (Lc), 

µm 

AM60-9% 

(Al2O3)f 

3000 894.31 3.72±0.75 2.93 

AM60-11% 

(Al2O3)f 

3000 900.40 3.72±0.75 2.61 

AM60-26% 

(Al2O3)f 

3000 951.78 3.72±0.75 1.88 
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Fig.5.4. Correlation plot between number of fragments observed for an initial length L 

obtained from experimental observations and the values predicted from Eqn.5.25. 
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5.4.2. Critical fibre aspect ratio during shear force 

Single pass sliding contact tests conducted on AM60-9% (Al2O3)f helped 

elucidate the wear mechanisms and the effect of applied load on the Al2O3 fibres during 

surface traction. Sliding contact tests conducted at 0.05 N indicated that the Al2O3 fibres 

remained mostly intact without fracturing (Fig.5.5a). When the applied load was 

increased to 0.07 N load, the fibres underwent fracture and fragmentation with cracks 

initiating and propagating perpendicular to the sliding direction (Fig.5.5b). The 

fragmented fibres however did not sink into the Mg matrix. This indicates that an applied 

load as low as 0.07 N is sufficient to fracture the Al2O3 fibres.  

Fracture of fibres is largely dependent upon the fibre aspect ratio. Alpas [93] 

formulated Eqn.5.26 to predict the critical aspect ratio below which particles/fibres will 

fracture. 

1/2)]

IC
K

Hm
(μ

f
hP[κc(t/l)                                                                                       

(5.26) 

where, t and l were the length and breadth of Al2O3 fibres, applied load P=0.05-2.0 N, 

fibre elevation height hf = 1.8×10
−6

 m obtained by profilometric surface analyses, Mg 

matrix hardness of the composite AM60-9% (Al2O3)f  Hm = 8.9×10
2
 MPa, coefficient of 

friction µ=0.35 obtained from single pass sliding scratch tests, fracture toughness of 

Al2O3 fibres KIC=4.0 MPa (m
1/2

) [85] and a constant κ=10
5
 m

-3/4
 introduced to obtain a 

dimensionless quantity. Critical fibre aspect ratios calculated for the load range 0.05 N-

5.0 N (Table 5-7), below which fibres are expected to fracture. The measured fibre aspect 

ratio in Mg composites was 3.42±5.85. As evident from Table 5-7, fibre should remain 
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unaffected at 0.05 N load while at 0.07 N load they should fracture as (t/l) < (t/l)c, which 

correlates well with the experimental findings (Fig.5.5). Thus it is evident that the Al2O3 

fibres will fracture at all contact conditions during sliding wear (1.0-5.0 N load range).  
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Fig.5.5. SEM micrographs indicating difference in damage features after single pass 

sliding contact tests performed at constant loads of (a) 0.05 N and (b) 0.07 N. 
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Table 5-7. Calculation of critical fibre aspect ratio. Fibres are expected to fracture when 

(t/l) < (t/l)c. 

 

Load (N) 

 

(t/l)c 

 

(t/l) 

0.05 3.24 

3.55 

0.07 3.59 

1.0 7.32 

2.0 8.71 

5.0 10.95 
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5.5. Damage events 

The matrix strengthening due to increase in fibre volume percentage eventually 

concedes the advantage gained by adding higher amount of reinforcement. The high 

matrix hardness does not allow the fibres to undergo sink-in process during sliding wear. 

As a result crack formation and propagation occurs in the Al2O3 fibres, to accommodate 

the normal and the shear force applied during the pin-on-disk sliding wear process, 

eventually leading to fracture and fragmentation. This is quantitatively explained using 

Eqn.5.24/5.25-assuming constant normal load, with an increase in matrix hardness due to 

an increase in fibre volume fraction the critical size decreases leading to higher 

propensity for fragmentation. An increase in the fibre width would decrease the fibre 

fragmentation process-thus an Al2O3 particle (average length of 2.5±2.2 μm) should not 

undergo fragmentation. Fig.4.6b corroborates this fact where only fibre fracture and 

fragmentation is observed whereas particles are unaffected at 5.0 N load and after 1×10
5
 

cycles. The fibre fragmentation process is followed by a decrease in the fibre height due 

to the sinking in of the comminuted fibres.  

 The effect of matrix hardness on wear of the three composites AM60-9% 

(Al2O3)f, AM60-11% (Al2O3)f and AM60-26% (Al2O3)f is represented in Fig.5.6. Note 

that although the matrix hardness of AM60-26% (Al2O3)f is considerably higher than 

AM60-9% (Al2O3)f and AM60-11% (Al2O3)f, the volumetric wear loss is not mitigated to 

the same extent. This might be explained by Fig.5.7 which indicates that the maximum 

change in aspect ratio is observed in the case of AM60-26% (Al2O3)f after 6×10
5
 sliding 

cycles. This might be attributed to the high matrix hardness resulting in a higher 
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probability of fracture and fragmentation of the Al2O3 fibres in the case of AM60-26% 

(Al2O3)f causing a loss of wear resistance-as can be explained by Eqn.5.25. 

The sequence of damage events might be understood from Fig.5.8 where it is 

evident that in the initial sliding cycles the decrease in fibre length, due to fibre fracture 

and fragmentation, is predominant. At higher sliding cycles the decrease in height due to 

sinking in of the comminuted fibres dominates. Thus fibre sinking in process is preceded 

by fracture and fragmentation. Comparing Fig.5.8 with Eqn.5.24 and Table 5-6 shows 

that the final length of the fragmented Al2O3 fibre calculated from the theoretical 

considerations matches well with the experimental findings indicated in Fig.5.8. 
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Fig.5.6. Plot of matrix hardness and volumetric wear loss after 6×10
5
 cycles at 2.0 N load 

for AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% (Al2O3)f. The extent of 

wear resistance expected due to the high matrix hardness of AM60-26% (Al2O3)f is not 

observed. 
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Fig.5.7. Plot of matrix hardness, volumetric wear loss (after 6×10
5
 cycles) and change in 

aspect ratio for AM60-9% (Al2O3)f, AM60-11% (Al2O3)f and AM60-26% (Al2O3)f after 

6×105 cycles at 2.0 N load. The low wear resistance of AM60-26% (Al2O3)f might be 

explained by highest change in aspect ratio due to fracture and fragmentation. 

 



 

 

143 

 

 

Fig.5.8. Plot of decrease of Al2O3 fibre length and fibre height with sliding cycles for 

AM60-9% (Al2O3)f at 2.0 N load indicating the predominance of fracture and 

fragmentation in the initial sliding cycles; sinking in of the fragmented fibres is observed 

at higher sliding cycles; ‘h’ represents the Al2O3 fibre elevation. 

 

 

 

 

 

 

 



 

 

144 

 

5.6. Comparison with Al-Si alloys and role of oil residue layer  

 It is essential to compare the wear performance of the Al-11% Si and Al-18.5% Si 

alloys with the Mg composites to understand the role of microstructure in the prevalent 

wear mechanisms. Both the eutectic Al-11% Si and hypereutectic Al-18.5% Si alloy are 

materials used for automotive engines and their wear mechanisms are well established.                                             

This comparison will be insightful in applications of Mg based composites in the engine 

powertrain system.  

 A comparison of the G-T plots of Al-18.5% Si alloy and AM60-9% (Al2O3)f is 

represented in Fig.5.9 where the maximum contact pressure on AM60-9% (Al2O3)f is 

higher than the Al-18.5% Si alloy by 65%. Fig.5.10 reveals that a higher maximum 

contact pressure on AM60-9% (Al2O3)f as compared to Al-18.5% Si alloy results in 

higher amount of material loss from the Mg composite. The contact pressure applied on 

Al-11% Si was also calculated using Eqn.5.18/5.19 and compared with those obtained for 

the Mg composite AM60-9% (Al2O3)f. Under the same load of 1.0 N the highest contact 

pressure on Al-11% Si was calculated to be approximately 2.5 GPa [11] which is 1.12 

times lower than that on AM60-9% (Al2O3)f. Consequently volumetric wear loss from the 

AM60-9% (Al2O3)f is more than that detected in Al-11% Si (Fig.5.11). In the initial 

sliding cycles the Mg composite shows better wear performance than the Al-11% Si 

alloy. However, at longer sliding cycles, volumetric wear stabilizes for the Al-11% Si 

alloy due to the formation of the oil residue layer. No such protective tribofilm formation 

is observed for the Mg composite AM60-9% (Al2O3)f at room temperature. 

However, tests conducted on AM60-9% (Al2O3)f  at 100 °C  indicated the 

presence of an oil residue layer (ORL). A cross-sectional TEM image of the worn AM60-
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9% (Al2O3)f surface at 100 °C and taken after sliding for 1×10
6
 cycles and 1.0 N load 

indicates the presence of the oil residue layer (Fig.5.12) on tops of Al2O3 fibres. The 

composition of the oil residue layer is indicated in the corresponding EDS observations in 

Fig.5.12. The oil residue layer was 54.8±6.6 nm thick on the Al2O3 fibre. At 1.0 N load 

no ORL formation was observed on the Mg matrix. Formation of ORL on top of the worn 

Mg matrix and the formation of ultrafine nano Mg grains in the immediate subsurface 

region was detected (Fig.5.13), from cross-sectional TEM image, on the worn AM60-9% 

(Al2O3)f surface at 100 °C after 1×10
6
 cycles and 2.0 N load. The formation of the 

ultrafine Mg nano-grains, supporting the oil residue layer, might be attributed to 

deformation due to high subsurface strains prevalent under conditions when the Mg 

matrix is in contact with the counterface. An investigation into the formative mechanisms 

of the oil residue layer and its composition will be the next step for this research. 
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Fig.5.9. Comparison of Greenwood-Tripp plot for AM60-9% (Al2O3)f and Al-18.5% Si at 

5.0 N load (25 °C) indicating the considerably higher applied contact pressure for the Mg 

composite compared AM60-9% (Al2O3)f to Al-18.5% Si under the same conditions. 
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Fig.5.10. Comparison of the maximum G-T contact pressure and the corresponding 

volumetric wear loss at 5.0 N load and 2×10
5
 sliding cycles. AM60-9% (Al2O3)f shows a 

higher rate of material loss due to the higher maximum contact pressure on it compared 

to the Al-18.5% Si alloy. 
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Fig.5.11. Comparison of the volumetric wear loss vs. sliding cycles (at 25 °C) plot for 

eutectic and hypereutectic Al-Si alloys with the Mg composites. It is to be noted that 

wear stabilization is observed in the case of Al-11% Si alloy due to the formation of the 

oil residue layer. 
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Fig.5.12. Cross-sectional TEM image of the microstructure of the subsurface material 

under the wear track, tested at 1.0 N load and 100 °C, showing formation of oil residue 

layer on top of Al2O3 fibres. Corresponding EDS analysis of the oil residue layer show 

the constituent elements of the oil residue layer to be Zn, P, S, Ca and C. 
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Fig.5.13. Cross-sectional TEM micrograph of the subsurface material under the wear 

track, tested at 100 °C and 2.0 N load, showing formation of continuous oil residue layer 

on the worn Mg matrix. Immediately below the layer presence of Mg nano-grains were 

detected. 
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Chapter 6: Summary and Conclusions 

6.1. Summary 

Lubricated pin-on-disk sliding wear tests were performed on matrix alloy AM60, 

particle and fibre reinforced Mg composites at a load range of 1.0-5.0 N and at 25 ºC and 

100 ºC to evaluate the wear mechanisms. The main findings are as follows: 

i) Magnesium matrix composites were developed using saffil fibre/particle preform 

fabrication and a squeeze casting technique. This process involved application of a 

constant high (90 MPa) pressure for a stipulated period of time (90 s) on the preheated 

preform and the molten Mg matrix to fabricate Mg composites with uniform 

reinforcement distribution. 

ii) Wear mechanisms of magnesium alloy, AM60, at 1.0 N consisted of damage by 

surface plastic deformation and oxidative+adhesive type wear. Material removal rate for 

the AM60 alloy, 5.67×10
-4

 mm
3
/m, indicated occurrence of mild wear throughout test 

conditions. Transfer of magnesium oxide particles from the alloy to the counterface was 

detected. Comparison with the wear rate of the Mg composite AM60-9% (Al2O3)f  worn 

at 5.0 N indicated that  the highest wear rate was 1.82×10
-6

 mm
3
/m which was of the 

order of 10
2
 times lower than that of the AM60 alloy. 

iii) Wear of the composite AM60-9% (Al2O3)f occurred in the UMW regime under the 

experimental conditions and followed a non-linear behaviour. At 25 ºC damage occurred 

during sliding wear in the following ways: a) In the initial sliding cycles the exposed 

Al2O3 fibre fractured and fragmented into shorter fibres, b) the Al2O3 fibre height reduced 

due to sinking in of the fragmented fibres and c) as the Al2O3 fibre and the Mg matrix 
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reached the same elevation, the matrix suffered damage due to the counterface. No 

protective tribolayer formation was detected on the worn surface, indicating that the 

damage was accumulative. 

iv) Wear of all composites was negligible and comparable for low sliding cycles. AM60-

9% (Al2O3)f showed the highest rate of material loss as compared to AM60-11% (Al2O3)f 

and AM60-26% (Al2O3)f. Although an increase in the volume percentage of Al2O3 fibres 

led to a decrease in the material loss from the Mg matrix composites, it also enhanced the 

damage to the counterface. Also greater fibre fracture and fragmentation was observed 

with increase in fibre volume percentage. 

v) The contact pressure on the tops of Al2O3 fibres was estimated using modified 

Greenwood-Tripp contact mechanics model where the exposed Al2O3 fibres were 

considered as asperities. The contact pressure was found to be the highest, 3.124 GPa 

under 5.0 N load, at the centre of the wear track. This exceeded the hardness of the Mg 

matrix and the compressive strength of Al2O3 fibre causing plastic deformation to the Mg 

matrix and fibre fracture under all loading conditions. 

vi) The wear mechanisms were rationalized by the following considerations: the normal 

applied pressure on the Al2O3 fibres, estimated using Greenwood-Tripp contact model, 

was counterbalanced by the matrix hardening effect due to increase in dislocation density 

as a result of fibre addition and high strain deformation in the subsurface. A critical fibre 

length was calculated which determined the lower limit of the fibre fragmentation size. 

Also, it was shown that the fibre fragmentation was directly proportional to the fibre 

length. All of this corroborated well with the experimental findings. Thus, for future 
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design of composites, use of short fibres (≤ 3 μm) would reduce the propensity for 

fracture and might lead to higher wear resistance. 

vii) For the sliding wear tests performed at 100 ºC following features were observed: At 

low load (1.0 N) the Al2O3 fibre reduction was delayed, relative to the room temperature 

observations, due to formation of a protective tribofilm on tops of Al2O3 fibres. At higher 

loads the tribofilm formed on the worn Mg matrix thus leading to reduced volumetric 

wear loss as compared to the room temperature counterpart. The tribolayer, also known 

as the oil residue layer consisted comprised of Zn, P, S, Ca and C all of which were 

assumed to originate from the breakdown of ZDDP additive in the lubricant. 

 

6.2 Conclusions 

 It will be useful to discuss the conclusions arising out of this research by 

describing the factors effective in delaying the damage process to the Mg matrix and the 

resulting increase to higher rate of volumetric wear loss. The factors, represented in a bar 

chart (Fig.6.1), are i) increasing fibre volume percent and ii) increasing the operating 

temperature to 100 °C.  

 Fig.6.1 shows that decreasing the applied load from 5.0-2.0 N increases the 

transitional sliding cycle from 1×10
5
 cycles to 6×10

5
 cycles. This can be rationalized by 

the increase in contact pressure on the Al2O3 fibres as a result of increase in load leading 

to fracture of fibres. Increasing the Al2O3 fibre content from 9 vol%-26 vol% delayed the 

transition from 6×10
5
 cycles to 1×10

6
 cycles as a result of increase in the number of load 

bearing elements. However, higher fibre content also increased the damage to the 

counterface (Fig.6.1). Elevated temperature tests showed a delayed transition to higher 
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rate of volumetric wear loss from 6×10
5
 cycles to 1×10

6
 cycles due to the formation of 

the oil residue layer on tops of worn Al2O3 fibre and Mg matrix supported by ultrafine 

Mg grains. Also tests conducted at 100 °C indicated volumetric wear loss even lower 

than those obtained for AM60-26% (Al2O3)f under the same test conditions (Fig.6.1).  

 Thus, an optimum operating conditions for the Mg composite AM60-9% (Al2O3)f 

is wear at 1.0 N load and 100 °C where it is expected to show a favourable long term 

wear performance. 
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Fig.6.1. Plot of variation of volumetric wear loss with change in Al2O3 fibre volume 

percentage and operating temperature. Increasing the fibre volume percentage from 9% 

(AM60-9% (Al2O3)f )to 26% (AM60-26% (Al2O3)f ) decreased the volumetric wear loss 

(0.379×10
-3 

mm
3
-0.14×10

-3 
mm

3
) but increased the damage to the counterface. At 100 °C 

AM60-9% (Al2O3)f showed comparable wear resistance to that of AM60-26% (Al2O3)f 

proving to be the optimum operating condition. 
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6.3 Future work 

 The understanding of ultra-mild wear mechanisms in Al-Si alloys prompted the 

study of ultramild wear in Mg composites. This research helped understand the wear 

behaviour of Mg composites under ultra-mild wear conditions. However, further studies 

on the following points would help development and implementation of Mg composites 

for use as engine block in small or hybrid cars: 

i) A study of wear of Mg composites against alternate counterface materials, namely 

carbon-carbon composites, to prevent the damage of the counterface by hard 

reinforcements. 

ii) An analysis of the oil residue layer formative mechanisms and their dependence on 

contact pressure and temperature. Also the mixing of the components of the oil residue 

layer with the substrate (Mg and Al) will be an interesting and useful study. 

iii) Study of corrosion and fatigue behaviour of the Mg composites to better understand 

their applicability as engine blocks. 
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